linux/drivers/clk/clk-cdce925.c
<<
>>
Prefs
   1/*
   2 * Driver for TI Dual PLL CDCE925 clock synthesizer
   3 *
   4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
   5 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
   6 * basis. Clients can directly request any frequency that the chip can
   7 * deliver using the standard clk framework. In addition, the device can
   8 * be configured and activated via the devicetree.
   9 *
  10 * Copyright (C) 2014, Topic Embedded Products
  11 * Licenced under GPL
  12 */
  13#include <linux/clk.h>
  14#include <linux/clk-provider.h>
  15#include <linux/delay.h>
  16#include <linux/module.h>
  17#include <linux/i2c.h>
  18#include <linux/regmap.h>
  19#include <linux/slab.h>
  20#include <linux/gcd.h>
  21
  22/* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
  23 * Model this as 2 PLL clocks which are parents to the outputs.
  24 */
  25#define NUMBER_OF_PLLS  2
  26#define NUMBER_OF_OUTPUTS       5
  27
  28#define CDCE925_REG_GLOBAL1     0x01
  29#define CDCE925_REG_Y1SPIPDIVH  0x02
  30#define CDCE925_REG_PDIVL       0x03
  31#define CDCE925_REG_XCSEL       0x05
  32/* PLL parameters start at 0x10, steps of 0x10 */
  33#define CDCE925_OFFSET_PLL      0x10
  34/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
  35#define CDCE925_PLL_MUX_OUTPUTS 0x14
  36#define CDCE925_PLL_MULDIV      0x18
  37
  38#define CDCE925_PLL_FREQUENCY_MIN        80000000ul
  39#define CDCE925_PLL_FREQUENCY_MAX       230000000ul
  40struct clk_cdce925_chip;
  41
  42struct clk_cdce925_output {
  43        struct clk_hw hw;
  44        struct clk_cdce925_chip *chip;
  45        u8 index;
  46        u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
  47};
  48#define to_clk_cdce925_output(_hw) \
  49        container_of(_hw, struct clk_cdce925_output, hw)
  50
  51struct clk_cdce925_pll {
  52        struct clk_hw hw;
  53        struct clk_cdce925_chip *chip;
  54        u8 index;
  55        u16 m;   /* 1..511 */
  56        u16 n;   /* 1..4095 */
  57};
  58#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
  59
  60struct clk_cdce925_chip {
  61        struct regmap *regmap;
  62        struct i2c_client *i2c_client;
  63        struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
  64        struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
  65        struct clk *dt_clk[NUMBER_OF_OUTPUTS];
  66        struct clk_onecell_data onecell;
  67};
  68
  69/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
  70
  71static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
  72        u16 n, u16 m)
  73{
  74        if ((!m || !n) || (m == n))
  75                return parent_rate; /* In bypass mode runs at same frequency */
  76        return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
  77}
  78
  79static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
  80                unsigned long parent_rate)
  81{
  82        /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
  83        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
  84
  85        return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
  86}
  87
  88static void cdce925_pll_find_rate(unsigned long rate,
  89                unsigned long parent_rate, u16 *n, u16 *m)
  90{
  91        unsigned long un;
  92        unsigned long um;
  93        unsigned long g;
  94
  95        if (rate <= parent_rate) {
  96                /* Can always deliver parent_rate in bypass mode */
  97                rate = parent_rate;
  98                *n = 0;
  99                *m = 0;
 100        } else {
 101                /* In PLL mode, need to apply min/max range */
 102                if (rate < CDCE925_PLL_FREQUENCY_MIN)
 103                        rate = CDCE925_PLL_FREQUENCY_MIN;
 104                else if (rate > CDCE925_PLL_FREQUENCY_MAX)
 105                        rate = CDCE925_PLL_FREQUENCY_MAX;
 106
 107                g = gcd(rate, parent_rate);
 108                um = parent_rate / g;
 109                un = rate / g;
 110                /* When outside hw range, reduce to fit (rounding errors) */
 111                while ((un > 4095) || (um > 511)) {
 112                        un >>= 1;
 113                        um >>= 1;
 114                }
 115                if (un == 0)
 116                        un = 1;
 117                if (um == 0)
 118                        um = 1;
 119
 120                *n = un;
 121                *m = um;
 122        }
 123}
 124
 125static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 126                unsigned long *parent_rate)
 127{
 128        u16 n, m;
 129
 130        cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
 131        return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
 132}
 133
 134static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
 135                unsigned long parent_rate)
 136{
 137        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 138
 139        if (!rate || (rate == parent_rate)) {
 140                data->m = 0; /* Bypass mode */
 141                data->n = 0;
 142                return 0;
 143        }
 144
 145        if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
 146                (rate > CDCE925_PLL_FREQUENCY_MAX)) {
 147                pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
 148                return -EINVAL;
 149        }
 150
 151        if (rate < parent_rate) {
 152                pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
 153                        rate, parent_rate);
 154                return -EINVAL;
 155        }
 156
 157        cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
 158        return 0;
 159}
 160
 161
 162/* calculate p = max(0, 4 - int(log2 (n/m))) */
 163static u8 cdce925_pll_calc_p(u16 n, u16 m)
 164{
 165        u8 p;
 166        u16 r = n / m;
 167
 168        if (r >= 16)
 169                return 0;
 170        p = 4;
 171        while (r > 1) {
 172                r >>= 1;
 173                --p;
 174        }
 175        return p;
 176}
 177
 178/* Returns VCO range bits for VCO1_0_RANGE */
 179static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
 180{
 181        struct clk *parent = clk_get_parent(hw->clk);
 182        unsigned long rate = clk_get_rate(parent);
 183
 184        rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
 185        if (rate >= 175000000)
 186                return 0x3;
 187        if (rate >= 150000000)
 188                return 0x02;
 189        if (rate >= 125000000)
 190                return 0x01;
 191        return 0x00;
 192}
 193
 194/* I2C clock, hence everything must happen in (un)prepare because this
 195 * may sleep */
 196static int cdce925_pll_prepare(struct clk_hw *hw)
 197{
 198        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 199        u16 n = data->n;
 200        u16 m = data->m;
 201        u16 r;
 202        u8 q;
 203        u8 p;
 204        u16 nn;
 205        u8 pll[4]; /* Bits are spread out over 4 byte registers */
 206        u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
 207        unsigned i;
 208
 209        if ((!m || !n) || (m == n)) {
 210                /* Set PLL mux to bypass mode, leave the rest as is */
 211                regmap_update_bits(data->chip->regmap,
 212                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
 213        } else {
 214                /* According to data sheet: */
 215                /* p = max(0, 4 - int(log2 (n/m))) */
 216                p = cdce925_pll_calc_p(n, m);
 217                /* nn = n * 2^p */
 218                nn = n * BIT(p);
 219                /* q = int(nn/m) */
 220                q = nn / m;
 221                if ((q < 16) || (1 > 64)) {
 222                        pr_debug("%s invalid q=%d\n", __func__, q);
 223                        return -EINVAL;
 224                }
 225                r = nn - (m*q);
 226                if (r > 511) {
 227                        pr_debug("%s invalid r=%d\n", __func__, r);
 228                        return -EINVAL;
 229                }
 230                pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
 231                        n, m, p, q, r);
 232                /* encode into register bits */
 233                pll[0] = n >> 4;
 234                pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
 235                pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
 236                pll[3] = ((q & 0x07) << 5) | (p << 2) |
 237                                cdce925_pll_calc_range_bits(hw, n, m);
 238                /* Write to registers */
 239                for (i = 0; i < ARRAY_SIZE(pll); ++i)
 240                        regmap_write(data->chip->regmap,
 241                                reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
 242                /* Enable PLL */
 243                regmap_update_bits(data->chip->regmap,
 244                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
 245        }
 246
 247        return 0;
 248}
 249
 250static void cdce925_pll_unprepare(struct clk_hw *hw)
 251{
 252        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 253        u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
 254
 255        regmap_update_bits(data->chip->regmap,
 256                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
 257}
 258
 259static const struct clk_ops cdce925_pll_ops = {
 260        .prepare = cdce925_pll_prepare,
 261        .unprepare = cdce925_pll_unprepare,
 262        .recalc_rate = cdce925_pll_recalc_rate,
 263        .round_rate = cdce925_pll_round_rate,
 264        .set_rate = cdce925_pll_set_rate,
 265};
 266
 267
 268static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
 269{
 270        switch (data->index) {
 271        case 0:
 272                regmap_update_bits(data->chip->regmap,
 273                        CDCE925_REG_Y1SPIPDIVH,
 274                        0x03, (pdiv >> 8) & 0x03);
 275                regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
 276                break;
 277        case 1:
 278                regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
 279                break;
 280        case 2:
 281                regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
 282                break;
 283        case 3:
 284                regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
 285                break;
 286        case 4:
 287                regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
 288                break;
 289        }
 290}
 291
 292static void cdce925_clk_activate(struct clk_cdce925_output *data)
 293{
 294        switch (data->index) {
 295        case 0:
 296                regmap_update_bits(data->chip->regmap,
 297                        CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
 298                break;
 299        case 1:
 300        case 2:
 301                regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
 302                break;
 303        case 3:
 304        case 4:
 305                regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
 306                break;
 307        }
 308}
 309
 310static int cdce925_clk_prepare(struct clk_hw *hw)
 311{
 312        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 313
 314        cdce925_clk_set_pdiv(data, data->pdiv);
 315        cdce925_clk_activate(data);
 316        return 0;
 317}
 318
 319static void cdce925_clk_unprepare(struct clk_hw *hw)
 320{
 321        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 322
 323        /* Disable clock by setting divider to "0" */
 324        cdce925_clk_set_pdiv(data, 0);
 325}
 326
 327static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
 328                unsigned long parent_rate)
 329{
 330        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 331
 332        if (data->pdiv)
 333                return parent_rate / data->pdiv;
 334        return 0;
 335}
 336
 337static u16 cdce925_calc_divider(unsigned long rate,
 338                unsigned long parent_rate)
 339{
 340        unsigned long divider;
 341
 342        if (!rate)
 343                return 0;
 344        if (rate >= parent_rate)
 345                return 1;
 346
 347        divider = DIV_ROUND_CLOSEST(parent_rate, rate);
 348        if (divider > 0x7F)
 349                divider = 0x7F;
 350
 351        return (u16)divider;
 352}
 353
 354static unsigned long cdce925_clk_best_parent_rate(
 355        struct clk_hw *hw, unsigned long rate)
 356{
 357        struct clk *pll = clk_get_parent(hw->clk);
 358        struct clk *root = clk_get_parent(pll);
 359        unsigned long root_rate = clk_get_rate(root);
 360        unsigned long best_rate_error = rate;
 361        u16 pdiv_min;
 362        u16 pdiv_max;
 363        u16 pdiv_best;
 364        u16 pdiv_now;
 365
 366        if (root_rate % rate == 0)
 367                return root_rate; /* Don't need the PLL, use bypass */
 368
 369        pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
 370        pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
 371
 372        if (pdiv_min > pdiv_max)
 373                return 0; /* No can do? */
 374
 375        pdiv_best = pdiv_min;
 376        for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
 377                unsigned long target_rate = rate * pdiv_now;
 378                long pll_rate = clk_round_rate(pll, target_rate);
 379                unsigned long actual_rate;
 380                unsigned long rate_error;
 381
 382                if (pll_rate <= 0)
 383                        continue;
 384                actual_rate = pll_rate / pdiv_now;
 385                rate_error = abs((long)actual_rate - (long)rate);
 386                if (rate_error < best_rate_error) {
 387                        pdiv_best = pdiv_now;
 388                        best_rate_error = rate_error;
 389                }
 390                /* TODO: Consider PLL frequency based on smaller n/m values
 391                 * and pick the better one if the error is equal */
 392        }
 393
 394        return rate * pdiv_best;
 395}
 396
 397static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 398                unsigned long *parent_rate)
 399{
 400        unsigned long l_parent_rate = *parent_rate;
 401        u16 divider = cdce925_calc_divider(rate, l_parent_rate);
 402
 403        if (l_parent_rate / divider != rate) {
 404                l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
 405                divider = cdce925_calc_divider(rate, l_parent_rate);
 406                *parent_rate = l_parent_rate;
 407        }
 408
 409        if (divider)
 410                return (long)(l_parent_rate / divider);
 411        return 0;
 412}
 413
 414static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 415                unsigned long parent_rate)
 416{
 417        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 418
 419        data->pdiv = cdce925_calc_divider(rate, parent_rate);
 420
 421        return 0;
 422}
 423
 424static const struct clk_ops cdce925_clk_ops = {
 425        .prepare = cdce925_clk_prepare,
 426        .unprepare = cdce925_clk_unprepare,
 427        .recalc_rate = cdce925_clk_recalc_rate,
 428        .round_rate = cdce925_clk_round_rate,
 429        .set_rate = cdce925_clk_set_rate,
 430};
 431
 432
 433static u16 cdce925_y1_calc_divider(unsigned long rate,
 434                unsigned long parent_rate)
 435{
 436        unsigned long divider;
 437
 438        if (!rate)
 439                return 0;
 440        if (rate >= parent_rate)
 441                return 1;
 442
 443        divider = DIV_ROUND_CLOSEST(parent_rate, rate);
 444        if (divider > 0x3FF) /* Y1 has 10-bit divider */
 445                divider = 0x3FF;
 446
 447        return (u16)divider;
 448}
 449
 450static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
 451                unsigned long *parent_rate)
 452{
 453        unsigned long l_parent_rate = *parent_rate;
 454        u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
 455
 456        if (divider)
 457                return (long)(l_parent_rate / divider);
 458        return 0;
 459}
 460
 461static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
 462                unsigned long parent_rate)
 463{
 464        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 465
 466        data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
 467
 468        return 0;
 469}
 470
 471static const struct clk_ops cdce925_clk_y1_ops = {
 472        .prepare = cdce925_clk_prepare,
 473        .unprepare = cdce925_clk_unprepare,
 474        .recalc_rate = cdce925_clk_recalc_rate,
 475        .round_rate = cdce925_clk_y1_round_rate,
 476        .set_rate = cdce925_clk_y1_set_rate,
 477};
 478
 479
 480static struct regmap_config cdce925_regmap_config = {
 481        .name = "configuration0",
 482        .reg_bits = 8,
 483        .val_bits = 8,
 484        .cache_type = REGCACHE_RBTREE,
 485        .max_register = 0x2F,
 486};
 487
 488#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER      0x00
 489#define CDCE925_I2C_COMMAND_BYTE_TRANSFER       0x80
 490
 491static int cdce925_regmap_i2c_write(
 492        void *context, const void *data, size_t count)
 493{
 494        struct device *dev = context;
 495        struct i2c_client *i2c = to_i2c_client(dev);
 496        int ret;
 497        u8 reg_data[2];
 498
 499        if (count != 2)
 500                return -ENOTSUPP;
 501
 502        /* First byte is command code */
 503        reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
 504        reg_data[1] = ((u8 *)data)[1];
 505
 506        dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
 507                        reg_data[0], reg_data[1]);
 508
 509        ret = i2c_master_send(i2c, reg_data, count);
 510        if (likely(ret == count))
 511                return 0;
 512        else if (ret < 0)
 513                return ret;
 514        else
 515                return -EIO;
 516}
 517
 518static int cdce925_regmap_i2c_read(void *context,
 519           const void *reg, size_t reg_size, void *val, size_t val_size)
 520{
 521        struct device *dev = context;
 522        struct i2c_client *i2c = to_i2c_client(dev);
 523        struct i2c_msg xfer[2];
 524        int ret;
 525        u8 reg_data[2];
 526
 527        if (reg_size != 1)
 528                return -ENOTSUPP;
 529
 530        xfer[0].addr = i2c->addr;
 531        xfer[0].flags = 0;
 532        xfer[0].buf = reg_data;
 533        if (val_size == 1) {
 534                reg_data[0] =
 535                        CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
 536                xfer[0].len = 1;
 537        } else {
 538                reg_data[0] =
 539                        CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
 540                reg_data[1] = val_size;
 541                xfer[0].len = 2;
 542        }
 543
 544        xfer[1].addr = i2c->addr;
 545        xfer[1].flags = I2C_M_RD;
 546        xfer[1].len = val_size;
 547        xfer[1].buf = val;
 548
 549        ret = i2c_transfer(i2c->adapter, xfer, 2);
 550        if (likely(ret == 2)) {
 551                dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
 552                                reg_size, val_size, reg_data[0], *((u8 *)val));
 553                return 0;
 554        } else if (ret < 0)
 555                return ret;
 556        else
 557                return -EIO;
 558}
 559
 560/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
 561 * just weird, so just use the single byte mode exclusively. */
 562static struct regmap_bus regmap_cdce925_bus = {
 563        .write = cdce925_regmap_i2c_write,
 564        .read = cdce925_regmap_i2c_read,
 565};
 566
 567static int cdce925_probe(struct i2c_client *client,
 568                const struct i2c_device_id *id)
 569{
 570        struct clk_cdce925_chip *data;
 571        struct device_node *node = client->dev.of_node;
 572        const char *parent_name;
 573        const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
 574        struct clk_init_data init;
 575        struct clk *clk;
 576        u32 value;
 577        int i;
 578        int err;
 579        struct device_node *np_output;
 580        char child_name[6];
 581
 582        dev_dbg(&client->dev, "%s\n", __func__);
 583        data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
 584        if (!data)
 585                return -ENOMEM;
 586
 587        data->i2c_client = client;
 588        data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
 589                        &client->dev, &cdce925_regmap_config);
 590        if (IS_ERR(data->regmap)) {
 591                dev_err(&client->dev, "failed to allocate register map\n");
 592                return PTR_ERR(data->regmap);
 593        }
 594        i2c_set_clientdata(client, data);
 595
 596        parent_name = of_clk_get_parent_name(node, 0);
 597        if (!parent_name) {
 598                dev_err(&client->dev, "missing parent clock\n");
 599                return -ENODEV;
 600        }
 601        dev_dbg(&client->dev, "parent is: %s\n", parent_name);
 602
 603        if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
 604                regmap_write(data->regmap,
 605                        CDCE925_REG_XCSEL, (value << 3) & 0xF8);
 606        /* PWDN bit */
 607        regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
 608
 609        /* Set input source for Y1 to be the XTAL */
 610        regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
 611
 612        init.ops = &cdce925_pll_ops;
 613        init.flags = 0;
 614        init.parent_names = &parent_name;
 615        init.num_parents = parent_name ? 1 : 0;
 616
 617        /* Register PLL clocks */
 618        for (i = 0; i < NUMBER_OF_PLLS; ++i) {
 619                pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
 620                        client->dev.of_node->name, i);
 621                init.name = pll_clk_name[i];
 622                data->pll[i].chip = data;
 623                data->pll[i].hw.init = &init;
 624                data->pll[i].index = i;
 625                clk = devm_clk_register(&client->dev, &data->pll[i].hw);
 626                if (IS_ERR(clk)) {
 627                        dev_err(&client->dev, "Failed register PLL %d\n", i);
 628                        err = PTR_ERR(clk);
 629                        goto error;
 630                }
 631                sprintf(child_name, "PLL%d", i+1);
 632                np_output = of_get_child_by_name(node, child_name);
 633                if (!np_output)
 634                        continue;
 635                if (!of_property_read_u32(np_output,
 636                        "clock-frequency", &value)) {
 637                        err = clk_set_rate(clk, value);
 638                        if (err)
 639                                dev_err(&client->dev,
 640                                        "unable to set PLL frequency %ud\n",
 641                                        value);
 642                }
 643                if (!of_property_read_u32(np_output,
 644                        "spread-spectrum", &value)) {
 645                        u8 flag = of_property_read_bool(np_output,
 646                                "spread-spectrum-center") ? 0x80 : 0x00;
 647                        regmap_update_bits(data->regmap,
 648                                0x16 + (i*CDCE925_OFFSET_PLL),
 649                                0x80, flag);
 650                        regmap_update_bits(data->regmap,
 651                                0x12 + (i*CDCE925_OFFSET_PLL),
 652                                0x07, value & 0x07);
 653                }
 654        }
 655
 656        /* Register output clock Y1 */
 657        init.ops = &cdce925_clk_y1_ops;
 658        init.flags = 0;
 659        init.num_parents = 1;
 660        init.parent_names = &parent_name; /* Mux Y1 to input */
 661        init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
 662        data->clk[0].chip = data;
 663        data->clk[0].hw.init = &init;
 664        data->clk[0].index = 0;
 665        data->clk[0].pdiv = 1;
 666        clk = devm_clk_register(&client->dev, &data->clk[0].hw);
 667        kfree(init.name); /* clock framework made a copy of the name */
 668        if (IS_ERR(clk)) {
 669                dev_err(&client->dev, "clock registration Y1 failed\n");
 670                err = PTR_ERR(clk);
 671                goto error;
 672        }
 673        data->dt_clk[0] = clk;
 674
 675        /* Register output clocks Y2 .. Y5*/
 676        init.ops = &cdce925_clk_ops;
 677        init.flags = CLK_SET_RATE_PARENT;
 678        init.num_parents = 1;
 679        for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
 680                init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
 681                        client->dev.of_node->name, i+1);
 682                data->clk[i].chip = data;
 683                data->clk[i].hw.init = &init;
 684                data->clk[i].index = i;
 685                data->clk[i].pdiv = 1;
 686                switch (i) {
 687                case 1:
 688                case 2:
 689                        /* Mux Y2/3 to PLL1 */
 690                        init.parent_names = &pll_clk_name[0];
 691                        break;
 692                case 3:
 693                case 4:
 694                        /* Mux Y4/5 to PLL2 */
 695                        init.parent_names = &pll_clk_name[1];
 696                        break;
 697                }
 698                clk = devm_clk_register(&client->dev, &data->clk[i].hw);
 699                kfree(init.name); /* clock framework made a copy of the name */
 700                if (IS_ERR(clk)) {
 701                        dev_err(&client->dev, "clock registration failed\n");
 702                        err = PTR_ERR(clk);
 703                        goto error;
 704                }
 705                data->dt_clk[i] = clk;
 706        }
 707
 708        /* Register the output clocks */
 709        data->onecell.clk_num = NUMBER_OF_OUTPUTS;
 710        data->onecell.clks = data->dt_clk;
 711        err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
 712                &data->onecell);
 713        if (err)
 714                dev_err(&client->dev, "unable to add OF clock provider\n");
 715
 716        err = 0;
 717
 718error:
 719        for (i = 0; i < NUMBER_OF_PLLS; ++i)
 720                /* clock framework made a copy of the name */
 721                kfree(pll_clk_name[i]);
 722
 723        return err;
 724}
 725
 726static const struct i2c_device_id cdce925_id[] = {
 727        { "cdce925", 0 },
 728        { }
 729};
 730MODULE_DEVICE_TABLE(i2c, cdce925_id);
 731
 732static const struct of_device_id clk_cdce925_of_match[] = {
 733        { .compatible = "ti,cdce925" },
 734        { },
 735};
 736MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
 737
 738static struct i2c_driver cdce925_driver = {
 739        .driver = {
 740                .name = "cdce925",
 741                .of_match_table = of_match_ptr(clk_cdce925_of_match),
 742        },
 743        .probe          = cdce925_probe,
 744        .id_table       = cdce925_id,
 745};
 746module_i2c_driver(cdce925_driver);
 747
 748MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
 749MODULE_DESCRIPTION("cdce925 driver");
 750MODULE_LICENSE("GPL");
 751