linux/arch/x86/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/module.h>
  21#include <linux/kdebug.h>
  22#include <linux/sched.h>
  23#include <linux/uaccess.h>
  24#include <linux/slab.h>
  25#include <linux/cpu.h>
  26#include <linux/bitops.h>
  27#include <linux/device.h>
  28
  29#include <asm/apic.h>
  30#include <asm/stacktrace.h>
  31#include <asm/nmi.h>
  32#include <asm/smp.h>
  33#include <asm/alternative.h>
  34#include <asm/mmu_context.h>
  35#include <asm/tlbflush.h>
  36#include <asm/timer.h>
  37#include <asm/desc.h>
  38#include <asm/ldt.h>
  39
  40#include "perf_event.h"
  41
  42struct x86_pmu x86_pmu __read_mostly;
  43
  44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  45        .enabled = 1,
  46};
  47
  48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
  49
  50u64 __read_mostly hw_cache_event_ids
  51                                [PERF_COUNT_HW_CACHE_MAX]
  52                                [PERF_COUNT_HW_CACHE_OP_MAX]
  53                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  54u64 __read_mostly hw_cache_extra_regs
  55                                [PERF_COUNT_HW_CACHE_MAX]
  56                                [PERF_COUNT_HW_CACHE_OP_MAX]
  57                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  58
  59/*
  60 * Propagate event elapsed time into the generic event.
  61 * Can only be executed on the CPU where the event is active.
  62 * Returns the delta events processed.
  63 */
  64u64 x86_perf_event_update(struct perf_event *event)
  65{
  66        struct hw_perf_event *hwc = &event->hw;
  67        int shift = 64 - x86_pmu.cntval_bits;
  68        u64 prev_raw_count, new_raw_count;
  69        int idx = hwc->idx;
  70        s64 delta;
  71
  72        if (idx == INTEL_PMC_IDX_FIXED_BTS)
  73                return 0;
  74
  75        /*
  76         * Careful: an NMI might modify the previous event value.
  77         *
  78         * Our tactic to handle this is to first atomically read and
  79         * exchange a new raw count - then add that new-prev delta
  80         * count to the generic event atomically:
  81         */
  82again:
  83        prev_raw_count = local64_read(&hwc->prev_count);
  84        rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  85
  86        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  87                                        new_raw_count) != prev_raw_count)
  88                goto again;
  89
  90        /*
  91         * Now we have the new raw value and have updated the prev
  92         * timestamp already. We can now calculate the elapsed delta
  93         * (event-)time and add that to the generic event.
  94         *
  95         * Careful, not all hw sign-extends above the physical width
  96         * of the count.
  97         */
  98        delta = (new_raw_count << shift) - (prev_raw_count << shift);
  99        delta >>= shift;
 100
 101        local64_add(delta, &event->count);
 102        local64_sub(delta, &hwc->period_left);
 103
 104        return new_raw_count;
 105}
 106
 107/*
 108 * Find and validate any extra registers to set up.
 109 */
 110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 111{
 112        struct hw_perf_event_extra *reg;
 113        struct extra_reg *er;
 114
 115        reg = &event->hw.extra_reg;
 116
 117        if (!x86_pmu.extra_regs)
 118                return 0;
 119
 120        for (er = x86_pmu.extra_regs; er->msr; er++) {
 121                if (er->event != (config & er->config_mask))
 122                        continue;
 123                if (event->attr.config1 & ~er->valid_mask)
 124                        return -EINVAL;
 125                /* Check if the extra msrs can be safely accessed*/
 126                if (!er->extra_msr_access)
 127                        return -ENXIO;
 128
 129                reg->idx = er->idx;
 130                reg->config = event->attr.config1;
 131                reg->reg = er->msr;
 132                break;
 133        }
 134        return 0;
 135}
 136
 137static atomic_t active_events;
 138static atomic_t pmc_refcount;
 139static DEFINE_MUTEX(pmc_reserve_mutex);
 140
 141#ifdef CONFIG_X86_LOCAL_APIC
 142
 143static bool reserve_pmc_hardware(void)
 144{
 145        int i;
 146
 147        for (i = 0; i < x86_pmu.num_counters; i++) {
 148                if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 149                        goto perfctr_fail;
 150        }
 151
 152        for (i = 0; i < x86_pmu.num_counters; i++) {
 153                if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 154                        goto eventsel_fail;
 155        }
 156
 157        return true;
 158
 159eventsel_fail:
 160        for (i--; i >= 0; i--)
 161                release_evntsel_nmi(x86_pmu_config_addr(i));
 162
 163        i = x86_pmu.num_counters;
 164
 165perfctr_fail:
 166        for (i--; i >= 0; i--)
 167                release_perfctr_nmi(x86_pmu_event_addr(i));
 168
 169        return false;
 170}
 171
 172static void release_pmc_hardware(void)
 173{
 174        int i;
 175
 176        for (i = 0; i < x86_pmu.num_counters; i++) {
 177                release_perfctr_nmi(x86_pmu_event_addr(i));
 178                release_evntsel_nmi(x86_pmu_config_addr(i));
 179        }
 180}
 181
 182#else
 183
 184static bool reserve_pmc_hardware(void) { return true; }
 185static void release_pmc_hardware(void) {}
 186
 187#endif
 188
 189static bool check_hw_exists(void)
 190{
 191        u64 val, val_fail, val_new= ~0;
 192        int i, reg, reg_fail, ret = 0;
 193        int bios_fail = 0;
 194        int reg_safe = -1;
 195
 196        /*
 197         * Check to see if the BIOS enabled any of the counters, if so
 198         * complain and bail.
 199         */
 200        for (i = 0; i < x86_pmu.num_counters; i++) {
 201                reg = x86_pmu_config_addr(i);
 202                ret = rdmsrl_safe(reg, &val);
 203                if (ret)
 204                        goto msr_fail;
 205                if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 206                        bios_fail = 1;
 207                        val_fail = val;
 208                        reg_fail = reg;
 209                } else {
 210                        reg_safe = i;
 211                }
 212        }
 213
 214        if (x86_pmu.num_counters_fixed) {
 215                reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 216                ret = rdmsrl_safe(reg, &val);
 217                if (ret)
 218                        goto msr_fail;
 219                for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
 220                        if (val & (0x03 << i*4)) {
 221                                bios_fail = 1;
 222                                val_fail = val;
 223                                reg_fail = reg;
 224                        }
 225                }
 226        }
 227
 228        /*
 229         * If all the counters are enabled, the below test will always
 230         * fail.  The tools will also become useless in this scenario.
 231         * Just fail and disable the hardware counters.
 232         */
 233
 234        if (reg_safe == -1) {
 235                reg = reg_safe;
 236                goto msr_fail;
 237        }
 238
 239        /*
 240         * Read the current value, change it and read it back to see if it
 241         * matches, this is needed to detect certain hardware emulators
 242         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 243         */
 244        reg = x86_pmu_event_addr(reg_safe);
 245        if (rdmsrl_safe(reg, &val))
 246                goto msr_fail;
 247        val ^= 0xffffUL;
 248        ret = wrmsrl_safe(reg, val);
 249        ret |= rdmsrl_safe(reg, &val_new);
 250        if (ret || val != val_new)
 251                goto msr_fail;
 252
 253        /*
 254         * We still allow the PMU driver to operate:
 255         */
 256        if (bios_fail) {
 257                pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
 258                pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
 259                              reg_fail, val_fail);
 260        }
 261
 262        return true;
 263
 264msr_fail:
 265        pr_cont("Broken PMU hardware detected, using software events only.\n");
 266        pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
 267                boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
 268                reg, val_new);
 269
 270        return false;
 271}
 272
 273static void hw_perf_event_destroy(struct perf_event *event)
 274{
 275        x86_release_hardware();
 276        atomic_dec(&active_events);
 277}
 278
 279void hw_perf_lbr_event_destroy(struct perf_event *event)
 280{
 281        hw_perf_event_destroy(event);
 282
 283        /* undo the lbr/bts event accounting */
 284        x86_del_exclusive(x86_lbr_exclusive_lbr);
 285}
 286
 287static inline int x86_pmu_initialized(void)
 288{
 289        return x86_pmu.handle_irq != NULL;
 290}
 291
 292static inline int
 293set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 294{
 295        struct perf_event_attr *attr = &event->attr;
 296        unsigned int cache_type, cache_op, cache_result;
 297        u64 config, val;
 298
 299        config = attr->config;
 300
 301        cache_type = (config >>  0) & 0xff;
 302        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 303                return -EINVAL;
 304
 305        cache_op = (config >>  8) & 0xff;
 306        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 307                return -EINVAL;
 308
 309        cache_result = (config >> 16) & 0xff;
 310        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 311                return -EINVAL;
 312
 313        val = hw_cache_event_ids[cache_type][cache_op][cache_result];
 314
 315        if (val == 0)
 316                return -ENOENT;
 317
 318        if (val == -1)
 319                return -EINVAL;
 320
 321        hwc->config |= val;
 322        attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
 323        return x86_pmu_extra_regs(val, event);
 324}
 325
 326int x86_reserve_hardware(void)
 327{
 328        int err = 0;
 329
 330        if (!atomic_inc_not_zero(&pmc_refcount)) {
 331                mutex_lock(&pmc_reserve_mutex);
 332                if (atomic_read(&pmc_refcount) == 0) {
 333                        if (!reserve_pmc_hardware())
 334                                err = -EBUSY;
 335                        else
 336                                reserve_ds_buffers();
 337                }
 338                if (!err)
 339                        atomic_inc(&pmc_refcount);
 340                mutex_unlock(&pmc_reserve_mutex);
 341        }
 342
 343        return err;
 344}
 345
 346void x86_release_hardware(void)
 347{
 348        if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
 349                release_pmc_hardware();
 350                release_ds_buffers();
 351                mutex_unlock(&pmc_reserve_mutex);
 352        }
 353}
 354
 355/*
 356 * Check if we can create event of a certain type (that no conflicting events
 357 * are present).
 358 */
 359int x86_add_exclusive(unsigned int what)
 360{
 361        int i;
 362
 363        if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
 364                mutex_lock(&pmc_reserve_mutex);
 365                for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
 366                        if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
 367                                goto fail_unlock;
 368                }
 369                atomic_inc(&x86_pmu.lbr_exclusive[what]);
 370                mutex_unlock(&pmc_reserve_mutex);
 371        }
 372
 373        atomic_inc(&active_events);
 374        return 0;
 375
 376fail_unlock:
 377        mutex_unlock(&pmc_reserve_mutex);
 378        return -EBUSY;
 379}
 380
 381void x86_del_exclusive(unsigned int what)
 382{
 383        atomic_dec(&x86_pmu.lbr_exclusive[what]);
 384        atomic_dec(&active_events);
 385}
 386
 387int x86_setup_perfctr(struct perf_event *event)
 388{
 389        struct perf_event_attr *attr = &event->attr;
 390        struct hw_perf_event *hwc = &event->hw;
 391        u64 config;
 392
 393        if (!is_sampling_event(event)) {
 394                hwc->sample_period = x86_pmu.max_period;
 395                hwc->last_period = hwc->sample_period;
 396                local64_set(&hwc->period_left, hwc->sample_period);
 397        }
 398
 399        if (attr->type == PERF_TYPE_RAW)
 400                return x86_pmu_extra_regs(event->attr.config, event);
 401
 402        if (attr->type == PERF_TYPE_HW_CACHE)
 403                return set_ext_hw_attr(hwc, event);
 404
 405        if (attr->config >= x86_pmu.max_events)
 406                return -EINVAL;
 407
 408        /*
 409         * The generic map:
 410         */
 411        config = x86_pmu.event_map(attr->config);
 412
 413        if (config == 0)
 414                return -ENOENT;
 415
 416        if (config == -1LL)
 417                return -EINVAL;
 418
 419        /*
 420         * Branch tracing:
 421         */
 422        if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
 423            !attr->freq && hwc->sample_period == 1) {
 424                /* BTS is not supported by this architecture. */
 425                if (!x86_pmu.bts_active)
 426                        return -EOPNOTSUPP;
 427
 428                /* BTS is currently only allowed for user-mode. */
 429                if (!attr->exclude_kernel)
 430                        return -EOPNOTSUPP;
 431
 432                /* disallow bts if conflicting events are present */
 433                if (x86_add_exclusive(x86_lbr_exclusive_lbr))
 434                        return -EBUSY;
 435
 436                event->destroy = hw_perf_lbr_event_destroy;
 437        }
 438
 439        hwc->config |= config;
 440
 441        return 0;
 442}
 443
 444/*
 445 * check that branch_sample_type is compatible with
 446 * settings needed for precise_ip > 1 which implies
 447 * using the LBR to capture ALL taken branches at the
 448 * priv levels of the measurement
 449 */
 450static inline int precise_br_compat(struct perf_event *event)
 451{
 452        u64 m = event->attr.branch_sample_type;
 453        u64 b = 0;
 454
 455        /* must capture all branches */
 456        if (!(m & PERF_SAMPLE_BRANCH_ANY))
 457                return 0;
 458
 459        m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 460
 461        if (!event->attr.exclude_user)
 462                b |= PERF_SAMPLE_BRANCH_USER;
 463
 464        if (!event->attr.exclude_kernel)
 465                b |= PERF_SAMPLE_BRANCH_KERNEL;
 466
 467        /*
 468         * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 469         */
 470
 471        return m == b;
 472}
 473
 474int x86_pmu_hw_config(struct perf_event *event)
 475{
 476        if (event->attr.precise_ip) {
 477                int precise = 0;
 478
 479                /* Support for constant skid */
 480                if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 481                        precise++;
 482
 483                        /* Support for IP fixup */
 484                        if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
 485                                precise++;
 486
 487                        if (x86_pmu.pebs_prec_dist)
 488                                precise++;
 489                }
 490
 491                if (event->attr.precise_ip > precise)
 492                        return -EOPNOTSUPP;
 493        }
 494        /*
 495         * check that PEBS LBR correction does not conflict with
 496         * whatever the user is asking with attr->branch_sample_type
 497         */
 498        if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
 499                u64 *br_type = &event->attr.branch_sample_type;
 500
 501                if (has_branch_stack(event)) {
 502                        if (!precise_br_compat(event))
 503                                return -EOPNOTSUPP;
 504
 505                        /* branch_sample_type is compatible */
 506
 507                } else {
 508                        /*
 509                         * user did not specify  branch_sample_type
 510                         *
 511                         * For PEBS fixups, we capture all
 512                         * the branches at the priv level of the
 513                         * event.
 514                         */
 515                        *br_type = PERF_SAMPLE_BRANCH_ANY;
 516
 517                        if (!event->attr.exclude_user)
 518                                *br_type |= PERF_SAMPLE_BRANCH_USER;
 519
 520                        if (!event->attr.exclude_kernel)
 521                                *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 522                }
 523        }
 524
 525        if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
 526                event->attach_state |= PERF_ATTACH_TASK_DATA;
 527
 528        /*
 529         * Generate PMC IRQs:
 530         * (keep 'enabled' bit clear for now)
 531         */
 532        event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 533
 534        /*
 535         * Count user and OS events unless requested not to
 536         */
 537        if (!event->attr.exclude_user)
 538                event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 539        if (!event->attr.exclude_kernel)
 540                event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 541
 542        if (event->attr.type == PERF_TYPE_RAW)
 543                event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 544
 545        if (event->attr.sample_period && x86_pmu.limit_period) {
 546                if (x86_pmu.limit_period(event, event->attr.sample_period) >
 547                                event->attr.sample_period)
 548                        return -EINVAL;
 549        }
 550
 551        return x86_setup_perfctr(event);
 552}
 553
 554/*
 555 * Setup the hardware configuration for a given attr_type
 556 */
 557static int __x86_pmu_event_init(struct perf_event *event)
 558{
 559        int err;
 560
 561        if (!x86_pmu_initialized())
 562                return -ENODEV;
 563
 564        err = x86_reserve_hardware();
 565        if (err)
 566                return err;
 567
 568        atomic_inc(&active_events);
 569        event->destroy = hw_perf_event_destroy;
 570
 571        event->hw.idx = -1;
 572        event->hw.last_cpu = -1;
 573        event->hw.last_tag = ~0ULL;
 574
 575        /* mark unused */
 576        event->hw.extra_reg.idx = EXTRA_REG_NONE;
 577        event->hw.branch_reg.idx = EXTRA_REG_NONE;
 578
 579        return x86_pmu.hw_config(event);
 580}
 581
 582void x86_pmu_disable_all(void)
 583{
 584        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 585        int idx;
 586
 587        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 588                u64 val;
 589
 590                if (!test_bit(idx, cpuc->active_mask))
 591                        continue;
 592                rdmsrl(x86_pmu_config_addr(idx), val);
 593                if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 594                        continue;
 595                val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 596                wrmsrl(x86_pmu_config_addr(idx), val);
 597        }
 598}
 599
 600/*
 601 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 602 * after disable_all.
 603 *
 604 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 605 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 606 * handling the NMI, disable_all will be called, which will not change the
 607 * state either. If PMI hits after disable_all, the PMU is already disabled
 608 * before entering NMI handler. The NMI handler will not change the state
 609 * either.
 610 *
 611 * So either situation is harmless.
 612 */
 613static void x86_pmu_disable(struct pmu *pmu)
 614{
 615        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 616
 617        if (!x86_pmu_initialized())
 618                return;
 619
 620        if (!cpuc->enabled)
 621                return;
 622
 623        cpuc->n_added = 0;
 624        cpuc->enabled = 0;
 625        barrier();
 626
 627        x86_pmu.disable_all();
 628}
 629
 630void x86_pmu_enable_all(int added)
 631{
 632        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 633        int idx;
 634
 635        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 636                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 637
 638                if (!test_bit(idx, cpuc->active_mask))
 639                        continue;
 640
 641                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 642        }
 643}
 644
 645static struct pmu pmu;
 646
 647static inline int is_x86_event(struct perf_event *event)
 648{
 649        return event->pmu == &pmu;
 650}
 651
 652/*
 653 * Event scheduler state:
 654 *
 655 * Assign events iterating over all events and counters, beginning
 656 * with events with least weights first. Keep the current iterator
 657 * state in struct sched_state.
 658 */
 659struct sched_state {
 660        int     weight;
 661        int     event;          /* event index */
 662        int     counter;        /* counter index */
 663        int     unassigned;     /* number of events to be assigned left */
 664        int     nr_gp;          /* number of GP counters used */
 665        unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 666};
 667
 668/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 669#define SCHED_STATES_MAX        2
 670
 671struct perf_sched {
 672        int                     max_weight;
 673        int                     max_events;
 674        int                     max_gp;
 675        int                     saved_states;
 676        struct event_constraint **constraints;
 677        struct sched_state      state;
 678        struct sched_state      saved[SCHED_STATES_MAX];
 679};
 680
 681/*
 682 * Initialize interator that runs through all events and counters.
 683 */
 684static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
 685                            int num, int wmin, int wmax, int gpmax)
 686{
 687        int idx;
 688
 689        memset(sched, 0, sizeof(*sched));
 690        sched->max_events       = num;
 691        sched->max_weight       = wmax;
 692        sched->max_gp           = gpmax;
 693        sched->constraints      = constraints;
 694
 695        for (idx = 0; idx < num; idx++) {
 696                if (constraints[idx]->weight == wmin)
 697                        break;
 698        }
 699
 700        sched->state.event      = idx;          /* start with min weight */
 701        sched->state.weight     = wmin;
 702        sched->state.unassigned = num;
 703}
 704
 705static void perf_sched_save_state(struct perf_sched *sched)
 706{
 707        if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 708                return;
 709
 710        sched->saved[sched->saved_states] = sched->state;
 711        sched->saved_states++;
 712}
 713
 714static bool perf_sched_restore_state(struct perf_sched *sched)
 715{
 716        if (!sched->saved_states)
 717                return false;
 718
 719        sched->saved_states--;
 720        sched->state = sched->saved[sched->saved_states];
 721
 722        /* continue with next counter: */
 723        clear_bit(sched->state.counter++, sched->state.used);
 724
 725        return true;
 726}
 727
 728/*
 729 * Select a counter for the current event to schedule. Return true on
 730 * success.
 731 */
 732static bool __perf_sched_find_counter(struct perf_sched *sched)
 733{
 734        struct event_constraint *c;
 735        int idx;
 736
 737        if (!sched->state.unassigned)
 738                return false;
 739
 740        if (sched->state.event >= sched->max_events)
 741                return false;
 742
 743        c = sched->constraints[sched->state.event];
 744        /* Prefer fixed purpose counters */
 745        if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 746                idx = INTEL_PMC_IDX_FIXED;
 747                for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 748                        if (!__test_and_set_bit(idx, sched->state.used))
 749                                goto done;
 750                }
 751        }
 752
 753        /* Grab the first unused counter starting with idx */
 754        idx = sched->state.counter;
 755        for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 756                if (!__test_and_set_bit(idx, sched->state.used)) {
 757                        if (sched->state.nr_gp++ >= sched->max_gp)
 758                                return false;
 759
 760                        goto done;
 761                }
 762        }
 763
 764        return false;
 765
 766done:
 767        sched->state.counter = idx;
 768
 769        if (c->overlap)
 770                perf_sched_save_state(sched);
 771
 772        return true;
 773}
 774
 775static bool perf_sched_find_counter(struct perf_sched *sched)
 776{
 777        while (!__perf_sched_find_counter(sched)) {
 778                if (!perf_sched_restore_state(sched))
 779                        return false;
 780        }
 781
 782        return true;
 783}
 784
 785/*
 786 * Go through all unassigned events and find the next one to schedule.
 787 * Take events with the least weight first. Return true on success.
 788 */
 789static bool perf_sched_next_event(struct perf_sched *sched)
 790{
 791        struct event_constraint *c;
 792
 793        if (!sched->state.unassigned || !--sched->state.unassigned)
 794                return false;
 795
 796        do {
 797                /* next event */
 798                sched->state.event++;
 799                if (sched->state.event >= sched->max_events) {
 800                        /* next weight */
 801                        sched->state.event = 0;
 802                        sched->state.weight++;
 803                        if (sched->state.weight > sched->max_weight)
 804                                return false;
 805                }
 806                c = sched->constraints[sched->state.event];
 807        } while (c->weight != sched->state.weight);
 808
 809        sched->state.counter = 0;       /* start with first counter */
 810
 811        return true;
 812}
 813
 814/*
 815 * Assign a counter for each event.
 816 */
 817int perf_assign_events(struct event_constraint **constraints, int n,
 818                        int wmin, int wmax, int gpmax, int *assign)
 819{
 820        struct perf_sched sched;
 821
 822        perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
 823
 824        do {
 825                if (!perf_sched_find_counter(&sched))
 826                        break;  /* failed */
 827                if (assign)
 828                        assign[sched.state.event] = sched.state.counter;
 829        } while (perf_sched_next_event(&sched));
 830
 831        return sched.state.unassigned;
 832}
 833EXPORT_SYMBOL_GPL(perf_assign_events);
 834
 835int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 836{
 837        struct event_constraint *c;
 838        unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 839        struct perf_event *e;
 840        int i, wmin, wmax, unsched = 0;
 841        struct hw_perf_event *hwc;
 842
 843        bitmap_zero(used_mask, X86_PMC_IDX_MAX);
 844
 845        if (x86_pmu.start_scheduling)
 846                x86_pmu.start_scheduling(cpuc);
 847
 848        for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 849                cpuc->event_constraint[i] = NULL;
 850                c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
 851                cpuc->event_constraint[i] = c;
 852
 853                wmin = min(wmin, c->weight);
 854                wmax = max(wmax, c->weight);
 855        }
 856
 857        /*
 858         * fastpath, try to reuse previous register
 859         */
 860        for (i = 0; i < n; i++) {
 861                hwc = &cpuc->event_list[i]->hw;
 862                c = cpuc->event_constraint[i];
 863
 864                /* never assigned */
 865                if (hwc->idx == -1)
 866                        break;
 867
 868                /* constraint still honored */
 869                if (!test_bit(hwc->idx, c->idxmsk))
 870                        break;
 871
 872                /* not already used */
 873                if (test_bit(hwc->idx, used_mask))
 874                        break;
 875
 876                __set_bit(hwc->idx, used_mask);
 877                if (assign)
 878                        assign[i] = hwc->idx;
 879        }
 880
 881        /* slow path */
 882        if (i != n) {
 883                int gpmax = x86_pmu.num_counters;
 884
 885                /*
 886                 * Do not allow scheduling of more than half the available
 887                 * generic counters.
 888                 *
 889                 * This helps avoid counter starvation of sibling thread by
 890                 * ensuring at most half the counters cannot be in exclusive
 891                 * mode. There is no designated counters for the limits. Any
 892                 * N/2 counters can be used. This helps with events with
 893                 * specific counter constraints.
 894                 */
 895                if (is_ht_workaround_enabled() && !cpuc->is_fake &&
 896                    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
 897                        gpmax /= 2;
 898
 899                unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
 900                                             wmax, gpmax, assign);
 901        }
 902
 903        /*
 904         * In case of success (unsched = 0), mark events as committed,
 905         * so we do not put_constraint() in case new events are added
 906         * and fail to be scheduled
 907         *
 908         * We invoke the lower level commit callback to lock the resource
 909         *
 910         * We do not need to do all of this in case we are called to
 911         * validate an event group (assign == NULL)
 912         */
 913        if (!unsched && assign) {
 914                for (i = 0; i < n; i++) {
 915                        e = cpuc->event_list[i];
 916                        e->hw.flags |= PERF_X86_EVENT_COMMITTED;
 917                        if (x86_pmu.commit_scheduling)
 918                                x86_pmu.commit_scheduling(cpuc, i, assign[i]);
 919                }
 920        } else {
 921                for (i = 0; i < n; i++) {
 922                        e = cpuc->event_list[i];
 923                        /*
 924                         * do not put_constraint() on comitted events,
 925                         * because they are good to go
 926                         */
 927                        if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
 928                                continue;
 929
 930                        /*
 931                         * release events that failed scheduling
 932                         */
 933                        if (x86_pmu.put_event_constraints)
 934                                x86_pmu.put_event_constraints(cpuc, e);
 935                }
 936        }
 937
 938        if (x86_pmu.stop_scheduling)
 939                x86_pmu.stop_scheduling(cpuc);
 940
 941        return unsched ? -EINVAL : 0;
 942}
 943
 944/*
 945 * dogrp: true if must collect siblings events (group)
 946 * returns total number of events and error code
 947 */
 948static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
 949{
 950        struct perf_event *event;
 951        int n, max_count;
 952
 953        max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
 954
 955        /* current number of events already accepted */
 956        n = cpuc->n_events;
 957
 958        if (is_x86_event(leader)) {
 959                if (n >= max_count)
 960                        return -EINVAL;
 961                cpuc->event_list[n] = leader;
 962                n++;
 963        }
 964        if (!dogrp)
 965                return n;
 966
 967        list_for_each_entry(event, &leader->sibling_list, group_entry) {
 968                if (!is_x86_event(event) ||
 969                    event->state <= PERF_EVENT_STATE_OFF)
 970                        continue;
 971
 972                if (n >= max_count)
 973                        return -EINVAL;
 974
 975                cpuc->event_list[n] = event;
 976                n++;
 977        }
 978        return n;
 979}
 980
 981static inline void x86_assign_hw_event(struct perf_event *event,
 982                                struct cpu_hw_events *cpuc, int i)
 983{
 984        struct hw_perf_event *hwc = &event->hw;
 985
 986        hwc->idx = cpuc->assign[i];
 987        hwc->last_cpu = smp_processor_id();
 988        hwc->last_tag = ++cpuc->tags[i];
 989
 990        if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
 991                hwc->config_base = 0;
 992                hwc->event_base = 0;
 993        } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
 994                hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 995                hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
 996                hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
 997        } else {
 998                hwc->config_base = x86_pmu_config_addr(hwc->idx);
 999                hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1000                hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1001        }
1002}
1003
1004static inline int match_prev_assignment(struct hw_perf_event *hwc,
1005                                        struct cpu_hw_events *cpuc,
1006                                        int i)
1007{
1008        return hwc->idx == cpuc->assign[i] &&
1009                hwc->last_cpu == smp_processor_id() &&
1010                hwc->last_tag == cpuc->tags[i];
1011}
1012
1013static void x86_pmu_start(struct perf_event *event, int flags);
1014
1015static void x86_pmu_enable(struct pmu *pmu)
1016{
1017        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1018        struct perf_event *event;
1019        struct hw_perf_event *hwc;
1020        int i, added = cpuc->n_added;
1021
1022        if (!x86_pmu_initialized())
1023                return;
1024
1025        if (cpuc->enabled)
1026                return;
1027
1028        if (cpuc->n_added) {
1029                int n_running = cpuc->n_events - cpuc->n_added;
1030                /*
1031                 * apply assignment obtained either from
1032                 * hw_perf_group_sched_in() or x86_pmu_enable()
1033                 *
1034                 * step1: save events moving to new counters
1035                 */
1036                for (i = 0; i < n_running; i++) {
1037                        event = cpuc->event_list[i];
1038                        hwc = &event->hw;
1039
1040                        /*
1041                         * we can avoid reprogramming counter if:
1042                         * - assigned same counter as last time
1043                         * - running on same CPU as last time
1044                         * - no other event has used the counter since
1045                         */
1046                        if (hwc->idx == -1 ||
1047                            match_prev_assignment(hwc, cpuc, i))
1048                                continue;
1049
1050                        /*
1051                         * Ensure we don't accidentally enable a stopped
1052                         * counter simply because we rescheduled.
1053                         */
1054                        if (hwc->state & PERF_HES_STOPPED)
1055                                hwc->state |= PERF_HES_ARCH;
1056
1057                        x86_pmu_stop(event, PERF_EF_UPDATE);
1058                }
1059
1060                /*
1061                 * step2: reprogram moved events into new counters
1062                 */
1063                for (i = 0; i < cpuc->n_events; i++) {
1064                        event = cpuc->event_list[i];
1065                        hwc = &event->hw;
1066
1067                        if (!match_prev_assignment(hwc, cpuc, i))
1068                                x86_assign_hw_event(event, cpuc, i);
1069                        else if (i < n_running)
1070                                continue;
1071
1072                        if (hwc->state & PERF_HES_ARCH)
1073                                continue;
1074
1075                        x86_pmu_start(event, PERF_EF_RELOAD);
1076                }
1077                cpuc->n_added = 0;
1078                perf_events_lapic_init();
1079        }
1080
1081        cpuc->enabled = 1;
1082        barrier();
1083
1084        x86_pmu.enable_all(added);
1085}
1086
1087static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1088
1089/*
1090 * Set the next IRQ period, based on the hwc->period_left value.
1091 * To be called with the event disabled in hw:
1092 */
1093int x86_perf_event_set_period(struct perf_event *event)
1094{
1095        struct hw_perf_event *hwc = &event->hw;
1096        s64 left = local64_read(&hwc->period_left);
1097        s64 period = hwc->sample_period;
1098        int ret = 0, idx = hwc->idx;
1099
1100        if (idx == INTEL_PMC_IDX_FIXED_BTS)
1101                return 0;
1102
1103        /*
1104         * If we are way outside a reasonable range then just skip forward:
1105         */
1106        if (unlikely(left <= -period)) {
1107                left = period;
1108                local64_set(&hwc->period_left, left);
1109                hwc->last_period = period;
1110                ret = 1;
1111        }
1112
1113        if (unlikely(left <= 0)) {
1114                left += period;
1115                local64_set(&hwc->period_left, left);
1116                hwc->last_period = period;
1117                ret = 1;
1118        }
1119        /*
1120         * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1121         */
1122        if (unlikely(left < 2))
1123                left = 2;
1124
1125        if (left > x86_pmu.max_period)
1126                left = x86_pmu.max_period;
1127
1128        if (x86_pmu.limit_period)
1129                left = x86_pmu.limit_period(event, left);
1130
1131        per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1132
1133        if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1134            local64_read(&hwc->prev_count) != (u64)-left) {
1135                /*
1136                 * The hw event starts counting from this event offset,
1137                 * mark it to be able to extra future deltas:
1138                 */
1139                local64_set(&hwc->prev_count, (u64)-left);
1140
1141                wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1142        }
1143
1144        /*
1145         * Due to erratum on certan cpu we need
1146         * a second write to be sure the register
1147         * is updated properly
1148         */
1149        if (x86_pmu.perfctr_second_write) {
1150                wrmsrl(hwc->event_base,
1151                        (u64)(-left) & x86_pmu.cntval_mask);
1152        }
1153
1154        perf_event_update_userpage(event);
1155
1156        return ret;
1157}
1158
1159void x86_pmu_enable_event(struct perf_event *event)
1160{
1161        if (__this_cpu_read(cpu_hw_events.enabled))
1162                __x86_pmu_enable_event(&event->hw,
1163                                       ARCH_PERFMON_EVENTSEL_ENABLE);
1164}
1165
1166/*
1167 * Add a single event to the PMU.
1168 *
1169 * The event is added to the group of enabled events
1170 * but only if it can be scehduled with existing events.
1171 */
1172static int x86_pmu_add(struct perf_event *event, int flags)
1173{
1174        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1175        struct hw_perf_event *hwc;
1176        int assign[X86_PMC_IDX_MAX];
1177        int n, n0, ret;
1178
1179        hwc = &event->hw;
1180
1181        n0 = cpuc->n_events;
1182        ret = n = collect_events(cpuc, event, false);
1183        if (ret < 0)
1184                goto out;
1185
1186        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1187        if (!(flags & PERF_EF_START))
1188                hwc->state |= PERF_HES_ARCH;
1189
1190        /*
1191         * If group events scheduling transaction was started,
1192         * skip the schedulability test here, it will be performed
1193         * at commit time (->commit_txn) as a whole.
1194         */
1195        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1196                goto done_collect;
1197
1198        ret = x86_pmu.schedule_events(cpuc, n, assign);
1199        if (ret)
1200                goto out;
1201        /*
1202         * copy new assignment, now we know it is possible
1203         * will be used by hw_perf_enable()
1204         */
1205        memcpy(cpuc->assign, assign, n*sizeof(int));
1206
1207done_collect:
1208        /*
1209         * Commit the collect_events() state. See x86_pmu_del() and
1210         * x86_pmu_*_txn().
1211         */
1212        cpuc->n_events = n;
1213        cpuc->n_added += n - n0;
1214        cpuc->n_txn += n - n0;
1215
1216        ret = 0;
1217out:
1218        return ret;
1219}
1220
1221static void x86_pmu_start(struct perf_event *event, int flags)
1222{
1223        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1224        int idx = event->hw.idx;
1225
1226        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1227                return;
1228
1229        if (WARN_ON_ONCE(idx == -1))
1230                return;
1231
1232        if (flags & PERF_EF_RELOAD) {
1233                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1234                x86_perf_event_set_period(event);
1235        }
1236
1237        event->hw.state = 0;
1238
1239        cpuc->events[idx] = event;
1240        __set_bit(idx, cpuc->active_mask);
1241        __set_bit(idx, cpuc->running);
1242        x86_pmu.enable(event);
1243        perf_event_update_userpage(event);
1244}
1245
1246void perf_event_print_debug(void)
1247{
1248        u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1249        u64 pebs, debugctl;
1250        struct cpu_hw_events *cpuc;
1251        unsigned long flags;
1252        int cpu, idx;
1253
1254        if (!x86_pmu.num_counters)
1255                return;
1256
1257        local_irq_save(flags);
1258
1259        cpu = smp_processor_id();
1260        cpuc = &per_cpu(cpu_hw_events, cpu);
1261
1262        if (x86_pmu.version >= 2) {
1263                rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1264                rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1265                rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1266                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1267
1268                pr_info("\n");
1269                pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1270                pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1271                pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1272                pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1273                if (x86_pmu.pebs_constraints) {
1274                        rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1275                        pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1276                }
1277                if (x86_pmu.lbr_nr) {
1278                        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1279                        pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1280                }
1281        }
1282        pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1283
1284        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1285                rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1286                rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1287
1288                prev_left = per_cpu(pmc_prev_left[idx], cpu);
1289
1290                pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1291                        cpu, idx, pmc_ctrl);
1292                pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1293                        cpu, idx, pmc_count);
1294                pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1295                        cpu, idx, prev_left);
1296        }
1297        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1298                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1299
1300                pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1301                        cpu, idx, pmc_count);
1302        }
1303        local_irq_restore(flags);
1304}
1305
1306void x86_pmu_stop(struct perf_event *event, int flags)
1307{
1308        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1309        struct hw_perf_event *hwc = &event->hw;
1310
1311        if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1312                x86_pmu.disable(event);
1313                cpuc->events[hwc->idx] = NULL;
1314                WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1315                hwc->state |= PERF_HES_STOPPED;
1316        }
1317
1318        if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1319                /*
1320                 * Drain the remaining delta count out of a event
1321                 * that we are disabling:
1322                 */
1323                x86_perf_event_update(event);
1324                hwc->state |= PERF_HES_UPTODATE;
1325        }
1326}
1327
1328static void x86_pmu_del(struct perf_event *event, int flags)
1329{
1330        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1331        int i;
1332
1333        /*
1334         * event is descheduled
1335         */
1336        event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1337
1338        /*
1339         * If we're called during a txn, we don't need to do anything.
1340         * The events never got scheduled and ->cancel_txn will truncate
1341         * the event_list.
1342         *
1343         * XXX assumes any ->del() called during a TXN will only be on
1344         * an event added during that same TXN.
1345         */
1346        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1347                return;
1348
1349        /*
1350         * Not a TXN, therefore cleanup properly.
1351         */
1352        x86_pmu_stop(event, PERF_EF_UPDATE);
1353
1354        for (i = 0; i < cpuc->n_events; i++) {
1355                if (event == cpuc->event_list[i])
1356                        break;
1357        }
1358
1359        if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1360                return;
1361
1362        /* If we have a newly added event; make sure to decrease n_added. */
1363        if (i >= cpuc->n_events - cpuc->n_added)
1364                --cpuc->n_added;
1365
1366        if (x86_pmu.put_event_constraints)
1367                x86_pmu.put_event_constraints(cpuc, event);
1368
1369        /* Delete the array entry. */
1370        while (++i < cpuc->n_events) {
1371                cpuc->event_list[i-1] = cpuc->event_list[i];
1372                cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1373        }
1374        --cpuc->n_events;
1375
1376        perf_event_update_userpage(event);
1377}
1378
1379int x86_pmu_handle_irq(struct pt_regs *regs)
1380{
1381        struct perf_sample_data data;
1382        struct cpu_hw_events *cpuc;
1383        struct perf_event *event;
1384        int idx, handled = 0;
1385        u64 val;
1386
1387        cpuc = this_cpu_ptr(&cpu_hw_events);
1388
1389        /*
1390         * Some chipsets need to unmask the LVTPC in a particular spot
1391         * inside the nmi handler.  As a result, the unmasking was pushed
1392         * into all the nmi handlers.
1393         *
1394         * This generic handler doesn't seem to have any issues where the
1395         * unmasking occurs so it was left at the top.
1396         */
1397        apic_write(APIC_LVTPC, APIC_DM_NMI);
1398
1399        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1400                if (!test_bit(idx, cpuc->active_mask)) {
1401                        /*
1402                         * Though we deactivated the counter some cpus
1403                         * might still deliver spurious interrupts still
1404                         * in flight. Catch them:
1405                         */
1406                        if (__test_and_clear_bit(idx, cpuc->running))
1407                                handled++;
1408                        continue;
1409                }
1410
1411                event = cpuc->events[idx];
1412
1413                val = x86_perf_event_update(event);
1414                if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1415                        continue;
1416
1417                /*
1418                 * event overflow
1419                 */
1420                handled++;
1421                perf_sample_data_init(&data, 0, event->hw.last_period);
1422
1423                if (!x86_perf_event_set_period(event))
1424                        continue;
1425
1426                if (perf_event_overflow(event, &data, regs))
1427                        x86_pmu_stop(event, 0);
1428        }
1429
1430        if (handled)
1431                inc_irq_stat(apic_perf_irqs);
1432
1433        return handled;
1434}
1435
1436void perf_events_lapic_init(void)
1437{
1438        if (!x86_pmu.apic || !x86_pmu_initialized())
1439                return;
1440
1441        /*
1442         * Always use NMI for PMU
1443         */
1444        apic_write(APIC_LVTPC, APIC_DM_NMI);
1445}
1446
1447static int
1448perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1449{
1450        u64 start_clock;
1451        u64 finish_clock;
1452        int ret;
1453
1454        /*
1455         * All PMUs/events that share this PMI handler should make sure to
1456         * increment active_events for their events.
1457         */
1458        if (!atomic_read(&active_events))
1459                return NMI_DONE;
1460
1461        start_clock = sched_clock();
1462        ret = x86_pmu.handle_irq(regs);
1463        finish_clock = sched_clock();
1464
1465        perf_sample_event_took(finish_clock - start_clock);
1466
1467        return ret;
1468}
1469NOKPROBE_SYMBOL(perf_event_nmi_handler);
1470
1471struct event_constraint emptyconstraint;
1472struct event_constraint unconstrained;
1473
1474static int
1475x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1476{
1477        unsigned int cpu = (long)hcpu;
1478        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1479        int i, ret = NOTIFY_OK;
1480
1481        switch (action & ~CPU_TASKS_FROZEN) {
1482        case CPU_UP_PREPARE:
1483                for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1484                        cpuc->kfree_on_online[i] = NULL;
1485                if (x86_pmu.cpu_prepare)
1486                        ret = x86_pmu.cpu_prepare(cpu);
1487                break;
1488
1489        case CPU_STARTING:
1490                if (x86_pmu.cpu_starting)
1491                        x86_pmu.cpu_starting(cpu);
1492                break;
1493
1494        case CPU_ONLINE:
1495                for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1496                        kfree(cpuc->kfree_on_online[i]);
1497                        cpuc->kfree_on_online[i] = NULL;
1498                }
1499                break;
1500
1501        case CPU_DYING:
1502                if (x86_pmu.cpu_dying)
1503                        x86_pmu.cpu_dying(cpu);
1504                break;
1505
1506        case CPU_UP_CANCELED:
1507        case CPU_DEAD:
1508                if (x86_pmu.cpu_dead)
1509                        x86_pmu.cpu_dead(cpu);
1510                break;
1511
1512        default:
1513                break;
1514        }
1515
1516        return ret;
1517}
1518
1519static void __init pmu_check_apic(void)
1520{
1521        if (cpu_has_apic)
1522                return;
1523
1524        x86_pmu.apic = 0;
1525        pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1526        pr_info("no hardware sampling interrupt available.\n");
1527
1528        /*
1529         * If we have a PMU initialized but no APIC
1530         * interrupts, we cannot sample hardware
1531         * events (user-space has to fall back and
1532         * sample via a hrtimer based software event):
1533         */
1534        pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1535
1536}
1537
1538static struct attribute_group x86_pmu_format_group = {
1539        .name = "format",
1540        .attrs = NULL,
1541};
1542
1543/*
1544 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1545 * out of events_attr attributes.
1546 */
1547static void __init filter_events(struct attribute **attrs)
1548{
1549        struct device_attribute *d;
1550        struct perf_pmu_events_attr *pmu_attr;
1551        int offset = 0;
1552        int i, j;
1553
1554        for (i = 0; attrs[i]; i++) {
1555                d = (struct device_attribute *)attrs[i];
1556                pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1557                /* str trumps id */
1558                if (pmu_attr->event_str)
1559                        continue;
1560                if (x86_pmu.event_map(i + offset))
1561                        continue;
1562
1563                for (j = i; attrs[j]; j++)
1564                        attrs[j] = attrs[j + 1];
1565
1566                /* Check the shifted attr. */
1567                i--;
1568
1569                /*
1570                 * event_map() is index based, the attrs array is organized
1571                 * by increasing event index. If we shift the events, then
1572                 * we need to compensate for the event_map(), otherwise
1573                 * we are looking up the wrong event in the map
1574                 */
1575                offset++;
1576        }
1577}
1578
1579/* Merge two pointer arrays */
1580__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1581{
1582        struct attribute **new;
1583        int j, i;
1584
1585        for (j = 0; a[j]; j++)
1586                ;
1587        for (i = 0; b[i]; i++)
1588                j++;
1589        j++;
1590
1591        new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1592        if (!new)
1593                return NULL;
1594
1595        j = 0;
1596        for (i = 0; a[i]; i++)
1597                new[j++] = a[i];
1598        for (i = 0; b[i]; i++)
1599                new[j++] = b[i];
1600        new[j] = NULL;
1601
1602        return new;
1603}
1604
1605ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1606{
1607        struct perf_pmu_events_attr *pmu_attr = \
1608                container_of(attr, struct perf_pmu_events_attr, attr);
1609        u64 config = x86_pmu.event_map(pmu_attr->id);
1610
1611        /* string trumps id */
1612        if (pmu_attr->event_str)
1613                return sprintf(page, "%s", pmu_attr->event_str);
1614
1615        return x86_pmu.events_sysfs_show(page, config);
1616}
1617EXPORT_SYMBOL_GPL(events_sysfs_show);
1618
1619EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1620EVENT_ATTR(instructions,                INSTRUCTIONS            );
1621EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1622EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1623EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1624EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1625EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1626EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1627EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1628EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1629
1630static struct attribute *empty_attrs;
1631
1632static struct attribute *events_attr[] = {
1633        EVENT_PTR(CPU_CYCLES),
1634        EVENT_PTR(INSTRUCTIONS),
1635        EVENT_PTR(CACHE_REFERENCES),
1636        EVENT_PTR(CACHE_MISSES),
1637        EVENT_PTR(BRANCH_INSTRUCTIONS),
1638        EVENT_PTR(BRANCH_MISSES),
1639        EVENT_PTR(BUS_CYCLES),
1640        EVENT_PTR(STALLED_CYCLES_FRONTEND),
1641        EVENT_PTR(STALLED_CYCLES_BACKEND),
1642        EVENT_PTR(REF_CPU_CYCLES),
1643        NULL,
1644};
1645
1646static struct attribute_group x86_pmu_events_group = {
1647        .name = "events",
1648        .attrs = events_attr,
1649};
1650
1651ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1652{
1653        u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1654        u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1655        bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1656        bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1657        bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1658        bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1659        ssize_t ret;
1660
1661        /*
1662        * We have whole page size to spend and just little data
1663        * to write, so we can safely use sprintf.
1664        */
1665        ret = sprintf(page, "event=0x%02llx", event);
1666
1667        if (umask)
1668                ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1669
1670        if (edge)
1671                ret += sprintf(page + ret, ",edge");
1672
1673        if (pc)
1674                ret += sprintf(page + ret, ",pc");
1675
1676        if (any)
1677                ret += sprintf(page + ret, ",any");
1678
1679        if (inv)
1680                ret += sprintf(page + ret, ",inv");
1681
1682        if (cmask)
1683                ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1684
1685        ret += sprintf(page + ret, "\n");
1686
1687        return ret;
1688}
1689
1690static int __init init_hw_perf_events(void)
1691{
1692        struct x86_pmu_quirk *quirk;
1693        int err;
1694
1695        pr_info("Performance Events: ");
1696
1697        switch (boot_cpu_data.x86_vendor) {
1698        case X86_VENDOR_INTEL:
1699                err = intel_pmu_init();
1700                break;
1701        case X86_VENDOR_AMD:
1702                err = amd_pmu_init();
1703                break;
1704        default:
1705                err = -ENOTSUPP;
1706        }
1707        if (err != 0) {
1708                pr_cont("no PMU driver, software events only.\n");
1709                return 0;
1710        }
1711
1712        pmu_check_apic();
1713
1714        /* sanity check that the hardware exists or is emulated */
1715        if (!check_hw_exists())
1716                return 0;
1717
1718        pr_cont("%s PMU driver.\n", x86_pmu.name);
1719
1720        x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1721
1722        for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1723                quirk->func();
1724
1725        if (!x86_pmu.intel_ctrl)
1726                x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1727
1728        perf_events_lapic_init();
1729        register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1730
1731        unconstrained = (struct event_constraint)
1732                __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1733                                   0, x86_pmu.num_counters, 0, 0);
1734
1735        x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1736
1737        if (x86_pmu.event_attrs)
1738                x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1739
1740        if (!x86_pmu.events_sysfs_show)
1741                x86_pmu_events_group.attrs = &empty_attrs;
1742        else
1743                filter_events(x86_pmu_events_group.attrs);
1744
1745        if (x86_pmu.cpu_events) {
1746                struct attribute **tmp;
1747
1748                tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1749                if (!WARN_ON(!tmp))
1750                        x86_pmu_events_group.attrs = tmp;
1751        }
1752
1753        pr_info("... version:                %d\n",     x86_pmu.version);
1754        pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1755        pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1756        pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1757        pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1758        pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1759        pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1760
1761        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1762        perf_cpu_notifier(x86_pmu_notifier);
1763
1764        return 0;
1765}
1766early_initcall(init_hw_perf_events);
1767
1768static inline void x86_pmu_read(struct perf_event *event)
1769{
1770        x86_perf_event_update(event);
1771}
1772
1773/*
1774 * Start group events scheduling transaction
1775 * Set the flag to make pmu::enable() not perform the
1776 * schedulability test, it will be performed at commit time
1777 *
1778 * We only support PERF_PMU_TXN_ADD transactions. Save the
1779 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1780 * transactions.
1781 */
1782static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1783{
1784        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1785
1786        WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1787
1788        cpuc->txn_flags = txn_flags;
1789        if (txn_flags & ~PERF_PMU_TXN_ADD)
1790                return;
1791
1792        perf_pmu_disable(pmu);
1793        __this_cpu_write(cpu_hw_events.n_txn, 0);
1794}
1795
1796/*
1797 * Stop group events scheduling transaction
1798 * Clear the flag and pmu::enable() will perform the
1799 * schedulability test.
1800 */
1801static void x86_pmu_cancel_txn(struct pmu *pmu)
1802{
1803        unsigned int txn_flags;
1804        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1805
1806        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1807
1808        txn_flags = cpuc->txn_flags;
1809        cpuc->txn_flags = 0;
1810        if (txn_flags & ~PERF_PMU_TXN_ADD)
1811                return;
1812
1813        /*
1814         * Truncate collected array by the number of events added in this
1815         * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1816         */
1817        __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1818        __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1819        perf_pmu_enable(pmu);
1820}
1821
1822/*
1823 * Commit group events scheduling transaction
1824 * Perform the group schedulability test as a whole
1825 * Return 0 if success
1826 *
1827 * Does not cancel the transaction on failure; expects the caller to do this.
1828 */
1829static int x86_pmu_commit_txn(struct pmu *pmu)
1830{
1831        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1832        int assign[X86_PMC_IDX_MAX];
1833        int n, ret;
1834
1835        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1836
1837        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1838                cpuc->txn_flags = 0;
1839                return 0;
1840        }
1841
1842        n = cpuc->n_events;
1843
1844        if (!x86_pmu_initialized())
1845                return -EAGAIN;
1846
1847        ret = x86_pmu.schedule_events(cpuc, n, assign);
1848        if (ret)
1849                return ret;
1850
1851        /*
1852         * copy new assignment, now we know it is possible
1853         * will be used by hw_perf_enable()
1854         */
1855        memcpy(cpuc->assign, assign, n*sizeof(int));
1856
1857        cpuc->txn_flags = 0;
1858        perf_pmu_enable(pmu);
1859        return 0;
1860}
1861/*
1862 * a fake_cpuc is used to validate event groups. Due to
1863 * the extra reg logic, we need to also allocate a fake
1864 * per_core and per_cpu structure. Otherwise, group events
1865 * using extra reg may conflict without the kernel being
1866 * able to catch this when the last event gets added to
1867 * the group.
1868 */
1869static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1870{
1871        kfree(cpuc->shared_regs);
1872        kfree(cpuc);
1873}
1874
1875static struct cpu_hw_events *allocate_fake_cpuc(void)
1876{
1877        struct cpu_hw_events *cpuc;
1878        int cpu = raw_smp_processor_id();
1879
1880        cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1881        if (!cpuc)
1882                return ERR_PTR(-ENOMEM);
1883
1884        /* only needed, if we have extra_regs */
1885        if (x86_pmu.extra_regs) {
1886                cpuc->shared_regs = allocate_shared_regs(cpu);
1887                if (!cpuc->shared_regs)
1888                        goto error;
1889        }
1890        cpuc->is_fake = 1;
1891        return cpuc;
1892error:
1893        free_fake_cpuc(cpuc);
1894        return ERR_PTR(-ENOMEM);
1895}
1896
1897/*
1898 * validate that we can schedule this event
1899 */
1900static int validate_event(struct perf_event *event)
1901{
1902        struct cpu_hw_events *fake_cpuc;
1903        struct event_constraint *c;
1904        int ret = 0;
1905
1906        fake_cpuc = allocate_fake_cpuc();
1907        if (IS_ERR(fake_cpuc))
1908                return PTR_ERR(fake_cpuc);
1909
1910        c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1911
1912        if (!c || !c->weight)
1913                ret = -EINVAL;
1914
1915        if (x86_pmu.put_event_constraints)
1916                x86_pmu.put_event_constraints(fake_cpuc, event);
1917
1918        free_fake_cpuc(fake_cpuc);
1919
1920        return ret;
1921}
1922
1923/*
1924 * validate a single event group
1925 *
1926 * validation include:
1927 *      - check events are compatible which each other
1928 *      - events do not compete for the same counter
1929 *      - number of events <= number of counters
1930 *
1931 * validation ensures the group can be loaded onto the
1932 * PMU if it was the only group available.
1933 */
1934static int validate_group(struct perf_event *event)
1935{
1936        struct perf_event *leader = event->group_leader;
1937        struct cpu_hw_events *fake_cpuc;
1938        int ret = -EINVAL, n;
1939
1940        fake_cpuc = allocate_fake_cpuc();
1941        if (IS_ERR(fake_cpuc))
1942                return PTR_ERR(fake_cpuc);
1943        /*
1944         * the event is not yet connected with its
1945         * siblings therefore we must first collect
1946         * existing siblings, then add the new event
1947         * before we can simulate the scheduling
1948         */
1949        n = collect_events(fake_cpuc, leader, true);
1950        if (n < 0)
1951                goto out;
1952
1953        fake_cpuc->n_events = n;
1954        n = collect_events(fake_cpuc, event, false);
1955        if (n < 0)
1956                goto out;
1957
1958        fake_cpuc->n_events = n;
1959
1960        ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1961
1962out:
1963        free_fake_cpuc(fake_cpuc);
1964        return ret;
1965}
1966
1967static int x86_pmu_event_init(struct perf_event *event)
1968{
1969        struct pmu *tmp;
1970        int err;
1971
1972        switch (event->attr.type) {
1973        case PERF_TYPE_RAW:
1974        case PERF_TYPE_HARDWARE:
1975        case PERF_TYPE_HW_CACHE:
1976                break;
1977
1978        default:
1979                return -ENOENT;
1980        }
1981
1982        err = __x86_pmu_event_init(event);
1983        if (!err) {
1984                /*
1985                 * we temporarily connect event to its pmu
1986                 * such that validate_group() can classify
1987                 * it as an x86 event using is_x86_event()
1988                 */
1989                tmp = event->pmu;
1990                event->pmu = &pmu;
1991
1992                if (event->group_leader != event)
1993                        err = validate_group(event);
1994                else
1995                        err = validate_event(event);
1996
1997                event->pmu = tmp;
1998        }
1999        if (err) {
2000                if (event->destroy)
2001                        event->destroy(event);
2002        }
2003
2004        if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2005                event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2006
2007        return err;
2008}
2009
2010static void refresh_pce(void *ignored)
2011{
2012        if (current->mm)
2013                load_mm_cr4(current->mm);
2014}
2015
2016static void x86_pmu_event_mapped(struct perf_event *event)
2017{
2018        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2019                return;
2020
2021        if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2022                on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2023}
2024
2025static void x86_pmu_event_unmapped(struct perf_event *event)
2026{
2027        if (!current->mm)
2028                return;
2029
2030        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2031                return;
2032
2033        if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2034                on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2035}
2036
2037static int x86_pmu_event_idx(struct perf_event *event)
2038{
2039        int idx = event->hw.idx;
2040
2041        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2042                return 0;
2043
2044        if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2045                idx -= INTEL_PMC_IDX_FIXED;
2046                idx |= 1 << 30;
2047        }
2048
2049        return idx + 1;
2050}
2051
2052static ssize_t get_attr_rdpmc(struct device *cdev,
2053                              struct device_attribute *attr,
2054                              char *buf)
2055{
2056        return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2057}
2058
2059static ssize_t set_attr_rdpmc(struct device *cdev,
2060                              struct device_attribute *attr,
2061                              const char *buf, size_t count)
2062{
2063        unsigned long val;
2064        ssize_t ret;
2065
2066        ret = kstrtoul(buf, 0, &val);
2067        if (ret)
2068                return ret;
2069
2070        if (val > 2)
2071                return -EINVAL;
2072
2073        if (x86_pmu.attr_rdpmc_broken)
2074                return -ENOTSUPP;
2075
2076        if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2077                /*
2078                 * Changing into or out of always available, aka
2079                 * perf-event-bypassing mode.  This path is extremely slow,
2080                 * but only root can trigger it, so it's okay.
2081                 */
2082                if (val == 2)
2083                        static_key_slow_inc(&rdpmc_always_available);
2084                else
2085                        static_key_slow_dec(&rdpmc_always_available);
2086                on_each_cpu(refresh_pce, NULL, 1);
2087        }
2088
2089        x86_pmu.attr_rdpmc = val;
2090
2091        return count;
2092}
2093
2094static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2095
2096static struct attribute *x86_pmu_attrs[] = {
2097        &dev_attr_rdpmc.attr,
2098        NULL,
2099};
2100
2101static struct attribute_group x86_pmu_attr_group = {
2102        .attrs = x86_pmu_attrs,
2103};
2104
2105static const struct attribute_group *x86_pmu_attr_groups[] = {
2106        &x86_pmu_attr_group,
2107        &x86_pmu_format_group,
2108        &x86_pmu_events_group,
2109        NULL,
2110};
2111
2112static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2113{
2114        if (x86_pmu.sched_task)
2115                x86_pmu.sched_task(ctx, sched_in);
2116}
2117
2118void perf_check_microcode(void)
2119{
2120        if (x86_pmu.check_microcode)
2121                x86_pmu.check_microcode();
2122}
2123EXPORT_SYMBOL_GPL(perf_check_microcode);
2124
2125static struct pmu pmu = {
2126        .pmu_enable             = x86_pmu_enable,
2127        .pmu_disable            = x86_pmu_disable,
2128
2129        .attr_groups            = x86_pmu_attr_groups,
2130
2131        .event_init             = x86_pmu_event_init,
2132
2133        .event_mapped           = x86_pmu_event_mapped,
2134        .event_unmapped         = x86_pmu_event_unmapped,
2135
2136        .add                    = x86_pmu_add,
2137        .del                    = x86_pmu_del,
2138        .start                  = x86_pmu_start,
2139        .stop                   = x86_pmu_stop,
2140        .read                   = x86_pmu_read,
2141
2142        .start_txn              = x86_pmu_start_txn,
2143        .cancel_txn             = x86_pmu_cancel_txn,
2144        .commit_txn             = x86_pmu_commit_txn,
2145
2146        .event_idx              = x86_pmu_event_idx,
2147        .sched_task             = x86_pmu_sched_task,
2148        .task_ctx_size          = sizeof(struct x86_perf_task_context),
2149};
2150
2151void arch_perf_update_userpage(struct perf_event *event,
2152                               struct perf_event_mmap_page *userpg, u64 now)
2153{
2154        struct cyc2ns_data *data;
2155
2156        userpg->cap_user_time = 0;
2157        userpg->cap_user_time_zero = 0;
2158        userpg->cap_user_rdpmc =
2159                !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2160        userpg->pmc_width = x86_pmu.cntval_bits;
2161
2162        if (!sched_clock_stable())
2163                return;
2164
2165        data = cyc2ns_read_begin();
2166
2167        /*
2168         * Internal timekeeping for enabled/running/stopped times
2169         * is always in the local_clock domain.
2170         */
2171        userpg->cap_user_time = 1;
2172        userpg->time_mult = data->cyc2ns_mul;
2173        userpg->time_shift = data->cyc2ns_shift;
2174        userpg->time_offset = data->cyc2ns_offset - now;
2175
2176        /*
2177         * cap_user_time_zero doesn't make sense when we're using a different
2178         * time base for the records.
2179         */
2180        if (event->clock == &local_clock) {
2181                userpg->cap_user_time_zero = 1;
2182                userpg->time_zero = data->cyc2ns_offset;
2183        }
2184
2185        cyc2ns_read_end(data);
2186}
2187
2188/*
2189 * callchain support
2190 */
2191
2192static int backtrace_stack(void *data, char *name)
2193{
2194        return 0;
2195}
2196
2197static int backtrace_address(void *data, unsigned long addr, int reliable)
2198{
2199        struct perf_callchain_entry *entry = data;
2200
2201        return perf_callchain_store(entry, addr);
2202}
2203
2204static const struct stacktrace_ops backtrace_ops = {
2205        .stack                  = backtrace_stack,
2206        .address                = backtrace_address,
2207        .walk_stack             = print_context_stack_bp,
2208};
2209
2210void
2211perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2212{
2213        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2214                /* TODO: We don't support guest os callchain now */
2215                return;
2216        }
2217
2218        perf_callchain_store(entry, regs->ip);
2219
2220        dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2221}
2222
2223static inline int
2224valid_user_frame(const void __user *fp, unsigned long size)
2225{
2226        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2227}
2228
2229static unsigned long get_segment_base(unsigned int segment)
2230{
2231        struct desc_struct *desc;
2232        int idx = segment >> 3;
2233
2234        if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2235#ifdef CONFIG_MODIFY_LDT_SYSCALL
2236                struct ldt_struct *ldt;
2237
2238                if (idx > LDT_ENTRIES)
2239                        return 0;
2240
2241                /* IRQs are off, so this synchronizes with smp_store_release */
2242                ldt = lockless_dereference(current->active_mm->context.ldt);
2243                if (!ldt || idx > ldt->size)
2244                        return 0;
2245
2246                desc = &ldt->entries[idx];
2247#else
2248                return 0;
2249#endif
2250        } else {
2251                if (idx > GDT_ENTRIES)
2252                        return 0;
2253
2254                desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2255        }
2256
2257        return get_desc_base(desc);
2258}
2259
2260#ifdef CONFIG_IA32_EMULATION
2261
2262#include <asm/compat.h>
2263
2264static inline int
2265perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2266{
2267        /* 32-bit process in 64-bit kernel. */
2268        unsigned long ss_base, cs_base;
2269        struct stack_frame_ia32 frame;
2270        const void __user *fp;
2271
2272        if (!test_thread_flag(TIF_IA32))
2273                return 0;
2274
2275        cs_base = get_segment_base(regs->cs);
2276        ss_base = get_segment_base(regs->ss);
2277
2278        fp = compat_ptr(ss_base + regs->bp);
2279        pagefault_disable();
2280        while (entry->nr < PERF_MAX_STACK_DEPTH) {
2281                unsigned long bytes;
2282                frame.next_frame     = 0;
2283                frame.return_address = 0;
2284
2285                if (!access_ok(VERIFY_READ, fp, 8))
2286                        break;
2287
2288                bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2289                if (bytes != 0)
2290                        break;
2291                bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2292                if (bytes != 0)
2293                        break;
2294
2295                if (!valid_user_frame(fp, sizeof(frame)))
2296                        break;
2297
2298                perf_callchain_store(entry, cs_base + frame.return_address);
2299                fp = compat_ptr(ss_base + frame.next_frame);
2300        }
2301        pagefault_enable();
2302        return 1;
2303}
2304#else
2305static inline int
2306perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2307{
2308    return 0;
2309}
2310#endif
2311
2312void
2313perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2314{
2315        struct stack_frame frame;
2316        const void __user *fp;
2317
2318        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2319                /* TODO: We don't support guest os callchain now */
2320                return;
2321        }
2322
2323        /*
2324         * We don't know what to do with VM86 stacks.. ignore them for now.
2325         */
2326        if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2327                return;
2328
2329        fp = (void __user *)regs->bp;
2330
2331        perf_callchain_store(entry, regs->ip);
2332
2333        if (!current->mm)
2334                return;
2335
2336        if (perf_callchain_user32(regs, entry))
2337                return;
2338
2339        pagefault_disable();
2340        while (entry->nr < PERF_MAX_STACK_DEPTH) {
2341                unsigned long bytes;
2342                frame.next_frame             = NULL;
2343                frame.return_address = 0;
2344
2345                if (!access_ok(VERIFY_READ, fp, 16))
2346                        break;
2347
2348                bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2349                if (bytes != 0)
2350                        break;
2351                bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2352                if (bytes != 0)
2353                        break;
2354
2355                if (!valid_user_frame(fp, sizeof(frame)))
2356                        break;
2357
2358                perf_callchain_store(entry, frame.return_address);
2359                fp = (void __user *)frame.next_frame;
2360        }
2361        pagefault_enable();
2362}
2363
2364/*
2365 * Deal with code segment offsets for the various execution modes:
2366 *
2367 *   VM86 - the good olde 16 bit days, where the linear address is
2368 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2369 *
2370 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2371 *          to figure out what the 32bit base address is.
2372 *
2373 *    X32 - has TIF_X32 set, but is running in x86_64
2374 *
2375 * X86_64 - CS,DS,SS,ES are all zero based.
2376 */
2377static unsigned long code_segment_base(struct pt_regs *regs)
2378{
2379        /*
2380         * For IA32 we look at the GDT/LDT segment base to convert the
2381         * effective IP to a linear address.
2382         */
2383
2384#ifdef CONFIG_X86_32
2385        /*
2386         * If we are in VM86 mode, add the segment offset to convert to a
2387         * linear address.
2388         */
2389        if (regs->flags & X86_VM_MASK)
2390                return 0x10 * regs->cs;
2391
2392        if (user_mode(regs) && regs->cs != __USER_CS)
2393                return get_segment_base(regs->cs);
2394#else
2395        if (user_mode(regs) && !user_64bit_mode(regs) &&
2396            regs->cs != __USER32_CS)
2397                return get_segment_base(regs->cs);
2398#endif
2399        return 0;
2400}
2401
2402unsigned long perf_instruction_pointer(struct pt_regs *regs)
2403{
2404        if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2405                return perf_guest_cbs->get_guest_ip();
2406
2407        return regs->ip + code_segment_base(regs);
2408}
2409
2410unsigned long perf_misc_flags(struct pt_regs *regs)
2411{
2412        int misc = 0;
2413
2414        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2415                if (perf_guest_cbs->is_user_mode())
2416                        misc |= PERF_RECORD_MISC_GUEST_USER;
2417                else
2418                        misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2419        } else {
2420                if (user_mode(regs))
2421                        misc |= PERF_RECORD_MISC_USER;
2422                else
2423                        misc |= PERF_RECORD_MISC_KERNEL;
2424        }
2425
2426        if (regs->flags & PERF_EFLAGS_EXACT)
2427                misc |= PERF_RECORD_MISC_EXACT_IP;
2428
2429        return misc;
2430}
2431
2432void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2433{
2434        cap->version            = x86_pmu.version;
2435        cap->num_counters_gp    = x86_pmu.num_counters;
2436        cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2437        cap->bit_width_gp       = x86_pmu.cntval_bits;
2438        cap->bit_width_fixed    = x86_pmu.cntval_bits;
2439        cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2440        cap->events_mask_len    = x86_pmu.events_mask_len;
2441}
2442EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2443