linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/bootmem.h>      /* for max_low_pfn */
   7
   8#include <asm/cacheflush.h>
   9#include <asm/e820.h>
  10#include <asm/init.h>
  11#include <asm/page.h>
  12#include <asm/page_types.h>
  13#include <asm/sections.h>
  14#include <asm/setup.h>
  15#include <asm/tlbflush.h>
  16#include <asm/tlb.h>
  17#include <asm/proto.h>
  18#include <asm/dma.h>            /* for MAX_DMA_PFN */
  19#include <asm/microcode.h>
  20
  21/*
  22 * We need to define the tracepoints somewhere, and tlb.c
  23 * is only compied when SMP=y.
  24 */
  25#define CREATE_TRACE_POINTS
  26#include <trace/events/tlb.h>
  27
  28#include "mm_internal.h"
  29
  30/*
  31 * Tables translating between page_cache_type_t and pte encoding.
  32 *
  33 * The default values are defined statically as minimal supported mode;
  34 * WC and WT fall back to UC-.  pat_init() updates these values to support
  35 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  36 * for the details.  Note, __early_ioremap() used during early boot-time
  37 * takes pgprot_t (pte encoding) and does not use these tables.
  38 *
  39 *   Index into __cachemode2pte_tbl[] is the cachemode.
  40 *
  41 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  42 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  43 */
  44uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  45        [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
  46        [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
  47        [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
  48        [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
  49        [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
  50        [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
  51};
  52EXPORT_SYMBOL(__cachemode2pte_tbl);
  53
  54uint8_t __pte2cachemode_tbl[8] = {
  55        [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  56        [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  57        [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  58        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  59        [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  60        [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  61        [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  62        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  63};
  64EXPORT_SYMBOL(__pte2cachemode_tbl);
  65
  66static unsigned long __initdata pgt_buf_start;
  67static unsigned long __initdata pgt_buf_end;
  68static unsigned long __initdata pgt_buf_top;
  69
  70static unsigned long min_pfn_mapped;
  71
  72static bool __initdata can_use_brk_pgt = true;
  73
  74/*
  75 * Pages returned are already directly mapped.
  76 *
  77 * Changing that is likely to break Xen, see commit:
  78 *
  79 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  80 *
  81 * for detailed information.
  82 */
  83__ref void *alloc_low_pages(unsigned int num)
  84{
  85        unsigned long pfn;
  86        int i;
  87
  88        if (after_bootmem) {
  89                unsigned int order;
  90
  91                order = get_order((unsigned long)num << PAGE_SHIFT);
  92                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
  93                                                __GFP_ZERO, order);
  94        }
  95
  96        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  97                unsigned long ret;
  98                if (min_pfn_mapped >= max_pfn_mapped)
  99                        panic("alloc_low_pages: ran out of memory");
 100                ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 101                                        max_pfn_mapped << PAGE_SHIFT,
 102                                        PAGE_SIZE * num , PAGE_SIZE);
 103                if (!ret)
 104                        panic("alloc_low_pages: can not alloc memory");
 105                memblock_reserve(ret, PAGE_SIZE * num);
 106                pfn = ret >> PAGE_SHIFT;
 107        } else {
 108                pfn = pgt_buf_end;
 109                pgt_buf_end += num;
 110                printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 111                        pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 112        }
 113
 114        for (i = 0; i < num; i++) {
 115                void *adr;
 116
 117                adr = __va((pfn + i) << PAGE_SHIFT);
 118                clear_page(adr);
 119        }
 120
 121        return __va(pfn << PAGE_SHIFT);
 122}
 123
 124/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
 125#define INIT_PGT_BUF_SIZE       (6 * PAGE_SIZE)
 126RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 127void  __init early_alloc_pgt_buf(void)
 128{
 129        unsigned long tables = INIT_PGT_BUF_SIZE;
 130        phys_addr_t base;
 131
 132        base = __pa(extend_brk(tables, PAGE_SIZE));
 133
 134        pgt_buf_start = base >> PAGE_SHIFT;
 135        pgt_buf_end = pgt_buf_start;
 136        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 137}
 138
 139int after_bootmem;
 140
 141early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 142
 143struct map_range {
 144        unsigned long start;
 145        unsigned long end;
 146        unsigned page_size_mask;
 147};
 148
 149static int page_size_mask;
 150
 151static void __init probe_page_size_mask(void)
 152{
 153#if !defined(CONFIG_KMEMCHECK)
 154        /*
 155         * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
 156         * use small pages.
 157         * This will simplify cpa(), which otherwise needs to support splitting
 158         * large pages into small in interrupt context, etc.
 159         */
 160        if (cpu_has_pse && !debug_pagealloc_enabled())
 161                page_size_mask |= 1 << PG_LEVEL_2M;
 162#endif
 163
 164        /* Enable PSE if available */
 165        if (cpu_has_pse)
 166                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 167
 168        /* Enable PGE if available */
 169        if (cpu_has_pge) {
 170                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 171                __supported_pte_mask |= _PAGE_GLOBAL;
 172        } else
 173                __supported_pte_mask &= ~_PAGE_GLOBAL;
 174
 175        /* Enable 1 GB linear kernel mappings if available: */
 176        if (direct_gbpages && cpu_has_gbpages) {
 177                printk(KERN_INFO "Using GB pages for direct mapping\n");
 178                page_size_mask |= 1 << PG_LEVEL_1G;
 179        } else {
 180                direct_gbpages = 0;
 181        }
 182}
 183
 184#ifdef CONFIG_X86_32
 185#define NR_RANGE_MR 3
 186#else /* CONFIG_X86_64 */
 187#define NR_RANGE_MR 5
 188#endif
 189
 190static int __meminit save_mr(struct map_range *mr, int nr_range,
 191                             unsigned long start_pfn, unsigned long end_pfn,
 192                             unsigned long page_size_mask)
 193{
 194        if (start_pfn < end_pfn) {
 195                if (nr_range >= NR_RANGE_MR)
 196                        panic("run out of range for init_memory_mapping\n");
 197                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 198                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 199                mr[nr_range].page_size_mask = page_size_mask;
 200                nr_range++;
 201        }
 202
 203        return nr_range;
 204}
 205
 206/*
 207 * adjust the page_size_mask for small range to go with
 208 *      big page size instead small one if nearby are ram too.
 209 */
 210static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
 211                                                         int nr_range)
 212{
 213        int i;
 214
 215        for (i = 0; i < nr_range; i++) {
 216                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 217                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 218                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 219                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 220
 221#ifdef CONFIG_X86_32
 222                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 223                                continue;
 224#endif
 225
 226                        if (memblock_is_region_memory(start, end - start))
 227                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 228                }
 229                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 230                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 231                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 232                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 233
 234                        if (memblock_is_region_memory(start, end - start))
 235                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 236                }
 237        }
 238}
 239
 240static const char *page_size_string(struct map_range *mr)
 241{
 242        static const char str_1g[] = "1G";
 243        static const char str_2m[] = "2M";
 244        static const char str_4m[] = "4M";
 245        static const char str_4k[] = "4k";
 246
 247        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 248                return str_1g;
 249        /*
 250         * 32-bit without PAE has a 4M large page size.
 251         * PG_LEVEL_2M is misnamed, but we can at least
 252         * print out the right size in the string.
 253         */
 254        if (IS_ENABLED(CONFIG_X86_32) &&
 255            !IS_ENABLED(CONFIG_X86_PAE) &&
 256            mr->page_size_mask & (1<<PG_LEVEL_2M))
 257                return str_4m;
 258
 259        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 260                return str_2m;
 261
 262        return str_4k;
 263}
 264
 265static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 266                                     unsigned long start,
 267                                     unsigned long end)
 268{
 269        unsigned long start_pfn, end_pfn, limit_pfn;
 270        unsigned long pfn;
 271        int i;
 272
 273        limit_pfn = PFN_DOWN(end);
 274
 275        /* head if not big page alignment ? */
 276        pfn = start_pfn = PFN_DOWN(start);
 277#ifdef CONFIG_X86_32
 278        /*
 279         * Don't use a large page for the first 2/4MB of memory
 280         * because there are often fixed size MTRRs in there
 281         * and overlapping MTRRs into large pages can cause
 282         * slowdowns.
 283         */
 284        if (pfn == 0)
 285                end_pfn = PFN_DOWN(PMD_SIZE);
 286        else
 287                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 288#else /* CONFIG_X86_64 */
 289        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 290#endif
 291        if (end_pfn > limit_pfn)
 292                end_pfn = limit_pfn;
 293        if (start_pfn < end_pfn) {
 294                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 295                pfn = end_pfn;
 296        }
 297
 298        /* big page (2M) range */
 299        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 300#ifdef CONFIG_X86_32
 301        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 302#else /* CONFIG_X86_64 */
 303        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 304        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 305                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 306#endif
 307
 308        if (start_pfn < end_pfn) {
 309                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 310                                page_size_mask & (1<<PG_LEVEL_2M));
 311                pfn = end_pfn;
 312        }
 313
 314#ifdef CONFIG_X86_64
 315        /* big page (1G) range */
 316        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 317        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 318        if (start_pfn < end_pfn) {
 319                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 320                                page_size_mask &
 321                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 322                pfn = end_pfn;
 323        }
 324
 325        /* tail is not big page (1G) alignment */
 326        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 327        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 328        if (start_pfn < end_pfn) {
 329                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 330                                page_size_mask & (1<<PG_LEVEL_2M));
 331                pfn = end_pfn;
 332        }
 333#endif
 334
 335        /* tail is not big page (2M) alignment */
 336        start_pfn = pfn;
 337        end_pfn = limit_pfn;
 338        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 339
 340        if (!after_bootmem)
 341                adjust_range_page_size_mask(mr, nr_range);
 342
 343        /* try to merge same page size and continuous */
 344        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 345                unsigned long old_start;
 346                if (mr[i].end != mr[i+1].start ||
 347                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 348                        continue;
 349                /* move it */
 350                old_start = mr[i].start;
 351                memmove(&mr[i], &mr[i+1],
 352                        (nr_range - 1 - i) * sizeof(struct map_range));
 353                mr[i--].start = old_start;
 354                nr_range--;
 355        }
 356
 357        for (i = 0; i < nr_range; i++)
 358                pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 359                                mr[i].start, mr[i].end - 1,
 360                                page_size_string(&mr[i]));
 361
 362        return nr_range;
 363}
 364
 365struct range pfn_mapped[E820_X_MAX];
 366int nr_pfn_mapped;
 367
 368static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 369{
 370        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
 371                                             nr_pfn_mapped, start_pfn, end_pfn);
 372        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
 373
 374        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 375
 376        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 377                max_low_pfn_mapped = max(max_low_pfn_mapped,
 378                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 379}
 380
 381bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 382{
 383        int i;
 384
 385        for (i = 0; i < nr_pfn_mapped; i++)
 386                if ((start_pfn >= pfn_mapped[i].start) &&
 387                    (end_pfn <= pfn_mapped[i].end))
 388                        return true;
 389
 390        return false;
 391}
 392
 393/*
 394 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 395 * This runs before bootmem is initialized and gets pages directly from
 396 * the physical memory. To access them they are temporarily mapped.
 397 */
 398unsigned long __init_refok init_memory_mapping(unsigned long start,
 399                                               unsigned long end)
 400{
 401        struct map_range mr[NR_RANGE_MR];
 402        unsigned long ret = 0;
 403        int nr_range, i;
 404
 405        pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 406               start, end - 1);
 407
 408        memset(mr, 0, sizeof(mr));
 409        nr_range = split_mem_range(mr, 0, start, end);
 410
 411        for (i = 0; i < nr_range; i++)
 412                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 413                                                   mr[i].page_size_mask);
 414
 415        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 416
 417        return ret >> PAGE_SHIFT;
 418}
 419
 420/*
 421 * We need to iterate through the E820 memory map and create direct mappings
 422 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
 423 * create direct mappings for all pfns from [0 to max_low_pfn) and
 424 * [4GB to max_pfn) because of possible memory holes in high addresses
 425 * that cannot be marked as UC by fixed/variable range MTRRs.
 426 * Depending on the alignment of E820 ranges, this may possibly result
 427 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 428 *
 429 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 430 * That range would have hole in the middle or ends, and only ram parts
 431 * will be mapped in init_range_memory_mapping().
 432 */
 433static unsigned long __init init_range_memory_mapping(
 434                                           unsigned long r_start,
 435                                           unsigned long r_end)
 436{
 437        unsigned long start_pfn, end_pfn;
 438        unsigned long mapped_ram_size = 0;
 439        int i;
 440
 441        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 442                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 443                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 444                if (start >= end)
 445                        continue;
 446
 447                /*
 448                 * if it is overlapping with brk pgt, we need to
 449                 * alloc pgt buf from memblock instead.
 450                 */
 451                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 452                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 453                init_memory_mapping(start, end);
 454                mapped_ram_size += end - start;
 455                can_use_brk_pgt = true;
 456        }
 457
 458        return mapped_ram_size;
 459}
 460
 461static unsigned long __init get_new_step_size(unsigned long step_size)
 462{
 463        /*
 464         * Initial mapped size is PMD_SIZE (2M).
 465         * We can not set step_size to be PUD_SIZE (1G) yet.
 466         * In worse case, when we cross the 1G boundary, and
 467         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 468         * to map 1G range with PTE. Hence we use one less than the
 469         * difference of page table level shifts.
 470         *
 471         * Don't need to worry about overflow in the top-down case, on 32bit,
 472         * when step_size is 0, round_down() returns 0 for start, and that
 473         * turns it into 0x100000000ULL.
 474         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 475         * needs to be taken into consideration by the code below.
 476         */
 477        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 478}
 479
 480/**
 481 * memory_map_top_down - Map [map_start, map_end) top down
 482 * @map_start: start address of the target memory range
 483 * @map_end: end address of the target memory range
 484 *
 485 * This function will setup direct mapping for memory range
 486 * [map_start, map_end) in top-down. That said, the page tables
 487 * will be allocated at the end of the memory, and we map the
 488 * memory in top-down.
 489 */
 490static void __init memory_map_top_down(unsigned long map_start,
 491                                       unsigned long map_end)
 492{
 493        unsigned long real_end, start, last_start;
 494        unsigned long step_size;
 495        unsigned long addr;
 496        unsigned long mapped_ram_size = 0;
 497
 498        /* xen has big range in reserved near end of ram, skip it at first.*/
 499        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 500        real_end = addr + PMD_SIZE;
 501
 502        /* step_size need to be small so pgt_buf from BRK could cover it */
 503        step_size = PMD_SIZE;
 504        max_pfn_mapped = 0; /* will get exact value next */
 505        min_pfn_mapped = real_end >> PAGE_SHIFT;
 506        last_start = start = real_end;
 507
 508        /*
 509         * We start from the top (end of memory) and go to the bottom.
 510         * The memblock_find_in_range() gets us a block of RAM from the
 511         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 512         * for page table.
 513         */
 514        while (last_start > map_start) {
 515                if (last_start > step_size) {
 516                        start = round_down(last_start - 1, step_size);
 517                        if (start < map_start)
 518                                start = map_start;
 519                } else
 520                        start = map_start;
 521                mapped_ram_size += init_range_memory_mapping(start,
 522                                                        last_start);
 523                last_start = start;
 524                min_pfn_mapped = last_start >> PAGE_SHIFT;
 525                if (mapped_ram_size >= step_size)
 526                        step_size = get_new_step_size(step_size);
 527        }
 528
 529        if (real_end < map_end)
 530                init_range_memory_mapping(real_end, map_end);
 531}
 532
 533/**
 534 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 535 * @map_start: start address of the target memory range
 536 * @map_end: end address of the target memory range
 537 *
 538 * This function will setup direct mapping for memory range
 539 * [map_start, map_end) in bottom-up. Since we have limited the
 540 * bottom-up allocation above the kernel, the page tables will
 541 * be allocated just above the kernel and we map the memory
 542 * in [map_start, map_end) in bottom-up.
 543 */
 544static void __init memory_map_bottom_up(unsigned long map_start,
 545                                        unsigned long map_end)
 546{
 547        unsigned long next, start;
 548        unsigned long mapped_ram_size = 0;
 549        /* step_size need to be small so pgt_buf from BRK could cover it */
 550        unsigned long step_size = PMD_SIZE;
 551
 552        start = map_start;
 553        min_pfn_mapped = start >> PAGE_SHIFT;
 554
 555        /*
 556         * We start from the bottom (@map_start) and go to the top (@map_end).
 557         * The memblock_find_in_range() gets us a block of RAM from the
 558         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 559         * for page table.
 560         */
 561        while (start < map_end) {
 562                if (step_size && map_end - start > step_size) {
 563                        next = round_up(start + 1, step_size);
 564                        if (next > map_end)
 565                                next = map_end;
 566                } else {
 567                        next = map_end;
 568                }
 569
 570                mapped_ram_size += init_range_memory_mapping(start, next);
 571                start = next;
 572
 573                if (mapped_ram_size >= step_size)
 574                        step_size = get_new_step_size(step_size);
 575        }
 576}
 577
 578void __init init_mem_mapping(void)
 579{
 580        unsigned long end;
 581
 582        probe_page_size_mask();
 583
 584#ifdef CONFIG_X86_64
 585        end = max_pfn << PAGE_SHIFT;
 586#else
 587        end = max_low_pfn << PAGE_SHIFT;
 588#endif
 589
 590        /* the ISA range is always mapped regardless of memory holes */
 591        init_memory_mapping(0, ISA_END_ADDRESS);
 592
 593        /*
 594         * If the allocation is in bottom-up direction, we setup direct mapping
 595         * in bottom-up, otherwise we setup direct mapping in top-down.
 596         */
 597        if (memblock_bottom_up()) {
 598                unsigned long kernel_end = __pa_symbol(_end);
 599
 600                /*
 601                 * we need two separate calls here. This is because we want to
 602                 * allocate page tables above the kernel. So we first map
 603                 * [kernel_end, end) to make memory above the kernel be mapped
 604                 * as soon as possible. And then use page tables allocated above
 605                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 606                 */
 607                memory_map_bottom_up(kernel_end, end);
 608                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 609        } else {
 610                memory_map_top_down(ISA_END_ADDRESS, end);
 611        }
 612
 613#ifdef CONFIG_X86_64
 614        if (max_pfn > max_low_pfn) {
 615                /* can we preseve max_low_pfn ?*/
 616                max_low_pfn = max_pfn;
 617        }
 618#else
 619        early_ioremap_page_table_range_init();
 620#endif
 621
 622        load_cr3(swapper_pg_dir);
 623        __flush_tlb_all();
 624
 625        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 626}
 627
 628/*
 629 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 630 * is valid. The argument is a physical page number.
 631 *
 632 *
 633 * On x86, access has to be given to the first megabyte of ram because that area
 634 * contains BIOS code and data regions used by X and dosemu and similar apps.
 635 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 636 * mmio resources as well as potential bios/acpi data regions.
 637 */
 638int devmem_is_allowed(unsigned long pagenr)
 639{
 640        if (pagenr < 256)
 641                return 1;
 642        if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
 643                return 0;
 644        if (!page_is_ram(pagenr))
 645                return 1;
 646        return 0;
 647}
 648
 649void free_init_pages(char *what, unsigned long begin, unsigned long end)
 650{
 651        unsigned long begin_aligned, end_aligned;
 652
 653        /* Make sure boundaries are page aligned */
 654        begin_aligned = PAGE_ALIGN(begin);
 655        end_aligned   = end & PAGE_MASK;
 656
 657        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 658                begin = begin_aligned;
 659                end   = end_aligned;
 660        }
 661
 662        if (begin >= end)
 663                return;
 664
 665        /*
 666         * If debugging page accesses then do not free this memory but
 667         * mark them not present - any buggy init-section access will
 668         * create a kernel page fault:
 669         */
 670        if (debug_pagealloc_enabled()) {
 671                pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 672                        begin, end - 1);
 673                set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 674        } else {
 675                /*
 676                 * We just marked the kernel text read only above, now that
 677                 * we are going to free part of that, we need to make that
 678                 * writeable and non-executable first.
 679                 */
 680                set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 681                set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 682
 683                free_reserved_area((void *)begin, (void *)end,
 684                                   POISON_FREE_INITMEM, what);
 685        }
 686}
 687
 688void free_initmem(void)
 689{
 690        free_init_pages("unused kernel",
 691                        (unsigned long)(&__init_begin),
 692                        (unsigned long)(&__init_end));
 693}
 694
 695#ifdef CONFIG_BLK_DEV_INITRD
 696void __init free_initrd_mem(unsigned long start, unsigned long end)
 697{
 698        /*
 699         * Remember, initrd memory may contain microcode or other useful things.
 700         * Before we lose initrd mem, we need to find a place to hold them
 701         * now that normal virtual memory is enabled.
 702         */
 703        save_microcode_in_initrd();
 704
 705        /*
 706         * end could be not aligned, and We can not align that,
 707         * decompresser could be confused by aligned initrd_end
 708         * We already reserve the end partial page before in
 709         *   - i386_start_kernel()
 710         *   - x86_64_start_kernel()
 711         *   - relocate_initrd()
 712         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 713         */
 714        free_init_pages("initrd", start, PAGE_ALIGN(end));
 715}
 716#endif
 717
 718void __init zone_sizes_init(void)
 719{
 720        unsigned long max_zone_pfns[MAX_NR_ZONES];
 721
 722        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 723
 724#ifdef CONFIG_ZONE_DMA
 725        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
 726#endif
 727#ifdef CONFIG_ZONE_DMA32
 728        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
 729#endif
 730        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
 731#ifdef CONFIG_HIGHMEM
 732        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
 733#endif
 734
 735        free_area_init_nodes(max_zone_pfns);
 736}
 737
 738DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
 739#ifdef CONFIG_SMP
 740        .active_mm = &init_mm,
 741        .state = 0,
 742#endif
 743        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
 744};
 745EXPORT_SYMBOL_GPL(cpu_tlbstate);
 746
 747void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
 748{
 749        /* entry 0 MUST be WB (hardwired to speed up translations) */
 750        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
 751
 752        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
 753        __pte2cachemode_tbl[entry] = cache;
 754}
 755