linux/arch/s390/kernel/perf_cpum_sf.c
<<
>>
Prefs
   1/*
   2 * Performance event support for the System z CPU-measurement Sampling Facility
   3 *
   4 * Copyright IBM Corp. 2013
   5 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License (version 2 only)
   9 * as published by the Free Software Foundation.
  10 */
  11#define KMSG_COMPONENT  "cpum_sf"
  12#define pr_fmt(fmt)     KMSG_COMPONENT ": " fmt
  13
  14#include <linux/kernel.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/perf_event.h>
  17#include <linux/percpu.h>
  18#include <linux/notifier.h>
  19#include <linux/export.h>
  20#include <linux/slab.h>
  21#include <linux/mm.h>
  22#include <linux/moduleparam.h>
  23#include <asm/cpu_mf.h>
  24#include <asm/irq.h>
  25#include <asm/debug.h>
  26#include <asm/timex.h>
  27
  28/* Minimum number of sample-data-block-tables:
  29 * At least one table is required for the sampling buffer structure.
  30 * A single table contains up to 511 pointers to sample-data-blocks.
  31 */
  32#define CPUM_SF_MIN_SDBT        1
  33
  34/* Number of sample-data-blocks per sample-data-block-table (SDBT):
  35 * A table contains SDB pointers (8 bytes) and one table-link entry
  36 * that points to the origin of the next SDBT.
  37 */
  38#define CPUM_SF_SDB_PER_TABLE   ((PAGE_SIZE - 8) / 8)
  39
  40/* Maximum page offset for an SDBT table-link entry:
  41 * If this page offset is reached, a table-link entry to the next SDBT
  42 * must be added.
  43 */
  44#define CPUM_SF_SDBT_TL_OFFSET  (CPUM_SF_SDB_PER_TABLE * 8)
  45static inline int require_table_link(const void *sdbt)
  46{
  47        return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
  48}
  49
  50/* Minimum and maximum sampling buffer sizes:
  51 *
  52 * This number represents the maximum size of the sampling buffer taking
  53 * the number of sample-data-block-tables into account.  Note that these
  54 * numbers apply to the basic-sampling function only.
  55 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
  56 * the diagnostic-sampling function is active.
  57 *
  58 * Sampling buffer size         Buffer characteristics
  59 * ---------------------------------------------------
  60 *       64KB               ==    16 pages (4KB per page)
  61 *                                 1 page  for SDB-tables
  62 *                                15 pages for SDBs
  63 *
  64 *  32MB                    ==  8192 pages (4KB per page)
  65 *                                16 pages for SDB-tables
  66 *                              8176 pages for SDBs
  67 */
  68static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
  69static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
  70static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
  71
  72struct sf_buffer {
  73        unsigned long    *sdbt;     /* Sample-data-block-table origin */
  74        /* buffer characteristics (required for buffer increments) */
  75        unsigned long  num_sdb;     /* Number of sample-data-blocks */
  76        unsigned long num_sdbt;     /* Number of sample-data-block-tables */
  77        unsigned long    *tail;     /* last sample-data-block-table */
  78};
  79
  80struct cpu_hw_sf {
  81        /* CPU-measurement sampling information block */
  82        struct hws_qsi_info_block qsi;
  83        /* CPU-measurement sampling control block */
  84        struct hws_lsctl_request_block lsctl;
  85        struct sf_buffer sfb;       /* Sampling buffer */
  86        unsigned int flags;         /* Status flags */
  87        struct perf_event *event;   /* Scheduled perf event */
  88};
  89static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
  90
  91/* Debug feature */
  92static debug_info_t *sfdbg;
  93
  94/*
  95 * sf_disable() - Switch off sampling facility
  96 */
  97static int sf_disable(void)
  98{
  99        struct hws_lsctl_request_block sreq;
 100
 101        memset(&sreq, 0, sizeof(sreq));
 102        return lsctl(&sreq);
 103}
 104
 105/*
 106 * sf_buffer_available() - Check for an allocated sampling buffer
 107 */
 108static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
 109{
 110        return !!cpuhw->sfb.sdbt;
 111}
 112
 113/*
 114 * deallocate sampling facility buffer
 115 */
 116static void free_sampling_buffer(struct sf_buffer *sfb)
 117{
 118        unsigned long *sdbt, *curr;
 119
 120        if (!sfb->sdbt)
 121                return;
 122
 123        sdbt = sfb->sdbt;
 124        curr = sdbt;
 125
 126        /* Free the SDBT after all SDBs are processed... */
 127        while (1) {
 128                if (!*curr || !sdbt)
 129                        break;
 130
 131                /* Process table-link entries */
 132                if (is_link_entry(curr)) {
 133                        curr = get_next_sdbt(curr);
 134                        if (sdbt)
 135                                free_page((unsigned long) sdbt);
 136
 137                        /* If the origin is reached, sampling buffer is freed */
 138                        if (curr == sfb->sdbt)
 139                                break;
 140                        else
 141                                sdbt = curr;
 142                } else {
 143                        /* Process SDB pointer */
 144                        if (*curr) {
 145                                free_page(*curr);
 146                                curr++;
 147                        }
 148                }
 149        }
 150
 151        debug_sprintf_event(sfdbg, 5,
 152                            "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt);
 153        memset(sfb, 0, sizeof(*sfb));
 154}
 155
 156static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
 157{
 158        unsigned long sdb, *trailer;
 159
 160        /* Allocate and initialize sample-data-block */
 161        sdb = get_zeroed_page(gfp_flags);
 162        if (!sdb)
 163                return -ENOMEM;
 164        trailer = trailer_entry_ptr(sdb);
 165        *trailer = SDB_TE_ALERT_REQ_MASK;
 166
 167        /* Link SDB into the sample-data-block-table */
 168        *sdbt = sdb;
 169
 170        return 0;
 171}
 172
 173/*
 174 * realloc_sampling_buffer() - extend sampler memory
 175 *
 176 * Allocates new sample-data-blocks and adds them to the specified sampling
 177 * buffer memory.
 178 *
 179 * Important: This modifies the sampling buffer and must be called when the
 180 *            sampling facility is disabled.
 181 *
 182 * Returns zero on success, non-zero otherwise.
 183 */
 184static int realloc_sampling_buffer(struct sf_buffer *sfb,
 185                                   unsigned long num_sdb, gfp_t gfp_flags)
 186{
 187        int i, rc;
 188        unsigned long *new, *tail;
 189
 190        if (!sfb->sdbt || !sfb->tail)
 191                return -EINVAL;
 192
 193        if (!is_link_entry(sfb->tail))
 194                return -EINVAL;
 195
 196        /* Append to the existing sampling buffer, overwriting the table-link
 197         * register.
 198         * The tail variables always points to the "tail" (last and table-link)
 199         * entry in an SDB-table.
 200         */
 201        tail = sfb->tail;
 202
 203        /* Do a sanity check whether the table-link entry points to
 204         * the sampling buffer origin.
 205         */
 206        if (sfb->sdbt != get_next_sdbt(tail)) {
 207                debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: "
 208                                    "sampling buffer is not linked: origin=%p"
 209                                    "tail=%p\n",
 210                                    (void *) sfb->sdbt, (void *) tail);
 211                return -EINVAL;
 212        }
 213
 214        /* Allocate remaining SDBs */
 215        rc = 0;
 216        for (i = 0; i < num_sdb; i++) {
 217                /* Allocate a new SDB-table if it is full. */
 218                if (require_table_link(tail)) {
 219                        new = (unsigned long *) get_zeroed_page(gfp_flags);
 220                        if (!new) {
 221                                rc = -ENOMEM;
 222                                break;
 223                        }
 224                        sfb->num_sdbt++;
 225                        /* Link current page to tail of chain */
 226                        *tail = (unsigned long)(void *) new + 1;
 227                        tail = new;
 228                }
 229
 230                /* Allocate a new sample-data-block.
 231                 * If there is not enough memory, stop the realloc process
 232                 * and simply use what was allocated.  If this is a temporary
 233                 * issue, a new realloc call (if required) might succeed.
 234                 */
 235                rc = alloc_sample_data_block(tail, gfp_flags);
 236                if (rc)
 237                        break;
 238                sfb->num_sdb++;
 239                tail++;
 240        }
 241
 242        /* Link sampling buffer to its origin */
 243        *tail = (unsigned long) sfb->sdbt + 1;
 244        sfb->tail = tail;
 245
 246        debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer"
 247                            " settings: sdbt=%lu sdb=%lu\n",
 248                            sfb->num_sdbt, sfb->num_sdb);
 249        return rc;
 250}
 251
 252/*
 253 * allocate_sampling_buffer() - allocate sampler memory
 254 *
 255 * Allocates and initializes a sampling buffer structure using the
 256 * specified number of sample-data-blocks (SDB).  For each allocation,
 257 * a 4K page is used.  The number of sample-data-block-tables (SDBT)
 258 * are calculated from SDBs.
 259 * Also set the ALERT_REQ mask in each SDBs trailer.
 260 *
 261 * Returns zero on success, non-zero otherwise.
 262 */
 263static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
 264{
 265        int rc;
 266
 267        if (sfb->sdbt)
 268                return -EINVAL;
 269
 270        /* Allocate the sample-data-block-table origin */
 271        sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
 272        if (!sfb->sdbt)
 273                return -ENOMEM;
 274        sfb->num_sdb = 0;
 275        sfb->num_sdbt = 1;
 276
 277        /* Link the table origin to point to itself to prepare for
 278         * realloc_sampling_buffer() invocation.
 279         */
 280        sfb->tail = sfb->sdbt;
 281        *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
 282
 283        /* Allocate requested number of sample-data-blocks */
 284        rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
 285        if (rc) {
 286                free_sampling_buffer(sfb);
 287                debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: "
 288                        "realloc_sampling_buffer failed with rc=%i\n", rc);
 289        } else
 290                debug_sprintf_event(sfdbg, 4,
 291                        "alloc_sampling_buffer: tear=%p dear=%p\n",
 292                        sfb->sdbt, (void *) *sfb->sdbt);
 293        return rc;
 294}
 295
 296static void sfb_set_limits(unsigned long min, unsigned long max)
 297{
 298        struct hws_qsi_info_block si;
 299
 300        CPUM_SF_MIN_SDB = min;
 301        CPUM_SF_MAX_SDB = max;
 302
 303        memset(&si, 0, sizeof(si));
 304        if (!qsi(&si))
 305                CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
 306}
 307
 308static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
 309{
 310        return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
 311                                    : CPUM_SF_MAX_SDB;
 312}
 313
 314static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
 315                                        struct hw_perf_event *hwc)
 316{
 317        if (!sfb->sdbt)
 318                return SFB_ALLOC_REG(hwc);
 319        if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
 320                return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
 321        return 0;
 322}
 323
 324static int sfb_has_pending_allocs(struct sf_buffer *sfb,
 325                                   struct hw_perf_event *hwc)
 326{
 327        return sfb_pending_allocs(sfb, hwc) > 0;
 328}
 329
 330static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
 331{
 332        /* Limit the number of SDBs to not exceed the maximum */
 333        num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
 334        if (num)
 335                SFB_ALLOC_REG(hwc) += num;
 336}
 337
 338static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
 339{
 340        SFB_ALLOC_REG(hwc) = 0;
 341        sfb_account_allocs(num, hwc);
 342}
 343
 344static size_t event_sample_size(struct hw_perf_event *hwc)
 345{
 346        struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
 347        size_t sample_size;
 348
 349        /* The sample size depends on the sampling function: The basic-sampling
 350         * function must be always enabled, diagnostic-sampling function is
 351         * optional.
 352         */
 353        sample_size = sfr->bsdes;
 354        if (SAMPL_DIAG_MODE(hwc))
 355                sample_size += sfr->dsdes;
 356
 357        return sample_size;
 358}
 359
 360static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
 361{
 362        if (cpuhw->sfb.sdbt)
 363                free_sampling_buffer(&cpuhw->sfb);
 364}
 365
 366static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
 367{
 368        unsigned long n_sdb, freq, factor;
 369        size_t sfr_size, sample_size;
 370        struct sf_raw_sample *sfr;
 371
 372        /* Allocate raw sample buffer
 373         *
 374         *    The raw sample buffer is used to temporarily store sampling data
 375         *    entries for perf raw sample processing.  The buffer size mainly
 376         *    depends on the size of diagnostic-sampling data entries which is
 377         *    machine-specific.  The exact size calculation includes:
 378         *      1. The first 4 bytes of diagnostic-sampling data entries are
 379         *         already reflected in the sf_raw_sample structure.  Subtract
 380         *         these bytes.
 381         *      2. The perf raw sample data must be 8-byte aligned (u64) and
 382         *         perf's internal data size must be considered too.  So add
 383         *         an additional u32 for correct alignment and subtract before
 384         *         allocating the buffer.
 385         *      3. Store the raw sample buffer pointer in the perf event
 386         *         hardware structure.
 387         */
 388        sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) +
 389                         sizeof(u32), sizeof(u64));
 390        sfr_size -= sizeof(u32);
 391        sfr = kzalloc(sfr_size, GFP_KERNEL);
 392        if (!sfr)
 393                return -ENOMEM;
 394        sfr->size = sfr_size;
 395        sfr->bsdes = cpuhw->qsi.bsdes;
 396        sfr->dsdes = cpuhw->qsi.dsdes;
 397        RAWSAMPLE_REG(hwc) = (unsigned long) sfr;
 398
 399        /* Calculate sampling buffers using 4K pages
 400         *
 401         *    1. Determine the sample data size which depends on the used
 402         *       sampling functions, for example, basic-sampling or
 403         *       basic-sampling with diagnostic-sampling.
 404         *
 405         *    2. Use the sampling frequency as input.  The sampling buffer is
 406         *       designed for almost one second.  This can be adjusted through
 407         *       the "factor" variable.
 408         *       In any case, alloc_sampling_buffer() sets the Alert Request
 409         *       Control indicator to trigger a measurement-alert to harvest
 410         *       sample-data-blocks (sdb).
 411         *
 412         *    3. Compute the number of sample-data-blocks and ensure a minimum
 413         *       of CPUM_SF_MIN_SDB.  Also ensure the upper limit does not
 414         *       exceed a "calculated" maximum.  The symbolic maximum is
 415         *       designed for basic-sampling only and needs to be increased if
 416         *       diagnostic-sampling is active.
 417         *       See also the remarks for these symbolic constants.
 418         *
 419         *    4. Compute the number of sample-data-block-tables (SDBT) and
 420         *       ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
 421         *       to 511 SDBs).
 422         */
 423        sample_size = event_sample_size(hwc);
 424        freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
 425        factor = 1;
 426        n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
 427        if (n_sdb < CPUM_SF_MIN_SDB)
 428                n_sdb = CPUM_SF_MIN_SDB;
 429
 430        /* If there is already a sampling buffer allocated, it is very likely
 431         * that the sampling facility is enabled too.  If the event to be
 432         * initialized requires a greater sampling buffer, the allocation must
 433         * be postponed.  Changing the sampling buffer requires the sampling
 434         * facility to be in the disabled state.  So, account the number of
 435         * required SDBs and let cpumsf_pmu_enable() resize the buffer just
 436         * before the event is started.
 437         */
 438        sfb_init_allocs(n_sdb, hwc);
 439        if (sf_buffer_available(cpuhw))
 440                return 0;
 441
 442        debug_sprintf_event(sfdbg, 3,
 443                            "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu"
 444                            " sample_size=%lu cpuhw=%p\n",
 445                            SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
 446                            sample_size, cpuhw);
 447
 448        return alloc_sampling_buffer(&cpuhw->sfb,
 449                                     sfb_pending_allocs(&cpuhw->sfb, hwc));
 450}
 451
 452static unsigned long min_percent(unsigned int percent, unsigned long base,
 453                                 unsigned long min)
 454{
 455        return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
 456}
 457
 458static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
 459{
 460        /* Use a percentage-based approach to extend the sampling facility
 461         * buffer.  Accept up to 5% sample data loss.
 462         * Vary the extents between 1% to 5% of the current number of
 463         * sample-data-blocks.
 464         */
 465        if (ratio <= 5)
 466                return 0;
 467        if (ratio <= 25)
 468                return min_percent(1, base, 1);
 469        if (ratio <= 50)
 470                return min_percent(1, base, 1);
 471        if (ratio <= 75)
 472                return min_percent(2, base, 2);
 473        if (ratio <= 100)
 474                return min_percent(3, base, 3);
 475        if (ratio <= 250)
 476                return min_percent(4, base, 4);
 477
 478        return min_percent(5, base, 8);
 479}
 480
 481static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
 482                                  struct hw_perf_event *hwc)
 483{
 484        unsigned long ratio, num;
 485
 486        if (!OVERFLOW_REG(hwc))
 487                return;
 488
 489        /* The sample_overflow contains the average number of sample data
 490         * that has been lost because sample-data-blocks were full.
 491         *
 492         * Calculate the total number of sample data entries that has been
 493         * discarded.  Then calculate the ratio of lost samples to total samples
 494         * per second in percent.
 495         */
 496        ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
 497                             sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
 498
 499        /* Compute number of sample-data-blocks */
 500        num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
 501        if (num)
 502                sfb_account_allocs(num, hwc);
 503
 504        debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu"
 505                            " num=%lu\n", OVERFLOW_REG(hwc), ratio, num);
 506        OVERFLOW_REG(hwc) = 0;
 507}
 508
 509/* extend_sampling_buffer() - Extend sampling buffer
 510 * @sfb:        Sampling buffer structure (for local CPU)
 511 * @hwc:        Perf event hardware structure
 512 *
 513 * Use this function to extend the sampling buffer based on the overflow counter
 514 * and postponed allocation extents stored in the specified Perf event hardware.
 515 *
 516 * Important: This function disables the sampling facility in order to safely
 517 *            change the sampling buffer structure.  Do not call this function
 518 *            when the PMU is active.
 519 */
 520static void extend_sampling_buffer(struct sf_buffer *sfb,
 521                                   struct hw_perf_event *hwc)
 522{
 523        unsigned long num, num_old;
 524        int rc;
 525
 526        num = sfb_pending_allocs(sfb, hwc);
 527        if (!num)
 528                return;
 529        num_old = sfb->num_sdb;
 530
 531        /* Disable the sampling facility to reset any states and also
 532         * clear pending measurement alerts.
 533         */
 534        sf_disable();
 535
 536        /* Extend the sampling buffer.
 537         * This memory allocation typically happens in an atomic context when
 538         * called by perf.  Because this is a reallocation, it is fine if the
 539         * new SDB-request cannot be satisfied immediately.
 540         */
 541        rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
 542        if (rc)
 543                debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc "
 544                                    "failed with rc=%i\n", rc);
 545
 546        if (sfb_has_pending_allocs(sfb, hwc))
 547                debug_sprintf_event(sfdbg, 5, "sfb: extend: "
 548                                    "req=%lu alloc=%lu remaining=%lu\n",
 549                                    num, sfb->num_sdb - num_old,
 550                                    sfb_pending_allocs(sfb, hwc));
 551}
 552
 553
 554/* Number of perf events counting hardware events */
 555static atomic_t num_events;
 556/* Used to avoid races in calling reserve/release_cpumf_hardware */
 557static DEFINE_MUTEX(pmc_reserve_mutex);
 558
 559#define PMC_INIT      0
 560#define PMC_RELEASE   1
 561#define PMC_FAILURE   2
 562static void setup_pmc_cpu(void *flags)
 563{
 564        int err;
 565        struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
 566
 567        err = 0;
 568        switch (*((int *) flags)) {
 569        case PMC_INIT:
 570                memset(cpusf, 0, sizeof(*cpusf));
 571                err = qsi(&cpusf->qsi);
 572                if (err)
 573                        break;
 574                cpusf->flags |= PMU_F_RESERVED;
 575                err = sf_disable();
 576                if (err)
 577                        pr_err("Switching off the sampling facility failed "
 578                               "with rc=%i\n", err);
 579                debug_sprintf_event(sfdbg, 5,
 580                                    "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
 581                break;
 582        case PMC_RELEASE:
 583                cpusf->flags &= ~PMU_F_RESERVED;
 584                err = sf_disable();
 585                if (err) {
 586                        pr_err("Switching off the sampling facility failed "
 587                               "with rc=%i\n", err);
 588                } else
 589                        deallocate_buffers(cpusf);
 590                debug_sprintf_event(sfdbg, 5,
 591                                    "setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
 592                break;
 593        }
 594        if (err)
 595                *((int *) flags) |= PMC_FAILURE;
 596}
 597
 598static void release_pmc_hardware(void)
 599{
 600        int flags = PMC_RELEASE;
 601
 602        irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 603        on_each_cpu(setup_pmc_cpu, &flags, 1);
 604        perf_release_sampling();
 605}
 606
 607static int reserve_pmc_hardware(void)
 608{
 609        int flags = PMC_INIT;
 610        int err;
 611
 612        err = perf_reserve_sampling();
 613        if (err)
 614                return err;
 615        on_each_cpu(setup_pmc_cpu, &flags, 1);
 616        if (flags & PMC_FAILURE) {
 617                release_pmc_hardware();
 618                return -ENODEV;
 619        }
 620        irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 621
 622        return 0;
 623}
 624
 625static void hw_perf_event_destroy(struct perf_event *event)
 626{
 627        /* Free raw sample buffer */
 628        if (RAWSAMPLE_REG(&event->hw))
 629                kfree((void *) RAWSAMPLE_REG(&event->hw));
 630
 631        /* Release PMC if this is the last perf event */
 632        if (!atomic_add_unless(&num_events, -1, 1)) {
 633                mutex_lock(&pmc_reserve_mutex);
 634                if (atomic_dec_return(&num_events) == 0)
 635                        release_pmc_hardware();
 636                mutex_unlock(&pmc_reserve_mutex);
 637        }
 638}
 639
 640static void hw_init_period(struct hw_perf_event *hwc, u64 period)
 641{
 642        hwc->sample_period = period;
 643        hwc->last_period = hwc->sample_period;
 644        local64_set(&hwc->period_left, hwc->sample_period);
 645}
 646
 647static void hw_reset_registers(struct hw_perf_event *hwc,
 648                               unsigned long *sdbt_origin)
 649{
 650        struct sf_raw_sample *sfr;
 651
 652        /* (Re)set to first sample-data-block-table */
 653        TEAR_REG(hwc) = (unsigned long) sdbt_origin;
 654
 655        /* (Re)set raw sampling buffer register */
 656        sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
 657        memset(&sfr->basic, 0, sizeof(sfr->basic));
 658        memset(&sfr->diag, 0, sfr->dsdes);
 659}
 660
 661static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
 662                                   unsigned long rate)
 663{
 664        return clamp_t(unsigned long, rate,
 665                       si->min_sampl_rate, si->max_sampl_rate);
 666}
 667
 668static int __hw_perf_event_init(struct perf_event *event)
 669{
 670        struct cpu_hw_sf *cpuhw;
 671        struct hws_qsi_info_block si;
 672        struct perf_event_attr *attr = &event->attr;
 673        struct hw_perf_event *hwc = &event->hw;
 674        unsigned long rate;
 675        int cpu, err;
 676
 677        /* Reserve CPU-measurement sampling facility */
 678        err = 0;
 679        if (!atomic_inc_not_zero(&num_events)) {
 680                mutex_lock(&pmc_reserve_mutex);
 681                if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
 682                        err = -EBUSY;
 683                else
 684                        atomic_inc(&num_events);
 685                mutex_unlock(&pmc_reserve_mutex);
 686        }
 687        event->destroy = hw_perf_event_destroy;
 688
 689        if (err)
 690                goto out;
 691
 692        /* Access per-CPU sampling information (query sampling info) */
 693        /*
 694         * The event->cpu value can be -1 to count on every CPU, for example,
 695         * when attaching to a task.  If this is specified, use the query
 696         * sampling info from the current CPU, otherwise use event->cpu to
 697         * retrieve the per-CPU information.
 698         * Later, cpuhw indicates whether to allocate sampling buffers for a
 699         * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
 700         */
 701        memset(&si, 0, sizeof(si));
 702        cpuhw = NULL;
 703        if (event->cpu == -1)
 704                qsi(&si);
 705        else {
 706                /* Event is pinned to a particular CPU, retrieve the per-CPU
 707                 * sampling structure for accessing the CPU-specific QSI.
 708                 */
 709                cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
 710                si = cpuhw->qsi;
 711        }
 712
 713        /* Check sampling facility authorization and, if not authorized,
 714         * fall back to other PMUs.  It is safe to check any CPU because
 715         * the authorization is identical for all configured CPUs.
 716         */
 717        if (!si.as) {
 718                err = -ENOENT;
 719                goto out;
 720        }
 721
 722        /* Always enable basic sampling */
 723        SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
 724
 725        /* Check if diagnostic sampling is requested.  Deny if the required
 726         * sampling authorization is missing.
 727         */
 728        if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
 729                if (!si.ad) {
 730                        err = -EPERM;
 731                        goto out;
 732                }
 733                SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
 734        }
 735
 736        /* Check and set other sampling flags */
 737        if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
 738                SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
 739
 740        /* The sampling information (si) contains information about the
 741         * min/max sampling intervals and the CPU speed.  So calculate the
 742         * correct sampling interval and avoid the whole period adjust
 743         * feedback loop.
 744         */
 745        rate = 0;
 746        if (attr->freq) {
 747                rate = freq_to_sample_rate(&si, attr->sample_freq);
 748                rate = hw_limit_rate(&si, rate);
 749                attr->freq = 0;
 750                attr->sample_period = rate;
 751        } else {
 752                /* The min/max sampling rates specifies the valid range
 753                 * of sample periods.  If the specified sample period is
 754                 * out of range, limit the period to the range boundary.
 755                 */
 756                rate = hw_limit_rate(&si, hwc->sample_period);
 757
 758                /* The perf core maintains a maximum sample rate that is
 759                 * configurable through the sysctl interface.  Ensure the
 760                 * sampling rate does not exceed this value.  This also helps
 761                 * to avoid throttling when pushing samples with
 762                 * perf_event_overflow().
 763                 */
 764                if (sample_rate_to_freq(&si, rate) >
 765                      sysctl_perf_event_sample_rate) {
 766                        err = -EINVAL;
 767                        debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
 768                        goto out;
 769                }
 770        }
 771        SAMPL_RATE(hwc) = rate;
 772        hw_init_period(hwc, SAMPL_RATE(hwc));
 773
 774        /* Initialize sample data overflow accounting */
 775        hwc->extra_reg.reg = REG_OVERFLOW;
 776        OVERFLOW_REG(hwc) = 0;
 777
 778        /* Allocate the per-CPU sampling buffer using the CPU information
 779         * from the event.  If the event is not pinned to a particular
 780         * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
 781         * buffers for each online CPU.
 782         */
 783        if (cpuhw)
 784                /* Event is pinned to a particular CPU */
 785                err = allocate_buffers(cpuhw, hwc);
 786        else {
 787                /* Event is not pinned, allocate sampling buffer on
 788                 * each online CPU
 789                 */
 790                for_each_online_cpu(cpu) {
 791                        cpuhw = &per_cpu(cpu_hw_sf, cpu);
 792                        err = allocate_buffers(cpuhw, hwc);
 793                        if (err)
 794                                break;
 795                }
 796        }
 797out:
 798        return err;
 799}
 800
 801static int cpumsf_pmu_event_init(struct perf_event *event)
 802{
 803        int err;
 804
 805        /* No support for taken branch sampling */
 806        if (has_branch_stack(event))
 807                return -EOPNOTSUPP;
 808
 809        switch (event->attr.type) {
 810        case PERF_TYPE_RAW:
 811                if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
 812                    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
 813                        return -ENOENT;
 814                break;
 815        case PERF_TYPE_HARDWARE:
 816                /* Support sampling of CPU cycles in addition to the
 817                 * counter facility.  However, the counter facility
 818                 * is more precise and, hence, restrict this PMU to
 819                 * sampling events only.
 820                 */
 821                if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
 822                        return -ENOENT;
 823                if (!is_sampling_event(event))
 824                        return -ENOENT;
 825                break;
 826        default:
 827                return -ENOENT;
 828        }
 829
 830        /* Check online status of the CPU to which the event is pinned */
 831        if (event->cpu >= nr_cpumask_bits ||
 832            (event->cpu >= 0 && !cpu_online(event->cpu)))
 833                return -ENODEV;
 834
 835        /* Force reset of idle/hv excludes regardless of what the
 836         * user requested.
 837         */
 838        if (event->attr.exclude_hv)
 839                event->attr.exclude_hv = 0;
 840        if (event->attr.exclude_idle)
 841                event->attr.exclude_idle = 0;
 842
 843        err = __hw_perf_event_init(event);
 844        if (unlikely(err))
 845                if (event->destroy)
 846                        event->destroy(event);
 847        return err;
 848}
 849
 850static void cpumsf_pmu_enable(struct pmu *pmu)
 851{
 852        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
 853        struct hw_perf_event *hwc;
 854        int err;
 855
 856        if (cpuhw->flags & PMU_F_ENABLED)
 857                return;
 858
 859        if (cpuhw->flags & PMU_F_ERR_MASK)
 860                return;
 861
 862        /* Check whether to extent the sampling buffer.
 863         *
 864         * Two conditions trigger an increase of the sampling buffer for a
 865         * perf event:
 866         *    1. Postponed buffer allocations from the event initialization.
 867         *    2. Sampling overflows that contribute to pending allocations.
 868         *
 869         * Note that the extend_sampling_buffer() function disables the sampling
 870         * facility, but it can be fully re-enabled using sampling controls that
 871         * have been saved in cpumsf_pmu_disable().
 872         */
 873        if (cpuhw->event) {
 874                hwc = &cpuhw->event->hw;
 875                /* Account number of overflow-designated buffer extents */
 876                sfb_account_overflows(cpuhw, hwc);
 877                if (sfb_has_pending_allocs(&cpuhw->sfb, hwc))
 878                        extend_sampling_buffer(&cpuhw->sfb, hwc);
 879        }
 880
 881        /* (Re)enable the PMU and sampling facility */
 882        cpuhw->flags |= PMU_F_ENABLED;
 883        barrier();
 884
 885        err = lsctl(&cpuhw->lsctl);
 886        if (err) {
 887                cpuhw->flags &= ~PMU_F_ENABLED;
 888                pr_err("Loading sampling controls failed: op=%i err=%i\n",
 889                        1, err);
 890                return;
 891        }
 892
 893        debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i "
 894                            "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs,
 895                            cpuhw->lsctl.ed, cpuhw->lsctl.cd,
 896                            (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
 897}
 898
 899static void cpumsf_pmu_disable(struct pmu *pmu)
 900{
 901        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
 902        struct hws_lsctl_request_block inactive;
 903        struct hws_qsi_info_block si;
 904        int err;
 905
 906        if (!(cpuhw->flags & PMU_F_ENABLED))
 907                return;
 908
 909        if (cpuhw->flags & PMU_F_ERR_MASK)
 910                return;
 911
 912        /* Switch off sampling activation control */
 913        inactive = cpuhw->lsctl;
 914        inactive.cs = 0;
 915        inactive.cd = 0;
 916
 917        err = lsctl(&inactive);
 918        if (err) {
 919                pr_err("Loading sampling controls failed: op=%i err=%i\n",
 920                        2, err);
 921                return;
 922        }
 923
 924        /* Save state of TEAR and DEAR register contents */
 925        if (!qsi(&si)) {
 926                /* TEAR/DEAR values are valid only if the sampling facility is
 927                 * enabled.  Note that cpumsf_pmu_disable() might be called even
 928                 * for a disabled sampling facility because cpumsf_pmu_enable()
 929                 * controls the enable/disable state.
 930                 */
 931                if (si.es) {
 932                        cpuhw->lsctl.tear = si.tear;
 933                        cpuhw->lsctl.dear = si.dear;
 934                }
 935        } else
 936                debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
 937                                    "qsi() failed with err=%i\n", err);
 938
 939        cpuhw->flags &= ~PMU_F_ENABLED;
 940}
 941
 942/* perf_exclude_event() - Filter event
 943 * @event:      The perf event
 944 * @regs:       pt_regs structure
 945 * @sde_regs:   Sample-data-entry (sde) regs structure
 946 *
 947 * Filter perf events according to their exclude specification.
 948 *
 949 * Return non-zero if the event shall be excluded.
 950 */
 951static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
 952                              struct perf_sf_sde_regs *sde_regs)
 953{
 954        if (event->attr.exclude_user && user_mode(regs))
 955                return 1;
 956        if (event->attr.exclude_kernel && !user_mode(regs))
 957                return 1;
 958        if (event->attr.exclude_guest && sde_regs->in_guest)
 959                return 1;
 960        if (event->attr.exclude_host && !sde_regs->in_guest)
 961                return 1;
 962        return 0;
 963}
 964
 965/* perf_push_sample() - Push samples to perf
 966 * @event:      The perf event
 967 * @sample:     Hardware sample data
 968 *
 969 * Use the hardware sample data to create perf event sample.  The sample
 970 * is the pushed to the event subsystem and the function checks for
 971 * possible event overflows.  If an event overflow occurs, the PMU is
 972 * stopped.
 973 *
 974 * Return non-zero if an event overflow occurred.
 975 */
 976static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr)
 977{
 978        int overflow;
 979        struct pt_regs regs;
 980        struct perf_sf_sde_regs *sde_regs;
 981        struct perf_sample_data data;
 982        struct perf_raw_record raw;
 983
 984        /* Setup perf sample */
 985        perf_sample_data_init(&data, 0, event->hw.last_period);
 986        raw.size = sfr->size;
 987        raw.data = sfr;
 988        data.raw = &raw;
 989
 990        /* Setup pt_regs to look like an CPU-measurement external interrupt
 991         * using the Program Request Alert code.  The regs.int_parm_long
 992         * field which is unused contains additional sample-data-entry related
 993         * indicators.
 994         */
 995        memset(&regs, 0, sizeof(regs));
 996        regs.int_code = 0x1407;
 997        regs.int_parm = CPU_MF_INT_SF_PRA;
 998        sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
 999
1000        regs.psw.addr = sfr->basic.ia;
1001        if (sfr->basic.T)
1002                regs.psw.mask |= PSW_MASK_DAT;
1003        if (sfr->basic.W)
1004                regs.psw.mask |= PSW_MASK_WAIT;
1005        if (sfr->basic.P)
1006                regs.psw.mask |= PSW_MASK_PSTATE;
1007        switch (sfr->basic.AS) {
1008        case 0x0:
1009                regs.psw.mask |= PSW_ASC_PRIMARY;
1010                break;
1011        case 0x1:
1012                regs.psw.mask |= PSW_ASC_ACCREG;
1013                break;
1014        case 0x2:
1015                regs.psw.mask |= PSW_ASC_SECONDARY;
1016                break;
1017        case 0x3:
1018                regs.psw.mask |= PSW_ASC_HOME;
1019                break;
1020        }
1021
1022        /*
1023         * A non-zero guest program parameter indicates a guest
1024         * sample.
1025         * Note that some early samples or samples from guests without
1026         * lpp usage would be misaccounted to the host. We use the asn
1027         * value as a heuristic to detect most of these guest samples.
1028         * If the value differs from the host hpp value, we assume
1029         * it to be a KVM guest.
1030         */
1031        if (sfr->basic.gpp || sfr->basic.prim_asn != (u16) sfr->basic.hpp)
1032                sde_regs->in_guest = 1;
1033
1034        overflow = 0;
1035        if (perf_exclude_event(event, &regs, sde_regs))
1036                goto out;
1037        if (perf_event_overflow(event, &data, &regs)) {
1038                overflow = 1;
1039                event->pmu->stop(event, 0);
1040        }
1041        perf_event_update_userpage(event);
1042out:
1043        return overflow;
1044}
1045
1046static void perf_event_count_update(struct perf_event *event, u64 count)
1047{
1048        local64_add(count, &event->count);
1049}
1050
1051static int sample_format_is_valid(struct hws_combined_entry *sample,
1052                                   unsigned int flags)
1053{
1054        if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1055                /* Only basic-sampling data entries with data-entry-format
1056                 * version of 0x0001 can be processed.
1057                 */
1058                if (sample->basic.def != 0x0001)
1059                        return 0;
1060        if (flags & PERF_CPUM_SF_DIAG_MODE)
1061                /* The data-entry-format number of diagnostic-sampling data
1062                 * entries can vary.  Because diagnostic data is just passed
1063                 * through, do only a sanity check on the DEF.
1064                 */
1065                if (sample->diag.def < 0x8001)
1066                        return 0;
1067        return 1;
1068}
1069
1070static int sample_is_consistent(struct hws_combined_entry *sample,
1071                                unsigned long flags)
1072{
1073        /* This check applies only to basic-sampling data entries of potentially
1074         * combined-sampling data entries.  Invalid entries cannot be processed
1075         * by the PMU and, thus, do not deliver an associated
1076         * diagnostic-sampling data entry.
1077         */
1078        if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE)))
1079                return 0;
1080        /*
1081         * Samples are skipped, if they are invalid or for which the
1082         * instruction address is not predictable, i.e., the wait-state bit is
1083         * set.
1084         */
1085        if (sample->basic.I || sample->basic.W)
1086                return 0;
1087        return 1;
1088}
1089
1090static void reset_sample_slot(struct hws_combined_entry *sample,
1091                              unsigned long flags)
1092{
1093        if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1094                sample->basic.def = 0;
1095        if (flags & PERF_CPUM_SF_DIAG_MODE)
1096                sample->diag.def = 0;
1097}
1098
1099static void sfr_store_sample(struct sf_raw_sample *sfr,
1100                             struct hws_combined_entry *sample)
1101{
1102        if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE))
1103                sfr->basic = sample->basic;
1104        if (sfr->format & PERF_CPUM_SF_DIAG_MODE)
1105                memcpy(&sfr->diag, &sample->diag, sfr->dsdes);
1106}
1107
1108static void debug_sample_entry(struct hws_combined_entry *sample,
1109                               struct hws_trailer_entry *te,
1110                               unsigned long flags)
1111{
1112        debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown "
1113                            "sampling data entry: te->f=%i basic.def=%04x (%p)"
1114                            " diag.def=%04x (%p)\n", te->f,
1115                            sample->basic.def, &sample->basic,
1116                            (flags & PERF_CPUM_SF_DIAG_MODE)
1117                                        ? sample->diag.def : 0xFFFF,
1118                            (flags & PERF_CPUM_SF_DIAG_MODE)
1119                                        ?  &sample->diag : NULL);
1120}
1121
1122/* hw_collect_samples() - Walk through a sample-data-block and collect samples
1123 * @event:      The perf event
1124 * @sdbt:       Sample-data-block table
1125 * @overflow:   Event overflow counter
1126 *
1127 * Walks through a sample-data-block and collects sampling data entries that are
1128 * then pushed to the perf event subsystem.  Depending on the sampling function,
1129 * there can be either basic-sampling or combined-sampling data entries.  A
1130 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1131 * data entry.  The sampling function is determined by the flags in the perf
1132 * event hardware structure.  The function always works with a combined-sampling
1133 * data entry but ignores the the diagnostic portion if it is not available.
1134 *
1135 * Note that the implementation focuses on basic-sampling data entries and, if
1136 * such an entry is not valid, the entire combined-sampling data entry is
1137 * ignored.
1138 *
1139 * The overflow variables counts the number of samples that has been discarded
1140 * due to a perf event overflow.
1141 */
1142static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1143                               unsigned long long *overflow)
1144{
1145        unsigned long flags = SAMPL_FLAGS(&event->hw);
1146        struct hws_combined_entry *sample;
1147        struct hws_trailer_entry *te;
1148        struct sf_raw_sample *sfr;
1149        size_t sample_size;
1150
1151        /* Prepare and initialize raw sample data */
1152        sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw);
1153        sfr->format = flags & PERF_CPUM_SF_MODE_MASK;
1154
1155        sample_size = event_sample_size(&event->hw);
1156        te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1157        sample = (struct hws_combined_entry *) *sdbt;
1158        while ((unsigned long *) sample < (unsigned long *) te) {
1159                /* Check for an empty sample */
1160                if (!sample->basic.def)
1161                        break;
1162
1163                /* Update perf event period */
1164                perf_event_count_update(event, SAMPL_RATE(&event->hw));
1165
1166                /* Check sampling data entry */
1167                if (sample_format_is_valid(sample, flags)) {
1168                        /* If an event overflow occurred, the PMU is stopped to
1169                         * throttle event delivery.  Remaining sample data is
1170                         * discarded.
1171                         */
1172                        if (!*overflow) {
1173                                if (sample_is_consistent(sample, flags)) {
1174                                        /* Deliver sample data to perf */
1175                                        sfr_store_sample(sfr, sample);
1176                                        *overflow = perf_push_sample(event, sfr);
1177                                }
1178                        } else
1179                                /* Count discarded samples */
1180                                *overflow += 1;
1181                } else {
1182                        debug_sample_entry(sample, te, flags);
1183                        /* Sample slot is not yet written or other record.
1184                         *
1185                         * This condition can occur if the buffer was reused
1186                         * from a combined basic- and diagnostic-sampling.
1187                         * If only basic-sampling is then active, entries are
1188                         * written into the larger diagnostic entries.
1189                         * This is typically the case for sample-data-blocks
1190                         * that are not full.  Stop processing if the first
1191                         * invalid format was detected.
1192                         */
1193                        if (!te->f)
1194                                break;
1195                }
1196
1197                /* Reset sample slot and advance to next sample */
1198                reset_sample_slot(sample, flags);
1199                sample += sample_size;
1200        }
1201}
1202
1203/* hw_perf_event_update() - Process sampling buffer
1204 * @event:      The perf event
1205 * @flush_all:  Flag to also flush partially filled sample-data-blocks
1206 *
1207 * Processes the sampling buffer and create perf event samples.
1208 * The sampling buffer position are retrieved and saved in the TEAR_REG
1209 * register of the specified perf event.
1210 *
1211 * Only full sample-data-blocks are processed.  Specify the flash_all flag
1212 * to also walk through partially filled sample-data-blocks.  It is ignored
1213 * if PERF_CPUM_SF_FULL_BLOCKS is set.  The PERF_CPUM_SF_FULL_BLOCKS flag
1214 * enforces the processing of full sample-data-blocks only (trailer entries
1215 * with the block-full-indicator bit set).
1216 */
1217static void hw_perf_event_update(struct perf_event *event, int flush_all)
1218{
1219        struct hw_perf_event *hwc = &event->hw;
1220        struct hws_trailer_entry *te;
1221        unsigned long *sdbt;
1222        unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1223        int done;
1224
1225        if (flush_all && SDB_FULL_BLOCKS(hwc))
1226                flush_all = 0;
1227
1228        sdbt = (unsigned long *) TEAR_REG(hwc);
1229        done = event_overflow = sampl_overflow = num_sdb = 0;
1230        while (!done) {
1231                /* Get the trailer entry of the sample-data-block */
1232                te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1233
1234                /* Leave loop if no more work to do (block full indicator) */
1235                if (!te->f) {
1236                        done = 1;
1237                        if (!flush_all)
1238                                break;
1239                }
1240
1241                /* Check the sample overflow count */
1242                if (te->overflow)
1243                        /* Account sample overflows and, if a particular limit
1244                         * is reached, extend the sampling buffer.
1245                         * For details, see sfb_account_overflows().
1246                         */
1247                        sampl_overflow += te->overflow;
1248
1249                /* Timestamps are valid for full sample-data-blocks only */
1250                debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
1251                                    "overflow=%llu timestamp=0x%llx\n",
1252                                    sdbt, te->overflow,
1253                                    (te->f) ? trailer_timestamp(te) : 0ULL);
1254
1255                /* Collect all samples from a single sample-data-block and
1256                 * flag if an (perf) event overflow happened.  If so, the PMU
1257                 * is stopped and remaining samples will be discarded.
1258                 */
1259                hw_collect_samples(event, sdbt, &event_overflow);
1260                num_sdb++;
1261
1262                /* Reset trailer (using compare-double-and-swap) */
1263                do {
1264                        te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1265                        te_flags |= SDB_TE_ALERT_REQ_MASK;
1266                } while (!cmpxchg_double(&te->flags, &te->overflow,
1267                                         te->flags, te->overflow,
1268                                         te_flags, 0ULL));
1269
1270                /* Advance to next sample-data-block */
1271                sdbt++;
1272                if (is_link_entry(sdbt))
1273                        sdbt = get_next_sdbt(sdbt);
1274
1275                /* Update event hardware registers */
1276                TEAR_REG(hwc) = (unsigned long) sdbt;
1277
1278                /* Stop processing sample-data if all samples of the current
1279                 * sample-data-block were flushed even if it was not full.
1280                 */
1281                if (flush_all && done)
1282                        break;
1283
1284                /* If an event overflow happened, discard samples by
1285                 * processing any remaining sample-data-blocks.
1286                 */
1287                if (event_overflow)
1288                        flush_all = 1;
1289        }
1290
1291        /* Account sample overflows in the event hardware structure */
1292        if (sampl_overflow)
1293                OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1294                                                 sampl_overflow, 1 + num_sdb);
1295        if (sampl_overflow || event_overflow)
1296                debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
1297                                    "overflow stats: sample=%llu event=%llu\n",
1298                                    sampl_overflow, event_overflow);
1299}
1300
1301static void cpumsf_pmu_read(struct perf_event *event)
1302{
1303        /* Nothing to do ... updates are interrupt-driven */
1304}
1305
1306/* Activate sampling control.
1307 * Next call of pmu_enable() starts sampling.
1308 */
1309static void cpumsf_pmu_start(struct perf_event *event, int flags)
1310{
1311        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1312
1313        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1314                return;
1315
1316        if (flags & PERF_EF_RELOAD)
1317                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1318
1319        perf_pmu_disable(event->pmu);
1320        event->hw.state = 0;
1321        cpuhw->lsctl.cs = 1;
1322        if (SAMPL_DIAG_MODE(&event->hw))
1323                cpuhw->lsctl.cd = 1;
1324        perf_pmu_enable(event->pmu);
1325}
1326
1327/* Deactivate sampling control.
1328 * Next call of pmu_enable() stops sampling.
1329 */
1330static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1331{
1332        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1333
1334        if (event->hw.state & PERF_HES_STOPPED)
1335                return;
1336
1337        perf_pmu_disable(event->pmu);
1338        cpuhw->lsctl.cs = 0;
1339        cpuhw->lsctl.cd = 0;
1340        event->hw.state |= PERF_HES_STOPPED;
1341
1342        if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1343                hw_perf_event_update(event, 1);
1344                event->hw.state |= PERF_HES_UPTODATE;
1345        }
1346        perf_pmu_enable(event->pmu);
1347}
1348
1349static int cpumsf_pmu_add(struct perf_event *event, int flags)
1350{
1351        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1352        int err;
1353
1354        if (cpuhw->flags & PMU_F_IN_USE)
1355                return -EAGAIN;
1356
1357        if (!cpuhw->sfb.sdbt)
1358                return -EINVAL;
1359
1360        err = 0;
1361        perf_pmu_disable(event->pmu);
1362
1363        event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1364
1365        /* Set up sampling controls.  Always program the sampling register
1366         * using the SDB-table start.  Reset TEAR_REG event hardware register
1367         * that is used by hw_perf_event_update() to store the sampling buffer
1368         * position after samples have been flushed.
1369         */
1370        cpuhw->lsctl.s = 0;
1371        cpuhw->lsctl.h = 1;
1372        cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1373        cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1374        cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1375        hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
1376
1377        /* Ensure sampling functions are in the disabled state.  If disabled,
1378         * switch on sampling enable control. */
1379        if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1380                err = -EAGAIN;
1381                goto out;
1382        }
1383        cpuhw->lsctl.es = 1;
1384        if (SAMPL_DIAG_MODE(&event->hw))
1385                cpuhw->lsctl.ed = 1;
1386
1387        /* Set in_use flag and store event */
1388        cpuhw->event = event;
1389        cpuhw->flags |= PMU_F_IN_USE;
1390
1391        if (flags & PERF_EF_START)
1392                cpumsf_pmu_start(event, PERF_EF_RELOAD);
1393out:
1394        perf_event_update_userpage(event);
1395        perf_pmu_enable(event->pmu);
1396        return err;
1397}
1398
1399static void cpumsf_pmu_del(struct perf_event *event, int flags)
1400{
1401        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1402
1403        perf_pmu_disable(event->pmu);
1404        cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1405
1406        cpuhw->lsctl.es = 0;
1407        cpuhw->lsctl.ed = 0;
1408        cpuhw->flags &= ~PMU_F_IN_USE;
1409        cpuhw->event = NULL;
1410
1411        perf_event_update_userpage(event);
1412        perf_pmu_enable(event->pmu);
1413}
1414
1415CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1416CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1417
1418static struct attribute *cpumsf_pmu_events_attr[] = {
1419        CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
1420        NULL,
1421        NULL,
1422};
1423
1424PMU_FORMAT_ATTR(event, "config:0-63");
1425
1426static struct attribute *cpumsf_pmu_format_attr[] = {
1427        &format_attr_event.attr,
1428        NULL,
1429};
1430
1431static struct attribute_group cpumsf_pmu_events_group = {
1432        .name = "events",
1433        .attrs = cpumsf_pmu_events_attr,
1434};
1435static struct attribute_group cpumsf_pmu_format_group = {
1436        .name = "format",
1437        .attrs = cpumsf_pmu_format_attr,
1438};
1439static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1440        &cpumsf_pmu_events_group,
1441        &cpumsf_pmu_format_group,
1442        NULL,
1443};
1444
1445static struct pmu cpumf_sampling = {
1446        .pmu_enable   = cpumsf_pmu_enable,
1447        .pmu_disable  = cpumsf_pmu_disable,
1448
1449        .event_init   = cpumsf_pmu_event_init,
1450        .add          = cpumsf_pmu_add,
1451        .del          = cpumsf_pmu_del,
1452
1453        .start        = cpumsf_pmu_start,
1454        .stop         = cpumsf_pmu_stop,
1455        .read         = cpumsf_pmu_read,
1456
1457        .attr_groups  = cpumsf_pmu_attr_groups,
1458};
1459
1460static void cpumf_measurement_alert(struct ext_code ext_code,
1461                                    unsigned int alert, unsigned long unused)
1462{
1463        struct cpu_hw_sf *cpuhw;
1464
1465        if (!(alert & CPU_MF_INT_SF_MASK))
1466                return;
1467        inc_irq_stat(IRQEXT_CMS);
1468        cpuhw = this_cpu_ptr(&cpu_hw_sf);
1469
1470        /* Measurement alerts are shared and might happen when the PMU
1471         * is not reserved.  Ignore these alerts in this case. */
1472        if (!(cpuhw->flags & PMU_F_RESERVED))
1473                return;
1474
1475        /* The processing below must take care of multiple alert events that
1476         * might be indicated concurrently. */
1477
1478        /* Program alert request */
1479        if (alert & CPU_MF_INT_SF_PRA) {
1480                if (cpuhw->flags & PMU_F_IN_USE)
1481                        hw_perf_event_update(cpuhw->event, 0);
1482                else
1483                        WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1484        }
1485
1486        /* Report measurement alerts only for non-PRA codes */
1487        if (alert != CPU_MF_INT_SF_PRA)
1488                debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
1489
1490        /* Sampling authorization change request */
1491        if (alert & CPU_MF_INT_SF_SACA)
1492                qsi(&cpuhw->qsi);
1493
1494        /* Loss of sample data due to high-priority machine activities */
1495        if (alert & CPU_MF_INT_SF_LSDA) {
1496                pr_err("Sample data was lost\n");
1497                cpuhw->flags |= PMU_F_ERR_LSDA;
1498                sf_disable();
1499        }
1500
1501        /* Invalid sampling buffer entry */
1502        if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1503                pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1504                       alert);
1505                cpuhw->flags |= PMU_F_ERR_IBE;
1506                sf_disable();
1507        }
1508}
1509
1510static int cpumf_pmu_notifier(struct notifier_block *self,
1511                              unsigned long action, void *hcpu)
1512{
1513        unsigned int cpu = (long) hcpu;
1514        int flags;
1515
1516        /* Ignore the notification if no events are scheduled on the PMU.
1517         * This might be racy...
1518         */
1519        if (!atomic_read(&num_events))
1520                return NOTIFY_OK;
1521
1522        switch (action & ~CPU_TASKS_FROZEN) {
1523        case CPU_ONLINE:
1524        case CPU_DOWN_FAILED:
1525                flags = PMC_INIT;
1526                smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
1527                break;
1528        case CPU_DOWN_PREPARE:
1529                flags = PMC_RELEASE;
1530                smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
1531                break;
1532        default:
1533                break;
1534        }
1535
1536        return NOTIFY_OK;
1537}
1538
1539static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1540{
1541        if (!cpum_sf_avail())
1542                return -ENODEV;
1543        return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1544}
1545
1546static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1547{
1548        int rc;
1549        unsigned long min, max;
1550
1551        if (!cpum_sf_avail())
1552                return -ENODEV;
1553        if (!val || !strlen(val))
1554                return -EINVAL;
1555
1556        /* Valid parameter values: "min,max" or "max" */
1557        min = CPUM_SF_MIN_SDB;
1558        max = CPUM_SF_MAX_SDB;
1559        if (strchr(val, ','))
1560                rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
1561        else
1562                rc = kstrtoul(val, 10, &max);
1563
1564        if (min < 2 || min >= max || max > get_num_physpages())
1565                rc = -EINVAL;
1566        if (rc)
1567                return rc;
1568
1569        sfb_set_limits(min, max);
1570        pr_info("The sampling buffer limits have changed to: "
1571                "min=%lu max=%lu (diag=x%lu)\n",
1572                CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
1573        return 0;
1574}
1575
1576#define param_check_sfb_size(name, p) __param_check(name, p, void)
1577static const struct kernel_param_ops param_ops_sfb_size = {
1578        .set = param_set_sfb_size,
1579        .get = param_get_sfb_size,
1580};
1581
1582#define RS_INIT_FAILURE_QSI       0x0001
1583#define RS_INIT_FAILURE_BSDES     0x0002
1584#define RS_INIT_FAILURE_ALRT      0x0003
1585#define RS_INIT_FAILURE_PERF      0x0004
1586static void __init pr_cpumsf_err(unsigned int reason)
1587{
1588        pr_err("Sampling facility support for perf is not available: "
1589               "reason=%04x\n", reason);
1590}
1591
1592static int __init init_cpum_sampling_pmu(void)
1593{
1594        struct hws_qsi_info_block si;
1595        int err;
1596
1597        if (!cpum_sf_avail())
1598                return -ENODEV;
1599
1600        memset(&si, 0, sizeof(si));
1601        if (qsi(&si)) {
1602                pr_cpumsf_err(RS_INIT_FAILURE_QSI);
1603                return -ENODEV;
1604        }
1605
1606        if (si.bsdes != sizeof(struct hws_basic_entry)) {
1607                pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
1608                return -EINVAL;
1609        }
1610
1611        if (si.ad) {
1612                sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1613                cpumsf_pmu_events_attr[1] =
1614                        CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
1615        }
1616
1617        sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
1618        if (!sfdbg)
1619                pr_err("Registering for s390dbf failed\n");
1620        debug_register_view(sfdbg, &debug_sprintf_view);
1621
1622        err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1623                                    cpumf_measurement_alert);
1624        if (err) {
1625                pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
1626                goto out;
1627        }
1628
1629        err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
1630        if (err) {
1631                pr_cpumsf_err(RS_INIT_FAILURE_PERF);
1632                unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
1633                                        cpumf_measurement_alert);
1634                goto out;
1635        }
1636        perf_cpu_notifier(cpumf_pmu_notifier);
1637out:
1638        return err;
1639}
1640arch_initcall(init_cpum_sampling_pmu);
1641core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);
1642