linux/arch/x86/mm/init_64.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/x86_64/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   7 */
   8
   9#include <linux/signal.h>
  10#include <linux/sched.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/string.h>
  14#include <linux/types.h>
  15#include <linux/ptrace.h>
  16#include <linux/mman.h>
  17#include <linux/mm.h>
  18#include <linux/swap.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/initrd.h>
  22#include <linux/pagemap.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/module.h>
  31#include <linux/memory.h>
  32#include <linux/memory_hotplug.h>
  33#include <linux/memremap.h>
  34#include <linux/nmi.h>
  35#include <linux/gfp.h>
  36#include <linux/kcore.h>
  37
  38#include <asm/processor.h>
  39#include <asm/bios_ebda.h>
  40#include <asm/uaccess.h>
  41#include <asm/pgtable.h>
  42#include <asm/pgalloc.h>
  43#include <asm/dma.h>
  44#include <asm/fixmap.h>
  45#include <asm/e820.h>
  46#include <asm/apic.h>
  47#include <asm/tlb.h>
  48#include <asm/mmu_context.h>
  49#include <asm/proto.h>
  50#include <asm/smp.h>
  51#include <asm/sections.h>
  52#include <asm/kdebug.h>
  53#include <asm/numa.h>
  54#include <asm/cacheflush.h>
  55#include <asm/init.h>
  56#include <asm/uv/uv.h>
  57#include <asm/setup.h>
  58
  59#include "mm_internal.h"
  60
  61static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
  62                           unsigned long addr, unsigned long end)
  63{
  64        addr &= PMD_MASK;
  65        for (; addr < end; addr += PMD_SIZE) {
  66                pmd_t *pmd = pmd_page + pmd_index(addr);
  67
  68                if (!pmd_present(*pmd))
  69                        set_pmd(pmd, __pmd(addr | pmd_flag));
  70        }
  71}
  72static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
  73                          unsigned long addr, unsigned long end)
  74{
  75        unsigned long next;
  76
  77        for (; addr < end; addr = next) {
  78                pud_t *pud = pud_page + pud_index(addr);
  79                pmd_t *pmd;
  80
  81                next = (addr & PUD_MASK) + PUD_SIZE;
  82                if (next > end)
  83                        next = end;
  84
  85                if (pud_present(*pud)) {
  86                        pmd = pmd_offset(pud, 0);
  87                        ident_pmd_init(info->pmd_flag, pmd, addr, next);
  88                        continue;
  89                }
  90                pmd = (pmd_t *)info->alloc_pgt_page(info->context);
  91                if (!pmd)
  92                        return -ENOMEM;
  93                ident_pmd_init(info->pmd_flag, pmd, addr, next);
  94                set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  95        }
  96
  97        return 0;
  98}
  99
 100int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
 101                              unsigned long addr, unsigned long end)
 102{
 103        unsigned long next;
 104        int result;
 105        int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
 106
 107        for (; addr < end; addr = next) {
 108                pgd_t *pgd = pgd_page + pgd_index(addr) + off;
 109                pud_t *pud;
 110
 111                next = (addr & PGDIR_MASK) + PGDIR_SIZE;
 112                if (next > end)
 113                        next = end;
 114
 115                if (pgd_present(*pgd)) {
 116                        pud = pud_offset(pgd, 0);
 117                        result = ident_pud_init(info, pud, addr, next);
 118                        if (result)
 119                                return result;
 120                        continue;
 121                }
 122
 123                pud = (pud_t *)info->alloc_pgt_page(info->context);
 124                if (!pud)
 125                        return -ENOMEM;
 126                result = ident_pud_init(info, pud, addr, next);
 127                if (result)
 128                        return result;
 129                set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
 130        }
 131
 132        return 0;
 133}
 134
 135/*
 136 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 137 * physical space so we can cache the place of the first one and move
 138 * around without checking the pgd every time.
 139 */
 140
 141pteval_t __supported_pte_mask __read_mostly = ~0;
 142EXPORT_SYMBOL_GPL(__supported_pte_mask);
 143
 144int force_personality32;
 145
 146/*
 147 * noexec32=on|off
 148 * Control non executable heap for 32bit processes.
 149 * To control the stack too use noexec=off
 150 *
 151 * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 152 * off  PROT_READ implies PROT_EXEC
 153 */
 154static int __init nonx32_setup(char *str)
 155{
 156        if (!strcmp(str, "on"))
 157                force_personality32 &= ~READ_IMPLIES_EXEC;
 158        else if (!strcmp(str, "off"))
 159                force_personality32 |= READ_IMPLIES_EXEC;
 160        return 1;
 161}
 162__setup("noexec32=", nonx32_setup);
 163
 164/*
 165 * When memory was added/removed make sure all the processes MM have
 166 * suitable PGD entries in the local PGD level page.
 167 */
 168void sync_global_pgds(unsigned long start, unsigned long end, int removed)
 169{
 170        unsigned long address;
 171
 172        for (address = start; address <= end; address += PGDIR_SIZE) {
 173                const pgd_t *pgd_ref = pgd_offset_k(address);
 174                struct page *page;
 175
 176                /*
 177                 * When it is called after memory hot remove, pgd_none()
 178                 * returns true. In this case (removed == 1), we must clear
 179                 * the PGD entries in the local PGD level page.
 180                 */
 181                if (pgd_none(*pgd_ref) && !removed)
 182                        continue;
 183
 184                spin_lock(&pgd_lock);
 185                list_for_each_entry(page, &pgd_list, lru) {
 186                        pgd_t *pgd;
 187                        spinlock_t *pgt_lock;
 188
 189                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 190                        /* the pgt_lock only for Xen */
 191                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 192                        spin_lock(pgt_lock);
 193
 194                        if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 195                                BUG_ON(pgd_page_vaddr(*pgd)
 196                                       != pgd_page_vaddr(*pgd_ref));
 197
 198                        if (removed) {
 199                                if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
 200                                        pgd_clear(pgd);
 201                        } else {
 202                                if (pgd_none(*pgd))
 203                                        set_pgd(pgd, *pgd_ref);
 204                        }
 205
 206                        spin_unlock(pgt_lock);
 207                }
 208                spin_unlock(&pgd_lock);
 209        }
 210}
 211
 212/*
 213 * NOTE: This function is marked __ref because it calls __init function
 214 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 215 */
 216static __ref void *spp_getpage(void)
 217{
 218        void *ptr;
 219
 220        if (after_bootmem)
 221                ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
 222        else
 223                ptr = alloc_bootmem_pages(PAGE_SIZE);
 224
 225        if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 226                panic("set_pte_phys: cannot allocate page data %s\n",
 227                        after_bootmem ? "after bootmem" : "");
 228        }
 229
 230        pr_debug("spp_getpage %p\n", ptr);
 231
 232        return ptr;
 233}
 234
 235static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
 236{
 237        if (pgd_none(*pgd)) {
 238                pud_t *pud = (pud_t *)spp_getpage();
 239                pgd_populate(&init_mm, pgd, pud);
 240                if (pud != pud_offset(pgd, 0))
 241                        printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 242                               pud, pud_offset(pgd, 0));
 243        }
 244        return pud_offset(pgd, vaddr);
 245}
 246
 247static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 248{
 249        if (pud_none(*pud)) {
 250                pmd_t *pmd = (pmd_t *) spp_getpage();
 251                pud_populate(&init_mm, pud, pmd);
 252                if (pmd != pmd_offset(pud, 0))
 253                        printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 254                               pmd, pmd_offset(pud, 0));
 255        }
 256        return pmd_offset(pud, vaddr);
 257}
 258
 259static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 260{
 261        if (pmd_none(*pmd)) {
 262                pte_t *pte = (pte_t *) spp_getpage();
 263                pmd_populate_kernel(&init_mm, pmd, pte);
 264                if (pte != pte_offset_kernel(pmd, 0))
 265                        printk(KERN_ERR "PAGETABLE BUG #02!\n");
 266        }
 267        return pte_offset_kernel(pmd, vaddr);
 268}
 269
 270void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 271{
 272        pud_t *pud;
 273        pmd_t *pmd;
 274        pte_t *pte;
 275
 276        pud = pud_page + pud_index(vaddr);
 277        pmd = fill_pmd(pud, vaddr);
 278        pte = fill_pte(pmd, vaddr);
 279
 280        set_pte(pte, new_pte);
 281
 282        /*
 283         * It's enough to flush this one mapping.
 284         * (PGE mappings get flushed as well)
 285         */
 286        __flush_tlb_one(vaddr);
 287}
 288
 289void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 290{
 291        pgd_t *pgd;
 292        pud_t *pud_page;
 293
 294        pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 295
 296        pgd = pgd_offset_k(vaddr);
 297        if (pgd_none(*pgd)) {
 298                printk(KERN_ERR
 299                        "PGD FIXMAP MISSING, it should be setup in head.S!\n");
 300                return;
 301        }
 302        pud_page = (pud_t*)pgd_page_vaddr(*pgd);
 303        set_pte_vaddr_pud(pud_page, vaddr, pteval);
 304}
 305
 306pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 307{
 308        pgd_t *pgd;
 309        pud_t *pud;
 310
 311        pgd = pgd_offset_k(vaddr);
 312        pud = fill_pud(pgd, vaddr);
 313        return fill_pmd(pud, vaddr);
 314}
 315
 316pte_t * __init populate_extra_pte(unsigned long vaddr)
 317{
 318        pmd_t *pmd;
 319
 320        pmd = populate_extra_pmd(vaddr);
 321        return fill_pte(pmd, vaddr);
 322}
 323
 324/*
 325 * Create large page table mappings for a range of physical addresses.
 326 */
 327static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 328                                        enum page_cache_mode cache)
 329{
 330        pgd_t *pgd;
 331        pud_t *pud;
 332        pmd_t *pmd;
 333        pgprot_t prot;
 334
 335        pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 336                pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
 337        BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 338        for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 339                pgd = pgd_offset_k((unsigned long)__va(phys));
 340                if (pgd_none(*pgd)) {
 341                        pud = (pud_t *) spp_getpage();
 342                        set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
 343                                                _PAGE_USER));
 344                }
 345                pud = pud_offset(pgd, (unsigned long)__va(phys));
 346                if (pud_none(*pud)) {
 347                        pmd = (pmd_t *) spp_getpage();
 348                        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 349                                                _PAGE_USER));
 350                }
 351                pmd = pmd_offset(pud, phys);
 352                BUG_ON(!pmd_none(*pmd));
 353                set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 354        }
 355}
 356
 357void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 358{
 359        __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 360}
 361
 362void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 363{
 364        __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 365}
 366
 367/*
 368 * The head.S code sets up the kernel high mapping:
 369 *
 370 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 371 *
 372 * phys_base holds the negative offset to the kernel, which is added
 373 * to the compile time generated pmds. This results in invalid pmds up
 374 * to the point where we hit the physaddr 0 mapping.
 375 *
 376 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 377 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 378 * well, as they are located before _text:
 379 */
 380void __init cleanup_highmap(void)
 381{
 382        unsigned long vaddr = __START_KERNEL_map;
 383        unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 384        unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 385        pmd_t *pmd = level2_kernel_pgt;
 386
 387        /*
 388         * Native path, max_pfn_mapped is not set yet.
 389         * Xen has valid max_pfn_mapped set in
 390         *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 391         */
 392        if (max_pfn_mapped)
 393                vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 394
 395        for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 396                if (pmd_none(*pmd))
 397                        continue;
 398                if (vaddr < (unsigned long) _text || vaddr > end)
 399                        set_pmd(pmd, __pmd(0));
 400        }
 401}
 402
 403static unsigned long __meminit
 404phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
 405              pgprot_t prot)
 406{
 407        unsigned long pages = 0, next;
 408        unsigned long last_map_addr = end;
 409        int i;
 410
 411        pte_t *pte = pte_page + pte_index(addr);
 412
 413        for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
 414                next = (addr & PAGE_MASK) + PAGE_SIZE;
 415                if (addr >= end) {
 416                        if (!after_bootmem &&
 417                            !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
 418                            !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
 419                                set_pte(pte, __pte(0));
 420                        continue;
 421                }
 422
 423                /*
 424                 * We will re-use the existing mapping.
 425                 * Xen for example has some special requirements, like mapping
 426                 * pagetable pages as RO. So assume someone who pre-setup
 427                 * these mappings are more intelligent.
 428                 */
 429                if (pte_val(*pte)) {
 430                        if (!after_bootmem)
 431                                pages++;
 432                        continue;
 433                }
 434
 435                if (0)
 436                        printk("   pte=%p addr=%lx pte=%016lx\n",
 437                               pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 438                pages++;
 439                set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
 440                last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
 441        }
 442
 443        update_page_count(PG_LEVEL_4K, pages);
 444
 445        return last_map_addr;
 446}
 447
 448static unsigned long __meminit
 449phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
 450              unsigned long page_size_mask, pgprot_t prot)
 451{
 452        unsigned long pages = 0, next;
 453        unsigned long last_map_addr = end;
 454
 455        int i = pmd_index(address);
 456
 457        for (; i < PTRS_PER_PMD; i++, address = next) {
 458                pmd_t *pmd = pmd_page + pmd_index(address);
 459                pte_t *pte;
 460                pgprot_t new_prot = prot;
 461
 462                next = (address & PMD_MASK) + PMD_SIZE;
 463                if (address >= end) {
 464                        if (!after_bootmem &&
 465                            !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
 466                            !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
 467                                set_pmd(pmd, __pmd(0));
 468                        continue;
 469                }
 470
 471                if (pmd_val(*pmd)) {
 472                        if (!pmd_large(*pmd)) {
 473                                spin_lock(&init_mm.page_table_lock);
 474                                pte = (pte_t *)pmd_page_vaddr(*pmd);
 475                                last_map_addr = phys_pte_init(pte, address,
 476                                                                end, prot);
 477                                spin_unlock(&init_mm.page_table_lock);
 478                                continue;
 479                        }
 480                        /*
 481                         * If we are ok with PG_LEVEL_2M mapping, then we will
 482                         * use the existing mapping,
 483                         *
 484                         * Otherwise, we will split the large page mapping but
 485                         * use the same existing protection bits except for
 486                         * large page, so that we don't violate Intel's TLB
 487                         * Application note (317080) which says, while changing
 488                         * the page sizes, new and old translations should
 489                         * not differ with respect to page frame and
 490                         * attributes.
 491                         */
 492                        if (page_size_mask & (1 << PG_LEVEL_2M)) {
 493                                if (!after_bootmem)
 494                                        pages++;
 495                                last_map_addr = next;
 496                                continue;
 497                        }
 498                        new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 499                }
 500
 501                if (page_size_mask & (1<<PG_LEVEL_2M)) {
 502                        pages++;
 503                        spin_lock(&init_mm.page_table_lock);
 504                        set_pte((pte_t *)pmd,
 505                                pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
 506                                        __pgprot(pgprot_val(prot) | _PAGE_PSE)));
 507                        spin_unlock(&init_mm.page_table_lock);
 508                        last_map_addr = next;
 509                        continue;
 510                }
 511
 512                pte = alloc_low_page();
 513                last_map_addr = phys_pte_init(pte, address, end, new_prot);
 514
 515                spin_lock(&init_mm.page_table_lock);
 516                pmd_populate_kernel(&init_mm, pmd, pte);
 517                spin_unlock(&init_mm.page_table_lock);
 518        }
 519        update_page_count(PG_LEVEL_2M, pages);
 520        return last_map_addr;
 521}
 522
 523static unsigned long __meminit
 524phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
 525                         unsigned long page_size_mask)
 526{
 527        unsigned long pages = 0, next;
 528        unsigned long last_map_addr = end;
 529        int i = pud_index(addr);
 530
 531        for (; i < PTRS_PER_PUD; i++, addr = next) {
 532                pud_t *pud = pud_page + pud_index(addr);
 533                pmd_t *pmd;
 534                pgprot_t prot = PAGE_KERNEL;
 535
 536                next = (addr & PUD_MASK) + PUD_SIZE;
 537                if (addr >= end) {
 538                        if (!after_bootmem &&
 539                            !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
 540                            !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
 541                                set_pud(pud, __pud(0));
 542                        continue;
 543                }
 544
 545                if (pud_val(*pud)) {
 546                        if (!pud_large(*pud)) {
 547                                pmd = pmd_offset(pud, 0);
 548                                last_map_addr = phys_pmd_init(pmd, addr, end,
 549                                                         page_size_mask, prot);
 550                                __flush_tlb_all();
 551                                continue;
 552                        }
 553                        /*
 554                         * If we are ok with PG_LEVEL_1G mapping, then we will
 555                         * use the existing mapping.
 556                         *
 557                         * Otherwise, we will split the gbpage mapping but use
 558                         * the same existing protection  bits except for large
 559                         * page, so that we don't violate Intel's TLB
 560                         * Application note (317080) which says, while changing
 561                         * the page sizes, new and old translations should
 562                         * not differ with respect to page frame and
 563                         * attributes.
 564                         */
 565                        if (page_size_mask & (1 << PG_LEVEL_1G)) {
 566                                if (!after_bootmem)
 567                                        pages++;
 568                                last_map_addr = next;
 569                                continue;
 570                        }
 571                        prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 572                }
 573
 574                if (page_size_mask & (1<<PG_LEVEL_1G)) {
 575                        pages++;
 576                        spin_lock(&init_mm.page_table_lock);
 577                        set_pte((pte_t *)pud,
 578                                pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
 579                                        PAGE_KERNEL_LARGE));
 580                        spin_unlock(&init_mm.page_table_lock);
 581                        last_map_addr = next;
 582                        continue;
 583                }
 584
 585                pmd = alloc_low_page();
 586                last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
 587                                              prot);
 588
 589                spin_lock(&init_mm.page_table_lock);
 590                pud_populate(&init_mm, pud, pmd);
 591                spin_unlock(&init_mm.page_table_lock);
 592        }
 593        __flush_tlb_all();
 594
 595        update_page_count(PG_LEVEL_1G, pages);
 596
 597        return last_map_addr;
 598}
 599
 600unsigned long __meminit
 601kernel_physical_mapping_init(unsigned long start,
 602                             unsigned long end,
 603                             unsigned long page_size_mask)
 604{
 605        bool pgd_changed = false;
 606        unsigned long next, last_map_addr = end;
 607        unsigned long addr;
 608
 609        start = (unsigned long)__va(start);
 610        end = (unsigned long)__va(end);
 611        addr = start;
 612
 613        for (; start < end; start = next) {
 614                pgd_t *pgd = pgd_offset_k(start);
 615                pud_t *pud;
 616
 617                next = (start & PGDIR_MASK) + PGDIR_SIZE;
 618
 619                if (pgd_val(*pgd)) {
 620                        pud = (pud_t *)pgd_page_vaddr(*pgd);
 621                        last_map_addr = phys_pud_init(pud, __pa(start),
 622                                                 __pa(end), page_size_mask);
 623                        continue;
 624                }
 625
 626                pud = alloc_low_page();
 627                last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
 628                                                 page_size_mask);
 629
 630                spin_lock(&init_mm.page_table_lock);
 631                pgd_populate(&init_mm, pgd, pud);
 632                spin_unlock(&init_mm.page_table_lock);
 633                pgd_changed = true;
 634        }
 635
 636        if (pgd_changed)
 637                sync_global_pgds(addr, end - 1, 0);
 638
 639        __flush_tlb_all();
 640
 641        return last_map_addr;
 642}
 643
 644#ifndef CONFIG_NUMA
 645void __init initmem_init(void)
 646{
 647        memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
 648}
 649#endif
 650
 651void __init paging_init(void)
 652{
 653        sparse_memory_present_with_active_regions(MAX_NUMNODES);
 654        sparse_init();
 655
 656        /*
 657         * clear the default setting with node 0
 658         * note: don't use nodes_clear here, that is really clearing when
 659         *       numa support is not compiled in, and later node_set_state
 660         *       will not set it back.
 661         */
 662        node_clear_state(0, N_MEMORY);
 663        if (N_MEMORY != N_NORMAL_MEMORY)
 664                node_clear_state(0, N_NORMAL_MEMORY);
 665
 666        zone_sizes_init();
 667}
 668
 669/*
 670 * Memory hotplug specific functions
 671 */
 672#ifdef CONFIG_MEMORY_HOTPLUG
 673/*
 674 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 675 * updating.
 676 */
 677static void  update_end_of_memory_vars(u64 start, u64 size)
 678{
 679        unsigned long end_pfn = PFN_UP(start + size);
 680
 681        if (end_pfn > max_pfn) {
 682                max_pfn = end_pfn;
 683                max_low_pfn = end_pfn;
 684                high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 685        }
 686}
 687
 688/*
 689 * Memory is added always to NORMAL zone. This means you will never get
 690 * additional DMA/DMA32 memory.
 691 */
 692int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
 693{
 694        struct pglist_data *pgdat = NODE_DATA(nid);
 695        struct zone *zone = pgdat->node_zones +
 696                zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
 697        unsigned long start_pfn = start >> PAGE_SHIFT;
 698        unsigned long nr_pages = size >> PAGE_SHIFT;
 699        int ret;
 700
 701        init_memory_mapping(start, start + size);
 702
 703        ret = __add_pages(nid, zone, start_pfn, nr_pages);
 704        WARN_ON_ONCE(ret);
 705
 706        /* update max_pfn, max_low_pfn and high_memory */
 707        update_end_of_memory_vars(start, size);
 708
 709        return ret;
 710}
 711EXPORT_SYMBOL_GPL(arch_add_memory);
 712
 713#define PAGE_INUSE 0xFD
 714
 715static void __meminit free_pagetable(struct page *page, int order)
 716{
 717        unsigned long magic;
 718        unsigned int nr_pages = 1 << order;
 719        struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
 720
 721        if (altmap) {
 722                vmem_altmap_free(altmap, nr_pages);
 723                return;
 724        }
 725
 726        /* bootmem page has reserved flag */
 727        if (PageReserved(page)) {
 728                __ClearPageReserved(page);
 729
 730                magic = (unsigned long)page->lru.next;
 731                if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 732                        while (nr_pages--)
 733                                put_page_bootmem(page++);
 734                } else
 735                        while (nr_pages--)
 736                                free_reserved_page(page++);
 737        } else
 738                free_pages((unsigned long)page_address(page), order);
 739}
 740
 741static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
 742{
 743        pte_t *pte;
 744        int i;
 745
 746        for (i = 0; i < PTRS_PER_PTE; i++) {
 747                pte = pte_start + i;
 748                if (pte_val(*pte))
 749                        return;
 750        }
 751
 752        /* free a pte talbe */
 753        free_pagetable(pmd_page(*pmd), 0);
 754        spin_lock(&init_mm.page_table_lock);
 755        pmd_clear(pmd);
 756        spin_unlock(&init_mm.page_table_lock);
 757}
 758
 759static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 760{
 761        pmd_t *pmd;
 762        int i;
 763
 764        for (i = 0; i < PTRS_PER_PMD; i++) {
 765                pmd = pmd_start + i;
 766                if (pmd_val(*pmd))
 767                        return;
 768        }
 769
 770        /* free a pmd talbe */
 771        free_pagetable(pud_page(*pud), 0);
 772        spin_lock(&init_mm.page_table_lock);
 773        pud_clear(pud);
 774        spin_unlock(&init_mm.page_table_lock);
 775}
 776
 777/* Return true if pgd is changed, otherwise return false. */
 778static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
 779{
 780        pud_t *pud;
 781        int i;
 782
 783        for (i = 0; i < PTRS_PER_PUD; i++) {
 784                pud = pud_start + i;
 785                if (pud_val(*pud))
 786                        return false;
 787        }
 788
 789        /* free a pud table */
 790        free_pagetable(pgd_page(*pgd), 0);
 791        spin_lock(&init_mm.page_table_lock);
 792        pgd_clear(pgd);
 793        spin_unlock(&init_mm.page_table_lock);
 794
 795        return true;
 796}
 797
 798static void __meminit
 799remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
 800                 bool direct)
 801{
 802        unsigned long next, pages = 0;
 803        pte_t *pte;
 804        void *page_addr;
 805        phys_addr_t phys_addr;
 806
 807        pte = pte_start + pte_index(addr);
 808        for (; addr < end; addr = next, pte++) {
 809                next = (addr + PAGE_SIZE) & PAGE_MASK;
 810                if (next > end)
 811                        next = end;
 812
 813                if (!pte_present(*pte))
 814                        continue;
 815
 816                /*
 817                 * We mapped [0,1G) memory as identity mapping when
 818                 * initializing, in arch/x86/kernel/head_64.S. These
 819                 * pagetables cannot be removed.
 820                 */
 821                phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
 822                if (phys_addr < (phys_addr_t)0x40000000)
 823                        return;
 824
 825                if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
 826                        /*
 827                         * Do not free direct mapping pages since they were
 828                         * freed when offlining, or simplely not in use.
 829                         */
 830                        if (!direct)
 831                                free_pagetable(pte_page(*pte), 0);
 832
 833                        spin_lock(&init_mm.page_table_lock);
 834                        pte_clear(&init_mm, addr, pte);
 835                        spin_unlock(&init_mm.page_table_lock);
 836
 837                        /* For non-direct mapping, pages means nothing. */
 838                        pages++;
 839                } else {
 840                        /*
 841                         * If we are here, we are freeing vmemmap pages since
 842                         * direct mapped memory ranges to be freed are aligned.
 843                         *
 844                         * If we are not removing the whole page, it means
 845                         * other page structs in this page are being used and
 846                         * we canot remove them. So fill the unused page_structs
 847                         * with 0xFD, and remove the page when it is wholly
 848                         * filled with 0xFD.
 849                         */
 850                        memset((void *)addr, PAGE_INUSE, next - addr);
 851
 852                        page_addr = page_address(pte_page(*pte));
 853                        if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
 854                                free_pagetable(pte_page(*pte), 0);
 855
 856                                spin_lock(&init_mm.page_table_lock);
 857                                pte_clear(&init_mm, addr, pte);
 858                                spin_unlock(&init_mm.page_table_lock);
 859                        }
 860                }
 861        }
 862
 863        /* Call free_pte_table() in remove_pmd_table(). */
 864        flush_tlb_all();
 865        if (direct)
 866                update_page_count(PG_LEVEL_4K, -pages);
 867}
 868
 869static void __meminit
 870remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
 871                 bool direct)
 872{
 873        unsigned long next, pages = 0;
 874        pte_t *pte_base;
 875        pmd_t *pmd;
 876        void *page_addr;
 877
 878        pmd = pmd_start + pmd_index(addr);
 879        for (; addr < end; addr = next, pmd++) {
 880                next = pmd_addr_end(addr, end);
 881
 882                if (!pmd_present(*pmd))
 883                        continue;
 884
 885                if (pmd_large(*pmd)) {
 886                        if (IS_ALIGNED(addr, PMD_SIZE) &&
 887                            IS_ALIGNED(next, PMD_SIZE)) {
 888                                if (!direct)
 889                                        free_pagetable(pmd_page(*pmd),
 890                                                       get_order(PMD_SIZE));
 891
 892                                spin_lock(&init_mm.page_table_lock);
 893                                pmd_clear(pmd);
 894                                spin_unlock(&init_mm.page_table_lock);
 895                                pages++;
 896                        } else {
 897                                /* If here, we are freeing vmemmap pages. */
 898                                memset((void *)addr, PAGE_INUSE, next - addr);
 899
 900                                page_addr = page_address(pmd_page(*pmd));
 901                                if (!memchr_inv(page_addr, PAGE_INUSE,
 902                                                PMD_SIZE)) {
 903                                        free_pagetable(pmd_page(*pmd),
 904                                                       get_order(PMD_SIZE));
 905
 906                                        spin_lock(&init_mm.page_table_lock);
 907                                        pmd_clear(pmd);
 908                                        spin_unlock(&init_mm.page_table_lock);
 909                                }
 910                        }
 911
 912                        continue;
 913                }
 914
 915                pte_base = (pte_t *)pmd_page_vaddr(*pmd);
 916                remove_pte_table(pte_base, addr, next, direct);
 917                free_pte_table(pte_base, pmd);
 918        }
 919
 920        /* Call free_pmd_table() in remove_pud_table(). */
 921        if (direct)
 922                update_page_count(PG_LEVEL_2M, -pages);
 923}
 924
 925static void __meminit
 926remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
 927                 bool direct)
 928{
 929        unsigned long next, pages = 0;
 930        pmd_t *pmd_base;
 931        pud_t *pud;
 932        void *page_addr;
 933
 934        pud = pud_start + pud_index(addr);
 935        for (; addr < end; addr = next, pud++) {
 936                next = pud_addr_end(addr, end);
 937
 938                if (!pud_present(*pud))
 939                        continue;
 940
 941                if (pud_large(*pud)) {
 942                        if (IS_ALIGNED(addr, PUD_SIZE) &&
 943                            IS_ALIGNED(next, PUD_SIZE)) {
 944                                if (!direct)
 945                                        free_pagetable(pud_page(*pud),
 946                                                       get_order(PUD_SIZE));
 947
 948                                spin_lock(&init_mm.page_table_lock);
 949                                pud_clear(pud);
 950                                spin_unlock(&init_mm.page_table_lock);
 951                                pages++;
 952                        } else {
 953                                /* If here, we are freeing vmemmap pages. */
 954                                memset((void *)addr, PAGE_INUSE, next - addr);
 955
 956                                page_addr = page_address(pud_page(*pud));
 957                                if (!memchr_inv(page_addr, PAGE_INUSE,
 958                                                PUD_SIZE)) {
 959                                        free_pagetable(pud_page(*pud),
 960                                                       get_order(PUD_SIZE));
 961
 962                                        spin_lock(&init_mm.page_table_lock);
 963                                        pud_clear(pud);
 964                                        spin_unlock(&init_mm.page_table_lock);
 965                                }
 966                        }
 967
 968                        continue;
 969                }
 970
 971                pmd_base = (pmd_t *)pud_page_vaddr(*pud);
 972                remove_pmd_table(pmd_base, addr, next, direct);
 973                free_pmd_table(pmd_base, pud);
 974        }
 975
 976        if (direct)
 977                update_page_count(PG_LEVEL_1G, -pages);
 978}
 979
 980/* start and end are both virtual address. */
 981static void __meminit
 982remove_pagetable(unsigned long start, unsigned long end, bool direct)
 983{
 984        unsigned long next;
 985        unsigned long addr;
 986        pgd_t *pgd;
 987        pud_t *pud;
 988        bool pgd_changed = false;
 989
 990        for (addr = start; addr < end; addr = next) {
 991                next = pgd_addr_end(addr, end);
 992
 993                pgd = pgd_offset_k(addr);
 994                if (!pgd_present(*pgd))
 995                        continue;
 996
 997                pud = (pud_t *)pgd_page_vaddr(*pgd);
 998                remove_pud_table(pud, addr, next, direct);
 999                if (free_pud_table(pud, pgd))
1000                        pgd_changed = true;
1001        }
1002
1003        if (pgd_changed)
1004                sync_global_pgds(start, end - 1, 1);
1005
1006        flush_tlb_all();
1007}
1008
1009void __ref vmemmap_free(unsigned long start, unsigned long end)
1010{
1011        remove_pagetable(start, end, false);
1012}
1013
1014#ifdef CONFIG_MEMORY_HOTREMOVE
1015static void __meminit
1016kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1017{
1018        start = (unsigned long)__va(start);
1019        end = (unsigned long)__va(end);
1020
1021        remove_pagetable(start, end, true);
1022}
1023
1024int __ref arch_remove_memory(u64 start, u64 size)
1025{
1026        unsigned long start_pfn = start >> PAGE_SHIFT;
1027        unsigned long nr_pages = size >> PAGE_SHIFT;
1028        struct page *page = pfn_to_page(start_pfn);
1029        struct vmem_altmap *altmap;
1030        struct zone *zone;
1031        int ret;
1032
1033        /* With altmap the first mapped page is offset from @start */
1034        altmap = to_vmem_altmap((unsigned long) page);
1035        if (altmap)
1036                page += vmem_altmap_offset(altmap);
1037        zone = page_zone(page);
1038        ret = __remove_pages(zone, start_pfn, nr_pages);
1039        WARN_ON_ONCE(ret);
1040        kernel_physical_mapping_remove(start, start + size);
1041
1042        return ret;
1043}
1044#endif
1045#endif /* CONFIG_MEMORY_HOTPLUG */
1046
1047static struct kcore_list kcore_vsyscall;
1048
1049static void __init register_page_bootmem_info(void)
1050{
1051#ifdef CONFIG_NUMA
1052        int i;
1053
1054        for_each_online_node(i)
1055                register_page_bootmem_info_node(NODE_DATA(i));
1056#endif
1057}
1058
1059void __init mem_init(void)
1060{
1061        pci_iommu_alloc();
1062
1063        /* clear_bss() already clear the empty_zero_page */
1064
1065        register_page_bootmem_info();
1066
1067        /* this will put all memory onto the freelists */
1068        free_all_bootmem();
1069        after_bootmem = 1;
1070
1071        /* Register memory areas for /proc/kcore */
1072        kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1073                         PAGE_SIZE, KCORE_OTHER);
1074
1075        mem_init_print_info(NULL);
1076}
1077
1078const int rodata_test_data = 0xC3;
1079EXPORT_SYMBOL_GPL(rodata_test_data);
1080
1081int kernel_set_to_readonly;
1082
1083void set_kernel_text_rw(void)
1084{
1085        unsigned long start = PFN_ALIGN(_text);
1086        unsigned long end = PFN_ALIGN(__stop___ex_table);
1087
1088        if (!kernel_set_to_readonly)
1089                return;
1090
1091        pr_debug("Set kernel text: %lx - %lx for read write\n",
1092                 start, end);
1093
1094        /*
1095         * Make the kernel identity mapping for text RW. Kernel text
1096         * mapping will always be RO. Refer to the comment in
1097         * static_protections() in pageattr.c
1098         */
1099        set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100}
1101
1102void set_kernel_text_ro(void)
1103{
1104        unsigned long start = PFN_ALIGN(_text);
1105        unsigned long end = PFN_ALIGN(__stop___ex_table);
1106
1107        if (!kernel_set_to_readonly)
1108                return;
1109
1110        pr_debug("Set kernel text: %lx - %lx for read only\n",
1111                 start, end);
1112
1113        /*
1114         * Set the kernel identity mapping for text RO.
1115         */
1116        set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117}
1118
1119void mark_rodata_ro(void)
1120{
1121        unsigned long start = PFN_ALIGN(_text);
1122        unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123        unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124        unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125        unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126        unsigned long all_end;
1127
1128        printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129               (end - start) >> 10);
1130        set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131
1132        kernel_set_to_readonly = 1;
1133
1134        /*
1135         * The rodata/data/bss/brk section (but not the kernel text!)
1136         * should also be not-executable.
1137         *
1138         * We align all_end to PMD_SIZE because the existing mapping
1139         * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1140         * split the PMD and the reminder between _brk_end and the end
1141         * of the PMD will remain mapped executable.
1142         *
1143         * Any PMD which was setup after the one which covers _brk_end
1144         * has been zapped already via cleanup_highmem().
1145         */
1146        all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1147        set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1148
1149        rodata_test();
1150
1151#ifdef CONFIG_CPA_DEBUG
1152        printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1153        set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1154
1155        printk(KERN_INFO "Testing CPA: again\n");
1156        set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1157#endif
1158
1159        free_init_pages("unused kernel",
1160                        (unsigned long) __va(__pa_symbol(text_end)),
1161                        (unsigned long) __va(__pa_symbol(rodata_start)));
1162        free_init_pages("unused kernel",
1163                        (unsigned long) __va(__pa_symbol(rodata_end)),
1164                        (unsigned long) __va(__pa_symbol(_sdata)));
1165
1166        debug_checkwx();
1167}
1168
1169int kern_addr_valid(unsigned long addr)
1170{
1171        unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1172        pgd_t *pgd;
1173        pud_t *pud;
1174        pmd_t *pmd;
1175        pte_t *pte;
1176
1177        if (above != 0 && above != -1UL)
1178                return 0;
1179
1180        pgd = pgd_offset_k(addr);
1181        if (pgd_none(*pgd))
1182                return 0;
1183
1184        pud = pud_offset(pgd, addr);
1185        if (pud_none(*pud))
1186                return 0;
1187
1188        if (pud_large(*pud))
1189                return pfn_valid(pud_pfn(*pud));
1190
1191        pmd = pmd_offset(pud, addr);
1192        if (pmd_none(*pmd))
1193                return 0;
1194
1195        if (pmd_large(*pmd))
1196                return pfn_valid(pmd_pfn(*pmd));
1197
1198        pte = pte_offset_kernel(pmd, addr);
1199        if (pte_none(*pte))
1200                return 0;
1201
1202        return pfn_valid(pte_pfn(*pte));
1203}
1204
1205static unsigned long probe_memory_block_size(void)
1206{
1207        unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1208
1209        /* if system is UV or has 64GB of RAM or more, use large blocks */
1210        if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1211                bz = 2UL << 30; /* 2GB */
1212
1213        pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1214
1215        return bz;
1216}
1217
1218static unsigned long memory_block_size_probed;
1219unsigned long memory_block_size_bytes(void)
1220{
1221        if (!memory_block_size_probed)
1222                memory_block_size_probed = probe_memory_block_size();
1223
1224        return memory_block_size_probed;
1225}
1226
1227#ifdef CONFIG_SPARSEMEM_VMEMMAP
1228/*
1229 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1230 */
1231static long __meminitdata addr_start, addr_end;
1232static void __meminitdata *p_start, *p_end;
1233static int __meminitdata node_start;
1234
1235static int __meminit vmemmap_populate_hugepages(unsigned long start,
1236                unsigned long end, int node, struct vmem_altmap *altmap)
1237{
1238        unsigned long addr;
1239        unsigned long next;
1240        pgd_t *pgd;
1241        pud_t *pud;
1242        pmd_t *pmd;
1243
1244        for (addr = start; addr < end; addr = next) {
1245                next = pmd_addr_end(addr, end);
1246
1247                pgd = vmemmap_pgd_populate(addr, node);
1248                if (!pgd)
1249                        return -ENOMEM;
1250
1251                pud = vmemmap_pud_populate(pgd, addr, node);
1252                if (!pud)
1253                        return -ENOMEM;
1254
1255                pmd = pmd_offset(pud, addr);
1256                if (pmd_none(*pmd)) {
1257                        void *p;
1258
1259                        p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1260                        if (p) {
1261                                pte_t entry;
1262
1263                                entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1264                                                PAGE_KERNEL_LARGE);
1265                                set_pmd(pmd, __pmd(pte_val(entry)));
1266
1267                                /* check to see if we have contiguous blocks */
1268                                if (p_end != p || node_start != node) {
1269                                        if (p_start)
1270                                                pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1271                                                       addr_start, addr_end-1, p_start, p_end-1, node_start);
1272                                        addr_start = addr;
1273                                        node_start = node;
1274                                        p_start = p;
1275                                }
1276
1277                                addr_end = addr + PMD_SIZE;
1278                                p_end = p + PMD_SIZE;
1279                                continue;
1280                        } else if (altmap)
1281                                return -ENOMEM; /* no fallback */
1282                } else if (pmd_large(*pmd)) {
1283                        vmemmap_verify((pte_t *)pmd, node, addr, next);
1284                        continue;
1285                }
1286                pr_warn_once("vmemmap: falling back to regular page backing\n");
1287                if (vmemmap_populate_basepages(addr, next, node))
1288                        return -ENOMEM;
1289        }
1290        return 0;
1291}
1292
1293int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1294{
1295        struct vmem_altmap *altmap = to_vmem_altmap(start);
1296        int err;
1297
1298        if (cpu_has_pse)
1299                err = vmemmap_populate_hugepages(start, end, node, altmap);
1300        else if (altmap) {
1301                pr_err_once("%s: no cpu support for altmap allocations\n",
1302                                __func__);
1303                err = -ENOMEM;
1304        } else
1305                err = vmemmap_populate_basepages(start, end, node);
1306        if (!err)
1307                sync_global_pgds(start, end - 1, 0);
1308        return err;
1309}
1310
1311#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1312void register_page_bootmem_memmap(unsigned long section_nr,
1313                                  struct page *start_page, unsigned long size)
1314{
1315        unsigned long addr = (unsigned long)start_page;
1316        unsigned long end = (unsigned long)(start_page + size);
1317        unsigned long next;
1318        pgd_t *pgd;
1319        pud_t *pud;
1320        pmd_t *pmd;
1321        unsigned int nr_pages;
1322        struct page *page;
1323
1324        for (; addr < end; addr = next) {
1325                pte_t *pte = NULL;
1326
1327                pgd = pgd_offset_k(addr);
1328                if (pgd_none(*pgd)) {
1329                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1330                        continue;
1331                }
1332                get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1333
1334                pud = pud_offset(pgd, addr);
1335                if (pud_none(*pud)) {
1336                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1337                        continue;
1338                }
1339                get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1340
1341                if (!cpu_has_pse) {
1342                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1343                        pmd = pmd_offset(pud, addr);
1344                        if (pmd_none(*pmd))
1345                                continue;
1346                        get_page_bootmem(section_nr, pmd_page(*pmd),
1347                                         MIX_SECTION_INFO);
1348
1349                        pte = pte_offset_kernel(pmd, addr);
1350                        if (pte_none(*pte))
1351                                continue;
1352                        get_page_bootmem(section_nr, pte_page(*pte),
1353                                         SECTION_INFO);
1354                } else {
1355                        next = pmd_addr_end(addr, end);
1356
1357                        pmd = pmd_offset(pud, addr);
1358                        if (pmd_none(*pmd))
1359                                continue;
1360
1361                        nr_pages = 1 << (get_order(PMD_SIZE));
1362                        page = pmd_page(*pmd);
1363                        while (nr_pages--)
1364                                get_page_bootmem(section_nr, page++,
1365                                                 SECTION_INFO);
1366                }
1367        }
1368}
1369#endif
1370
1371void __meminit vmemmap_populate_print_last(void)
1372{
1373        if (p_start) {
1374                pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1375                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1376                p_start = NULL;
1377                p_end = NULL;
1378                node_start = 0;
1379        }
1380}
1381#endif
1382