1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22#include <linux/cpu.h>
23#include <linux/delay.h>
24#include <linux/kdb.h>
25#include <linux/kexec.h>
26#include <linux/kgdb.h>
27#include <linux/module.h>
28#include <linux/nmi.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31#include <linux/clocksource.h>
32
33#include <asm/apic.h>
34#include <asm/current.h>
35#include <asm/kdebug.h>
36#include <asm/local64.h>
37#include <asm/nmi.h>
38#include <asm/traps.h>
39#include <asm/uv/uv.h>
40#include <asm/uv/uv_hub.h>
41#include <asm/uv/uv_mmrs.h>
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65static struct uv_hub_nmi_s **uv_hub_nmi_list;
66
67DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
68EXPORT_PER_CPU_SYMBOL_GPL(uv_cpu_nmi);
69
70static unsigned long nmi_mmr;
71static unsigned long nmi_mmr_clear;
72static unsigned long nmi_mmr_pending;
73
74static atomic_t uv_in_nmi;
75static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
76static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
77static atomic_t uv_nmi_slave_continue;
78static cpumask_var_t uv_nmi_cpu_mask;
79
80
81#define SLAVE_CLEAR 0
82#define SLAVE_CONTINUE 1
83#define SLAVE_EXIT 2
84
85
86
87
88
89static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
90module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
91
92
93
94
95
96static int param_get_local64(char *buffer, const struct kernel_param *kp)
97{
98 return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
99}
100
101static int param_set_local64(const char *val, const struct kernel_param *kp)
102{
103
104 local64_set((local64_t *)kp->arg, 0);
105 return 0;
106}
107
108static const struct kernel_param_ops param_ops_local64 = {
109 .get = param_get_local64,
110 .set = param_set_local64,
111};
112#define param_check_local64(name, p) __param_check(name, p, local64_t)
113
114static local64_t uv_nmi_count;
115module_param_named(nmi_count, uv_nmi_count, local64, 0644);
116
117static local64_t uv_nmi_misses;
118module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
119
120static local64_t uv_nmi_ping_count;
121module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
122
123static local64_t uv_nmi_ping_misses;
124module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
125
126
127
128
129static int uv_nmi_initial_delay = 100;
130module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
131
132static int uv_nmi_slave_delay = 100;
133module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
134
135static int uv_nmi_loop_delay = 100;
136module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
137
138static int uv_nmi_trigger_delay = 10000;
139module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
140
141static int uv_nmi_wait_count = 100;
142module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
143
144static int uv_nmi_retry_count = 500;
145module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
146
147
148
149
150
151
152
153
154
155static char uv_nmi_action[8] = "kdb";
156module_param_string(action, uv_nmi_action, sizeof(uv_nmi_action), 0644);
157
158static inline bool uv_nmi_action_is(const char *action)
159{
160 return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
161}
162
163
164static void uv_nmi_setup_mmrs(void)
165{
166 if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) {
167 uv_write_local_mmr(UVH_NMI_MMRX_REQ,
168 1UL << UVH_NMI_MMRX_REQ_SHIFT);
169 nmi_mmr = UVH_NMI_MMRX;
170 nmi_mmr_clear = UVH_NMI_MMRX_CLEAR;
171 nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT;
172 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE);
173 } else {
174 nmi_mmr = UVH_NMI_MMR;
175 nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
176 nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
177 pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
178 }
179}
180
181
182static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
183{
184 hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
185 atomic_inc(&hub_nmi->read_mmr_count);
186 return !!(hub_nmi->nmi_value & nmi_mmr_pending);
187}
188
189static inline void uv_local_mmr_clear_nmi(void)
190{
191 uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
192}
193
194
195
196
197
198static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
199{
200 int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
201
202 if (first) {
203 atomic_set(&hub_nmi->cpu_owner, cpu);
204 if (atomic_add_unless(&uv_in_nmi, 1, 1))
205 atomic_set(&uv_nmi_cpu, cpu);
206
207 atomic_inc(&hub_nmi->nmi_count);
208 }
209 return first;
210}
211
212
213static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
214{
215 int cpu = smp_processor_id();
216 int nmi = 0;
217
218 local64_inc(&uv_nmi_count);
219 this_cpu_inc(uv_cpu_nmi.queries);
220
221 do {
222 nmi = atomic_read(&hub_nmi->in_nmi);
223 if (nmi)
224 break;
225
226 if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
227
228
229 if (uv_nmi_test_mmr(hub_nmi)) {
230 uv_set_in_nmi(cpu, hub_nmi);
231 nmi = 1;
232 break;
233 }
234
235
236 raw_spin_unlock(&hub_nmi->nmi_lock);
237
238 } else {
239
240 cpu_relax();
241 udelay(uv_nmi_slave_delay);
242
243
244 nmi = atomic_read(&hub_nmi->in_nmi);
245 if (nmi)
246 break;
247 }
248
249
250 if (!nmi) {
251 nmi = atomic_read(&uv_in_nmi);
252 if (nmi)
253 uv_set_in_nmi(cpu, hub_nmi);
254 }
255
256 } while (0);
257
258 if (!nmi)
259 local64_inc(&uv_nmi_misses);
260
261 return nmi;
262}
263
264
265static inline void uv_clear_nmi(int cpu)
266{
267 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
268
269 if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
270 atomic_set(&hub_nmi->cpu_owner, -1);
271 atomic_set(&hub_nmi->in_nmi, 0);
272 uv_local_mmr_clear_nmi();
273 raw_spin_unlock(&hub_nmi->nmi_lock);
274 }
275}
276
277
278static void uv_nmi_nr_cpus_ping(void)
279{
280 int cpu;
281
282 for_each_cpu(cpu, uv_nmi_cpu_mask)
283 uv_cpu_nmi_per(cpu).pinging = 1;
284
285 apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
286}
287
288
289static void uv_nmi_cleanup_mask(void)
290{
291 int cpu;
292
293 for_each_cpu(cpu, uv_nmi_cpu_mask) {
294 uv_cpu_nmi_per(cpu).pinging = 0;
295 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
296 cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
297 }
298}
299
300
301static int uv_nmi_wait_cpus(int first)
302{
303 int i, j, k, n = num_online_cpus();
304 int last_k = 0, waiting = 0;
305
306 if (first) {
307 cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
308 k = 0;
309 } else {
310 k = n - cpumask_weight(uv_nmi_cpu_mask);
311 }
312
313 udelay(uv_nmi_initial_delay);
314 for (i = 0; i < uv_nmi_retry_count; i++) {
315 int loop_delay = uv_nmi_loop_delay;
316
317 for_each_cpu(j, uv_nmi_cpu_mask) {
318 if (uv_cpu_nmi_per(j).state) {
319 cpumask_clear_cpu(j, uv_nmi_cpu_mask);
320 if (++k >= n)
321 break;
322 }
323 }
324 if (k >= n) {
325 k = n;
326 break;
327 }
328 if (last_k != k) {
329 last_k = k;
330 waiting = 0;
331 } else if (++waiting > uv_nmi_wait_count)
332 break;
333
334
335 if (waiting && (n - k) == 1 &&
336 cpumask_test_cpu(0, uv_nmi_cpu_mask))
337 loop_delay *= 100;
338
339 udelay(loop_delay);
340 }
341 atomic_set(&uv_nmi_cpus_in_nmi, k);
342 return n - k;
343}
344
345
346static void uv_nmi_wait(int master)
347{
348
349 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
350
351
352 if (!master)
353 return;
354
355 do {
356
357 if (!uv_nmi_wait_cpus(1))
358 break;
359
360
361 pr_alert("UV: Sending NMI IPI to %d non-responding CPUs: %*pbl\n",
362 cpumask_weight(uv_nmi_cpu_mask),
363 cpumask_pr_args(uv_nmi_cpu_mask));
364
365 uv_nmi_nr_cpus_ping();
366
367
368 if (!uv_nmi_wait_cpus(0))
369 break;
370
371 pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
372 cpumask_weight(uv_nmi_cpu_mask),
373 cpumask_pr_args(uv_nmi_cpu_mask));
374 } while (0);
375
376 pr_alert("UV: %d of %d CPUs in NMI\n",
377 atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
378}
379
380
381static void uv_nmi_dump_cpu_ip_hdr(void)
382{
383 pr_info("\nUV: %4s %6s %-32s %s (Note: PID 0 not listed)\n",
384 "CPU", "PID", "COMMAND", "IP");
385}
386
387
388static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
389{
390 pr_info("UV: %4d %6d %-32.32s ", cpu, current->pid, current->comm);
391 printk_address(regs->ip);
392}
393
394
395
396
397
398
399
400
401static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
402{
403 const char *dots = " ................................. ";
404
405 if (cpu == 0)
406 uv_nmi_dump_cpu_ip_hdr();
407
408 if (current->pid != 0 || !uv_nmi_action_is("ips"))
409 uv_nmi_dump_cpu_ip(cpu, regs);
410
411 if (uv_nmi_action_is("dump")) {
412 pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
413 show_regs(regs);
414 }
415
416 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
417}
418
419
420static void uv_nmi_trigger_dump(int cpu)
421{
422 int retry = uv_nmi_trigger_delay;
423
424 if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
425 return;
426
427 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
428 do {
429 cpu_relax();
430 udelay(10);
431 if (uv_cpu_nmi_per(cpu).state
432 != UV_NMI_STATE_DUMP)
433 return;
434 } while (--retry > 0);
435
436 pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
437 uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
438}
439
440
441static void uv_nmi_sync_exit(int master)
442{
443 atomic_dec(&uv_nmi_cpus_in_nmi);
444 if (master) {
445 while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
446 cpu_relax();
447 atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
448 } else {
449 while (atomic_read(&uv_nmi_slave_continue))
450 cpu_relax();
451 }
452}
453
454
455static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
456{
457 if (master) {
458 int tcpu;
459 int ignored = 0;
460 int saved_console_loglevel = console_loglevel;
461
462 pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
463 uv_nmi_action_is("ips") ? "IPs" : "processes",
464 atomic_read(&uv_nmi_cpus_in_nmi), cpu);
465
466 console_loglevel = uv_nmi_loglevel;
467 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
468 for_each_online_cpu(tcpu) {
469 if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
470 ignored++;
471 else if (tcpu == cpu)
472 uv_nmi_dump_state_cpu(tcpu, regs);
473 else
474 uv_nmi_trigger_dump(tcpu);
475 }
476 if (ignored)
477 pr_alert("UV: %d CPUs ignored NMI\n", ignored);
478
479 console_loglevel = saved_console_loglevel;
480 pr_alert("UV: process trace complete\n");
481 } else {
482 while (!atomic_read(&uv_nmi_slave_continue))
483 cpu_relax();
484 while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
485 cpu_relax();
486 uv_nmi_dump_state_cpu(cpu, regs);
487 }
488 uv_nmi_sync_exit(master);
489}
490
491static void uv_nmi_touch_watchdogs(void)
492{
493 touch_softlockup_watchdog_sync();
494 clocksource_touch_watchdog();
495 rcu_cpu_stall_reset();
496 touch_nmi_watchdog();
497}
498
499static atomic_t uv_nmi_kexec_failed;
500
501#if defined(CONFIG_KEXEC_CORE)
502static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
503{
504
505 if (master) {
506 pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
507 crash_kexec(regs);
508
509 pr_emerg("UV: crash_kexec unexpectedly returned, ");
510 atomic_set(&uv_nmi_kexec_failed, 1);
511 if (!kexec_crash_image) {
512 pr_cont("crash kernel not loaded\n");
513 return;
514 }
515 pr_cont("kexec busy, stalling cpus while waiting\n");
516 }
517
518
519 while (atomic_read(&uv_nmi_kexec_failed) == 0)
520 mdelay(10);
521}
522
523#else
524static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
525{
526 if (master)
527 pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
528 atomic_set(&uv_nmi_kexec_failed, 1);
529}
530#endif
531
532#ifdef CONFIG_KGDB
533#ifdef CONFIG_KGDB_KDB
534static inline int uv_nmi_kdb_reason(void)
535{
536 return KDB_REASON_SYSTEM_NMI;
537}
538#else
539static inline int uv_nmi_kdb_reason(void)
540{
541
542 if (uv_nmi_action_is("kgdb"))
543 return 0;
544
545 pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
546 return -1;
547}
548#endif
549
550
551
552
553
554
555
556
557static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
558{
559 if (master) {
560 int reason = uv_nmi_kdb_reason();
561 int ret;
562
563 if (reason < 0)
564 return;
565
566
567 ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
568 &uv_nmi_slave_continue);
569 if (ret) {
570 pr_alert("KGDB returned error, is kgdboc set?\n");
571 atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
572 }
573 } else {
574
575 int sig;
576
577 do {
578 cpu_relax();
579 sig = atomic_read(&uv_nmi_slave_continue);
580 } while (!sig);
581
582
583 if (sig == SLAVE_CONTINUE)
584 kgdb_nmicallback(cpu, regs);
585 }
586 uv_nmi_sync_exit(master);
587}
588
589#else
590static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
591{
592 pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
593}
594#endif
595
596
597
598
599int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
600{
601 struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
602 int cpu = smp_processor_id();
603 int master = 0;
604 unsigned long flags;
605
606 local_irq_save(flags);
607
608
609 if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
610 local_irq_restore(flags);
611 return NMI_DONE;
612 }
613
614
615 master = (atomic_read(&uv_nmi_cpu) == cpu);
616
617
618 if (uv_nmi_action_is("kdump")) {
619 uv_nmi_kdump(cpu, master, regs);
620
621
622 if (master)
623 strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
624 }
625
626
627 uv_nmi_wait(master);
628
629
630 if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump"))
631 uv_nmi_dump_state(cpu, regs, master);
632
633
634 else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb"))
635 uv_call_kgdb_kdb(cpu, regs, master);
636
637
638 this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
639
640
641 uv_clear_nmi(cpu);
642
643
644 if (master) {
645 if (cpumask_weight(uv_nmi_cpu_mask))
646 uv_nmi_cleanup_mask();
647 atomic_set(&uv_nmi_cpus_in_nmi, -1);
648 atomic_set(&uv_nmi_cpu, -1);
649 atomic_set(&uv_in_nmi, 0);
650 atomic_set(&uv_nmi_kexec_failed, 0);
651 }
652
653 uv_nmi_touch_watchdogs();
654 local_irq_restore(flags);
655
656 return NMI_HANDLED;
657}
658
659
660
661
662static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
663{
664 int ret;
665
666 this_cpu_inc(uv_cpu_nmi.queries);
667 if (!this_cpu_read(uv_cpu_nmi.pinging)) {
668 local64_inc(&uv_nmi_ping_misses);
669 return NMI_DONE;
670 }
671
672 this_cpu_inc(uv_cpu_nmi.pings);
673 local64_inc(&uv_nmi_ping_count);
674 ret = uv_handle_nmi(reason, regs);
675 this_cpu_write(uv_cpu_nmi.pinging, 0);
676 return ret;
677}
678
679static void uv_register_nmi_notifier(void)
680{
681 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
682 pr_warn("UV: NMI handler failed to register\n");
683
684 if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
685 pr_warn("UV: PING NMI handler failed to register\n");
686}
687
688void uv_nmi_init(void)
689{
690 unsigned int value;
691
692
693
694
695 value = apic_read(APIC_LVT1) | APIC_DM_NMI;
696 value &= ~APIC_LVT_MASKED;
697 apic_write(APIC_LVT1, value);
698}
699
700void uv_nmi_setup(void)
701{
702 int size = sizeof(void *) * (1 << NODES_SHIFT);
703 int cpu, nid;
704
705
706 uv_nmi_setup_mmrs();
707 uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
708 pr_info("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
709 BUG_ON(!uv_hub_nmi_list);
710 size = sizeof(struct uv_hub_nmi_s);
711 for_each_present_cpu(cpu) {
712 nid = cpu_to_node(cpu);
713 if (uv_hub_nmi_list[nid] == NULL) {
714 uv_hub_nmi_list[nid] = kzalloc_node(size,
715 GFP_KERNEL, nid);
716 BUG_ON(!uv_hub_nmi_list[nid]);
717 raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
718 atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
719 }
720 uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
721 }
722 BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
723 uv_register_nmi_notifier();
724}
725