linux/arch/mips/kvm/mips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/kdebug.h>
  15#include <linux/module.h>
  16#include <linux/vmalloc.h>
  17#include <linux/fs.h>
  18#include <linux/bootmem.h>
  19#include <asm/fpu.h>
  20#include <asm/page.h>
  21#include <asm/cacheflush.h>
  22#include <asm/mmu_context.h>
  23#include <asm/pgtable.h>
  24
  25#include <linux/kvm_host.h>
  26
  27#include "interrupt.h"
  28#include "commpage.h"
  29
  30#define CREATE_TRACE_POINTS
  31#include "trace.h"
  32
  33#ifndef VECTORSPACING
  34#define VECTORSPACING 0x100     /* for EI/VI mode */
  35#endif
  36
  37#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  38struct kvm_stats_debugfs_item debugfs_entries[] = {
  39        { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
  40        { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
  41        { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
  42        { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
  43        { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  44        { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
  45        { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
  46        { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
  47        { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
  48        { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
  49        { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
  50        { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
  51        { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
  52        { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
  53        { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
  54        { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
  55        { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  56        { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  57        { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  58        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  59        { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
  60        {NULL}
  61};
  62
  63static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  64{
  65        int i;
  66
  67        for_each_possible_cpu(i) {
  68                vcpu->arch.guest_kernel_asid[i] = 0;
  69                vcpu->arch.guest_user_asid[i] = 0;
  70        }
  71
  72        return 0;
  73}
  74
  75/*
  76 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  77 * Config7, so we are "runnable" if interrupts are pending
  78 */
  79int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  80{
  81        return !!(vcpu->arch.pending_exceptions);
  82}
  83
  84int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  85{
  86        return 1;
  87}
  88
  89int kvm_arch_hardware_enable(void)
  90{
  91        return 0;
  92}
  93
  94int kvm_arch_hardware_setup(void)
  95{
  96        return 0;
  97}
  98
  99void kvm_arch_check_processor_compat(void *rtn)
 100{
 101        *(int *)rtn = 0;
 102}
 103
 104static void kvm_mips_init_tlbs(struct kvm *kvm)
 105{
 106        unsigned long wired;
 107
 108        /*
 109         * Add a wired entry to the TLB, it is used to map the commpage to
 110         * the Guest kernel
 111         */
 112        wired = read_c0_wired();
 113        write_c0_wired(wired + 1);
 114        mtc0_tlbw_hazard();
 115        kvm->arch.commpage_tlb = wired;
 116
 117        kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
 118                  kvm->arch.commpage_tlb);
 119}
 120
 121static void kvm_mips_init_vm_percpu(void *arg)
 122{
 123        struct kvm *kvm = (struct kvm *)arg;
 124
 125        kvm_mips_init_tlbs(kvm);
 126        kvm_mips_callbacks->vm_init(kvm);
 127
 128}
 129
 130int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 131{
 132        if (atomic_inc_return(&kvm_mips_instance) == 1) {
 133                kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
 134                          __func__);
 135                on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
 136        }
 137
 138        return 0;
 139}
 140
 141void kvm_mips_free_vcpus(struct kvm *kvm)
 142{
 143        unsigned int i;
 144        struct kvm_vcpu *vcpu;
 145
 146        /* Put the pages we reserved for the guest pmap */
 147        for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
 148                if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
 149                        kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
 150        }
 151        kfree(kvm->arch.guest_pmap);
 152
 153        kvm_for_each_vcpu(i, vcpu, kvm) {
 154                kvm_arch_vcpu_free(vcpu);
 155        }
 156
 157        mutex_lock(&kvm->lock);
 158
 159        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 160                kvm->vcpus[i] = NULL;
 161
 162        atomic_set(&kvm->online_vcpus, 0);
 163
 164        mutex_unlock(&kvm->lock);
 165}
 166
 167static void kvm_mips_uninit_tlbs(void *arg)
 168{
 169        /* Restore wired count */
 170        write_c0_wired(0);
 171        mtc0_tlbw_hazard();
 172        /* Clear out all the TLBs */
 173        kvm_local_flush_tlb_all();
 174}
 175
 176void kvm_arch_destroy_vm(struct kvm *kvm)
 177{
 178        kvm_mips_free_vcpus(kvm);
 179
 180        /* If this is the last instance, restore wired count */
 181        if (atomic_dec_return(&kvm_mips_instance) == 0) {
 182                kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
 183                          __func__);
 184                on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
 185        }
 186}
 187
 188long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 189                        unsigned long arg)
 190{
 191        return -ENOIOCTLCMD;
 192}
 193
 194int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 195                            unsigned long npages)
 196{
 197        return 0;
 198}
 199
 200int kvm_arch_prepare_memory_region(struct kvm *kvm,
 201                                   struct kvm_memory_slot *memslot,
 202                                   const struct kvm_userspace_memory_region *mem,
 203                                   enum kvm_mr_change change)
 204{
 205        return 0;
 206}
 207
 208void kvm_arch_commit_memory_region(struct kvm *kvm,
 209                                   const struct kvm_userspace_memory_region *mem,
 210                                   const struct kvm_memory_slot *old,
 211                                   const struct kvm_memory_slot *new,
 212                                   enum kvm_mr_change change)
 213{
 214        unsigned long npages = 0;
 215        int i;
 216
 217        kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 218                  __func__, kvm, mem->slot, mem->guest_phys_addr,
 219                  mem->memory_size, mem->userspace_addr);
 220
 221        /* Setup Guest PMAP table */
 222        if (!kvm->arch.guest_pmap) {
 223                if (mem->slot == 0)
 224                        npages = mem->memory_size >> PAGE_SHIFT;
 225
 226                if (npages) {
 227                        kvm->arch.guest_pmap_npages = npages;
 228                        kvm->arch.guest_pmap =
 229                            kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
 230
 231                        if (!kvm->arch.guest_pmap) {
 232                                kvm_err("Failed to allocate guest PMAP\n");
 233                                return;
 234                        }
 235
 236                        kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
 237                                  npages, kvm->arch.guest_pmap);
 238
 239                        /* Now setup the page table */
 240                        for (i = 0; i < npages; i++)
 241                                kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
 242                }
 243        }
 244}
 245
 246struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 247{
 248        int err, size, offset;
 249        void *gebase;
 250        int i;
 251
 252        struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 253
 254        if (!vcpu) {
 255                err = -ENOMEM;
 256                goto out;
 257        }
 258
 259        err = kvm_vcpu_init(vcpu, kvm, id);
 260
 261        if (err)
 262                goto out_free_cpu;
 263
 264        kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 265
 266        /*
 267         * Allocate space for host mode exception handlers that handle
 268         * guest mode exits
 269         */
 270        if (cpu_has_veic || cpu_has_vint)
 271                size = 0x200 + VECTORSPACING * 64;
 272        else
 273                size = 0x4000;
 274
 275        /* Save Linux EBASE */
 276        vcpu->arch.host_ebase = (void *)read_c0_ebase();
 277
 278        gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 279
 280        if (!gebase) {
 281                err = -ENOMEM;
 282                goto out_uninit_cpu;
 283        }
 284        kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 285                  ALIGN(size, PAGE_SIZE), gebase);
 286
 287        /* Save new ebase */
 288        vcpu->arch.guest_ebase = gebase;
 289
 290        /* Copy L1 Guest Exception handler to correct offset */
 291
 292        /* TLB Refill, EXL = 0 */
 293        memcpy(gebase, mips32_exception,
 294               mips32_exceptionEnd - mips32_exception);
 295
 296        /* General Exception Entry point */
 297        memcpy(gebase + 0x180, mips32_exception,
 298               mips32_exceptionEnd - mips32_exception);
 299
 300        /* For vectored interrupts poke the exception code @ all offsets 0-7 */
 301        for (i = 0; i < 8; i++) {
 302                kvm_debug("L1 Vectored handler @ %p\n",
 303                          gebase + 0x200 + (i * VECTORSPACING));
 304                memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
 305                       mips32_exceptionEnd - mips32_exception);
 306        }
 307
 308        /* General handler, relocate to unmapped space for sanity's sake */
 309        offset = 0x2000;
 310        kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
 311                  gebase + offset,
 312                  mips32_GuestExceptionEnd - mips32_GuestException);
 313
 314        memcpy(gebase + offset, mips32_GuestException,
 315               mips32_GuestExceptionEnd - mips32_GuestException);
 316
 317        /* Invalidate the icache for these ranges */
 318        local_flush_icache_range((unsigned long)gebase,
 319                                (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 320
 321        /*
 322         * Allocate comm page for guest kernel, a TLB will be reserved for
 323         * mapping GVA @ 0xFFFF8000 to this page
 324         */
 325        vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 326
 327        if (!vcpu->arch.kseg0_commpage) {
 328                err = -ENOMEM;
 329                goto out_free_gebase;
 330        }
 331
 332        kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 333        kvm_mips_commpage_init(vcpu);
 334
 335        /* Init */
 336        vcpu->arch.last_sched_cpu = -1;
 337
 338        /* Start off the timer */
 339        kvm_mips_init_count(vcpu);
 340
 341        return vcpu;
 342
 343out_free_gebase:
 344        kfree(gebase);
 345
 346out_uninit_cpu:
 347        kvm_vcpu_uninit(vcpu);
 348
 349out_free_cpu:
 350        kfree(vcpu);
 351
 352out:
 353        return ERR_PTR(err);
 354}
 355
 356void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 357{
 358        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 359
 360        kvm_vcpu_uninit(vcpu);
 361
 362        kvm_mips_dump_stats(vcpu);
 363
 364        kfree(vcpu->arch.guest_ebase);
 365        kfree(vcpu->arch.kseg0_commpage);
 366        kfree(vcpu);
 367}
 368
 369void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 370{
 371        kvm_arch_vcpu_free(vcpu);
 372}
 373
 374int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 375                                        struct kvm_guest_debug *dbg)
 376{
 377        return -ENOIOCTLCMD;
 378}
 379
 380int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 381{
 382        int r = 0;
 383        sigset_t sigsaved;
 384
 385        if (vcpu->sigset_active)
 386                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 387
 388        if (vcpu->mmio_needed) {
 389                if (!vcpu->mmio_is_write)
 390                        kvm_mips_complete_mmio_load(vcpu, run);
 391                vcpu->mmio_needed = 0;
 392        }
 393
 394        lose_fpu(1);
 395
 396        local_irq_disable();
 397        /* Check if we have any exceptions/interrupts pending */
 398        kvm_mips_deliver_interrupts(vcpu,
 399                                    kvm_read_c0_guest_cause(vcpu->arch.cop0));
 400
 401        __kvm_guest_enter();
 402
 403        /* Disable hardware page table walking while in guest */
 404        htw_stop();
 405
 406        r = __kvm_mips_vcpu_run(run, vcpu);
 407
 408        /* Re-enable HTW before enabling interrupts */
 409        htw_start();
 410
 411        __kvm_guest_exit();
 412        local_irq_enable();
 413
 414        if (vcpu->sigset_active)
 415                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 416
 417        return r;
 418}
 419
 420int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 421                             struct kvm_mips_interrupt *irq)
 422{
 423        int intr = (int)irq->irq;
 424        struct kvm_vcpu *dvcpu = NULL;
 425
 426        if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 427                kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 428                          (int)intr);
 429
 430        if (irq->cpu == -1)
 431                dvcpu = vcpu;
 432        else
 433                dvcpu = vcpu->kvm->vcpus[irq->cpu];
 434
 435        if (intr == 2 || intr == 3 || intr == 4) {
 436                kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 437
 438        } else if (intr == -2 || intr == -3 || intr == -4) {
 439                kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 440        } else {
 441                kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 442                        irq->cpu, irq->irq);
 443                return -EINVAL;
 444        }
 445
 446        dvcpu->arch.wait = 0;
 447
 448        if (swait_active(&dvcpu->wq))
 449                swake_up(&dvcpu->wq);
 450
 451        return 0;
 452}
 453
 454int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 455                                    struct kvm_mp_state *mp_state)
 456{
 457        return -ENOIOCTLCMD;
 458}
 459
 460int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 461                                    struct kvm_mp_state *mp_state)
 462{
 463        return -ENOIOCTLCMD;
 464}
 465
 466static u64 kvm_mips_get_one_regs[] = {
 467        KVM_REG_MIPS_R0,
 468        KVM_REG_MIPS_R1,
 469        KVM_REG_MIPS_R2,
 470        KVM_REG_MIPS_R3,
 471        KVM_REG_MIPS_R4,
 472        KVM_REG_MIPS_R5,
 473        KVM_REG_MIPS_R6,
 474        KVM_REG_MIPS_R7,
 475        KVM_REG_MIPS_R8,
 476        KVM_REG_MIPS_R9,
 477        KVM_REG_MIPS_R10,
 478        KVM_REG_MIPS_R11,
 479        KVM_REG_MIPS_R12,
 480        KVM_REG_MIPS_R13,
 481        KVM_REG_MIPS_R14,
 482        KVM_REG_MIPS_R15,
 483        KVM_REG_MIPS_R16,
 484        KVM_REG_MIPS_R17,
 485        KVM_REG_MIPS_R18,
 486        KVM_REG_MIPS_R19,
 487        KVM_REG_MIPS_R20,
 488        KVM_REG_MIPS_R21,
 489        KVM_REG_MIPS_R22,
 490        KVM_REG_MIPS_R23,
 491        KVM_REG_MIPS_R24,
 492        KVM_REG_MIPS_R25,
 493        KVM_REG_MIPS_R26,
 494        KVM_REG_MIPS_R27,
 495        KVM_REG_MIPS_R28,
 496        KVM_REG_MIPS_R29,
 497        KVM_REG_MIPS_R30,
 498        KVM_REG_MIPS_R31,
 499
 500        KVM_REG_MIPS_HI,
 501        KVM_REG_MIPS_LO,
 502        KVM_REG_MIPS_PC,
 503
 504        KVM_REG_MIPS_CP0_INDEX,
 505        KVM_REG_MIPS_CP0_CONTEXT,
 506        KVM_REG_MIPS_CP0_USERLOCAL,
 507        KVM_REG_MIPS_CP0_PAGEMASK,
 508        KVM_REG_MIPS_CP0_WIRED,
 509        KVM_REG_MIPS_CP0_HWRENA,
 510        KVM_REG_MIPS_CP0_BADVADDR,
 511        KVM_REG_MIPS_CP0_COUNT,
 512        KVM_REG_MIPS_CP0_ENTRYHI,
 513        KVM_REG_MIPS_CP0_COMPARE,
 514        KVM_REG_MIPS_CP0_STATUS,
 515        KVM_REG_MIPS_CP0_CAUSE,
 516        KVM_REG_MIPS_CP0_EPC,
 517        KVM_REG_MIPS_CP0_PRID,
 518        KVM_REG_MIPS_CP0_CONFIG,
 519        KVM_REG_MIPS_CP0_CONFIG1,
 520        KVM_REG_MIPS_CP0_CONFIG2,
 521        KVM_REG_MIPS_CP0_CONFIG3,
 522        KVM_REG_MIPS_CP0_CONFIG4,
 523        KVM_REG_MIPS_CP0_CONFIG5,
 524        KVM_REG_MIPS_CP0_CONFIG7,
 525        KVM_REG_MIPS_CP0_ERROREPC,
 526
 527        KVM_REG_MIPS_COUNT_CTL,
 528        KVM_REG_MIPS_COUNT_RESUME,
 529        KVM_REG_MIPS_COUNT_HZ,
 530};
 531
 532static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 533                            const struct kvm_one_reg *reg)
 534{
 535        struct mips_coproc *cop0 = vcpu->arch.cop0;
 536        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 537        int ret;
 538        s64 v;
 539        s64 vs[2];
 540        unsigned int idx;
 541
 542        switch (reg->id) {
 543        /* General purpose registers */
 544        case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 545                v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 546                break;
 547        case KVM_REG_MIPS_HI:
 548                v = (long)vcpu->arch.hi;
 549                break;
 550        case KVM_REG_MIPS_LO:
 551                v = (long)vcpu->arch.lo;
 552                break;
 553        case KVM_REG_MIPS_PC:
 554                v = (long)vcpu->arch.pc;
 555                break;
 556
 557        /* Floating point registers */
 558        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 559                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 560                        return -EINVAL;
 561                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 562                /* Odd singles in top of even double when FR=0 */
 563                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 564                        v = get_fpr32(&fpu->fpr[idx], 0);
 565                else
 566                        v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 567                break;
 568        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 569                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 570                        return -EINVAL;
 571                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 572                /* Can't access odd doubles in FR=0 mode */
 573                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 574                        return -EINVAL;
 575                v = get_fpr64(&fpu->fpr[idx], 0);
 576                break;
 577        case KVM_REG_MIPS_FCR_IR:
 578                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 579                        return -EINVAL;
 580                v = boot_cpu_data.fpu_id;
 581                break;
 582        case KVM_REG_MIPS_FCR_CSR:
 583                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 584                        return -EINVAL;
 585                v = fpu->fcr31;
 586                break;
 587
 588        /* MIPS SIMD Architecture (MSA) registers */
 589        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 590                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 591                        return -EINVAL;
 592                /* Can't access MSA registers in FR=0 mode */
 593                if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 594                        return -EINVAL;
 595                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 596#ifdef CONFIG_CPU_LITTLE_ENDIAN
 597                /* least significant byte first */
 598                vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 599                vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 600#else
 601                /* most significant byte first */
 602                vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 603                vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 604#endif
 605                break;
 606        case KVM_REG_MIPS_MSA_IR:
 607                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 608                        return -EINVAL;
 609                v = boot_cpu_data.msa_id;
 610                break;
 611        case KVM_REG_MIPS_MSA_CSR:
 612                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 613                        return -EINVAL;
 614                v = fpu->msacsr;
 615                break;
 616
 617        /* Co-processor 0 registers */
 618        case KVM_REG_MIPS_CP0_INDEX:
 619                v = (long)kvm_read_c0_guest_index(cop0);
 620                break;
 621        case KVM_REG_MIPS_CP0_CONTEXT:
 622                v = (long)kvm_read_c0_guest_context(cop0);
 623                break;
 624        case KVM_REG_MIPS_CP0_USERLOCAL:
 625                v = (long)kvm_read_c0_guest_userlocal(cop0);
 626                break;
 627        case KVM_REG_MIPS_CP0_PAGEMASK:
 628                v = (long)kvm_read_c0_guest_pagemask(cop0);
 629                break;
 630        case KVM_REG_MIPS_CP0_WIRED:
 631                v = (long)kvm_read_c0_guest_wired(cop0);
 632                break;
 633        case KVM_REG_MIPS_CP0_HWRENA:
 634                v = (long)kvm_read_c0_guest_hwrena(cop0);
 635                break;
 636        case KVM_REG_MIPS_CP0_BADVADDR:
 637                v = (long)kvm_read_c0_guest_badvaddr(cop0);
 638                break;
 639        case KVM_REG_MIPS_CP0_ENTRYHI:
 640                v = (long)kvm_read_c0_guest_entryhi(cop0);
 641                break;
 642        case KVM_REG_MIPS_CP0_COMPARE:
 643                v = (long)kvm_read_c0_guest_compare(cop0);
 644                break;
 645        case KVM_REG_MIPS_CP0_STATUS:
 646                v = (long)kvm_read_c0_guest_status(cop0);
 647                break;
 648        case KVM_REG_MIPS_CP0_CAUSE:
 649                v = (long)kvm_read_c0_guest_cause(cop0);
 650                break;
 651        case KVM_REG_MIPS_CP0_EPC:
 652                v = (long)kvm_read_c0_guest_epc(cop0);
 653                break;
 654        case KVM_REG_MIPS_CP0_PRID:
 655                v = (long)kvm_read_c0_guest_prid(cop0);
 656                break;
 657        case KVM_REG_MIPS_CP0_CONFIG:
 658                v = (long)kvm_read_c0_guest_config(cop0);
 659                break;
 660        case KVM_REG_MIPS_CP0_CONFIG1:
 661                v = (long)kvm_read_c0_guest_config1(cop0);
 662                break;
 663        case KVM_REG_MIPS_CP0_CONFIG2:
 664                v = (long)kvm_read_c0_guest_config2(cop0);
 665                break;
 666        case KVM_REG_MIPS_CP0_CONFIG3:
 667                v = (long)kvm_read_c0_guest_config3(cop0);
 668                break;
 669        case KVM_REG_MIPS_CP0_CONFIG4:
 670                v = (long)kvm_read_c0_guest_config4(cop0);
 671                break;
 672        case KVM_REG_MIPS_CP0_CONFIG5:
 673                v = (long)kvm_read_c0_guest_config5(cop0);
 674                break;
 675        case KVM_REG_MIPS_CP0_CONFIG7:
 676                v = (long)kvm_read_c0_guest_config7(cop0);
 677                break;
 678        case KVM_REG_MIPS_CP0_ERROREPC:
 679                v = (long)kvm_read_c0_guest_errorepc(cop0);
 680                break;
 681        /* registers to be handled specially */
 682        case KVM_REG_MIPS_CP0_COUNT:
 683        case KVM_REG_MIPS_COUNT_CTL:
 684        case KVM_REG_MIPS_COUNT_RESUME:
 685        case KVM_REG_MIPS_COUNT_HZ:
 686                ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 687                if (ret)
 688                        return ret;
 689                break;
 690        default:
 691                return -EINVAL;
 692        }
 693        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 694                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 695
 696                return put_user(v, uaddr64);
 697        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 698                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 699                u32 v32 = (u32)v;
 700
 701                return put_user(v32, uaddr32);
 702        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 703                void __user *uaddr = (void __user *)(long)reg->addr;
 704
 705                return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 706        } else {
 707                return -EINVAL;
 708        }
 709}
 710
 711static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 712                            const struct kvm_one_reg *reg)
 713{
 714        struct mips_coproc *cop0 = vcpu->arch.cop0;
 715        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 716        s64 v;
 717        s64 vs[2];
 718        unsigned int idx;
 719
 720        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 721                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 722
 723                if (get_user(v, uaddr64) != 0)
 724                        return -EFAULT;
 725        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 726                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 727                s32 v32;
 728
 729                if (get_user(v32, uaddr32) != 0)
 730                        return -EFAULT;
 731                v = (s64)v32;
 732        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 733                void __user *uaddr = (void __user *)(long)reg->addr;
 734
 735                return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 736        } else {
 737                return -EINVAL;
 738        }
 739
 740        switch (reg->id) {
 741        /* General purpose registers */
 742        case KVM_REG_MIPS_R0:
 743                /* Silently ignore requests to set $0 */
 744                break;
 745        case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 746                vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 747                break;
 748        case KVM_REG_MIPS_HI:
 749                vcpu->arch.hi = v;
 750                break;
 751        case KVM_REG_MIPS_LO:
 752                vcpu->arch.lo = v;
 753                break;
 754        case KVM_REG_MIPS_PC:
 755                vcpu->arch.pc = v;
 756                break;
 757
 758        /* Floating point registers */
 759        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 760                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 761                        return -EINVAL;
 762                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 763                /* Odd singles in top of even double when FR=0 */
 764                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 765                        set_fpr32(&fpu->fpr[idx], 0, v);
 766                else
 767                        set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 768                break;
 769        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 770                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 771                        return -EINVAL;
 772                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 773                /* Can't access odd doubles in FR=0 mode */
 774                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 775                        return -EINVAL;
 776                set_fpr64(&fpu->fpr[idx], 0, v);
 777                break;
 778        case KVM_REG_MIPS_FCR_IR:
 779                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 780                        return -EINVAL;
 781                /* Read-only */
 782                break;
 783        case KVM_REG_MIPS_FCR_CSR:
 784                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 785                        return -EINVAL;
 786                fpu->fcr31 = v;
 787                break;
 788
 789        /* MIPS SIMD Architecture (MSA) registers */
 790        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 791                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 792                        return -EINVAL;
 793                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 794#ifdef CONFIG_CPU_LITTLE_ENDIAN
 795                /* least significant byte first */
 796                set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 797                set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 798#else
 799                /* most significant byte first */
 800                set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 801                set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 802#endif
 803                break;
 804        case KVM_REG_MIPS_MSA_IR:
 805                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 806                        return -EINVAL;
 807                /* Read-only */
 808                break;
 809        case KVM_REG_MIPS_MSA_CSR:
 810                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 811                        return -EINVAL;
 812                fpu->msacsr = v;
 813                break;
 814
 815        /* Co-processor 0 registers */
 816        case KVM_REG_MIPS_CP0_INDEX:
 817                kvm_write_c0_guest_index(cop0, v);
 818                break;
 819        case KVM_REG_MIPS_CP0_CONTEXT:
 820                kvm_write_c0_guest_context(cop0, v);
 821                break;
 822        case KVM_REG_MIPS_CP0_USERLOCAL:
 823                kvm_write_c0_guest_userlocal(cop0, v);
 824                break;
 825        case KVM_REG_MIPS_CP0_PAGEMASK:
 826                kvm_write_c0_guest_pagemask(cop0, v);
 827                break;
 828        case KVM_REG_MIPS_CP0_WIRED:
 829                kvm_write_c0_guest_wired(cop0, v);
 830                break;
 831        case KVM_REG_MIPS_CP0_HWRENA:
 832                kvm_write_c0_guest_hwrena(cop0, v);
 833                break;
 834        case KVM_REG_MIPS_CP0_BADVADDR:
 835                kvm_write_c0_guest_badvaddr(cop0, v);
 836                break;
 837        case KVM_REG_MIPS_CP0_ENTRYHI:
 838                kvm_write_c0_guest_entryhi(cop0, v);
 839                break;
 840        case KVM_REG_MIPS_CP0_STATUS:
 841                kvm_write_c0_guest_status(cop0, v);
 842                break;
 843        case KVM_REG_MIPS_CP0_EPC:
 844                kvm_write_c0_guest_epc(cop0, v);
 845                break;
 846        case KVM_REG_MIPS_CP0_PRID:
 847                kvm_write_c0_guest_prid(cop0, v);
 848                break;
 849        case KVM_REG_MIPS_CP0_ERROREPC:
 850                kvm_write_c0_guest_errorepc(cop0, v);
 851                break;
 852        /* registers to be handled specially */
 853        case KVM_REG_MIPS_CP0_COUNT:
 854        case KVM_REG_MIPS_CP0_COMPARE:
 855        case KVM_REG_MIPS_CP0_CAUSE:
 856        case KVM_REG_MIPS_CP0_CONFIG:
 857        case KVM_REG_MIPS_CP0_CONFIG1:
 858        case KVM_REG_MIPS_CP0_CONFIG2:
 859        case KVM_REG_MIPS_CP0_CONFIG3:
 860        case KVM_REG_MIPS_CP0_CONFIG4:
 861        case KVM_REG_MIPS_CP0_CONFIG5:
 862        case KVM_REG_MIPS_COUNT_CTL:
 863        case KVM_REG_MIPS_COUNT_RESUME:
 864        case KVM_REG_MIPS_COUNT_HZ:
 865                return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 866        default:
 867                return -EINVAL;
 868        }
 869        return 0;
 870}
 871
 872static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 873                                     struct kvm_enable_cap *cap)
 874{
 875        int r = 0;
 876
 877        if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 878                return -EINVAL;
 879        if (cap->flags)
 880                return -EINVAL;
 881        if (cap->args[0])
 882                return -EINVAL;
 883
 884        switch (cap->cap) {
 885        case KVM_CAP_MIPS_FPU:
 886                vcpu->arch.fpu_enabled = true;
 887                break;
 888        case KVM_CAP_MIPS_MSA:
 889                vcpu->arch.msa_enabled = true;
 890                break;
 891        default:
 892                r = -EINVAL;
 893                break;
 894        }
 895
 896        return r;
 897}
 898
 899long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 900                         unsigned long arg)
 901{
 902        struct kvm_vcpu *vcpu = filp->private_data;
 903        void __user *argp = (void __user *)arg;
 904        long r;
 905
 906        switch (ioctl) {
 907        case KVM_SET_ONE_REG:
 908        case KVM_GET_ONE_REG: {
 909                struct kvm_one_reg reg;
 910
 911                if (copy_from_user(&reg, argp, sizeof(reg)))
 912                        return -EFAULT;
 913                if (ioctl == KVM_SET_ONE_REG)
 914                        return kvm_mips_set_reg(vcpu, &reg);
 915                else
 916                        return kvm_mips_get_reg(vcpu, &reg);
 917        }
 918        case KVM_GET_REG_LIST: {
 919                struct kvm_reg_list __user *user_list = argp;
 920                u64 __user *reg_dest;
 921                struct kvm_reg_list reg_list;
 922                unsigned n;
 923
 924                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 925                        return -EFAULT;
 926                n = reg_list.n;
 927                reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
 928                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 929                        return -EFAULT;
 930                if (n < reg_list.n)
 931                        return -E2BIG;
 932                reg_dest = user_list->reg;
 933                if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
 934                                 sizeof(kvm_mips_get_one_regs)))
 935                        return -EFAULT;
 936                return 0;
 937        }
 938        case KVM_NMI:
 939                /* Treat the NMI as a CPU reset */
 940                r = kvm_mips_reset_vcpu(vcpu);
 941                break;
 942        case KVM_INTERRUPT:
 943                {
 944                        struct kvm_mips_interrupt irq;
 945
 946                        r = -EFAULT;
 947                        if (copy_from_user(&irq, argp, sizeof(irq)))
 948                                goto out;
 949
 950                        kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 951                                  irq.irq);
 952
 953                        r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 954                        break;
 955                }
 956        case KVM_ENABLE_CAP: {
 957                struct kvm_enable_cap cap;
 958
 959                r = -EFAULT;
 960                if (copy_from_user(&cap, argp, sizeof(cap)))
 961                        goto out;
 962                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 963                break;
 964        }
 965        default:
 966                r = -ENOIOCTLCMD;
 967        }
 968
 969out:
 970        return r;
 971}
 972
 973/* Get (and clear) the dirty memory log for a memory slot. */
 974int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 975{
 976        struct kvm_memslots *slots;
 977        struct kvm_memory_slot *memslot;
 978        unsigned long ga, ga_end;
 979        int is_dirty = 0;
 980        int r;
 981        unsigned long n;
 982
 983        mutex_lock(&kvm->slots_lock);
 984
 985        r = kvm_get_dirty_log(kvm, log, &is_dirty);
 986        if (r)
 987                goto out;
 988
 989        /* If nothing is dirty, don't bother messing with page tables. */
 990        if (is_dirty) {
 991                slots = kvm_memslots(kvm);
 992                memslot = id_to_memslot(slots, log->slot);
 993
 994                ga = memslot->base_gfn << PAGE_SHIFT;
 995                ga_end = ga + (memslot->npages << PAGE_SHIFT);
 996
 997                kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
 998                         ga_end);
 999
1000                n = kvm_dirty_bitmap_bytes(memslot);
1001                memset(memslot->dirty_bitmap, 0, n);
1002        }
1003
1004        r = 0;
1005out:
1006        mutex_unlock(&kvm->slots_lock);
1007        return r;
1008
1009}
1010
1011long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1012{
1013        long r;
1014
1015        switch (ioctl) {
1016        default:
1017                r = -ENOIOCTLCMD;
1018        }
1019
1020        return r;
1021}
1022
1023int kvm_arch_init(void *opaque)
1024{
1025        if (kvm_mips_callbacks) {
1026                kvm_err("kvm: module already exists\n");
1027                return -EEXIST;
1028        }
1029
1030        return kvm_mips_emulation_init(&kvm_mips_callbacks);
1031}
1032
1033void kvm_arch_exit(void)
1034{
1035        kvm_mips_callbacks = NULL;
1036}
1037
1038int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1039                                  struct kvm_sregs *sregs)
1040{
1041        return -ENOIOCTLCMD;
1042}
1043
1044int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1045                                  struct kvm_sregs *sregs)
1046{
1047        return -ENOIOCTLCMD;
1048}
1049
1050void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1051{
1052}
1053
1054int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056        return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1060{
1061        return -ENOIOCTLCMD;
1062}
1063
1064int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1065{
1066        return VM_FAULT_SIGBUS;
1067}
1068
1069int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1070{
1071        int r;
1072
1073        switch (ext) {
1074        case KVM_CAP_ONE_REG:
1075        case KVM_CAP_ENABLE_CAP:
1076                r = 1;
1077                break;
1078        case KVM_CAP_COALESCED_MMIO:
1079                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1080                break;
1081        case KVM_CAP_MIPS_FPU:
1082                r = !!cpu_has_fpu;
1083                break;
1084        case KVM_CAP_MIPS_MSA:
1085                /*
1086                 * We don't support MSA vector partitioning yet:
1087                 * 1) It would require explicit support which can't be tested
1088                 *    yet due to lack of support in current hardware.
1089                 * 2) It extends the state that would need to be saved/restored
1090                 *    by e.g. QEMU for migration.
1091                 *
1092                 * When vector partitioning hardware becomes available, support
1093                 * could be added by requiring a flag when enabling
1094                 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1095                 * to save/restore the appropriate extra state.
1096                 */
1097                r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1098                break;
1099        default:
1100                r = 0;
1101                break;
1102        }
1103        return r;
1104}
1105
1106int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1107{
1108        return kvm_mips_pending_timer(vcpu);
1109}
1110
1111int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1112{
1113        int i;
1114        struct mips_coproc *cop0;
1115
1116        if (!vcpu)
1117                return -1;
1118
1119        kvm_debug("VCPU Register Dump:\n");
1120        kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1121        kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1122
1123        for (i = 0; i < 32; i += 4) {
1124                kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1125                       vcpu->arch.gprs[i],
1126                       vcpu->arch.gprs[i + 1],
1127                       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1128        }
1129        kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1130        kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1131
1132        cop0 = vcpu->arch.cop0;
1133        kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1134                  kvm_read_c0_guest_status(cop0),
1135                  kvm_read_c0_guest_cause(cop0));
1136
1137        kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1138
1139        return 0;
1140}
1141
1142int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1143{
1144        int i;
1145
1146        for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1147                vcpu->arch.gprs[i] = regs->gpr[i];
1148        vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1149        vcpu->arch.hi = regs->hi;
1150        vcpu->arch.lo = regs->lo;
1151        vcpu->arch.pc = regs->pc;
1152
1153        return 0;
1154}
1155
1156int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1157{
1158        int i;
1159
1160        for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1161                regs->gpr[i] = vcpu->arch.gprs[i];
1162
1163        regs->hi = vcpu->arch.hi;
1164        regs->lo = vcpu->arch.lo;
1165        regs->pc = vcpu->arch.pc;
1166
1167        return 0;
1168}
1169
1170static void kvm_mips_comparecount_func(unsigned long data)
1171{
1172        struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1173
1174        kvm_mips_callbacks->queue_timer_int(vcpu);
1175
1176        vcpu->arch.wait = 0;
1177        if (swait_active(&vcpu->wq))
1178                swake_up(&vcpu->wq);
1179}
1180
1181/* low level hrtimer wake routine */
1182static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1183{
1184        struct kvm_vcpu *vcpu;
1185
1186        vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1187        kvm_mips_comparecount_func((unsigned long) vcpu);
1188        return kvm_mips_count_timeout(vcpu);
1189}
1190
1191int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1192{
1193        kvm_mips_callbacks->vcpu_init(vcpu);
1194        hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1195                     HRTIMER_MODE_REL);
1196        vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1197        return 0;
1198}
1199
1200int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1201                                  struct kvm_translation *tr)
1202{
1203        return 0;
1204}
1205
1206/* Initial guest state */
1207int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1208{
1209        return kvm_mips_callbacks->vcpu_setup(vcpu);
1210}
1211
1212static void kvm_mips_set_c0_status(void)
1213{
1214        uint32_t status = read_c0_status();
1215
1216        if (cpu_has_dsp)
1217                status |= (ST0_MX);
1218
1219        write_c0_status(status);
1220        ehb();
1221}
1222
1223/*
1224 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1225 */
1226int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1227{
1228        uint32_t cause = vcpu->arch.host_cp0_cause;
1229        uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1230        uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1231        unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1232        enum emulation_result er = EMULATE_DONE;
1233        int ret = RESUME_GUEST;
1234
1235        /* re-enable HTW before enabling interrupts */
1236        htw_start();
1237
1238        /* Set a default exit reason */
1239        run->exit_reason = KVM_EXIT_UNKNOWN;
1240        run->ready_for_interrupt_injection = 1;
1241
1242        /*
1243         * Set the appropriate status bits based on host CPU features,
1244         * before we hit the scheduler
1245         */
1246        kvm_mips_set_c0_status();
1247
1248        local_irq_enable();
1249
1250        kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1251                        cause, opc, run, vcpu);
1252
1253        /*
1254         * Do a privilege check, if in UM most of these exit conditions end up
1255         * causing an exception to be delivered to the Guest Kernel
1256         */
1257        er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1258        if (er == EMULATE_PRIV_FAIL) {
1259                goto skip_emul;
1260        } else if (er == EMULATE_FAIL) {
1261                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1262                ret = RESUME_HOST;
1263                goto skip_emul;
1264        }
1265
1266        switch (exccode) {
1267        case EXCCODE_INT:
1268                kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1269
1270                ++vcpu->stat.int_exits;
1271                trace_kvm_exit(vcpu, INT_EXITS);
1272
1273                if (need_resched())
1274                        cond_resched();
1275
1276                ret = RESUME_GUEST;
1277                break;
1278
1279        case EXCCODE_CPU:
1280                kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1281
1282                ++vcpu->stat.cop_unusable_exits;
1283                trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1284                ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1285                /* XXXKYMA: Might need to return to user space */
1286                if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1287                        ret = RESUME_HOST;
1288                break;
1289
1290        case EXCCODE_MOD:
1291                ++vcpu->stat.tlbmod_exits;
1292                trace_kvm_exit(vcpu, TLBMOD_EXITS);
1293                ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1294                break;
1295
1296        case EXCCODE_TLBS:
1297                kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1298                          cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1299                          badvaddr);
1300
1301                ++vcpu->stat.tlbmiss_st_exits;
1302                trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1303                ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1304                break;
1305
1306        case EXCCODE_TLBL:
1307                kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1308                          cause, opc, badvaddr);
1309
1310                ++vcpu->stat.tlbmiss_ld_exits;
1311                trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1312                ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1313                break;
1314
1315        case EXCCODE_ADES:
1316                ++vcpu->stat.addrerr_st_exits;
1317                trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1318                ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1319                break;
1320
1321        case EXCCODE_ADEL:
1322                ++vcpu->stat.addrerr_ld_exits;
1323                trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1324                ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1325                break;
1326
1327        case EXCCODE_SYS:
1328                ++vcpu->stat.syscall_exits;
1329                trace_kvm_exit(vcpu, SYSCALL_EXITS);
1330                ret = kvm_mips_callbacks->handle_syscall(vcpu);
1331                break;
1332
1333        case EXCCODE_RI:
1334                ++vcpu->stat.resvd_inst_exits;
1335                trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1336                ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1337                break;
1338
1339        case EXCCODE_BP:
1340                ++vcpu->stat.break_inst_exits;
1341                trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1342                ret = kvm_mips_callbacks->handle_break(vcpu);
1343                break;
1344
1345        case EXCCODE_TR:
1346                ++vcpu->stat.trap_inst_exits;
1347                trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1348                ret = kvm_mips_callbacks->handle_trap(vcpu);
1349                break;
1350
1351        case EXCCODE_MSAFPE:
1352                ++vcpu->stat.msa_fpe_exits;
1353                trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1354                ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1355                break;
1356
1357        case EXCCODE_FPE:
1358                ++vcpu->stat.fpe_exits;
1359                trace_kvm_exit(vcpu, FPE_EXITS);
1360                ret = kvm_mips_callbacks->handle_fpe(vcpu);
1361                break;
1362
1363        case EXCCODE_MSADIS:
1364                ++vcpu->stat.msa_disabled_exits;
1365                trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1366                ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1367                break;
1368
1369        default:
1370                kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1371                        exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1372                        kvm_read_c0_guest_status(vcpu->arch.cop0));
1373                kvm_arch_vcpu_dump_regs(vcpu);
1374                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1375                ret = RESUME_HOST;
1376                break;
1377
1378        }
1379
1380skip_emul:
1381        local_irq_disable();
1382
1383        if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1384                kvm_mips_deliver_interrupts(vcpu, cause);
1385
1386        if (!(ret & RESUME_HOST)) {
1387                /* Only check for signals if not already exiting to userspace */
1388                if (signal_pending(current)) {
1389                        run->exit_reason = KVM_EXIT_INTR;
1390                        ret = (-EINTR << 2) | RESUME_HOST;
1391                        ++vcpu->stat.signal_exits;
1392                        trace_kvm_exit(vcpu, SIGNAL_EXITS);
1393                }
1394        }
1395
1396        if (ret == RESUME_GUEST) {
1397                /*
1398                 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1399                 * is live), restore FCR31 / MSACSR.
1400                 *
1401                 * This should be before returning to the guest exception
1402                 * vector, as it may well cause an [MSA] FP exception if there
1403                 * are pending exception bits unmasked. (see
1404                 * kvm_mips_csr_die_notifier() for how that is handled).
1405                 */
1406                if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1407                    read_c0_status() & ST0_CU1)
1408                        __kvm_restore_fcsr(&vcpu->arch);
1409
1410                if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1411                    read_c0_config5() & MIPS_CONF5_MSAEN)
1412                        __kvm_restore_msacsr(&vcpu->arch);
1413        }
1414
1415        /* Disable HTW before returning to guest or host */
1416        htw_stop();
1417
1418        return ret;
1419}
1420
1421/* Enable FPU for guest and restore context */
1422void kvm_own_fpu(struct kvm_vcpu *vcpu)
1423{
1424        struct mips_coproc *cop0 = vcpu->arch.cop0;
1425        unsigned int sr, cfg5;
1426
1427        preempt_disable();
1428
1429        sr = kvm_read_c0_guest_status(cop0);
1430
1431        /*
1432         * If MSA state is already live, it is undefined how it interacts with
1433         * FR=0 FPU state, and we don't want to hit reserved instruction
1434         * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1435         * play it safe and save it first.
1436         *
1437         * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1438         * get called when guest CU1 is set, however we can't trust the guest
1439         * not to clobber the status register directly via the commpage.
1440         */
1441        if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1442            vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1443                kvm_lose_fpu(vcpu);
1444
1445        /*
1446         * Enable FPU for guest
1447         * We set FR and FRE according to guest context
1448         */
1449        change_c0_status(ST0_CU1 | ST0_FR, sr);
1450        if (cpu_has_fre) {
1451                cfg5 = kvm_read_c0_guest_config5(cop0);
1452                change_c0_config5(MIPS_CONF5_FRE, cfg5);
1453        }
1454        enable_fpu_hazard();
1455
1456        /* If guest FPU state not active, restore it now */
1457        if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1458                __kvm_restore_fpu(&vcpu->arch);
1459                vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1460        }
1461
1462        preempt_enable();
1463}
1464
1465#ifdef CONFIG_CPU_HAS_MSA
1466/* Enable MSA for guest and restore context */
1467void kvm_own_msa(struct kvm_vcpu *vcpu)
1468{
1469        struct mips_coproc *cop0 = vcpu->arch.cop0;
1470        unsigned int sr, cfg5;
1471
1472        preempt_disable();
1473
1474        /*
1475         * Enable FPU if enabled in guest, since we're restoring FPU context
1476         * anyway. We set FR and FRE according to guest context.
1477         */
1478        if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1479                sr = kvm_read_c0_guest_status(cop0);
1480
1481                /*
1482                 * If FR=0 FPU state is already live, it is undefined how it
1483                 * interacts with MSA state, so play it safe and save it first.
1484                 */
1485                if (!(sr & ST0_FR) &&
1486                    (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1487                                KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1488                        kvm_lose_fpu(vcpu);
1489
1490                change_c0_status(ST0_CU1 | ST0_FR, sr);
1491                if (sr & ST0_CU1 && cpu_has_fre) {
1492                        cfg5 = kvm_read_c0_guest_config5(cop0);
1493                        change_c0_config5(MIPS_CONF5_FRE, cfg5);
1494                }
1495        }
1496
1497        /* Enable MSA for guest */
1498        set_c0_config5(MIPS_CONF5_MSAEN);
1499        enable_fpu_hazard();
1500
1501        switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1502        case KVM_MIPS_FPU_FPU:
1503                /*
1504                 * Guest FPU state already loaded, only restore upper MSA state
1505                 */
1506                __kvm_restore_msa_upper(&vcpu->arch);
1507                vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1508                break;
1509        case 0:
1510                /* Neither FPU or MSA already active, restore full MSA state */
1511                __kvm_restore_msa(&vcpu->arch);
1512                vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1513                if (kvm_mips_guest_has_fpu(&vcpu->arch))
1514                        vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1515                break;
1516        default:
1517                break;
1518        }
1519
1520        preempt_enable();
1521}
1522#endif
1523
1524/* Drop FPU & MSA without saving it */
1525void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1526{
1527        preempt_disable();
1528        if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1529                disable_msa();
1530                vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1531        }
1532        if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1533                clear_c0_status(ST0_CU1 | ST0_FR);
1534                vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1535        }
1536        preempt_enable();
1537}
1538
1539/* Save and disable FPU & MSA */
1540void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1541{
1542        /*
1543         * FPU & MSA get disabled in root context (hardware) when it is disabled
1544         * in guest context (software), but the register state in the hardware
1545         * may still be in use. This is why we explicitly re-enable the hardware
1546         * before saving.
1547         */
1548
1549        preempt_disable();
1550        if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1551                set_c0_config5(MIPS_CONF5_MSAEN);
1552                enable_fpu_hazard();
1553
1554                __kvm_save_msa(&vcpu->arch);
1555
1556                /* Disable MSA & FPU */
1557                disable_msa();
1558                if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1559                        clear_c0_status(ST0_CU1 | ST0_FR);
1560                vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1561        } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1562                set_c0_status(ST0_CU1);
1563                enable_fpu_hazard();
1564
1565                __kvm_save_fpu(&vcpu->arch);
1566                vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1567
1568                /* Disable FPU */
1569                clear_c0_status(ST0_CU1 | ST0_FR);
1570        }
1571        preempt_enable();
1572}
1573
1574/*
1575 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1576 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1577 * exception if cause bits are set in the value being written.
1578 */
1579static int kvm_mips_csr_die_notify(struct notifier_block *self,
1580                                   unsigned long cmd, void *ptr)
1581{
1582        struct die_args *args = (struct die_args *)ptr;
1583        struct pt_regs *regs = args->regs;
1584        unsigned long pc;
1585
1586        /* Only interested in FPE and MSAFPE */
1587        if (cmd != DIE_FP && cmd != DIE_MSAFP)
1588                return NOTIFY_DONE;
1589
1590        /* Return immediately if guest context isn't active */
1591        if (!(current->flags & PF_VCPU))
1592                return NOTIFY_DONE;
1593
1594        /* Should never get here from user mode */
1595        BUG_ON(user_mode(regs));
1596
1597        pc = instruction_pointer(regs);
1598        switch (cmd) {
1599        case DIE_FP:
1600                /* match 2nd instruction in __kvm_restore_fcsr */
1601                if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1602                        return NOTIFY_DONE;
1603                break;
1604        case DIE_MSAFP:
1605                /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1606                if (!cpu_has_msa ||
1607                    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1608                    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1609                        return NOTIFY_DONE;
1610                break;
1611        }
1612
1613        /* Move PC forward a little and continue executing */
1614        instruction_pointer(regs) += 4;
1615
1616        return NOTIFY_STOP;
1617}
1618
1619static struct notifier_block kvm_mips_csr_die_notifier = {
1620        .notifier_call = kvm_mips_csr_die_notify,
1621};
1622
1623static int __init kvm_mips_init(void)
1624{
1625        int ret;
1626
1627        ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1628
1629        if (ret)
1630                return ret;
1631
1632        register_die_notifier(&kvm_mips_csr_die_notifier);
1633
1634        /*
1635         * On MIPS, kernel modules are executed from "mapped space", which
1636         * requires TLBs. The TLB handling code is statically linked with
1637         * the rest of the kernel (tlb.c) to avoid the possibility of
1638         * double faulting. The issue is that the TLB code references
1639         * routines that are part of the the KVM module, which are only
1640         * available once the module is loaded.
1641         */
1642        kvm_mips_gfn_to_pfn = gfn_to_pfn;
1643        kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1644        kvm_mips_is_error_pfn = is_error_pfn;
1645
1646        return 0;
1647}
1648
1649static void __exit kvm_mips_exit(void)
1650{
1651        kvm_exit();
1652
1653        kvm_mips_gfn_to_pfn = NULL;
1654        kvm_mips_release_pfn_clean = NULL;
1655        kvm_mips_is_error_pfn = NULL;
1656
1657        unregister_die_notifier(&kvm_mips_csr_die_notifier);
1658}
1659
1660module_init(kvm_mips_init);
1661module_exit(kvm_mips_exit);
1662
1663EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1664