linux/arch/sparc/kernel/perf_event.c
<<
>>
Prefs
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <linux/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
  28#include <asm/cacheflush.h>
  29
  30#include "kernel.h"
  31#include "kstack.h"
  32
  33/* Two classes of sparc64 chips currently exist.  All of which have
  34 * 32-bit counters which can generate overflow interrupts on the
  35 * transition from 0xffffffff to 0.
  36 *
  37 * All chips upto and including SPARC-T3 have two performance
  38 * counters.  The two 32-bit counters are accessed in one go using a
  39 * single 64-bit register.
  40 *
  41 * On these older chips both counters are controlled using a single
  42 * control register.  The only way to stop all sampling is to clear
  43 * all of the context (user, supervisor, hypervisor) sampling enable
  44 * bits.  But these bits apply to both counters, thus the two counters
  45 * can't be enabled/disabled individually.
  46 *
  47 * Furthermore, the control register on these older chips have two
  48 * event fields, one for each of the two counters.  It's thus nearly
  49 * impossible to have one counter going while keeping the other one
  50 * stopped.  Therefore it is possible to get overflow interrupts for
  51 * counters not currently "in use" and that condition must be checked
  52 * in the overflow interrupt handler.
  53 *
  54 * So we use a hack, in that we program inactive counters with the
  55 * "sw_count0" and "sw_count1" events.  These count how many times
  56 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  57 * unusual way to encode a NOP and therefore will not trigger in
  58 * normal code.
  59 *
  60 * Starting with SPARC-T4 we have one control register per counter.
  61 * And the counters are stored in individual registers.  The registers
  62 * for the counters are 64-bit but only a 32-bit counter is
  63 * implemented.  The event selections on SPARC-T4 lack any
  64 * restrictions, therefore we can elide all of the complicated
  65 * conflict resolution code we have for SPARC-T3 and earlier chips.
  66 */
  67
  68#define MAX_HWEVENTS                    4
  69#define MAX_PCRS                        4
  70#define MAX_PERIOD                      ((1UL << 32) - 1)
  71
  72#define PIC_UPPER_INDEX                 0
  73#define PIC_LOWER_INDEX                 1
  74#define PIC_NO_INDEX                    -1
  75
  76struct cpu_hw_events {
  77        /* Number of events currently scheduled onto this cpu.
  78         * This tells how many entries in the arrays below
  79         * are valid.
  80         */
  81        int                     n_events;
  82
  83        /* Number of new events added since the last hw_perf_disable().
  84         * This works because the perf event layer always adds new
  85         * events inside of a perf_{disable,enable}() sequence.
  86         */
  87        int                     n_added;
  88
  89        /* Array of events current scheduled on this cpu.  */
  90        struct perf_event       *event[MAX_HWEVENTS];
  91
  92        /* Array of encoded longs, specifying the %pcr register
  93         * encoding and the mask of PIC counters this even can
  94         * be scheduled on.  See perf_event_encode() et al.
  95         */
  96        unsigned long           events[MAX_HWEVENTS];
  97
  98        /* The current counter index assigned to an event.  When the
  99         * event hasn't been programmed into the cpu yet, this will
 100         * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 101         * we ought to schedule the event.
 102         */
 103        int                     current_idx[MAX_HWEVENTS];
 104
 105        /* Software copy of %pcr register(s) on this cpu.  */
 106        u64                     pcr[MAX_HWEVENTS];
 107
 108        /* Enabled/disable state.  */
 109        int                     enabled;
 110
 111        unsigned int            txn_flags;
 112};
 113static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 114
 115/* An event map describes the characteristics of a performance
 116 * counter event.  In particular it gives the encoding as well as
 117 * a mask telling which counters the event can be measured on.
 118 *
 119 * The mask is unused on SPARC-T4 and later.
 120 */
 121struct perf_event_map {
 122        u16     encoding;
 123        u8      pic_mask;
 124#define PIC_NONE        0x00
 125#define PIC_UPPER       0x01
 126#define PIC_LOWER       0x02
 127};
 128
 129/* Encode a perf_event_map entry into a long.  */
 130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 131{
 132        return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 133}
 134
 135static u8 perf_event_get_msk(unsigned long val)
 136{
 137        return val & 0xff;
 138}
 139
 140static u64 perf_event_get_enc(unsigned long val)
 141{
 142        return val >> 16;
 143}
 144
 145#define C(x) PERF_COUNT_HW_CACHE_##x
 146
 147#define CACHE_OP_UNSUPPORTED    0xfffe
 148#define CACHE_OP_NONSENSE       0xffff
 149
 150typedef struct perf_event_map cache_map_t
 151                                [PERF_COUNT_HW_CACHE_MAX]
 152                                [PERF_COUNT_HW_CACHE_OP_MAX]
 153                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
 154
 155struct sparc_pmu {
 156        const struct perf_event_map     *(*event_map)(int);
 157        const cache_map_t               *cache_map;
 158        int                             max_events;
 159        u32                             (*read_pmc)(int);
 160        void                            (*write_pmc)(int, u64);
 161        int                             upper_shift;
 162        int                             lower_shift;
 163        int                             event_mask;
 164        int                             user_bit;
 165        int                             priv_bit;
 166        int                             hv_bit;
 167        int                             irq_bit;
 168        int                             upper_nop;
 169        int                             lower_nop;
 170        unsigned int                    flags;
 171#define SPARC_PMU_ALL_EXCLUDES_SAME     0x00000001
 172#define SPARC_PMU_HAS_CONFLICTS         0x00000002
 173        int                             max_hw_events;
 174        int                             num_pcrs;
 175        int                             num_pic_regs;
 176};
 177
 178static u32 sparc_default_read_pmc(int idx)
 179{
 180        u64 val;
 181
 182        val = pcr_ops->read_pic(0);
 183        if (idx == PIC_UPPER_INDEX)
 184                val >>= 32;
 185
 186        return val & 0xffffffff;
 187}
 188
 189static void sparc_default_write_pmc(int idx, u64 val)
 190{
 191        u64 shift, mask, pic;
 192
 193        shift = 0;
 194        if (idx == PIC_UPPER_INDEX)
 195                shift = 32;
 196
 197        mask = ((u64) 0xffffffff) << shift;
 198        val <<= shift;
 199
 200        pic = pcr_ops->read_pic(0);
 201        pic &= ~mask;
 202        pic |= val;
 203        pcr_ops->write_pic(0, pic);
 204}
 205
 206static const struct perf_event_map ultra3_perfmon_event_map[] = {
 207        [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 208        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 209        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 210        [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 211};
 212
 213static const struct perf_event_map *ultra3_event_map(int event_id)
 214{
 215        return &ultra3_perfmon_event_map[event_id];
 216}
 217
 218static const cache_map_t ultra3_cache_map = {
 219[C(L1D)] = {
 220        [C(OP_READ)] = {
 221                [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 222                [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 223        },
 224        [C(OP_WRITE)] = {
 225                [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 226                [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 227        },
 228        [C(OP_PREFETCH)] = {
 229                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 230                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 231        },
 232},
 233[C(L1I)] = {
 234        [C(OP_READ)] = {
 235                [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 236                [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 237        },
 238        [ C(OP_WRITE) ] = {
 239                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 240                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 241        },
 242        [ C(OP_PREFETCH) ] = {
 243                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245        },
 246},
 247[C(LL)] = {
 248        [C(OP_READ)] = {
 249                [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 250                [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 251        },
 252        [C(OP_WRITE)] = {
 253                [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 254                [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 255        },
 256        [C(OP_PREFETCH)] = {
 257                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 258                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 259        },
 260},
 261[C(DTLB)] = {
 262        [C(OP_READ)] = {
 263                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 264                [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 265        },
 266        [ C(OP_WRITE) ] = {
 267                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 268                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 269        },
 270        [ C(OP_PREFETCH) ] = {
 271                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 272                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 273        },
 274},
 275[C(ITLB)] = {
 276        [C(OP_READ)] = {
 277                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 278                [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 279        },
 280        [ C(OP_WRITE) ] = {
 281                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 282                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 283        },
 284        [ C(OP_PREFETCH) ] = {
 285                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 286                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 287        },
 288},
 289[C(BPU)] = {
 290        [C(OP_READ)] = {
 291                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 292                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 293        },
 294        [ C(OP_WRITE) ] = {
 295                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 296                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 297        },
 298        [ C(OP_PREFETCH) ] = {
 299                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 300                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 301        },
 302},
 303[C(NODE)] = {
 304        [C(OP_READ)] = {
 305                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 306                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 307        },
 308        [ C(OP_WRITE) ] = {
 309                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 310                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 311        },
 312        [ C(OP_PREFETCH) ] = {
 313                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 314                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 315        },
 316},
 317};
 318
 319static const struct sparc_pmu ultra3_pmu = {
 320        .event_map      = ultra3_event_map,
 321        .cache_map      = &ultra3_cache_map,
 322        .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
 323        .read_pmc       = sparc_default_read_pmc,
 324        .write_pmc      = sparc_default_write_pmc,
 325        .upper_shift    = 11,
 326        .lower_shift    = 4,
 327        .event_mask     = 0x3f,
 328        .user_bit       = PCR_UTRACE,
 329        .priv_bit       = PCR_STRACE,
 330        .upper_nop      = 0x1c,
 331        .lower_nop      = 0x14,
 332        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 333                           SPARC_PMU_HAS_CONFLICTS),
 334        .max_hw_events  = 2,
 335        .num_pcrs       = 1,
 336        .num_pic_regs   = 1,
 337};
 338
 339/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 340 * only instructions, so it is free running which creates all kinds of
 341 * problems.  Some hardware designs make one wonder if the creator
 342 * even looked at how this stuff gets used by software.
 343 */
 344static const struct perf_event_map niagara1_perfmon_event_map[] = {
 345        [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 346        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 347        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 348        [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 349};
 350
 351static const struct perf_event_map *niagara1_event_map(int event_id)
 352{
 353        return &niagara1_perfmon_event_map[event_id];
 354}
 355
 356static const cache_map_t niagara1_cache_map = {
 357[C(L1D)] = {
 358        [C(OP_READ)] = {
 359                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 360                [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 361        },
 362        [C(OP_WRITE)] = {
 363                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 364                [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 365        },
 366        [C(OP_PREFETCH)] = {
 367                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 368                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 369        },
 370},
 371[C(L1I)] = {
 372        [C(OP_READ)] = {
 373                [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 374                [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 375        },
 376        [ C(OP_WRITE) ] = {
 377                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 378                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 379        },
 380        [ C(OP_PREFETCH) ] = {
 381                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 382                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 383        },
 384},
 385[C(LL)] = {
 386        [C(OP_READ)] = {
 387                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 388                [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 389        },
 390        [C(OP_WRITE)] = {
 391                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 392                [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 393        },
 394        [C(OP_PREFETCH)] = {
 395                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 396                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 397        },
 398},
 399[C(DTLB)] = {
 400        [C(OP_READ)] = {
 401                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 402                [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 403        },
 404        [ C(OP_WRITE) ] = {
 405                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 406                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 407        },
 408        [ C(OP_PREFETCH) ] = {
 409                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 410                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 411        },
 412},
 413[C(ITLB)] = {
 414        [C(OP_READ)] = {
 415                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 416                [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 417        },
 418        [ C(OP_WRITE) ] = {
 419                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 420                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 421        },
 422        [ C(OP_PREFETCH) ] = {
 423                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 424                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 425        },
 426},
 427[C(BPU)] = {
 428        [C(OP_READ)] = {
 429                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 430                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 431        },
 432        [ C(OP_WRITE) ] = {
 433                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 434                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 435        },
 436        [ C(OP_PREFETCH) ] = {
 437                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 438                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 439        },
 440},
 441[C(NODE)] = {
 442        [C(OP_READ)] = {
 443                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 444                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 445        },
 446        [ C(OP_WRITE) ] = {
 447                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 448                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 449        },
 450        [ C(OP_PREFETCH) ] = {
 451                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 452                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 453        },
 454},
 455};
 456
 457static const struct sparc_pmu niagara1_pmu = {
 458        .event_map      = niagara1_event_map,
 459        .cache_map      = &niagara1_cache_map,
 460        .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
 461        .read_pmc       = sparc_default_read_pmc,
 462        .write_pmc      = sparc_default_write_pmc,
 463        .upper_shift    = 0,
 464        .lower_shift    = 4,
 465        .event_mask     = 0x7,
 466        .user_bit       = PCR_UTRACE,
 467        .priv_bit       = PCR_STRACE,
 468        .upper_nop      = 0x0,
 469        .lower_nop      = 0x0,
 470        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 471                           SPARC_PMU_HAS_CONFLICTS),
 472        .max_hw_events  = 2,
 473        .num_pcrs       = 1,
 474        .num_pic_regs   = 1,
 475};
 476
 477static const struct perf_event_map niagara2_perfmon_event_map[] = {
 478        [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 479        [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480        [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 481        [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 482        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 483        [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 484};
 485
 486static const struct perf_event_map *niagara2_event_map(int event_id)
 487{
 488        return &niagara2_perfmon_event_map[event_id];
 489}
 490
 491static const cache_map_t niagara2_cache_map = {
 492[C(L1D)] = {
 493        [C(OP_READ)] = {
 494                [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 495                [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 496        },
 497        [C(OP_WRITE)] = {
 498                [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 499                [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 500        },
 501        [C(OP_PREFETCH)] = {
 502                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 503                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 504        },
 505},
 506[C(L1I)] = {
 507        [C(OP_READ)] = {
 508                [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 509                [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 510        },
 511        [ C(OP_WRITE) ] = {
 512                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 513                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 514        },
 515        [ C(OP_PREFETCH) ] = {
 516                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518        },
 519},
 520[C(LL)] = {
 521        [C(OP_READ)] = {
 522                [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 523                [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 524        },
 525        [C(OP_WRITE)] = {
 526                [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 527                [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 528        },
 529        [C(OP_PREFETCH)] = {
 530                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 531                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 532        },
 533},
 534[C(DTLB)] = {
 535        [C(OP_READ)] = {
 536                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 537                [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 538        },
 539        [ C(OP_WRITE) ] = {
 540                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 541                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 542        },
 543        [ C(OP_PREFETCH) ] = {
 544                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 545                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 546        },
 547},
 548[C(ITLB)] = {
 549        [C(OP_READ)] = {
 550                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 551                [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 552        },
 553        [ C(OP_WRITE) ] = {
 554                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 555                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 556        },
 557        [ C(OP_PREFETCH) ] = {
 558                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 559                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 560        },
 561},
 562[C(BPU)] = {
 563        [C(OP_READ)] = {
 564                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 565                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 566        },
 567        [ C(OP_WRITE) ] = {
 568                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 569                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 570        },
 571        [ C(OP_PREFETCH) ] = {
 572                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 573                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 574        },
 575},
 576[C(NODE)] = {
 577        [C(OP_READ)] = {
 578                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 579                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 580        },
 581        [ C(OP_WRITE) ] = {
 582                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 583                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 584        },
 585        [ C(OP_PREFETCH) ] = {
 586                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 587                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 588        },
 589},
 590};
 591
 592static const struct sparc_pmu niagara2_pmu = {
 593        .event_map      = niagara2_event_map,
 594        .cache_map      = &niagara2_cache_map,
 595        .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
 596        .read_pmc       = sparc_default_read_pmc,
 597        .write_pmc      = sparc_default_write_pmc,
 598        .upper_shift    = 19,
 599        .lower_shift    = 6,
 600        .event_mask     = 0xfff,
 601        .user_bit       = PCR_UTRACE,
 602        .priv_bit       = PCR_STRACE,
 603        .hv_bit         = PCR_N2_HTRACE,
 604        .irq_bit        = 0x30,
 605        .upper_nop      = 0x220,
 606        .lower_nop      = 0x220,
 607        .flags          = (SPARC_PMU_ALL_EXCLUDES_SAME |
 608                           SPARC_PMU_HAS_CONFLICTS),
 609        .max_hw_events  = 2,
 610        .num_pcrs       = 1,
 611        .num_pic_regs   = 1,
 612};
 613
 614static const struct perf_event_map niagara4_perfmon_event_map[] = {
 615        [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 616        [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 617        [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 618        [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 619        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 620        [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 621};
 622
 623static const struct perf_event_map *niagara4_event_map(int event_id)
 624{
 625        return &niagara4_perfmon_event_map[event_id];
 626}
 627
 628static const cache_map_t niagara4_cache_map = {
 629[C(L1D)] = {
 630        [C(OP_READ)] = {
 631                [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 632                [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 633        },
 634        [C(OP_WRITE)] = {
 635                [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 636                [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 637        },
 638        [C(OP_PREFETCH)] = {
 639                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 640                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 641        },
 642},
 643[C(L1I)] = {
 644        [C(OP_READ)] = {
 645                [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 646                [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 647        },
 648        [ C(OP_WRITE) ] = {
 649                [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 650                [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 651        },
 652        [ C(OP_PREFETCH) ] = {
 653                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 654                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 655        },
 656},
 657[C(LL)] = {
 658        [C(OP_READ)] = {
 659                [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 660                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 661        },
 662        [C(OP_WRITE)] = {
 663                [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 664                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 665        },
 666        [C(OP_PREFETCH)] = {
 667                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 668                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 669        },
 670},
 671[C(DTLB)] = {
 672        [C(OP_READ)] = {
 673                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 674                [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 675        },
 676        [ C(OP_WRITE) ] = {
 677                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 678                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 679        },
 680        [ C(OP_PREFETCH) ] = {
 681                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 682                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 683        },
 684},
 685[C(ITLB)] = {
 686        [C(OP_READ)] = {
 687                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 688                [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 689        },
 690        [ C(OP_WRITE) ] = {
 691                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 692                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 693        },
 694        [ C(OP_PREFETCH) ] = {
 695                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 696                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 697        },
 698},
 699[C(BPU)] = {
 700        [C(OP_READ)] = {
 701                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 702                [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 703        },
 704        [ C(OP_WRITE) ] = {
 705                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 706                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 707        },
 708        [ C(OP_PREFETCH) ] = {
 709                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 710                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 711        },
 712},
 713[C(NODE)] = {
 714        [C(OP_READ)] = {
 715                [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 716                [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 717        },
 718        [ C(OP_WRITE) ] = {
 719                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 720                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 721        },
 722        [ C(OP_PREFETCH) ] = {
 723                [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 724                [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 725        },
 726},
 727};
 728
 729static u32 sparc_vt_read_pmc(int idx)
 730{
 731        u64 val = pcr_ops->read_pic(idx);
 732
 733        return val & 0xffffffff;
 734}
 735
 736static void sparc_vt_write_pmc(int idx, u64 val)
 737{
 738        u64 pcr;
 739
 740        pcr = pcr_ops->read_pcr(idx);
 741        /* ensure ov and ntc are reset */
 742        pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
 743
 744        pcr_ops->write_pic(idx, val & 0xffffffff);
 745
 746        pcr_ops->write_pcr(idx, pcr);
 747}
 748
 749static const struct sparc_pmu niagara4_pmu = {
 750        .event_map      = niagara4_event_map,
 751        .cache_map      = &niagara4_cache_map,
 752        .max_events     = ARRAY_SIZE(niagara4_perfmon_event_map),
 753        .read_pmc       = sparc_vt_read_pmc,
 754        .write_pmc      = sparc_vt_write_pmc,
 755        .upper_shift    = 5,
 756        .lower_shift    = 5,
 757        .event_mask     = 0x7ff,
 758        .user_bit       = PCR_N4_UTRACE,
 759        .priv_bit       = PCR_N4_STRACE,
 760
 761        /* We explicitly don't support hypervisor tracing.  The T4
 762         * generates the overflow event for precise events via a trap
 763         * which will not be generated (ie. it's completely lost) if
 764         * we happen to be in the hypervisor when the event triggers.
 765         * Essentially, the overflow event reporting is completely
 766         * unusable when you have hypervisor mode tracing enabled.
 767         */
 768        .hv_bit         = 0,
 769
 770        .irq_bit        = PCR_N4_TOE,
 771        .upper_nop      = 0,
 772        .lower_nop      = 0,
 773        .flags          = 0,
 774        .max_hw_events  = 4,
 775        .num_pcrs       = 4,
 776        .num_pic_regs   = 4,
 777};
 778
 779static const struct sparc_pmu sparc_m7_pmu = {
 780        .event_map      = niagara4_event_map,
 781        .cache_map      = &niagara4_cache_map,
 782        .max_events     = ARRAY_SIZE(niagara4_perfmon_event_map),
 783        .read_pmc       = sparc_vt_read_pmc,
 784        .write_pmc      = sparc_vt_write_pmc,
 785        .upper_shift    = 5,
 786        .lower_shift    = 5,
 787        .event_mask     = 0x7ff,
 788        .user_bit       = PCR_N4_UTRACE,
 789        .priv_bit       = PCR_N4_STRACE,
 790
 791        /* We explicitly don't support hypervisor tracing. */
 792        .hv_bit         = 0,
 793
 794        .irq_bit        = PCR_N4_TOE,
 795        .upper_nop      = 0,
 796        .lower_nop      = 0,
 797        .flags          = 0,
 798        .max_hw_events  = 4,
 799        .num_pcrs       = 4,
 800        .num_pic_regs   = 4,
 801};
 802static const struct sparc_pmu *sparc_pmu __read_mostly;
 803
 804static u64 event_encoding(u64 event_id, int idx)
 805{
 806        if (idx == PIC_UPPER_INDEX)
 807                event_id <<= sparc_pmu->upper_shift;
 808        else
 809                event_id <<= sparc_pmu->lower_shift;
 810        return event_id;
 811}
 812
 813static u64 mask_for_index(int idx)
 814{
 815        return event_encoding(sparc_pmu->event_mask, idx);
 816}
 817
 818static u64 nop_for_index(int idx)
 819{
 820        return event_encoding(idx == PIC_UPPER_INDEX ?
 821                              sparc_pmu->upper_nop :
 822                              sparc_pmu->lower_nop, idx);
 823}
 824
 825static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 826{
 827        u64 enc, val, mask = mask_for_index(idx);
 828        int pcr_index = 0;
 829
 830        if (sparc_pmu->num_pcrs > 1)
 831                pcr_index = idx;
 832
 833        enc = perf_event_get_enc(cpuc->events[idx]);
 834
 835        val = cpuc->pcr[pcr_index];
 836        val &= ~mask;
 837        val |= event_encoding(enc, idx);
 838        cpuc->pcr[pcr_index] = val;
 839
 840        pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 841}
 842
 843static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 844{
 845        u64 mask = mask_for_index(idx);
 846        u64 nop = nop_for_index(idx);
 847        int pcr_index = 0;
 848        u64 val;
 849
 850        if (sparc_pmu->num_pcrs > 1)
 851                pcr_index = idx;
 852
 853        val = cpuc->pcr[pcr_index];
 854        val &= ~mask;
 855        val |= nop;
 856        cpuc->pcr[pcr_index] = val;
 857
 858        pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 859}
 860
 861static u64 sparc_perf_event_update(struct perf_event *event,
 862                                   struct hw_perf_event *hwc, int idx)
 863{
 864        int shift = 64 - 32;
 865        u64 prev_raw_count, new_raw_count;
 866        s64 delta;
 867
 868again:
 869        prev_raw_count = local64_read(&hwc->prev_count);
 870        new_raw_count = sparc_pmu->read_pmc(idx);
 871
 872        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 873                             new_raw_count) != prev_raw_count)
 874                goto again;
 875
 876        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 877        delta >>= shift;
 878
 879        local64_add(delta, &event->count);
 880        local64_sub(delta, &hwc->period_left);
 881
 882        return new_raw_count;
 883}
 884
 885static int sparc_perf_event_set_period(struct perf_event *event,
 886                                       struct hw_perf_event *hwc, int idx)
 887{
 888        s64 left = local64_read(&hwc->period_left);
 889        s64 period = hwc->sample_period;
 890        int ret = 0;
 891
 892        if (unlikely(left <= -period)) {
 893                left = period;
 894                local64_set(&hwc->period_left, left);
 895                hwc->last_period = period;
 896                ret = 1;
 897        }
 898
 899        if (unlikely(left <= 0)) {
 900                left += period;
 901                local64_set(&hwc->period_left, left);
 902                hwc->last_period = period;
 903                ret = 1;
 904        }
 905        if (left > MAX_PERIOD)
 906                left = MAX_PERIOD;
 907
 908        local64_set(&hwc->prev_count, (u64)-left);
 909
 910        sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 911
 912        perf_event_update_userpage(event);
 913
 914        return ret;
 915}
 916
 917static void read_in_all_counters(struct cpu_hw_events *cpuc)
 918{
 919        int i;
 920
 921        for (i = 0; i < cpuc->n_events; i++) {
 922                struct perf_event *cp = cpuc->event[i];
 923
 924                if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 925                    cpuc->current_idx[i] != cp->hw.idx) {
 926                        sparc_perf_event_update(cp, &cp->hw,
 927                                                cpuc->current_idx[i]);
 928                        cpuc->current_idx[i] = PIC_NO_INDEX;
 929                }
 930        }
 931}
 932
 933/* On this PMU all PICs are programmed using a single PCR.  Calculate
 934 * the combined control register value.
 935 *
 936 * For such chips we require that all of the events have the same
 937 * configuration, so just fetch the settings from the first entry.
 938 */
 939static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 940{
 941        int i;
 942
 943        if (!cpuc->n_added)
 944                goto out;
 945
 946        /* Assign to counters all unassigned events.  */
 947        for (i = 0; i < cpuc->n_events; i++) {
 948                struct perf_event *cp = cpuc->event[i];
 949                struct hw_perf_event *hwc = &cp->hw;
 950                int idx = hwc->idx;
 951                u64 enc;
 952
 953                if (cpuc->current_idx[i] != PIC_NO_INDEX)
 954                        continue;
 955
 956                sparc_perf_event_set_period(cp, hwc, idx);
 957                cpuc->current_idx[i] = idx;
 958
 959                enc = perf_event_get_enc(cpuc->events[i]);
 960                cpuc->pcr[0] &= ~mask_for_index(idx);
 961                if (hwc->state & PERF_HES_STOPPED)
 962                        cpuc->pcr[0] |= nop_for_index(idx);
 963                else
 964                        cpuc->pcr[0] |= event_encoding(enc, idx);
 965        }
 966out:
 967        cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 968}
 969
 970static void sparc_pmu_start(struct perf_event *event, int flags);
 971
 972/* On this PMU each PIC has it's own PCR control register.  */
 973static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 974{
 975        int i;
 976
 977        if (!cpuc->n_added)
 978                goto out;
 979
 980        for (i = 0; i < cpuc->n_events; i++) {
 981                struct perf_event *cp = cpuc->event[i];
 982                struct hw_perf_event *hwc = &cp->hw;
 983                int idx = hwc->idx;
 984
 985                if (cpuc->current_idx[i] != PIC_NO_INDEX)
 986                        continue;
 987
 988                cpuc->current_idx[i] = idx;
 989
 990                sparc_pmu_start(cp, PERF_EF_RELOAD);
 991        }
 992out:
 993        for (i = 0; i < cpuc->n_events; i++) {
 994                struct perf_event *cp = cpuc->event[i];
 995                int idx = cp->hw.idx;
 996
 997                cpuc->pcr[idx] |= cp->hw.config_base;
 998        }
 999}
1000
1001/* If performance event entries have been added, move existing events
1002 * around (if necessary) and then assign new entries to counters.
1003 */
1004static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1005{
1006        if (cpuc->n_added)
1007                read_in_all_counters(cpuc);
1008
1009        if (sparc_pmu->num_pcrs == 1) {
1010                calculate_single_pcr(cpuc);
1011        } else {
1012                calculate_multiple_pcrs(cpuc);
1013        }
1014}
1015
1016static void sparc_pmu_enable(struct pmu *pmu)
1017{
1018        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1019        int i;
1020
1021        if (cpuc->enabled)
1022                return;
1023
1024        cpuc->enabled = 1;
1025        barrier();
1026
1027        if (cpuc->n_events)
1028                update_pcrs_for_enable(cpuc);
1029
1030        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1031                pcr_ops->write_pcr(i, cpuc->pcr[i]);
1032}
1033
1034static void sparc_pmu_disable(struct pmu *pmu)
1035{
1036        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037        int i;
1038
1039        if (!cpuc->enabled)
1040                return;
1041
1042        cpuc->enabled = 0;
1043        cpuc->n_added = 0;
1044
1045        for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1046                u64 val = cpuc->pcr[i];
1047
1048                val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1049                         sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1050                cpuc->pcr[i] = val;
1051                pcr_ops->write_pcr(i, cpuc->pcr[i]);
1052        }
1053}
1054
1055static int active_event_index(struct cpu_hw_events *cpuc,
1056                              struct perf_event *event)
1057{
1058        int i;
1059
1060        for (i = 0; i < cpuc->n_events; i++) {
1061                if (cpuc->event[i] == event)
1062                        break;
1063        }
1064        BUG_ON(i == cpuc->n_events);
1065        return cpuc->current_idx[i];
1066}
1067
1068static void sparc_pmu_start(struct perf_event *event, int flags)
1069{
1070        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1071        int idx = active_event_index(cpuc, event);
1072
1073        if (flags & PERF_EF_RELOAD) {
1074                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1075                sparc_perf_event_set_period(event, &event->hw, idx);
1076        }
1077
1078        event->hw.state = 0;
1079
1080        sparc_pmu_enable_event(cpuc, &event->hw, idx);
1081}
1082
1083static void sparc_pmu_stop(struct perf_event *event, int flags)
1084{
1085        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1086        int idx = active_event_index(cpuc, event);
1087
1088        if (!(event->hw.state & PERF_HES_STOPPED)) {
1089                sparc_pmu_disable_event(cpuc, &event->hw, idx);
1090                event->hw.state |= PERF_HES_STOPPED;
1091        }
1092
1093        if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1094                sparc_perf_event_update(event, &event->hw, idx);
1095                event->hw.state |= PERF_HES_UPTODATE;
1096        }
1097}
1098
1099static void sparc_pmu_del(struct perf_event *event, int _flags)
1100{
1101        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1102        unsigned long flags;
1103        int i;
1104
1105        local_irq_save(flags);
1106
1107        for (i = 0; i < cpuc->n_events; i++) {
1108                if (event == cpuc->event[i]) {
1109                        /* Absorb the final count and turn off the
1110                         * event.
1111                         */
1112                        sparc_pmu_stop(event, PERF_EF_UPDATE);
1113
1114                        /* Shift remaining entries down into
1115                         * the existing slot.
1116                         */
1117                        while (++i < cpuc->n_events) {
1118                                cpuc->event[i - 1] = cpuc->event[i];
1119                                cpuc->events[i - 1] = cpuc->events[i];
1120                                cpuc->current_idx[i - 1] =
1121                                        cpuc->current_idx[i];
1122                        }
1123
1124                        perf_event_update_userpage(event);
1125
1126                        cpuc->n_events--;
1127                        break;
1128                }
1129        }
1130
1131        local_irq_restore(flags);
1132}
1133
1134static void sparc_pmu_read(struct perf_event *event)
1135{
1136        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1137        int idx = active_event_index(cpuc, event);
1138        struct hw_perf_event *hwc = &event->hw;
1139
1140        sparc_perf_event_update(event, hwc, idx);
1141}
1142
1143static atomic_t active_events = ATOMIC_INIT(0);
1144static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146static void perf_stop_nmi_watchdog(void *unused)
1147{
1148        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1149        int i;
1150
1151        stop_nmi_watchdog(NULL);
1152        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153                cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154}
1155
1156static void perf_event_grab_pmc(void)
1157{
1158        if (atomic_inc_not_zero(&active_events))
1159                return;
1160
1161        mutex_lock(&pmc_grab_mutex);
1162        if (atomic_read(&active_events) == 0) {
1163                if (atomic_read(&nmi_active) > 0) {
1164                        on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165                        BUG_ON(atomic_read(&nmi_active) != 0);
1166                }
1167                atomic_inc(&active_events);
1168        }
1169        mutex_unlock(&pmc_grab_mutex);
1170}
1171
1172static void perf_event_release_pmc(void)
1173{
1174        if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175                if (atomic_read(&nmi_active) == 0)
1176                        on_each_cpu(start_nmi_watchdog, NULL, 1);
1177                mutex_unlock(&pmc_grab_mutex);
1178        }
1179}
1180
1181static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182{
1183        unsigned int cache_type, cache_op, cache_result;
1184        const struct perf_event_map *pmap;
1185
1186        if (!sparc_pmu->cache_map)
1187                return ERR_PTR(-ENOENT);
1188
1189        cache_type = (config >>  0) & 0xff;
1190        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191                return ERR_PTR(-EINVAL);
1192
1193        cache_op = (config >>  8) & 0xff;
1194        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195                return ERR_PTR(-EINVAL);
1196
1197        cache_result = (config >> 16) & 0xff;
1198        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199                return ERR_PTR(-EINVAL);
1200
1201        pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203        if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204                return ERR_PTR(-ENOENT);
1205
1206        if (pmap->encoding == CACHE_OP_NONSENSE)
1207                return ERR_PTR(-EINVAL);
1208
1209        return pmap;
1210}
1211
1212static void hw_perf_event_destroy(struct perf_event *event)
1213{
1214        perf_event_release_pmc();
1215}
1216
1217/* Make sure all events can be scheduled into the hardware at
1218 * the same time.  This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success.  These are pending indexes.  When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227static int sparc_check_constraints(struct perf_event **evts,
1228                                   unsigned long *events, int n_ev)
1229{
1230        u8 msk0 = 0, msk1 = 0;
1231        int idx0 = 0;
1232
1233        /* This case is possible when we are invoked from
1234         * hw_perf_group_sched_in().
1235         */
1236        if (!n_ev)
1237                return 0;
1238
1239        if (n_ev > sparc_pmu->max_hw_events)
1240                return -1;
1241
1242        if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243                int i;
1244
1245                for (i = 0; i < n_ev; i++)
1246                        evts[i]->hw.idx = i;
1247                return 0;
1248        }
1249
1250        msk0 = perf_event_get_msk(events[0]);
1251        if (n_ev == 1) {
1252                if (msk0 & PIC_LOWER)
1253                        idx0 = 1;
1254                goto success;
1255        }
1256        BUG_ON(n_ev != 2);
1257        msk1 = perf_event_get_msk(events[1]);
1258
1259        /* If both events can go on any counter, OK.  */
1260        if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261            msk1 == (PIC_UPPER | PIC_LOWER))
1262                goto success;
1263
1264        /* If one event is limited to a specific counter,
1265         * and the other can go on both, OK.
1266         */
1267        if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268            msk1 == (PIC_UPPER | PIC_LOWER)) {
1269                if (msk0 & PIC_LOWER)
1270                        idx0 = 1;
1271                goto success;
1272        }
1273
1274        if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275            msk0 == (PIC_UPPER | PIC_LOWER)) {
1276                if (msk1 & PIC_UPPER)
1277                        idx0 = 1;
1278                goto success;
1279        }
1280
1281        /* If the events are fixed to different counters, OK.  */
1282        if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283            (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284                if (msk0 & PIC_LOWER)
1285                        idx0 = 1;
1286                goto success;
1287        }
1288
1289        /* Otherwise, there is a conflict.  */
1290        return -1;
1291
1292success:
1293        evts[0]->hw.idx = idx0;
1294        if (n_ev == 2)
1295                evts[1]->hw.idx = idx0 ^ 1;
1296        return 0;
1297}
1298
1299static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300{
1301        int eu = 0, ek = 0, eh = 0;
1302        struct perf_event *event;
1303        int i, n, first;
1304
1305        if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306                return 0;
1307
1308        n = n_prev + n_new;
1309        if (n <= 1)
1310                return 0;
1311
1312        first = 1;
1313        for (i = 0; i < n; i++) {
1314                event = evts[i];
1315                if (first) {
1316                        eu = event->attr.exclude_user;
1317                        ek = event->attr.exclude_kernel;
1318                        eh = event->attr.exclude_hv;
1319                        first = 0;
1320                } else if (event->attr.exclude_user != eu ||
1321                           event->attr.exclude_kernel != ek ||
1322                           event->attr.exclude_hv != eh) {
1323                        return -EAGAIN;
1324                }
1325        }
1326
1327        return 0;
1328}
1329
1330static int collect_events(struct perf_event *group, int max_count,
1331                          struct perf_event *evts[], unsigned long *events,
1332                          int *current_idx)
1333{
1334        struct perf_event *event;
1335        int n = 0;
1336
1337        if (!is_software_event(group)) {
1338                if (n >= max_count)
1339                        return -1;
1340                evts[n] = group;
1341                events[n] = group->hw.event_base;
1342                current_idx[n++] = PIC_NO_INDEX;
1343        }
1344        list_for_each_entry(event, &group->sibling_list, group_entry) {
1345                if (!is_software_event(event) &&
1346                    event->state != PERF_EVENT_STATE_OFF) {
1347                        if (n >= max_count)
1348                                return -1;
1349                        evts[n] = event;
1350                        events[n] = event->hw.event_base;
1351                        current_idx[n++] = PIC_NO_INDEX;
1352                }
1353        }
1354        return n;
1355}
1356
1357static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358{
1359        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1360        int n0, ret = -EAGAIN;
1361        unsigned long flags;
1362
1363        local_irq_save(flags);
1364
1365        n0 = cpuc->n_events;
1366        if (n0 >= sparc_pmu->max_hw_events)
1367                goto out;
1368
1369        cpuc->event[n0] = event;
1370        cpuc->events[n0] = event->hw.event_base;
1371        cpuc->current_idx[n0] = PIC_NO_INDEX;
1372
1373        event->hw.state = PERF_HES_UPTODATE;
1374        if (!(ef_flags & PERF_EF_START))
1375                event->hw.state |= PERF_HES_STOPPED;
1376
1377        /*
1378         * If group events scheduling transaction was started,
1379         * skip the schedulability test here, it will be performed
1380         * at commit time(->commit_txn) as a whole
1381         */
1382        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1383                goto nocheck;
1384
1385        if (check_excludes(cpuc->event, n0, 1))
1386                goto out;
1387        if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1388                goto out;
1389
1390nocheck:
1391        cpuc->n_events++;
1392        cpuc->n_added++;
1393
1394        ret = 0;
1395out:
1396        local_irq_restore(flags);
1397        return ret;
1398}
1399
1400static int sparc_pmu_event_init(struct perf_event *event)
1401{
1402        struct perf_event_attr *attr = &event->attr;
1403        struct perf_event *evts[MAX_HWEVENTS];
1404        struct hw_perf_event *hwc = &event->hw;
1405        unsigned long events[MAX_HWEVENTS];
1406        int current_idx_dmy[MAX_HWEVENTS];
1407        const struct perf_event_map *pmap;
1408        int n;
1409
1410        if (atomic_read(&nmi_active) < 0)
1411                return -ENODEV;
1412
1413        /* does not support taken branch sampling */
1414        if (has_branch_stack(event))
1415                return -EOPNOTSUPP;
1416
1417        switch (attr->type) {
1418        case PERF_TYPE_HARDWARE:
1419                if (attr->config >= sparc_pmu->max_events)
1420                        return -EINVAL;
1421                pmap = sparc_pmu->event_map(attr->config);
1422                break;
1423
1424        case PERF_TYPE_HW_CACHE:
1425                pmap = sparc_map_cache_event(attr->config);
1426                if (IS_ERR(pmap))
1427                        return PTR_ERR(pmap);
1428                break;
1429
1430        case PERF_TYPE_RAW:
1431                pmap = NULL;
1432                break;
1433
1434        default:
1435                return -ENOENT;
1436
1437        }
1438
1439        if (pmap) {
1440                hwc->event_base = perf_event_encode(pmap);
1441        } else {
1442                /*
1443                 * User gives us "(encoding << 16) | pic_mask" for
1444                 * PERF_TYPE_RAW events.
1445                 */
1446                hwc->event_base = attr->config;
1447        }
1448
1449        /* We save the enable bits in the config_base.  */
1450        hwc->config_base = sparc_pmu->irq_bit;
1451        if (!attr->exclude_user)
1452                hwc->config_base |= sparc_pmu->user_bit;
1453        if (!attr->exclude_kernel)
1454                hwc->config_base |= sparc_pmu->priv_bit;
1455        if (!attr->exclude_hv)
1456                hwc->config_base |= sparc_pmu->hv_bit;
1457
1458        n = 0;
1459        if (event->group_leader != event) {
1460                n = collect_events(event->group_leader,
1461                                   sparc_pmu->max_hw_events - 1,
1462                                   evts, events, current_idx_dmy);
1463                if (n < 0)
1464                        return -EINVAL;
1465        }
1466        events[n] = hwc->event_base;
1467        evts[n] = event;
1468
1469        if (check_excludes(evts, n, 1))
1470                return -EINVAL;
1471
1472        if (sparc_check_constraints(evts, events, n + 1))
1473                return -EINVAL;
1474
1475        hwc->idx = PIC_NO_INDEX;
1476
1477        /* Try to do all error checking before this point, as unwinding
1478         * state after grabbing the PMC is difficult.
1479         */
1480        perf_event_grab_pmc();
1481        event->destroy = hw_perf_event_destroy;
1482
1483        if (!hwc->sample_period) {
1484                hwc->sample_period = MAX_PERIOD;
1485                hwc->last_period = hwc->sample_period;
1486                local64_set(&hwc->period_left, hwc->sample_period);
1487        }
1488
1489        return 0;
1490}
1491
1492/*
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1496 */
1497static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1498{
1499        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1500
1501        WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1502
1503        cpuhw->txn_flags = txn_flags;
1504        if (txn_flags & ~PERF_PMU_TXN_ADD)
1505                return;
1506
1507        perf_pmu_disable(pmu);
1508}
1509
1510/*
1511 * Stop group events scheduling transaction
1512 * Clear the flag and pmu::enable() will perform the
1513 * schedulability test.
1514 */
1515static void sparc_pmu_cancel_txn(struct pmu *pmu)
1516{
1517        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1518        unsigned int txn_flags;
1519
1520        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1521
1522        txn_flags = cpuhw->txn_flags;
1523        cpuhw->txn_flags = 0;
1524        if (txn_flags & ~PERF_PMU_TXN_ADD)
1525                return;
1526
1527        perf_pmu_enable(pmu);
1528}
1529
1530/*
1531 * Commit group events scheduling transaction
1532 * Perform the group schedulability test as a whole
1533 * Return 0 if success
1534 */
1535static int sparc_pmu_commit_txn(struct pmu *pmu)
1536{
1537        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1538        int n;
1539
1540        if (!sparc_pmu)
1541                return -EINVAL;
1542
1543        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1544
1545        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1546                cpuc->txn_flags = 0;
1547                return 0;
1548        }
1549
1550        n = cpuc->n_events;
1551        if (check_excludes(cpuc->event, 0, n))
1552                return -EINVAL;
1553        if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1554                return -EAGAIN;
1555
1556        cpuc->txn_flags = 0;
1557        perf_pmu_enable(pmu);
1558        return 0;
1559}
1560
1561static struct pmu pmu = {
1562        .pmu_enable     = sparc_pmu_enable,
1563        .pmu_disable    = sparc_pmu_disable,
1564        .event_init     = sparc_pmu_event_init,
1565        .add            = sparc_pmu_add,
1566        .del            = sparc_pmu_del,
1567        .start          = sparc_pmu_start,
1568        .stop           = sparc_pmu_stop,
1569        .read           = sparc_pmu_read,
1570        .start_txn      = sparc_pmu_start_txn,
1571        .cancel_txn     = sparc_pmu_cancel_txn,
1572        .commit_txn     = sparc_pmu_commit_txn,
1573};
1574
1575void perf_event_print_debug(void)
1576{
1577        unsigned long flags;
1578        int cpu, i;
1579
1580        if (!sparc_pmu)
1581                return;
1582
1583        local_irq_save(flags);
1584
1585        cpu = smp_processor_id();
1586
1587        pr_info("\n");
1588        for (i = 0; i < sparc_pmu->num_pcrs; i++)
1589                pr_info("CPU#%d: PCR%d[%016llx]\n",
1590                        cpu, i, pcr_ops->read_pcr(i));
1591        for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1592                pr_info("CPU#%d: PIC%d[%016llx]\n",
1593                        cpu, i, pcr_ops->read_pic(i));
1594
1595        local_irq_restore(flags);
1596}
1597
1598static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1599                                            unsigned long cmd, void *__args)
1600{
1601        struct die_args *args = __args;
1602        struct perf_sample_data data;
1603        struct cpu_hw_events *cpuc;
1604        struct pt_regs *regs;
1605        int i;
1606
1607        if (!atomic_read(&active_events))
1608                return NOTIFY_DONE;
1609
1610        switch (cmd) {
1611        case DIE_NMI:
1612                break;
1613
1614        default:
1615                return NOTIFY_DONE;
1616        }
1617
1618        regs = args->regs;
1619
1620        cpuc = this_cpu_ptr(&cpu_hw_events);
1621
1622        /* If the PMU has the TOE IRQ enable bits, we need to do a
1623         * dummy write to the %pcr to clear the overflow bits and thus
1624         * the interrupt.
1625         *
1626         * Do this before we peek at the counters to determine
1627         * overflow so we don't lose any events.
1628         */
1629        if (sparc_pmu->irq_bit &&
1630            sparc_pmu->num_pcrs == 1)
1631                pcr_ops->write_pcr(0, cpuc->pcr[0]);
1632
1633        for (i = 0; i < cpuc->n_events; i++) {
1634                struct perf_event *event = cpuc->event[i];
1635                int idx = cpuc->current_idx[i];
1636                struct hw_perf_event *hwc;
1637                u64 val;
1638
1639                if (sparc_pmu->irq_bit &&
1640                    sparc_pmu->num_pcrs > 1)
1641                        pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1642
1643                hwc = &event->hw;
1644                val = sparc_perf_event_update(event, hwc, idx);
1645                if (val & (1ULL << 31))
1646                        continue;
1647
1648                perf_sample_data_init(&data, 0, hwc->last_period);
1649                if (!sparc_perf_event_set_period(event, hwc, idx))
1650                        continue;
1651
1652                if (perf_event_overflow(event, &data, regs))
1653                        sparc_pmu_stop(event, 0);
1654        }
1655
1656        return NOTIFY_STOP;
1657}
1658
1659static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1660        .notifier_call          = perf_event_nmi_handler,
1661};
1662
1663static bool __init supported_pmu(void)
1664{
1665        if (!strcmp(sparc_pmu_type, "ultra3") ||
1666            !strcmp(sparc_pmu_type, "ultra3+") ||
1667            !strcmp(sparc_pmu_type, "ultra3i") ||
1668            !strcmp(sparc_pmu_type, "ultra4+")) {
1669                sparc_pmu = &ultra3_pmu;
1670                return true;
1671        }
1672        if (!strcmp(sparc_pmu_type, "niagara")) {
1673                sparc_pmu = &niagara1_pmu;
1674                return true;
1675        }
1676        if (!strcmp(sparc_pmu_type, "niagara2") ||
1677            !strcmp(sparc_pmu_type, "niagara3")) {
1678                sparc_pmu = &niagara2_pmu;
1679                return true;
1680        }
1681        if (!strcmp(sparc_pmu_type, "niagara4") ||
1682            !strcmp(sparc_pmu_type, "niagara5")) {
1683                sparc_pmu = &niagara4_pmu;
1684                return true;
1685        }
1686        if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1687                sparc_pmu = &sparc_m7_pmu;
1688                return true;
1689        }
1690        return false;
1691}
1692
1693static int __init init_hw_perf_events(void)
1694{
1695        int err;
1696
1697        pr_info("Performance events: ");
1698
1699        err = pcr_arch_init();
1700        if (err || !supported_pmu()) {
1701                pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1702                return 0;
1703        }
1704
1705        pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1706
1707        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1708        register_die_notifier(&perf_event_nmi_notifier);
1709
1710        return 0;
1711}
1712pure_initcall(init_hw_perf_events);
1713
1714void perf_callchain_kernel(struct perf_callchain_entry *entry,
1715                           struct pt_regs *regs)
1716{
1717        unsigned long ksp, fp;
1718#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1719        int graph = 0;
1720#endif
1721
1722        stack_trace_flush();
1723
1724        perf_callchain_store(entry, regs->tpc);
1725
1726        ksp = regs->u_regs[UREG_I6];
1727        fp = ksp + STACK_BIAS;
1728        do {
1729                struct sparc_stackf *sf;
1730                struct pt_regs *regs;
1731                unsigned long pc;
1732
1733                if (!kstack_valid(current_thread_info(), fp))
1734                        break;
1735
1736                sf = (struct sparc_stackf *) fp;
1737                regs = (struct pt_regs *) (sf + 1);
1738
1739                if (kstack_is_trap_frame(current_thread_info(), regs)) {
1740                        if (user_mode(regs))
1741                                break;
1742                        pc = regs->tpc;
1743                        fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744                } else {
1745                        pc = sf->callers_pc;
1746                        fp = (unsigned long)sf->fp + STACK_BIAS;
1747                }
1748                perf_callchain_store(entry, pc);
1749#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1750                if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1751                        int index = current->curr_ret_stack;
1752                        if (current->ret_stack && index >= graph) {
1753                                pc = current->ret_stack[index - graph].ret;
1754                                perf_callchain_store(entry, pc);
1755                                graph++;
1756                        }
1757                }
1758#endif
1759        } while (entry->nr < PERF_MAX_STACK_DEPTH);
1760}
1761
1762static inline int
1763valid_user_frame(const void __user *fp, unsigned long size)
1764{
1765        /* addresses should be at least 4-byte aligned */
1766        if (((unsigned long) fp) & 3)
1767                return 0;
1768
1769        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1770}
1771
1772static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1773                                   struct pt_regs *regs)
1774{
1775        unsigned long ufp;
1776
1777        ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1778        do {
1779                struct sparc_stackf __user *usf;
1780                struct sparc_stackf sf;
1781                unsigned long pc;
1782
1783                usf = (struct sparc_stackf __user *)ufp;
1784                if (!valid_user_frame(usf, sizeof(sf)))
1785                        break;
1786
1787                if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1788                        break;
1789
1790                pc = sf.callers_pc;
1791                ufp = (unsigned long)sf.fp + STACK_BIAS;
1792                perf_callchain_store(entry, pc);
1793        } while (entry->nr < PERF_MAX_STACK_DEPTH);
1794}
1795
1796static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1797                                   struct pt_regs *regs)
1798{
1799        unsigned long ufp;
1800
1801        ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1802        do {
1803                unsigned long pc;
1804
1805                if (thread32_stack_is_64bit(ufp)) {
1806                        struct sparc_stackf __user *usf;
1807                        struct sparc_stackf sf;
1808
1809                        ufp += STACK_BIAS;
1810                        usf = (struct sparc_stackf __user *)ufp;
1811                        if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1812                                break;
1813                        pc = sf.callers_pc & 0xffffffff;
1814                        ufp = ((unsigned long) sf.fp) & 0xffffffff;
1815                } else {
1816                        struct sparc_stackf32 __user *usf;
1817                        struct sparc_stackf32 sf;
1818                        usf = (struct sparc_stackf32 __user *)ufp;
1819                        if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1820                                break;
1821                        pc = sf.callers_pc;
1822                        ufp = (unsigned long)sf.fp;
1823                }
1824                perf_callchain_store(entry, pc);
1825        } while (entry->nr < PERF_MAX_STACK_DEPTH);
1826}
1827
1828void
1829perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1830{
1831        u64 saved_fault_address = current_thread_info()->fault_address;
1832        u8 saved_fault_code = get_thread_fault_code();
1833        mm_segment_t old_fs;
1834
1835        perf_callchain_store(entry, regs->tpc);
1836
1837        if (!current->mm)
1838                return;
1839
1840        old_fs = get_fs();
1841        set_fs(USER_DS);
1842
1843        flushw_user();
1844
1845        pagefault_disable();
1846
1847        if (test_thread_flag(TIF_32BIT))
1848                perf_callchain_user_32(entry, regs);
1849        else
1850                perf_callchain_user_64(entry, regs);
1851
1852        pagefault_enable();
1853
1854        set_fs(old_fs);
1855        set_thread_fault_code(saved_fault_code);
1856        current_thread_info()->fault_address = saved_fault_address;
1857}
1858