linux/arch/x86/kernel/vm86_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1994  Linus Torvalds
   3 *
   4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
   5 *                stack - Manfred Spraul <manfred@colorfullife.com>
   6 *
   7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
   8 *                them correctly. Now the emulation will be in a
   9 *                consistent state after stackfaults - Kasper Dupont
  10 *                <kasperd@daimi.au.dk>
  11 *
  12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13 *                <kasperd@daimi.au.dk>
  14 *
  15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16 *                caused by Kasper Dupont's changes - Stas Sergeev
  17 *
  18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19 *                Kasper Dupont <kasperd@daimi.au.dk>
  20 *
  21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22 *                Kasper Dupont <kasperd@daimi.au.dk>
  23 *
  24 *   9 apr 2002 - Changed stack access macros to jump to a label
  25 *                instead of returning to userspace. This simplifies
  26 *                do_int, and is needed by handle_vm6_fault. Kasper
  27 *                Dupont <kasperd@daimi.au.dk>
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/capability.h>
  34#include <linux/errno.h>
  35#include <linux/interrupt.h>
  36#include <linux/syscalls.h>
  37#include <linux/sched.h>
  38#include <linux/kernel.h>
  39#include <linux/signal.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/smp.h>
  43#include <linux/highmem.h>
  44#include <linux/ptrace.h>
  45#include <linux/audit.h>
  46#include <linux/stddef.h>
  47#include <linux/slab.h>
  48#include <linux/security.h>
  49
  50#include <asm/uaccess.h>
  51#include <asm/io.h>
  52#include <asm/tlbflush.h>
  53#include <asm/irq.h>
  54#include <asm/traps.h>
  55#include <asm/vm86.h>
  56
  57/*
  58 * Known problems:
  59 *
  60 * Interrupt handling is not guaranteed:
  61 * - a real x86 will disable all interrupts for one instruction
  62 *   after a "mov ss,xx" to make stack handling atomic even without
  63 *   the 'lss' instruction. We can't guarantee this in v86 mode,
  64 *   as the next instruction might result in a page fault or similar.
  65 * - a real x86 will have interrupts disabled for one instruction
  66 *   past the 'sti' that enables them. We don't bother with all the
  67 *   details yet.
  68 *
  69 * Let's hope these problems do not actually matter for anything.
  70 */
  71
  72
  73/*
  74 * 8- and 16-bit register defines..
  75 */
  76#define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
  77#define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
  78#define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
  79#define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
  80
  81/*
  82 * virtual flags (16 and 32-bit versions)
  83 */
  84#define VFLAGS  (*(unsigned short *)&(current->thread.vm86->veflags))
  85#define VEFLAGS (current->thread.vm86->veflags)
  86
  87#define set_flags(X, new, mask) \
  88((X) = ((X) & ~(mask)) | ((new) & (mask)))
  89
  90#define SAFE_MASK       (0xDD5)
  91#define RETURN_MASK     (0xDFF)
  92
  93void save_v86_state(struct kernel_vm86_regs *regs, int retval)
  94{
  95        struct tss_struct *tss;
  96        struct task_struct *tsk = current;
  97        struct vm86plus_struct __user *user;
  98        struct vm86 *vm86 = current->thread.vm86;
  99        long err = 0;
 100
 101        /*
 102         * This gets called from entry.S with interrupts disabled, but
 103         * from process context. Enable interrupts here, before trying
 104         * to access user space.
 105         */
 106        local_irq_enable();
 107
 108        if (!vm86 || !vm86->user_vm86) {
 109                pr_alert("no user_vm86: BAD\n");
 110                do_exit(SIGSEGV);
 111        }
 112        set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
 113        user = vm86->user_vm86;
 114
 115        if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
 116                       sizeof(struct vm86plus_struct) :
 117                       sizeof(struct vm86_struct))) {
 118                pr_alert("could not access userspace vm86 info\n");
 119                do_exit(SIGSEGV);
 120        }
 121
 122        put_user_try {
 123                put_user_ex(regs->pt.bx, &user->regs.ebx);
 124                put_user_ex(regs->pt.cx, &user->regs.ecx);
 125                put_user_ex(regs->pt.dx, &user->regs.edx);
 126                put_user_ex(regs->pt.si, &user->regs.esi);
 127                put_user_ex(regs->pt.di, &user->regs.edi);
 128                put_user_ex(regs->pt.bp, &user->regs.ebp);
 129                put_user_ex(regs->pt.ax, &user->regs.eax);
 130                put_user_ex(regs->pt.ip, &user->regs.eip);
 131                put_user_ex(regs->pt.cs, &user->regs.cs);
 132                put_user_ex(regs->pt.flags, &user->regs.eflags);
 133                put_user_ex(regs->pt.sp, &user->regs.esp);
 134                put_user_ex(regs->pt.ss, &user->regs.ss);
 135                put_user_ex(regs->es, &user->regs.es);
 136                put_user_ex(regs->ds, &user->regs.ds);
 137                put_user_ex(regs->fs, &user->regs.fs);
 138                put_user_ex(regs->gs, &user->regs.gs);
 139
 140                put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
 141        } put_user_catch(err);
 142        if (err) {
 143                pr_alert("could not access userspace vm86 info\n");
 144                do_exit(SIGSEGV);
 145        }
 146
 147        tss = &per_cpu(cpu_tss, get_cpu());
 148        tsk->thread.sp0 = vm86->saved_sp0;
 149        tsk->thread.sysenter_cs = __KERNEL_CS;
 150        load_sp0(tss, &tsk->thread);
 151        vm86->saved_sp0 = 0;
 152        put_cpu();
 153
 154        memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
 155
 156        lazy_load_gs(vm86->regs32.gs);
 157
 158        regs->pt.ax = retval;
 159}
 160
 161static void mark_screen_rdonly(struct mm_struct *mm)
 162{
 163        pgd_t *pgd;
 164        pud_t *pud;
 165        pmd_t *pmd;
 166        pte_t *pte;
 167        spinlock_t *ptl;
 168        int i;
 169
 170        down_write(&mm->mmap_sem);
 171        pgd = pgd_offset(mm, 0xA0000);
 172        if (pgd_none_or_clear_bad(pgd))
 173                goto out;
 174        pud = pud_offset(pgd, 0xA0000);
 175        if (pud_none_or_clear_bad(pud))
 176                goto out;
 177        pmd = pmd_offset(pud, 0xA0000);
 178
 179        if (pmd_trans_huge(*pmd)) {
 180                struct vm_area_struct *vma = find_vma(mm, 0xA0000);
 181                split_huge_pmd(vma, pmd, 0xA0000);
 182        }
 183        if (pmd_none_or_clear_bad(pmd))
 184                goto out;
 185        pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
 186        for (i = 0; i < 32; i++) {
 187                if (pte_present(*pte))
 188                        set_pte(pte, pte_wrprotect(*pte));
 189                pte++;
 190        }
 191        pte_unmap_unlock(pte, ptl);
 192out:
 193        up_write(&mm->mmap_sem);
 194        flush_tlb();
 195}
 196
 197
 198
 199static int do_vm86_irq_handling(int subfunction, int irqnumber);
 200static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
 201
 202SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
 203{
 204        return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
 205}
 206
 207
 208SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
 209{
 210        switch (cmd) {
 211        case VM86_REQUEST_IRQ:
 212        case VM86_FREE_IRQ:
 213        case VM86_GET_IRQ_BITS:
 214        case VM86_GET_AND_RESET_IRQ:
 215                return do_vm86_irq_handling(cmd, (int)arg);
 216        case VM86_PLUS_INSTALL_CHECK:
 217                /*
 218                 * NOTE: on old vm86 stuff this will return the error
 219                 *  from access_ok(), because the subfunction is
 220                 *  interpreted as (invalid) address to vm86_struct.
 221                 *  So the installation check works.
 222                 */
 223                return 0;
 224        }
 225
 226        /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
 227        return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
 228}
 229
 230
 231static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
 232{
 233        struct tss_struct *tss;
 234        struct task_struct *tsk = current;
 235        struct vm86 *vm86 = tsk->thread.vm86;
 236        struct kernel_vm86_regs vm86regs;
 237        struct pt_regs *regs = current_pt_regs();
 238        unsigned long err = 0;
 239
 240        err = security_mmap_addr(0);
 241        if (err) {
 242                /*
 243                 * vm86 cannot virtualize the address space, so vm86 users
 244                 * need to manage the low 1MB themselves using mmap.  Given
 245                 * that BIOS places important data in the first page, vm86
 246                 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
 247                 * for example, won't even bother trying to use vm86 if it
 248                 * can't map a page at virtual address 0.
 249                 *
 250                 * To reduce the available kernel attack surface, simply
 251                 * disallow vm86(old) for users who cannot mmap at va 0.
 252                 *
 253                 * The implementation of security_mmap_addr will allow
 254                 * suitably privileged users to map va 0 even if
 255                 * vm.mmap_min_addr is set above 0, and we want this
 256                 * behavior for vm86 as well, as it ensures that legacy
 257                 * tools like vbetool will not fail just because of
 258                 * vm.mmap_min_addr.
 259                 */
 260                pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
 261                             current->comm, task_pid_nr(current),
 262                             from_kuid_munged(&init_user_ns, current_uid()));
 263                return -EPERM;
 264        }
 265
 266        if (!vm86) {
 267                if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
 268                        return -ENOMEM;
 269                tsk->thread.vm86 = vm86;
 270        }
 271        if (vm86->saved_sp0)
 272                return -EPERM;
 273
 274        if (!access_ok(VERIFY_READ, user_vm86, plus ?
 275                       sizeof(struct vm86_struct) :
 276                       sizeof(struct vm86plus_struct)))
 277                return -EFAULT;
 278
 279        memset(&vm86regs, 0, sizeof(vm86regs));
 280        get_user_try {
 281                unsigned short seg;
 282                get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
 283                get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
 284                get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
 285                get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
 286                get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
 287                get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
 288                get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
 289                get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
 290                get_user_ex(seg, &user_vm86->regs.cs);
 291                vm86regs.pt.cs = seg;
 292                get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
 293                get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
 294                get_user_ex(seg, &user_vm86->regs.ss);
 295                vm86regs.pt.ss = seg;
 296                get_user_ex(vm86regs.es, &user_vm86->regs.es);
 297                get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
 298                get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
 299                get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
 300
 301                get_user_ex(vm86->flags, &user_vm86->flags);
 302                get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
 303                get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
 304        } get_user_catch(err);
 305        if (err)
 306                return err;
 307
 308        if (copy_from_user(&vm86->int_revectored,
 309                           &user_vm86->int_revectored,
 310                           sizeof(struct revectored_struct)))
 311                return -EFAULT;
 312        if (copy_from_user(&vm86->int21_revectored,
 313                           &user_vm86->int21_revectored,
 314                           sizeof(struct revectored_struct)))
 315                return -EFAULT;
 316        if (plus) {
 317                if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
 318                                   sizeof(struct vm86plus_info_struct)))
 319                        return -EFAULT;
 320                vm86->vm86plus.is_vm86pus = 1;
 321        } else
 322                memset(&vm86->vm86plus, 0,
 323                       sizeof(struct vm86plus_info_struct));
 324
 325        memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
 326        vm86->user_vm86 = user_vm86;
 327
 328/*
 329 * The flags register is also special: we cannot trust that the user
 330 * has set it up safely, so this makes sure interrupt etc flags are
 331 * inherited from protected mode.
 332 */
 333        VEFLAGS = vm86regs.pt.flags;
 334        vm86regs.pt.flags &= SAFE_MASK;
 335        vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
 336        vm86regs.pt.flags |= X86_VM_MASK;
 337
 338        vm86regs.pt.orig_ax = regs->orig_ax;
 339
 340        switch (vm86->cpu_type) {
 341        case CPU_286:
 342                vm86->veflags_mask = 0;
 343                break;
 344        case CPU_386:
 345                vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 346                break;
 347        case CPU_486:
 348                vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 349                break;
 350        default:
 351                vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 352                break;
 353        }
 354
 355/*
 356 * Save old state
 357 */
 358        vm86->saved_sp0 = tsk->thread.sp0;
 359        lazy_save_gs(vm86->regs32.gs);
 360
 361        tss = &per_cpu(cpu_tss, get_cpu());
 362        /* make room for real-mode segments */
 363        tsk->thread.sp0 += 16;
 364
 365        if (static_cpu_has(X86_FEATURE_SEP))
 366                tsk->thread.sysenter_cs = 0;
 367
 368        load_sp0(tss, &tsk->thread);
 369        put_cpu();
 370
 371        if (vm86->flags & VM86_SCREEN_BITMAP)
 372                mark_screen_rdonly(tsk->mm);
 373
 374        memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
 375        force_iret();
 376        return regs->ax;
 377}
 378
 379static inline void set_IF(struct kernel_vm86_regs *regs)
 380{
 381        VEFLAGS |= X86_EFLAGS_VIF;
 382}
 383
 384static inline void clear_IF(struct kernel_vm86_regs *regs)
 385{
 386        VEFLAGS &= ~X86_EFLAGS_VIF;
 387}
 388
 389static inline void clear_TF(struct kernel_vm86_regs *regs)
 390{
 391        regs->pt.flags &= ~X86_EFLAGS_TF;
 392}
 393
 394static inline void clear_AC(struct kernel_vm86_regs *regs)
 395{
 396        regs->pt.flags &= ~X86_EFLAGS_AC;
 397}
 398
 399/*
 400 * It is correct to call set_IF(regs) from the set_vflags_*
 401 * functions. However someone forgot to call clear_IF(regs)
 402 * in the opposite case.
 403 * After the command sequence CLI PUSHF STI POPF you should
 404 * end up with interrupts disabled, but you ended up with
 405 * interrupts enabled.
 406 *  ( I was testing my own changes, but the only bug I
 407 *    could find was in a function I had not changed. )
 408 * [KD]
 409 */
 410
 411static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
 412{
 413        set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
 414        set_flags(regs->pt.flags, flags, SAFE_MASK);
 415        if (flags & X86_EFLAGS_IF)
 416                set_IF(regs);
 417        else
 418                clear_IF(regs);
 419}
 420
 421static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
 422{
 423        set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
 424        set_flags(regs->pt.flags, flags, SAFE_MASK);
 425        if (flags & X86_EFLAGS_IF)
 426                set_IF(regs);
 427        else
 428                clear_IF(regs);
 429}
 430
 431static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
 432{
 433        unsigned long flags = regs->pt.flags & RETURN_MASK;
 434
 435        if (VEFLAGS & X86_EFLAGS_VIF)
 436                flags |= X86_EFLAGS_IF;
 437        flags |= X86_EFLAGS_IOPL;
 438        return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
 439}
 440
 441static inline int is_revectored(int nr, struct revectored_struct *bitmap)
 442{
 443        __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
 444                :"=r" (nr)
 445                :"m" (*bitmap), "r" (nr));
 446        return nr;
 447}
 448
 449#define val_byte(val, n) (((__u8 *)&val)[n])
 450
 451#define pushb(base, ptr, val, err_label) \
 452        do { \
 453                __u8 __val = val; \
 454                ptr--; \
 455                if (put_user(__val, base + ptr) < 0) \
 456                        goto err_label; \
 457        } while (0)
 458
 459#define pushw(base, ptr, val, err_label) \
 460        do { \
 461                __u16 __val = val; \
 462                ptr--; \
 463                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 464                        goto err_label; \
 465                ptr--; \
 466                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 467                        goto err_label; \
 468        } while (0)
 469
 470#define pushl(base, ptr, val, err_label) \
 471        do { \
 472                __u32 __val = val; \
 473                ptr--; \
 474                if (put_user(val_byte(__val, 3), base + ptr) < 0) \
 475                        goto err_label; \
 476                ptr--; \
 477                if (put_user(val_byte(__val, 2), base + ptr) < 0) \
 478                        goto err_label; \
 479                ptr--; \
 480                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 481                        goto err_label; \
 482                ptr--; \
 483                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 484                        goto err_label; \
 485        } while (0)
 486
 487#define popb(base, ptr, err_label) \
 488        ({ \
 489                __u8 __res; \
 490                if (get_user(__res, base + ptr) < 0) \
 491                        goto err_label; \
 492                ptr++; \
 493                __res; \
 494        })
 495
 496#define popw(base, ptr, err_label) \
 497        ({ \
 498                __u16 __res; \
 499                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 500                        goto err_label; \
 501                ptr++; \
 502                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 503                        goto err_label; \
 504                ptr++; \
 505                __res; \
 506        })
 507
 508#define popl(base, ptr, err_label) \
 509        ({ \
 510                __u32 __res; \
 511                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 512                        goto err_label; \
 513                ptr++; \
 514                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 515                        goto err_label; \
 516                ptr++; \
 517                if (get_user(val_byte(__res, 2), base + ptr) < 0) \
 518                        goto err_label; \
 519                ptr++; \
 520                if (get_user(val_byte(__res, 3), base + ptr) < 0) \
 521                        goto err_label; \
 522                ptr++; \
 523                __res; \
 524        })
 525
 526/* There are so many possible reasons for this function to return
 527 * VM86_INTx, so adding another doesn't bother me. We can expect
 528 * userspace programs to be able to handle it. (Getting a problem
 529 * in userspace is always better than an Oops anyway.) [KD]
 530 */
 531static void do_int(struct kernel_vm86_regs *regs, int i,
 532    unsigned char __user *ssp, unsigned short sp)
 533{
 534        unsigned long __user *intr_ptr;
 535        unsigned long segoffs;
 536        struct vm86 *vm86 = current->thread.vm86;
 537
 538        if (regs->pt.cs == BIOSSEG)
 539                goto cannot_handle;
 540        if (is_revectored(i, &vm86->int_revectored))
 541                goto cannot_handle;
 542        if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
 543                goto cannot_handle;
 544        intr_ptr = (unsigned long __user *) (i << 2);
 545        if (get_user(segoffs, intr_ptr))
 546                goto cannot_handle;
 547        if ((segoffs >> 16) == BIOSSEG)
 548                goto cannot_handle;
 549        pushw(ssp, sp, get_vflags(regs), cannot_handle);
 550        pushw(ssp, sp, regs->pt.cs, cannot_handle);
 551        pushw(ssp, sp, IP(regs), cannot_handle);
 552        regs->pt.cs = segoffs >> 16;
 553        SP(regs) -= 6;
 554        IP(regs) = segoffs & 0xffff;
 555        clear_TF(regs);
 556        clear_IF(regs);
 557        clear_AC(regs);
 558        return;
 559
 560cannot_handle:
 561        save_v86_state(regs, VM86_INTx + (i << 8));
 562}
 563
 564int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
 565{
 566        struct vm86 *vm86 = current->thread.vm86;
 567
 568        if (vm86->vm86plus.is_vm86pus) {
 569                if ((trapno == 3) || (trapno == 1)) {
 570                        save_v86_state(regs, VM86_TRAP + (trapno << 8));
 571                        return 0;
 572                }
 573                do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
 574                return 0;
 575        }
 576        if (trapno != 1)
 577                return 1; /* we let this handle by the calling routine */
 578        current->thread.trap_nr = trapno;
 579        current->thread.error_code = error_code;
 580        force_sig(SIGTRAP, current);
 581        return 0;
 582}
 583
 584void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
 585{
 586        unsigned char opcode;
 587        unsigned char __user *csp;
 588        unsigned char __user *ssp;
 589        unsigned short ip, sp, orig_flags;
 590        int data32, pref_done;
 591        struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
 592
 593#define CHECK_IF_IN_TRAP \
 594        if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
 595                newflags |= X86_EFLAGS_TF
 596
 597        orig_flags = *(unsigned short *)&regs->pt.flags;
 598
 599        csp = (unsigned char __user *) (regs->pt.cs << 4);
 600        ssp = (unsigned char __user *) (regs->pt.ss << 4);
 601        sp = SP(regs);
 602        ip = IP(regs);
 603
 604        data32 = 0;
 605        pref_done = 0;
 606        do {
 607                switch (opcode = popb(csp, ip, simulate_sigsegv)) {
 608                case 0x66:      /* 32-bit data */     data32 = 1; break;
 609                case 0x67:      /* 32-bit address */  break;
 610                case 0x2e:      /* CS */              break;
 611                case 0x3e:      /* DS */              break;
 612                case 0x26:      /* ES */              break;
 613                case 0x36:      /* SS */              break;
 614                case 0x65:      /* GS */              break;
 615                case 0x64:      /* FS */              break;
 616                case 0xf2:      /* repnz */       break;
 617                case 0xf3:      /* rep */             break;
 618                default: pref_done = 1;
 619                }
 620        } while (!pref_done);
 621
 622        switch (opcode) {
 623
 624        /* pushf */
 625        case 0x9c:
 626                if (data32) {
 627                        pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
 628                        SP(regs) -= 4;
 629                } else {
 630                        pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
 631                        SP(regs) -= 2;
 632                }
 633                IP(regs) = ip;
 634                goto vm86_fault_return;
 635
 636        /* popf */
 637        case 0x9d:
 638                {
 639                unsigned long newflags;
 640                if (data32) {
 641                        newflags = popl(ssp, sp, simulate_sigsegv);
 642                        SP(regs) += 4;
 643                } else {
 644                        newflags = popw(ssp, sp, simulate_sigsegv);
 645                        SP(regs) += 2;
 646                }
 647                IP(regs) = ip;
 648                CHECK_IF_IN_TRAP;
 649                if (data32)
 650                        set_vflags_long(newflags, regs);
 651                else
 652                        set_vflags_short(newflags, regs);
 653
 654                goto check_vip;
 655                }
 656
 657        /* int xx */
 658        case 0xcd: {
 659                int intno = popb(csp, ip, simulate_sigsegv);
 660                IP(regs) = ip;
 661                if (vmpi->vm86dbg_active) {
 662                        if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
 663                                save_v86_state(regs, VM86_INTx + (intno << 8));
 664                                return;
 665                        }
 666                }
 667                do_int(regs, intno, ssp, sp);
 668                return;
 669        }
 670
 671        /* iret */
 672        case 0xcf:
 673                {
 674                unsigned long newip;
 675                unsigned long newcs;
 676                unsigned long newflags;
 677                if (data32) {
 678                        newip = popl(ssp, sp, simulate_sigsegv);
 679                        newcs = popl(ssp, sp, simulate_sigsegv);
 680                        newflags = popl(ssp, sp, simulate_sigsegv);
 681                        SP(regs) += 12;
 682                } else {
 683                        newip = popw(ssp, sp, simulate_sigsegv);
 684                        newcs = popw(ssp, sp, simulate_sigsegv);
 685                        newflags = popw(ssp, sp, simulate_sigsegv);
 686                        SP(regs) += 6;
 687                }
 688                IP(regs) = newip;
 689                regs->pt.cs = newcs;
 690                CHECK_IF_IN_TRAP;
 691                if (data32) {
 692                        set_vflags_long(newflags, regs);
 693                } else {
 694                        set_vflags_short(newflags, regs);
 695                }
 696                goto check_vip;
 697                }
 698
 699        /* cli */
 700        case 0xfa:
 701                IP(regs) = ip;
 702                clear_IF(regs);
 703                goto vm86_fault_return;
 704
 705        /* sti */
 706        /*
 707         * Damn. This is incorrect: the 'sti' instruction should actually
 708         * enable interrupts after the /next/ instruction. Not good.
 709         *
 710         * Probably needs some horsing around with the TF flag. Aiee..
 711         */
 712        case 0xfb:
 713                IP(regs) = ip;
 714                set_IF(regs);
 715                goto check_vip;
 716
 717        default:
 718                save_v86_state(regs, VM86_UNKNOWN);
 719        }
 720
 721        return;
 722
 723check_vip:
 724        if (VEFLAGS & X86_EFLAGS_VIP) {
 725                save_v86_state(regs, VM86_STI);
 726                return;
 727        }
 728
 729vm86_fault_return:
 730        if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
 731                save_v86_state(regs, VM86_PICRETURN);
 732                return;
 733        }
 734        if (orig_flags & X86_EFLAGS_TF)
 735                handle_vm86_trap(regs, 0, X86_TRAP_DB);
 736        return;
 737
 738simulate_sigsegv:
 739        /* FIXME: After a long discussion with Stas we finally
 740         *        agreed, that this is wrong. Here we should
 741         *        really send a SIGSEGV to the user program.
 742         *        But how do we create the correct context? We
 743         *        are inside a general protection fault handler
 744         *        and has just returned from a page fault handler.
 745         *        The correct context for the signal handler
 746         *        should be a mixture of the two, but how do we
 747         *        get the information? [KD]
 748         */
 749        save_v86_state(regs, VM86_UNKNOWN);
 750}
 751
 752/* ---------------- vm86 special IRQ passing stuff ----------------- */
 753
 754#define VM86_IRQNAME            "vm86irq"
 755
 756static struct vm86_irqs {
 757        struct task_struct *tsk;
 758        int sig;
 759} vm86_irqs[16];
 760
 761static DEFINE_SPINLOCK(irqbits_lock);
 762static int irqbits;
 763
 764#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
 765        | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
 766        | (1 << SIGUNUSED))
 767
 768static irqreturn_t irq_handler(int intno, void *dev_id)
 769{
 770        int irq_bit;
 771        unsigned long flags;
 772
 773        spin_lock_irqsave(&irqbits_lock, flags);
 774        irq_bit = 1 << intno;
 775        if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
 776                goto out;
 777        irqbits |= irq_bit;
 778        if (vm86_irqs[intno].sig)
 779                send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
 780        /*
 781         * IRQ will be re-enabled when user asks for the irq (whether
 782         * polling or as a result of the signal)
 783         */
 784        disable_irq_nosync(intno);
 785        spin_unlock_irqrestore(&irqbits_lock, flags);
 786        return IRQ_HANDLED;
 787
 788out:
 789        spin_unlock_irqrestore(&irqbits_lock, flags);
 790        return IRQ_NONE;
 791}
 792
 793static inline void free_vm86_irq(int irqnumber)
 794{
 795        unsigned long flags;
 796
 797        free_irq(irqnumber, NULL);
 798        vm86_irqs[irqnumber].tsk = NULL;
 799
 800        spin_lock_irqsave(&irqbits_lock, flags);
 801        irqbits &= ~(1 << irqnumber);
 802        spin_unlock_irqrestore(&irqbits_lock, flags);
 803}
 804
 805void release_vm86_irqs(struct task_struct *task)
 806{
 807        int i;
 808        for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
 809            if (vm86_irqs[i].tsk == task)
 810                free_vm86_irq(i);
 811}
 812
 813static inline int get_and_reset_irq(int irqnumber)
 814{
 815        int bit;
 816        unsigned long flags;
 817        int ret = 0;
 818
 819        if (invalid_vm86_irq(irqnumber)) return 0;
 820        if (vm86_irqs[irqnumber].tsk != current) return 0;
 821        spin_lock_irqsave(&irqbits_lock, flags);
 822        bit = irqbits & (1 << irqnumber);
 823        irqbits &= ~bit;
 824        if (bit) {
 825                enable_irq(irqnumber);
 826                ret = 1;
 827        }
 828
 829        spin_unlock_irqrestore(&irqbits_lock, flags);
 830        return ret;
 831}
 832
 833
 834static int do_vm86_irq_handling(int subfunction, int irqnumber)
 835{
 836        int ret;
 837        switch (subfunction) {
 838                case VM86_GET_AND_RESET_IRQ: {
 839                        return get_and_reset_irq(irqnumber);
 840                }
 841                case VM86_GET_IRQ_BITS: {
 842                        return irqbits;
 843                }
 844                case VM86_REQUEST_IRQ: {
 845                        int sig = irqnumber >> 8;
 846                        int irq = irqnumber & 255;
 847                        if (!capable(CAP_SYS_ADMIN)) return -EPERM;
 848                        if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
 849                        if (invalid_vm86_irq(irq)) return -EPERM;
 850                        if (vm86_irqs[irq].tsk) return -EPERM;
 851                        ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
 852                        if (ret) return ret;
 853                        vm86_irqs[irq].sig = sig;
 854                        vm86_irqs[irq].tsk = current;
 855                        return irq;
 856                }
 857                case  VM86_FREE_IRQ: {
 858                        if (invalid_vm86_irq(irqnumber)) return -EPERM;
 859                        if (!vm86_irqs[irqnumber].tsk) return 0;
 860                        if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
 861                        free_vm86_irq(irqnumber);
 862                        return 0;
 863                }
 864        }
 865        return -EINVAL;
 866}
 867
 868