linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1/*
   2 * Initialize MMU support.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/init.h>
   9
  10#include <linux/bootmem.h>
  11#include <linux/efi.h>
  12#include <linux/elf.h>
  13#include <linux/memblock.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/module.h>
  17#include <linux/personality.h>
  18#include <linux/reboot.h>
  19#include <linux/slab.h>
  20#include <linux/swap.h>
  21#include <linux/proc_fs.h>
  22#include <linux/bitops.h>
  23#include <linux/kexec.h>
  24
  25#include <asm/dma.h>
  26#include <asm/io.h>
  27#include <asm/machvec.h>
  28#include <asm/numa.h>
  29#include <asm/patch.h>
  30#include <asm/pgalloc.h>
  31#include <asm/sal.h>
  32#include <asm/sections.h>
  33#include <asm/tlb.h>
  34#include <asm/uaccess.h>
  35#include <asm/unistd.h>
  36#include <asm/mca.h>
  37
  38extern void ia64_tlb_init (void);
  39
  40unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  41
  42#ifdef CONFIG_VIRTUAL_MEM_MAP
  43unsigned long VMALLOC_END = VMALLOC_END_INIT;
  44EXPORT_SYMBOL(VMALLOC_END);
  45struct page *vmem_map;
  46EXPORT_SYMBOL(vmem_map);
  47#endif
  48
  49struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  50EXPORT_SYMBOL(zero_page_memmap_ptr);
  51
  52void
  53__ia64_sync_icache_dcache (pte_t pte)
  54{
  55        unsigned long addr;
  56        struct page *page;
  57
  58        page = pte_page(pte);
  59        addr = (unsigned long) page_address(page);
  60
  61        if (test_bit(PG_arch_1, &page->flags))
  62                return;                         /* i-cache is already coherent with d-cache */
  63
  64        flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  65        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  66}
  67
  68/*
  69 * Since DMA is i-cache coherent, any (complete) pages that were written via
  70 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  71 * flush them when they get mapped into an executable vm-area.
  72 */
  73void
  74dma_mark_clean(void *addr, size_t size)
  75{
  76        unsigned long pg_addr, end;
  77
  78        pg_addr = PAGE_ALIGN((unsigned long) addr);
  79        end = (unsigned long) addr + size;
  80        while (pg_addr + PAGE_SIZE <= end) {
  81                struct page *page = virt_to_page(pg_addr);
  82                set_bit(PG_arch_1, &page->flags);
  83                pg_addr += PAGE_SIZE;
  84        }
  85}
  86
  87inline void
  88ia64_set_rbs_bot (void)
  89{
  90        unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  91
  92        if (stack_size > MAX_USER_STACK_SIZE)
  93                stack_size = MAX_USER_STACK_SIZE;
  94        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  95}
  96
  97/*
  98 * This performs some platform-dependent address space initialization.
  99 * On IA-64, we want to setup the VM area for the register backing
 100 * store (which grows upwards) and install the gateway page which is
 101 * used for signal trampolines, etc.
 102 */
 103void
 104ia64_init_addr_space (void)
 105{
 106        struct vm_area_struct *vma;
 107
 108        ia64_set_rbs_bot();
 109
 110        /*
 111         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 112         * the problem.  When the process attempts to write to the register backing store
 113         * for the first time, it will get a SEGFAULT in this case.
 114         */
 115        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 116        if (vma) {
 117                INIT_LIST_HEAD(&vma->anon_vma_chain);
 118                vma->vm_mm = current->mm;
 119                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 120                vma->vm_end = vma->vm_start + PAGE_SIZE;
 121                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 122                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 123                down_write(&current->mm->mmap_sem);
 124                if (insert_vm_struct(current->mm, vma)) {
 125                        up_write(&current->mm->mmap_sem);
 126                        kmem_cache_free(vm_area_cachep, vma);
 127                        return;
 128                }
 129                up_write(&current->mm->mmap_sem);
 130        }
 131
 132        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 133        if (!(current->personality & MMAP_PAGE_ZERO)) {
 134                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 135                if (vma) {
 136                        INIT_LIST_HEAD(&vma->anon_vma_chain);
 137                        vma->vm_mm = current->mm;
 138                        vma->vm_end = PAGE_SIZE;
 139                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 140                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
 141                                        VM_DONTEXPAND | VM_DONTDUMP;
 142                        down_write(&current->mm->mmap_sem);
 143                        if (insert_vm_struct(current->mm, vma)) {
 144                                up_write(&current->mm->mmap_sem);
 145                                kmem_cache_free(vm_area_cachep, vma);
 146                                return;
 147                        }
 148                        up_write(&current->mm->mmap_sem);
 149                }
 150        }
 151}
 152
 153void
 154free_initmem (void)
 155{
 156        free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
 157                           -1, "unused kernel");
 158}
 159
 160void __init
 161free_initrd_mem (unsigned long start, unsigned long end)
 162{
 163        /*
 164         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 165         * Thus EFI and the kernel may have different page sizes. It is
 166         * therefore possible to have the initrd share the same page as
 167         * the end of the kernel (given current setup).
 168         *
 169         * To avoid freeing/using the wrong page (kernel sized) we:
 170         *      - align up the beginning of initrd
 171         *      - align down the end of initrd
 172         *
 173         *  |             |
 174         *  |=============| a000
 175         *  |             |
 176         *  |             |
 177         *  |             | 9000
 178         *  |/////////////|
 179         *  |/////////////|
 180         *  |=============| 8000
 181         *  |///INITRD////|
 182         *  |/////////////|
 183         *  |/////////////| 7000
 184         *  |             |
 185         *  |KKKKKKKKKKKKK|
 186         *  |=============| 6000
 187         *  |KKKKKKKKKKKKK|
 188         *  |KKKKKKKKKKKKK|
 189         *  K=kernel using 8KB pages
 190         *
 191         * In this example, we must free page 8000 ONLY. So we must align up
 192         * initrd_start and keep initrd_end as is.
 193         */
 194        start = PAGE_ALIGN(start);
 195        end = end & PAGE_MASK;
 196
 197        if (start < end)
 198                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 199
 200        for (; start < end; start += PAGE_SIZE) {
 201                if (!virt_addr_valid(start))
 202                        continue;
 203                free_reserved_page(virt_to_page(start));
 204        }
 205}
 206
 207/*
 208 * This installs a clean page in the kernel's page table.
 209 */
 210static struct page * __init
 211put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 212{
 213        pgd_t *pgd;
 214        pud_t *pud;
 215        pmd_t *pmd;
 216        pte_t *pte;
 217
 218        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 219
 220        {
 221                pud = pud_alloc(&init_mm, pgd, address);
 222                if (!pud)
 223                        goto out;
 224                pmd = pmd_alloc(&init_mm, pud, address);
 225                if (!pmd)
 226                        goto out;
 227                pte = pte_alloc_kernel(pmd, address);
 228                if (!pte)
 229                        goto out;
 230                if (!pte_none(*pte))
 231                        goto out;
 232                set_pte(pte, mk_pte(page, pgprot));
 233        }
 234  out:
 235        /* no need for flush_tlb */
 236        return page;
 237}
 238
 239static void __init
 240setup_gate (void)
 241{
 242        struct page *page;
 243
 244        /*
 245         * Map the gate page twice: once read-only to export the ELF
 246         * headers etc. and once execute-only page to enable
 247         * privilege-promotion via "epc":
 248         */
 249        page = virt_to_page(ia64_imva(__start_gate_section));
 250        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 251#ifdef HAVE_BUGGY_SEGREL
 252        page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
 253        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 254#else
 255        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 256        /* Fill in the holes (if any) with read-only zero pages: */
 257        {
 258                unsigned long addr;
 259
 260                for (addr = GATE_ADDR + PAGE_SIZE;
 261                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 262                     addr += PAGE_SIZE)
 263                {
 264                        put_kernel_page(ZERO_PAGE(0), addr,
 265                                        PAGE_READONLY);
 266                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 267                                        PAGE_READONLY);
 268                }
 269        }
 270#endif
 271        ia64_patch_gate();
 272}
 273
 274static struct vm_area_struct gate_vma;
 275
 276static int __init gate_vma_init(void)
 277{
 278        gate_vma.vm_mm = NULL;
 279        gate_vma.vm_start = FIXADDR_USER_START;
 280        gate_vma.vm_end = FIXADDR_USER_END;
 281        gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
 282        gate_vma.vm_page_prot = __P101;
 283
 284        return 0;
 285}
 286__initcall(gate_vma_init);
 287
 288struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 289{
 290        return &gate_vma;
 291}
 292
 293int in_gate_area_no_mm(unsigned long addr)
 294{
 295        if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
 296                return 1;
 297        return 0;
 298}
 299
 300int in_gate_area(struct mm_struct *mm, unsigned long addr)
 301{
 302        return in_gate_area_no_mm(addr);
 303}
 304
 305void ia64_mmu_init(void *my_cpu_data)
 306{
 307        unsigned long pta, impl_va_bits;
 308        extern void tlb_init(void);
 309
 310#ifdef CONFIG_DISABLE_VHPT
 311#       define VHPT_ENABLE_BIT  0
 312#else
 313#       define VHPT_ENABLE_BIT  1
 314#endif
 315
 316        /*
 317         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 318         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 319         * virtual address space are implemented but if we pick a large enough page size
 320         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 321         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 322         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 323         * problem in practice.  Alternatively, we could truncate the top of the mapped
 324         * address space to not permit mappings that would overlap with the VMLPT.
 325         * --davidm 00/12/06
 326         */
 327#       define pte_bits                 3
 328#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 329        /*
 330         * The virtual page table has to cover the entire implemented address space within
 331         * a region even though not all of this space may be mappable.  The reason for
 332         * this is that the Access bit and Dirty bit fault handlers perform
 333         * non-speculative accesses to the virtual page table, so the address range of the
 334         * virtual page table itself needs to be covered by virtual page table.
 335         */
 336#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 337#       define POW2(n)                  (1ULL << (n))
 338
 339        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 340
 341        if (impl_va_bits < 51 || impl_va_bits > 61)
 342                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 343        /*
 344         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 345         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 346         * the test makes sure that our mapped space doesn't overlap the
 347         * unimplemented hole in the middle of the region.
 348         */
 349        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 350            (mapped_space_bits > impl_va_bits - 1))
 351                panic("Cannot build a big enough virtual-linear page table"
 352                      " to cover mapped address space.\n"
 353                      " Try using a smaller page size.\n");
 354
 355
 356        /* place the VMLPT at the end of each page-table mapped region: */
 357        pta = POW2(61) - POW2(vmlpt_bits);
 358
 359        /*
 360         * Set the (virtually mapped linear) page table address.  Bit
 361         * 8 selects between the short and long format, bits 2-7 the
 362         * size of the table, and bit 0 whether the VHPT walker is
 363         * enabled.
 364         */
 365        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 366
 367        ia64_tlb_init();
 368
 369#ifdef  CONFIG_HUGETLB_PAGE
 370        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 371        ia64_srlz_d();
 372#endif
 373}
 374
 375#ifdef CONFIG_VIRTUAL_MEM_MAP
 376int vmemmap_find_next_valid_pfn(int node, int i)
 377{
 378        unsigned long end_address, hole_next_pfn;
 379        unsigned long stop_address;
 380        pg_data_t *pgdat = NODE_DATA(node);
 381
 382        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 383        end_address = PAGE_ALIGN(end_address);
 384        stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
 385
 386        do {
 387                pgd_t *pgd;
 388                pud_t *pud;
 389                pmd_t *pmd;
 390                pte_t *pte;
 391
 392                pgd = pgd_offset_k(end_address);
 393                if (pgd_none(*pgd)) {
 394                        end_address += PGDIR_SIZE;
 395                        continue;
 396                }
 397
 398                pud = pud_offset(pgd, end_address);
 399                if (pud_none(*pud)) {
 400                        end_address += PUD_SIZE;
 401                        continue;
 402                }
 403
 404                pmd = pmd_offset(pud, end_address);
 405                if (pmd_none(*pmd)) {
 406                        end_address += PMD_SIZE;
 407                        continue;
 408                }
 409
 410                pte = pte_offset_kernel(pmd, end_address);
 411retry_pte:
 412                if (pte_none(*pte)) {
 413                        end_address += PAGE_SIZE;
 414                        pte++;
 415                        if ((end_address < stop_address) &&
 416                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 417                                goto retry_pte;
 418                        continue;
 419                }
 420                /* Found next valid vmem_map page */
 421                break;
 422        } while (end_address < stop_address);
 423
 424        end_address = min(end_address, stop_address);
 425        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 426        hole_next_pfn = end_address / sizeof(struct page);
 427        return hole_next_pfn - pgdat->node_start_pfn;
 428}
 429
 430int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 431{
 432        unsigned long address, start_page, end_page;
 433        struct page *map_start, *map_end;
 434        int node;
 435        pgd_t *pgd;
 436        pud_t *pud;
 437        pmd_t *pmd;
 438        pte_t *pte;
 439
 440        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 441        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 442
 443        start_page = (unsigned long) map_start & PAGE_MASK;
 444        end_page = PAGE_ALIGN((unsigned long) map_end);
 445        node = paddr_to_nid(__pa(start));
 446
 447        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 448                pgd = pgd_offset_k(address);
 449                if (pgd_none(*pgd))
 450                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 451                pud = pud_offset(pgd, address);
 452
 453                if (pud_none(*pud))
 454                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 455                pmd = pmd_offset(pud, address);
 456
 457                if (pmd_none(*pmd))
 458                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 459                pte = pte_offset_kernel(pmd, address);
 460
 461                if (pte_none(*pte))
 462                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 463                                             PAGE_KERNEL));
 464        }
 465        return 0;
 466}
 467
 468struct memmap_init_callback_data {
 469        struct page *start;
 470        struct page *end;
 471        int nid;
 472        unsigned long zone;
 473};
 474
 475static int __meminit
 476virtual_memmap_init(u64 start, u64 end, void *arg)
 477{
 478        struct memmap_init_callback_data *args;
 479        struct page *map_start, *map_end;
 480
 481        args = (struct memmap_init_callback_data *) arg;
 482        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 483        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 484
 485        if (map_start < args->start)
 486                map_start = args->start;
 487        if (map_end > args->end)
 488                map_end = args->end;
 489
 490        /*
 491         * We have to initialize "out of bounds" struct page elements that fit completely
 492         * on the same pages that were allocated for the "in bounds" elements because they
 493         * may be referenced later (and found to be "reserved").
 494         */
 495        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 496        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 497                    / sizeof(struct page));
 498
 499        if (map_start < map_end)
 500                memmap_init_zone((unsigned long)(map_end - map_start),
 501                                 args->nid, args->zone, page_to_pfn(map_start),
 502                                 MEMMAP_EARLY);
 503        return 0;
 504}
 505
 506void __meminit
 507memmap_init (unsigned long size, int nid, unsigned long zone,
 508             unsigned long start_pfn)
 509{
 510        if (!vmem_map)
 511                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
 512        else {
 513                struct page *start;
 514                struct memmap_init_callback_data args;
 515
 516                start = pfn_to_page(start_pfn);
 517                args.start = start;
 518                args.end = start + size;
 519                args.nid = nid;
 520                args.zone = zone;
 521
 522                efi_memmap_walk(virtual_memmap_init, &args);
 523        }
 524}
 525
 526int
 527ia64_pfn_valid (unsigned long pfn)
 528{
 529        char byte;
 530        struct page *pg = pfn_to_page(pfn);
 531
 532        return     (__get_user(byte, (char __user *) pg) == 0)
 533                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 534                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 535}
 536EXPORT_SYMBOL(ia64_pfn_valid);
 537
 538int __init find_largest_hole(u64 start, u64 end, void *arg)
 539{
 540        u64 *max_gap = arg;
 541
 542        static u64 last_end = PAGE_OFFSET;
 543
 544        /* NOTE: this algorithm assumes efi memmap table is ordered */
 545
 546        if (*max_gap < (start - last_end))
 547                *max_gap = start - last_end;
 548        last_end = end;
 549        return 0;
 550}
 551
 552#endif /* CONFIG_VIRTUAL_MEM_MAP */
 553
 554int __init register_active_ranges(u64 start, u64 len, int nid)
 555{
 556        u64 end = start + len;
 557
 558#ifdef CONFIG_KEXEC
 559        if (start > crashk_res.start && start < crashk_res.end)
 560                start = crashk_res.end;
 561        if (end > crashk_res.start && end < crashk_res.end)
 562                end = crashk_res.start;
 563#endif
 564
 565        if (start < end)
 566                memblock_add_node(__pa(start), end - start, nid);
 567        return 0;
 568}
 569
 570int
 571find_max_min_low_pfn (u64 start, u64 end, void *arg)
 572{
 573        unsigned long pfn_start, pfn_end;
 574#ifdef CONFIG_FLATMEM
 575        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 576        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 577#else
 578        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 579        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 580#endif
 581        min_low_pfn = min(min_low_pfn, pfn_start);
 582        max_low_pfn = max(max_low_pfn, pfn_end);
 583        return 0;
 584}
 585
 586/*
 587 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 588 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 589 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 590 * useful for performance testing, but conceivably could also come in handy for debugging
 591 * purposes.
 592 */
 593
 594static int nolwsys __initdata;
 595
 596static int __init
 597nolwsys_setup (char *s)
 598{
 599        nolwsys = 1;
 600        return 1;
 601}
 602
 603__setup("nolwsys", nolwsys_setup);
 604
 605void __init
 606mem_init (void)
 607{
 608        int i;
 609
 610        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 611        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 612        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 613
 614#ifdef CONFIG_PCI
 615        /*
 616         * This needs to be called _after_ the command line has been parsed but _before_
 617         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 618         * been freed.
 619         */
 620        platform_dma_init();
 621#endif
 622
 623#ifdef CONFIG_FLATMEM
 624        BUG_ON(!mem_map);
 625#endif
 626
 627        set_max_mapnr(max_low_pfn);
 628        high_memory = __va(max_low_pfn * PAGE_SIZE);
 629        free_all_bootmem();
 630        mem_init_print_info(NULL);
 631
 632        /*
 633         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 634         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 635         * code can tell them apart.
 636         */
 637        for (i = 0; i < NR_syscalls; ++i) {
 638                extern unsigned long fsyscall_table[NR_syscalls];
 639                extern unsigned long sys_call_table[NR_syscalls];
 640
 641                if (!fsyscall_table[i] || nolwsys)
 642                        fsyscall_table[i] = sys_call_table[i] | 1;
 643        }
 644        setup_gate();
 645}
 646
 647#ifdef CONFIG_MEMORY_HOTPLUG
 648int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
 649{
 650        pg_data_t *pgdat;
 651        struct zone *zone;
 652        unsigned long start_pfn = start >> PAGE_SHIFT;
 653        unsigned long nr_pages = size >> PAGE_SHIFT;
 654        int ret;
 655
 656        pgdat = NODE_DATA(nid);
 657
 658        zone = pgdat->node_zones +
 659                zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
 660        ret = __add_pages(nid, zone, start_pfn, nr_pages);
 661
 662        if (ret)
 663                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 664                       __func__,  ret);
 665
 666        return ret;
 667}
 668
 669#ifdef CONFIG_MEMORY_HOTREMOVE
 670int arch_remove_memory(u64 start, u64 size)
 671{
 672        unsigned long start_pfn = start >> PAGE_SHIFT;
 673        unsigned long nr_pages = size >> PAGE_SHIFT;
 674        struct zone *zone;
 675        int ret;
 676
 677        zone = page_zone(pfn_to_page(start_pfn));
 678        ret = __remove_pages(zone, start_pfn, nr_pages);
 679        if (ret)
 680                pr_warn("%s: Problem encountered in __remove_pages() as"
 681                        " ret=%d\n", __func__,  ret);
 682
 683        return ret;
 684}
 685#endif
 686#endif
 687
 688/**
 689 * show_mem - give short summary of memory stats
 690 *
 691 * Shows a simple page count of reserved and used pages in the system.
 692 * For discontig machines, it does this on a per-pgdat basis.
 693 */
 694void show_mem(unsigned int filter)
 695{
 696        int total_reserved = 0;
 697        unsigned long total_present = 0;
 698        pg_data_t *pgdat;
 699
 700        printk(KERN_INFO "Mem-info:\n");
 701        show_free_areas(filter);
 702        printk(KERN_INFO "Node memory in pages:\n");
 703        for_each_online_pgdat(pgdat) {
 704                unsigned long present;
 705                unsigned long flags;
 706                int reserved = 0;
 707                int nid = pgdat->node_id;
 708                int zoneid;
 709
 710                if (skip_free_areas_node(filter, nid))
 711                        continue;
 712                pgdat_resize_lock(pgdat, &flags);
 713
 714                for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 715                        struct zone *zone = &pgdat->node_zones[zoneid];
 716                        if (!populated_zone(zone))
 717                                continue;
 718
 719                        reserved += zone->present_pages - zone->managed_pages;
 720                }
 721                present = pgdat->node_present_pages;
 722
 723                pgdat_resize_unlock(pgdat, &flags);
 724                total_present += present;
 725                total_reserved += reserved;
 726                printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, ",
 727                       nid, present, reserved);
 728        }
 729        printk(KERN_INFO "%ld pages of RAM\n", total_present);
 730        printk(KERN_INFO "%d reserved pages\n", total_reserved);
 731        printk(KERN_INFO "Total of %ld pages in page table cache\n",
 732               quicklist_total_size());
 733        printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
 734}
 735