linux/arch/parisc/mm/init.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>     /* for node_online_map */
  25#include <linux/pagemap.h>      /* for release_pages */
  26#include <linux/compat.h>
  27
  28#include <asm/pgalloc.h>
  29#include <asm/pgtable.h>
  30#include <asm/tlb.h>
  31#include <asm/pdc_chassis.h>
  32#include <asm/mmzone.h>
  33#include <asm/sections.h>
  34#include <asm/msgbuf.h>
  35
  36extern int  data_start;
  37extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
  38
  39#if CONFIG_PGTABLE_LEVELS == 3
  40/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  42 * guarantee that global objects will be laid out in memory in the same order
  43 * as the order of declaration, so put these in different sections and use
  44 * the linker script to order them. */
  45pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  46#endif
  47
  48pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  49pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  50
  51#ifdef CONFIG_DISCONTIGMEM
  52struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  53signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  54#endif
  55
  56static struct resource data_resource = {
  57        .name   = "Kernel data",
  58        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  59};
  60
  61static struct resource code_resource = {
  62        .name   = "Kernel code",
  63        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  64};
  65
  66static struct resource pdcdata_resource = {
  67        .name   = "PDC data (Page Zero)",
  68        .start  = 0,
  69        .end    = 0x9ff,
  70        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  71};
  72
  73static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  74
  75/* The following array is initialized from the firmware specific
  76 * information retrieved in kernel/inventory.c.
  77 */
  78
  79physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  80int npmem_ranges __read_mostly;
  81
  82#ifdef CONFIG_64BIT
  83#define MAX_MEM         (~0UL)
  84#else /* !CONFIG_64BIT */
  85#define MAX_MEM         (3584U*1024U*1024U)
  86#endif /* !CONFIG_64BIT */
  87
  88static unsigned long mem_limit __read_mostly = MAX_MEM;
  89
  90static void __init mem_limit_func(void)
  91{
  92        char *cp, *end;
  93        unsigned long limit;
  94
  95        /* We need this before __setup() functions are called */
  96
  97        limit = MAX_MEM;
  98        for (cp = boot_command_line; *cp; ) {
  99                if (memcmp(cp, "mem=", 4) == 0) {
 100                        cp += 4;
 101                        limit = memparse(cp, &end);
 102                        if (end != cp)
 103                                break;
 104                        cp = end;
 105                } else {
 106                        while (*cp != ' ' && *cp)
 107                                ++cp;
 108                        while (*cp == ' ')
 109                                ++cp;
 110                }
 111        }
 112
 113        if (limit < mem_limit)
 114                mem_limit = limit;
 115}
 116
 117#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 118
 119static void __init setup_bootmem(void)
 120{
 121        unsigned long bootmap_size;
 122        unsigned long mem_max;
 123        unsigned long bootmap_pages;
 124        unsigned long bootmap_start_pfn;
 125        unsigned long bootmap_pfn;
 126#ifndef CONFIG_DISCONTIGMEM
 127        physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 128        int npmem_holes;
 129#endif
 130        int i, sysram_resource_count;
 131
 132        disable_sr_hashing(); /* Turn off space register hashing */
 133
 134        /*
 135         * Sort the ranges. Since the number of ranges is typically
 136         * small, and performance is not an issue here, just do
 137         * a simple insertion sort.
 138         */
 139
 140        for (i = 1; i < npmem_ranges; i++) {
 141                int j;
 142
 143                for (j = i; j > 0; j--) {
 144                        unsigned long tmp;
 145
 146                        if (pmem_ranges[j-1].start_pfn <
 147                            pmem_ranges[j].start_pfn) {
 148
 149                                break;
 150                        }
 151                        tmp = pmem_ranges[j-1].start_pfn;
 152                        pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 153                        pmem_ranges[j].start_pfn = tmp;
 154                        tmp = pmem_ranges[j-1].pages;
 155                        pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 156                        pmem_ranges[j].pages = tmp;
 157                }
 158        }
 159
 160#ifndef CONFIG_DISCONTIGMEM
 161        /*
 162         * Throw out ranges that are too far apart (controlled by
 163         * MAX_GAP).
 164         */
 165
 166        for (i = 1; i < npmem_ranges; i++) {
 167                if (pmem_ranges[i].start_pfn -
 168                        (pmem_ranges[i-1].start_pfn +
 169                         pmem_ranges[i-1].pages) > MAX_GAP) {
 170                        npmem_ranges = i;
 171                        printk("Large gap in memory detected (%ld pages). "
 172                               "Consider turning on CONFIG_DISCONTIGMEM\n",
 173                               pmem_ranges[i].start_pfn -
 174                               (pmem_ranges[i-1].start_pfn +
 175                                pmem_ranges[i-1].pages));
 176                        break;
 177                }
 178        }
 179#endif
 180
 181        if (npmem_ranges > 1) {
 182
 183                /* Print the memory ranges */
 184
 185                printk(KERN_INFO "Memory Ranges:\n");
 186
 187                for (i = 0; i < npmem_ranges; i++) {
 188                        unsigned long start;
 189                        unsigned long size;
 190
 191                        size = (pmem_ranges[i].pages << PAGE_SHIFT);
 192                        start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 193                        printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 194                                i,start, start + (size - 1), size >> 20);
 195                }
 196        }
 197
 198        sysram_resource_count = npmem_ranges;
 199        for (i = 0; i < sysram_resource_count; i++) {
 200                struct resource *res = &sysram_resources[i];
 201                res->name = "System RAM";
 202                res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 203                res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 204                res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 205                request_resource(&iomem_resource, res);
 206        }
 207
 208        /*
 209         * For 32 bit kernels we limit the amount of memory we can
 210         * support, in order to preserve enough kernel address space
 211         * for other purposes. For 64 bit kernels we don't normally
 212         * limit the memory, but this mechanism can be used to
 213         * artificially limit the amount of memory (and it is written
 214         * to work with multiple memory ranges).
 215         */
 216
 217        mem_limit_func();       /* check for "mem=" argument */
 218
 219        mem_max = 0;
 220        for (i = 0; i < npmem_ranges; i++) {
 221                unsigned long rsize;
 222
 223                rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 224                if ((mem_max + rsize) > mem_limit) {
 225                        printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 226                        if (mem_max == mem_limit)
 227                                npmem_ranges = i;
 228                        else {
 229                                pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 230                                                       - (mem_max >> PAGE_SHIFT);
 231                                npmem_ranges = i + 1;
 232                                mem_max = mem_limit;
 233                        }
 234                        break;
 235                }
 236                mem_max += rsize;
 237        }
 238
 239        printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 240
 241#ifndef CONFIG_DISCONTIGMEM
 242        /* Merge the ranges, keeping track of the holes */
 243
 244        {
 245                unsigned long end_pfn;
 246                unsigned long hole_pages;
 247
 248                npmem_holes = 0;
 249                end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 250                for (i = 1; i < npmem_ranges; i++) {
 251
 252                        hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 253                        if (hole_pages) {
 254                                pmem_holes[npmem_holes].start_pfn = end_pfn;
 255                                pmem_holes[npmem_holes++].pages = hole_pages;
 256                                end_pfn += hole_pages;
 257                        }
 258                        end_pfn += pmem_ranges[i].pages;
 259                }
 260
 261                pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 262                npmem_ranges = 1;
 263        }
 264#endif
 265
 266        bootmap_pages = 0;
 267        for (i = 0; i < npmem_ranges; i++)
 268                bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 269
 270        bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 271
 272#ifdef CONFIG_DISCONTIGMEM
 273        for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 274                memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 275                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 276        }
 277        memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 278
 279        for (i = 0; i < npmem_ranges; i++) {
 280                node_set_state(i, N_NORMAL_MEMORY);
 281                node_set_online(i);
 282        }
 283#endif
 284
 285        /*
 286         * Initialize and free the full range of memory in each range.
 287         * Note that the only writing these routines do are to the bootmap,
 288         * and we've made sure to locate the bootmap properly so that they
 289         * won't be writing over anything important.
 290         */
 291
 292        bootmap_pfn = bootmap_start_pfn;
 293        max_pfn = 0;
 294        for (i = 0; i < npmem_ranges; i++) {
 295                unsigned long start_pfn;
 296                unsigned long npages;
 297
 298                start_pfn = pmem_ranges[i].start_pfn;
 299                npages = pmem_ranges[i].pages;
 300
 301                bootmap_size = init_bootmem_node(NODE_DATA(i),
 302                                                bootmap_pfn,
 303                                                start_pfn,
 304                                                (start_pfn + npages) );
 305                free_bootmem_node(NODE_DATA(i),
 306                                  (start_pfn << PAGE_SHIFT),
 307                                  (npages << PAGE_SHIFT) );
 308                bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 309                if ((start_pfn + npages) > max_pfn)
 310                        max_pfn = start_pfn + npages;
 311        }
 312
 313        /* IOMMU is always used to access "high mem" on those boxes
 314         * that can support enough mem that a PCI device couldn't
 315         * directly DMA to any physical addresses.
 316         * ISA DMA support will need to revisit this.
 317         */
 318        max_low_pfn = max_pfn;
 319
 320        /* bootmap sizing messed up? */
 321        BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 322
 323        /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 324
 325#define PDC_CONSOLE_IO_IODC_SIZE 32768
 326
 327        reserve_bootmem_node(NODE_DATA(0), 0UL,
 328                        (unsigned long)(PAGE0->mem_free +
 329                                PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 330        reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
 331                        (unsigned long)(_end - KERNEL_BINARY_TEXT_START),
 332                        BOOTMEM_DEFAULT);
 333        reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 334                        ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 335                        BOOTMEM_DEFAULT);
 336
 337#ifndef CONFIG_DISCONTIGMEM
 338
 339        /* reserve the holes */
 340
 341        for (i = 0; i < npmem_holes; i++) {
 342                reserve_bootmem_node(NODE_DATA(0),
 343                                (pmem_holes[i].start_pfn << PAGE_SHIFT),
 344                                (pmem_holes[i].pages << PAGE_SHIFT),
 345                                BOOTMEM_DEFAULT);
 346        }
 347#endif
 348
 349#ifdef CONFIG_BLK_DEV_INITRD
 350        if (initrd_start) {
 351                printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 352                if (__pa(initrd_start) < mem_max) {
 353                        unsigned long initrd_reserve;
 354
 355                        if (__pa(initrd_end) > mem_max) {
 356                                initrd_reserve = mem_max - __pa(initrd_start);
 357                        } else {
 358                                initrd_reserve = initrd_end - initrd_start;
 359                        }
 360                        initrd_below_start_ok = 1;
 361                        printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 362
 363                        reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 364                                        initrd_reserve, BOOTMEM_DEFAULT);
 365                }
 366        }
 367#endif
 368
 369        data_resource.start =  virt_to_phys(&data_start);
 370        data_resource.end = virt_to_phys(_end) - 1;
 371        code_resource.start = virt_to_phys(_text);
 372        code_resource.end = virt_to_phys(&data_start)-1;
 373
 374        /* We don't know which region the kernel will be in, so try
 375         * all of them.
 376         */
 377        for (i = 0; i < sysram_resource_count; i++) {
 378                struct resource *res = &sysram_resources[i];
 379                request_resource(res, &code_resource);
 380                request_resource(res, &data_resource);
 381        }
 382        request_resource(&sysram_resources[0], &pdcdata_resource);
 383}
 384
 385static int __init parisc_text_address(unsigned long vaddr)
 386{
 387        static unsigned long head_ptr __initdata;
 388
 389        if (!head_ptr)
 390                head_ptr = PAGE_MASK & (unsigned long)
 391                        dereference_function_descriptor(&parisc_kernel_start);
 392
 393        return core_kernel_text(vaddr) || vaddr == head_ptr;
 394}
 395
 396static void __init map_pages(unsigned long start_vaddr,
 397                             unsigned long start_paddr, unsigned long size,
 398                             pgprot_t pgprot, int force)
 399{
 400        pgd_t *pg_dir;
 401        pmd_t *pmd;
 402        pte_t *pg_table;
 403        unsigned long end_paddr;
 404        unsigned long start_pmd;
 405        unsigned long start_pte;
 406        unsigned long tmp1;
 407        unsigned long tmp2;
 408        unsigned long address;
 409        unsigned long vaddr;
 410        unsigned long ro_start;
 411        unsigned long ro_end;
 412        unsigned long kernel_end;
 413
 414        ro_start = __pa((unsigned long)_text);
 415        ro_end   = __pa((unsigned long)&data_start);
 416        kernel_end  = __pa((unsigned long)&_end);
 417
 418        end_paddr = start_paddr + size;
 419
 420        pg_dir = pgd_offset_k(start_vaddr);
 421
 422#if PTRS_PER_PMD == 1
 423        start_pmd = 0;
 424#else
 425        start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 426#endif
 427        start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 428
 429        address = start_paddr;
 430        vaddr = start_vaddr;
 431        while (address < end_paddr) {
 432#if PTRS_PER_PMD == 1
 433                pmd = (pmd_t *)__pa(pg_dir);
 434#else
 435                pmd = (pmd_t *)pgd_address(*pg_dir);
 436
 437                /*
 438                 * pmd is physical at this point
 439                 */
 440
 441                if (!pmd) {
 442                        pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 443                        pmd = (pmd_t *) __pa(pmd);
 444                }
 445
 446                pgd_populate(NULL, pg_dir, __va(pmd));
 447#endif
 448                pg_dir++;
 449
 450                /* now change pmd to kernel virtual addresses */
 451
 452                pmd = (pmd_t *)__va(pmd) + start_pmd;
 453                for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 454
 455                        /*
 456                         * pg_table is physical at this point
 457                         */
 458
 459                        pg_table = (pte_t *)pmd_address(*pmd);
 460                        if (!pg_table) {
 461                                pg_table = (pte_t *)
 462                                        alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 463                                pg_table = (pte_t *) __pa(pg_table);
 464                        }
 465
 466                        pmd_populate_kernel(NULL, pmd, __va(pg_table));
 467
 468                        /* now change pg_table to kernel virtual addresses */
 469
 470                        pg_table = (pte_t *) __va(pg_table) + start_pte;
 471                        for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 472                                pte_t pte;
 473
 474                                if (force)
 475                                        pte =  __mk_pte(address, pgprot);
 476                                else if (parisc_text_address(vaddr)) {
 477                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 478                                        if (address >= ro_start && address < kernel_end)
 479                                                pte = pte_mkhuge(pte);
 480                                }
 481                                else
 482#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 483                                if (address >= ro_start && address < ro_end) {
 484                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 485                                        pte = pte_mkhuge(pte);
 486                                } else
 487#endif
 488                                {
 489                                        pte = __mk_pte(address, pgprot);
 490                                        if (address >= ro_start && address < kernel_end)
 491                                                pte = pte_mkhuge(pte);
 492                                }
 493
 494                                if (address >= end_paddr) {
 495                                        if (force)
 496                                                break;
 497                                        else
 498                                                pte_val(pte) = 0;
 499                                }
 500
 501                                set_pte(pg_table, pte);
 502
 503                                address += PAGE_SIZE;
 504                                vaddr += PAGE_SIZE;
 505                        }
 506                        start_pte = 0;
 507
 508                        if (address >= end_paddr)
 509                            break;
 510                }
 511                start_pmd = 0;
 512        }
 513}
 514
 515void free_initmem(void)
 516{
 517        unsigned long init_begin = (unsigned long)__init_begin;
 518        unsigned long init_end = (unsigned long)__init_end;
 519
 520        /* The init text pages are marked R-X.  We have to
 521         * flush the icache and mark them RW-
 522         *
 523         * This is tricky, because map_pages is in the init section.
 524         * Do a dummy remap of the data section first (the data
 525         * section is already PAGE_KERNEL) to pull in the TLB entries
 526         * for map_kernel */
 527        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 528                  PAGE_KERNEL_RWX, 1);
 529        /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 530         * map_pages */
 531        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 532                  PAGE_KERNEL, 1);
 533
 534        /* force the kernel to see the new TLB entries */
 535        __flush_tlb_range(0, init_begin, init_end);
 536
 537        /* finally dump all the instructions which were cached, since the
 538         * pages are no-longer executable */
 539        flush_icache_range(init_begin, init_end);
 540        
 541        free_initmem_default(POISON_FREE_INITMEM);
 542
 543        /* set up a new led state on systems shipped LED State panel */
 544        pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 545}
 546
 547
 548#ifdef CONFIG_DEBUG_RODATA
 549void mark_rodata_ro(void)
 550{
 551        /* rodata memory was already mapped with KERNEL_RO access rights by
 552           pagetable_init() and map_pages(). No need to do additional stuff here */
 553        printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 554                (unsigned long)(__end_rodata - __start_rodata) >> 10);
 555}
 556#endif
 557
 558
 559/*
 560 * Just an arbitrary offset to serve as a "hole" between mapping areas
 561 * (between top of physical memory and a potential pcxl dma mapping
 562 * area, and below the vmalloc mapping area).
 563 *
 564 * The current 32K value just means that there will be a 32K "hole"
 565 * between mapping areas. That means that  any out-of-bounds memory
 566 * accesses will hopefully be caught. The vmalloc() routines leaves
 567 * a hole of 4kB between each vmalloced area for the same reason.
 568 */
 569
 570 /* Leave room for gateway page expansion */
 571#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 572#error KERNEL_MAP_START is in gateway reserved region
 573#endif
 574#define MAP_START (KERNEL_MAP_START)
 575
 576#define VM_MAP_OFFSET  (32*1024)
 577#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 578                                     & ~(VM_MAP_OFFSET-1)))
 579
 580void *parisc_vmalloc_start __read_mostly;
 581EXPORT_SYMBOL(parisc_vmalloc_start);
 582
 583#ifdef CONFIG_PA11
 584unsigned long pcxl_dma_start __read_mostly;
 585#endif
 586
 587void __init mem_init(void)
 588{
 589        /* Do sanity checks on IPC (compat) structures */
 590        BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
 591#ifndef CONFIG_64BIT
 592        BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
 593        BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
 594        BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
 595#endif
 596#ifdef CONFIG_COMPAT
 597        BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
 598        BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
 599        BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
 600        BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
 601#endif
 602
 603        /* Do sanity checks on page table constants */
 604        BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 605        BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 606        BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 607        BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 608                        > BITS_PER_LONG);
 609
 610        high_memory = __va((max_pfn << PAGE_SHIFT));
 611        set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
 612        free_all_bootmem();
 613
 614#ifdef CONFIG_PA11
 615        if (hppa_dma_ops == &pcxl_dma_ops) {
 616                pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 617                parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 618                                                + PCXL_DMA_MAP_SIZE);
 619        } else {
 620                pcxl_dma_start = 0;
 621                parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 622        }
 623#else
 624        parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 625#endif
 626
 627        mem_init_print_info(NULL);
 628#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 629        printk("virtual kernel memory layout:\n"
 630               "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 631               "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 632               "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 633               "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 634               "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 635
 636               (void*)VMALLOC_START, (void*)VMALLOC_END,
 637               (VMALLOC_END - VMALLOC_START) >> 20,
 638
 639               __va(0), high_memory,
 640               ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 641
 642               __init_begin, __init_end,
 643               ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 644
 645               _etext, _edata,
 646               ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 647
 648               _text, _etext,
 649               ((unsigned long)_etext - (unsigned long)_text) >> 10);
 650#endif
 651}
 652
 653unsigned long *empty_zero_page __read_mostly;
 654EXPORT_SYMBOL(empty_zero_page);
 655
 656void show_mem(unsigned int filter)
 657{
 658        int total = 0,reserved = 0;
 659        pg_data_t *pgdat;
 660
 661        printk(KERN_INFO "Mem-info:\n");
 662        show_free_areas(filter);
 663
 664        for_each_online_pgdat(pgdat) {
 665                unsigned long flags;
 666                int zoneid;
 667
 668                pgdat_resize_lock(pgdat, &flags);
 669                for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 670                        struct zone *zone = &pgdat->node_zones[zoneid];
 671                        if (!populated_zone(zone))
 672                                continue;
 673
 674                        total += zone->present_pages;
 675                        reserved = zone->present_pages - zone->managed_pages;
 676                }
 677                pgdat_resize_unlock(pgdat, &flags);
 678        }
 679
 680        printk(KERN_INFO "%d pages of RAM\n", total);
 681        printk(KERN_INFO "%d reserved pages\n", reserved);
 682
 683#ifdef CONFIG_DISCONTIGMEM
 684        {
 685                struct zonelist *zl;
 686                int i, j;
 687
 688                for (i = 0; i < npmem_ranges; i++) {
 689                        zl = node_zonelist(i, 0);
 690                        for (j = 0; j < MAX_NR_ZONES; j++) {
 691                                struct zoneref *z;
 692                                struct zone *zone;
 693
 694                                printk("Zone list for zone %d on node %d: ", j, i);
 695                                for_each_zone_zonelist(zone, z, zl, j)
 696                                        printk("[%d/%s] ", zone_to_nid(zone),
 697                                                                zone->name);
 698                                printk("\n");
 699                        }
 700                }
 701        }
 702#endif
 703}
 704
 705/*
 706 * pagetable_init() sets up the page tables
 707 *
 708 * Note that gateway_init() places the Linux gateway page at page 0.
 709 * Since gateway pages cannot be dereferenced this has the desirable
 710 * side effect of trapping those pesky NULL-reference errors in the
 711 * kernel.
 712 */
 713static void __init pagetable_init(void)
 714{
 715        int range;
 716
 717        /* Map each physical memory range to its kernel vaddr */
 718
 719        for (range = 0; range < npmem_ranges; range++) {
 720                unsigned long start_paddr;
 721                unsigned long end_paddr;
 722                unsigned long size;
 723
 724                start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 725                size = pmem_ranges[range].pages << PAGE_SHIFT;
 726                end_paddr = start_paddr + size;
 727
 728                map_pages((unsigned long)__va(start_paddr), start_paddr,
 729                          size, PAGE_KERNEL, 0);
 730        }
 731
 732#ifdef CONFIG_BLK_DEV_INITRD
 733        if (initrd_end && initrd_end > mem_limit) {
 734                printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 735                map_pages(initrd_start, __pa(initrd_start),
 736                          initrd_end - initrd_start, PAGE_KERNEL, 0);
 737        }
 738#endif
 739
 740        empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 741}
 742
 743static void __init gateway_init(void)
 744{
 745        unsigned long linux_gateway_page_addr;
 746        /* FIXME: This is 'const' in order to trick the compiler
 747           into not treating it as DP-relative data. */
 748        extern void * const linux_gateway_page;
 749
 750        linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 751
 752        /*
 753         * Setup Linux Gateway page.
 754         *
 755         * The Linux gateway page will reside in kernel space (on virtual
 756         * page 0), so it doesn't need to be aliased into user space.
 757         */
 758
 759        map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 760                  PAGE_SIZE, PAGE_GATEWAY, 1);
 761}
 762
 763void __init paging_init(void)
 764{
 765        int i;
 766
 767        setup_bootmem();
 768        pagetable_init();
 769        gateway_init();
 770        flush_cache_all_local(); /* start with known state */
 771        flush_tlb_all_local(NULL);
 772
 773        for (i = 0; i < npmem_ranges; i++) {
 774                unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 775
 776                zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 777
 778#ifdef CONFIG_DISCONTIGMEM
 779                /* Need to initialize the pfnnid_map before we can initialize
 780                   the zone */
 781                {
 782                    int j;
 783                    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 784                         j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 785                         j++) {
 786                        pfnnid_map[j] = i;
 787                    }
 788                }
 789#endif
 790
 791                free_area_init_node(i, zones_size,
 792                                pmem_ranges[i].start_pfn, NULL);
 793        }
 794}
 795
 796#ifdef CONFIG_PA20
 797
 798/*
 799 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 800 * limiting factor (space ids are 32 bits).
 801 */
 802
 803#define NR_SPACE_IDS 262144
 804
 805#else
 806
 807/*
 808 * Currently we have a one-to-one relationship between space IDs and
 809 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 810 * support 15 bit protection IDs, so that is the limiting factor.
 811 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 812 * probably not worth the effort for a special case here.
 813 */
 814
 815#define NR_SPACE_IDS 32768
 816
 817#endif  /* !CONFIG_PA20 */
 818
 819#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 820#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 821
 822static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 823static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 824static unsigned long space_id_index;
 825static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 826static unsigned long dirty_space_ids = 0;
 827
 828static DEFINE_SPINLOCK(sid_lock);
 829
 830unsigned long alloc_sid(void)
 831{
 832        unsigned long index;
 833
 834        spin_lock(&sid_lock);
 835
 836        if (free_space_ids == 0) {
 837                if (dirty_space_ids != 0) {
 838                        spin_unlock(&sid_lock);
 839                        flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 840                        spin_lock(&sid_lock);
 841                }
 842                BUG_ON(free_space_ids == 0);
 843        }
 844
 845        free_space_ids--;
 846
 847        index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 848        space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 849        space_id_index = index;
 850
 851        spin_unlock(&sid_lock);
 852
 853        return index << SPACEID_SHIFT;
 854}
 855
 856void free_sid(unsigned long spaceid)
 857{
 858        unsigned long index = spaceid >> SPACEID_SHIFT;
 859        unsigned long *dirty_space_offset;
 860
 861        dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 862        index &= (BITS_PER_LONG - 1);
 863
 864        spin_lock(&sid_lock);
 865
 866        BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 867
 868        *dirty_space_offset |= (1L << index);
 869        dirty_space_ids++;
 870
 871        spin_unlock(&sid_lock);
 872}
 873
 874
 875#ifdef CONFIG_SMP
 876static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 877{
 878        int i;
 879
 880        /* NOTE: sid_lock must be held upon entry */
 881
 882        *ndirtyptr = dirty_space_ids;
 883        if (dirty_space_ids != 0) {
 884            for (i = 0; i < SID_ARRAY_SIZE; i++) {
 885                dirty_array[i] = dirty_space_id[i];
 886                dirty_space_id[i] = 0;
 887            }
 888            dirty_space_ids = 0;
 889        }
 890
 891        return;
 892}
 893
 894static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 895{
 896        int i;
 897
 898        /* NOTE: sid_lock must be held upon entry */
 899
 900        if (ndirty != 0) {
 901                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 902                        space_id[i] ^= dirty_array[i];
 903                }
 904
 905                free_space_ids += ndirty;
 906                space_id_index = 0;
 907        }
 908}
 909
 910#else /* CONFIG_SMP */
 911
 912static void recycle_sids(void)
 913{
 914        int i;
 915
 916        /* NOTE: sid_lock must be held upon entry */
 917
 918        if (dirty_space_ids != 0) {
 919                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 920                        space_id[i] ^= dirty_space_id[i];
 921                        dirty_space_id[i] = 0;
 922                }
 923
 924                free_space_ids += dirty_space_ids;
 925                dirty_space_ids = 0;
 926                space_id_index = 0;
 927        }
 928}
 929#endif
 930
 931/*
 932 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 933 * purged, we can safely reuse the space ids that were released but
 934 * not flushed from the tlb.
 935 */
 936
 937#ifdef CONFIG_SMP
 938
 939static unsigned long recycle_ndirty;
 940static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
 941static unsigned int recycle_inuse;
 942
 943void flush_tlb_all(void)
 944{
 945        int do_recycle;
 946
 947        __inc_irq_stat(irq_tlb_count);
 948        do_recycle = 0;
 949        spin_lock(&sid_lock);
 950        if (dirty_space_ids > RECYCLE_THRESHOLD) {
 951            BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
 952            get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
 953            recycle_inuse++;
 954            do_recycle++;
 955        }
 956        spin_unlock(&sid_lock);
 957        on_each_cpu(flush_tlb_all_local, NULL, 1);
 958        if (do_recycle) {
 959            spin_lock(&sid_lock);
 960            recycle_sids(recycle_ndirty,recycle_dirty_array);
 961            recycle_inuse = 0;
 962            spin_unlock(&sid_lock);
 963        }
 964}
 965#else
 966void flush_tlb_all(void)
 967{
 968        __inc_irq_stat(irq_tlb_count);
 969        spin_lock(&sid_lock);
 970        flush_tlb_all_local(NULL);
 971        recycle_sids();
 972        spin_unlock(&sid_lock);
 973}
 974#endif
 975
 976#ifdef CONFIG_BLK_DEV_INITRD
 977void free_initrd_mem(unsigned long start, unsigned long end)
 978{
 979        free_reserved_area((void *)start, (void *)end, -1, "initrd");
 980}
 981#endif
 982