linux/drivers/dma/nbpfaxi.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
   3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of version 2 of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/bitops.h>
  12#include <linux/clk.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/log2.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/of_dma.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25
  26#include <dt-bindings/dma/nbpfaxi.h>
  27
  28#include "dmaengine.h"
  29
  30#define NBPF_REG_CHAN_OFFSET    0
  31#define NBPF_REG_CHAN_SIZE      0x40
  32
  33/* Channel Current Transaction Byte register */
  34#define NBPF_CHAN_CUR_TR_BYTE   0x20
  35
  36/* Channel Status register */
  37#define NBPF_CHAN_STAT  0x24
  38#define NBPF_CHAN_STAT_EN       1
  39#define NBPF_CHAN_STAT_TACT     4
  40#define NBPF_CHAN_STAT_ERR      0x10
  41#define NBPF_CHAN_STAT_END      0x20
  42#define NBPF_CHAN_STAT_TC       0x40
  43#define NBPF_CHAN_STAT_DER      0x400
  44
  45/* Channel Control register */
  46#define NBPF_CHAN_CTRL  0x28
  47#define NBPF_CHAN_CTRL_SETEN    1
  48#define NBPF_CHAN_CTRL_CLREN    2
  49#define NBPF_CHAN_CTRL_STG      4
  50#define NBPF_CHAN_CTRL_SWRST    8
  51#define NBPF_CHAN_CTRL_CLRRQ    0x10
  52#define NBPF_CHAN_CTRL_CLREND   0x20
  53#define NBPF_CHAN_CTRL_CLRTC    0x40
  54#define NBPF_CHAN_CTRL_SETSUS   0x100
  55#define NBPF_CHAN_CTRL_CLRSUS   0x200
  56
  57/* Channel Configuration register */
  58#define NBPF_CHAN_CFG   0x2c
  59#define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
  60#define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
  61#define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
  62#define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
  63#define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
  64#define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
  65#define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
  66#define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
  67#define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
  68#define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
  69#define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
  70#define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
  71#define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
  72#define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
  73#define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
  74#define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
  75#define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
  76#define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
  77
  78#define NBPF_CHAN_NXLA  0x38
  79#define NBPF_CHAN_CRLA  0x3c
  80
  81/* Link Header field */
  82#define NBPF_HEADER_LV  1
  83#define NBPF_HEADER_LE  2
  84#define NBPF_HEADER_WBD 4
  85#define NBPF_HEADER_DIM 8
  86
  87#define NBPF_CTRL       0x300
  88#define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
  89#define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
  90
  91#define NBPF_DSTAT_ER   0x314
  92#define NBPF_DSTAT_END  0x318
  93
  94#define NBPF_DMA_BUSWIDTHS \
  95        (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  96         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  97         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  98         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  99         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
 100
 101struct nbpf_config {
 102        int num_channels;
 103        int buffer_size;
 104};
 105
 106/*
 107 * We've got 3 types of objects, used to describe DMA transfers:
 108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
 109 *      in it, used to communicate with the user
 110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
 111 *      queuing, these must be DMAable, using either the streaming DMA API or
 112 *      allocated from coherent memory - one per SG segment
 113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
 114 *      (2). They do not have to be DMAable. They can either be (a) allocated
 115 *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
 116 *      separately. Even if allocated separately it would be best to link them
 117 *      to link descriptors once during channel resource allocation and always
 118 *      use them as a single object.
 119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
 120 * treated as a single SG segment descriptor.
 121 */
 122
 123struct nbpf_link_reg {
 124        u32     header;
 125        u32     src_addr;
 126        u32     dst_addr;
 127        u32     transaction_size;
 128        u32     config;
 129        u32     interval;
 130        u32     extension;
 131        u32     next;
 132} __packed;
 133
 134struct nbpf_device;
 135struct nbpf_channel;
 136struct nbpf_desc;
 137
 138struct nbpf_link_desc {
 139        struct nbpf_link_reg *hwdesc;
 140        dma_addr_t hwdesc_dma_addr;
 141        struct nbpf_desc *desc;
 142        struct list_head node;
 143};
 144
 145/**
 146 * struct nbpf_desc - DMA transfer descriptor
 147 * @async_tx:   dmaengine object
 148 * @user_wait:  waiting for a user ack
 149 * @length:     total transfer length
 150 * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
 151 * @node:       member in channel descriptor lists
 152 */
 153struct nbpf_desc {
 154        struct dma_async_tx_descriptor async_tx;
 155        bool user_wait;
 156        size_t length;
 157        struct nbpf_channel *chan;
 158        struct list_head sg;
 159        struct list_head node;
 160};
 161
 162/* Take a wild guess: allocate 4 segments per descriptor */
 163#define NBPF_SEGMENTS_PER_DESC 4
 164#define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
 165        (sizeof(struct nbpf_desc) +                                     \
 166         NBPF_SEGMENTS_PER_DESC *                                       \
 167         (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
 168#define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
 169
 170struct nbpf_desc_page {
 171        struct list_head node;
 172        struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
 173        struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
 174        struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
 175};
 176
 177/**
 178 * struct nbpf_channel - one DMAC channel
 179 * @dma_chan:   standard dmaengine channel object
 180 * @base:       register address base
 181 * @nbpf:       DMAC
 182 * @name:       IRQ name
 183 * @irq:        IRQ number
 184 * @slave_addr: address for slave DMA
 185 * @slave_width:slave data size in bytes
 186 * @slave_burst:maximum slave burst size in bytes
 187 * @terminal:   DMA terminal, assigned to this channel
 188 * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
 189 * @flags:      configuration flags from DT
 190 * @lock:       protect descriptor lists
 191 * @free_links: list of free link descriptors
 192 * @free:       list of free descriptors
 193 * @queued:     list of queued descriptors
 194 * @active:     list of descriptors, scheduled for processing
 195 * @done:       list of completed descriptors, waiting post-processing
 196 * @desc_page:  list of additionally allocated descriptor pages - if any
 197 */
 198struct nbpf_channel {
 199        struct dma_chan dma_chan;
 200        struct tasklet_struct tasklet;
 201        void __iomem *base;
 202        struct nbpf_device *nbpf;
 203        char name[16];
 204        int irq;
 205        dma_addr_t slave_src_addr;
 206        size_t slave_src_width;
 207        size_t slave_src_burst;
 208        dma_addr_t slave_dst_addr;
 209        size_t slave_dst_width;
 210        size_t slave_dst_burst;
 211        unsigned int terminal;
 212        u32 dmarq_cfg;
 213        unsigned long flags;
 214        spinlock_t lock;
 215        struct list_head free_links;
 216        struct list_head free;
 217        struct list_head queued;
 218        struct list_head active;
 219        struct list_head done;
 220        struct list_head desc_page;
 221        struct nbpf_desc *running;
 222        bool paused;
 223};
 224
 225struct nbpf_device {
 226        struct dma_device dma_dev;
 227        void __iomem *base;
 228        struct clk *clk;
 229        const struct nbpf_config *config;
 230        struct nbpf_channel chan[];
 231};
 232
 233enum nbpf_model {
 234        NBPF1B4,
 235        NBPF1B8,
 236        NBPF1B16,
 237        NBPF4B4,
 238        NBPF4B8,
 239        NBPF4B16,
 240        NBPF8B4,
 241        NBPF8B8,
 242        NBPF8B16,
 243};
 244
 245static struct nbpf_config nbpf_cfg[] = {
 246        [NBPF1B4] = {
 247                .num_channels = 1,
 248                .buffer_size = 4,
 249        },
 250        [NBPF1B8] = {
 251                .num_channels = 1,
 252                .buffer_size = 8,
 253        },
 254        [NBPF1B16] = {
 255                .num_channels = 1,
 256                .buffer_size = 16,
 257        },
 258        [NBPF4B4] = {
 259                .num_channels = 4,
 260                .buffer_size = 4,
 261        },
 262        [NBPF4B8] = {
 263                .num_channels = 4,
 264                .buffer_size = 8,
 265        },
 266        [NBPF4B16] = {
 267                .num_channels = 4,
 268                .buffer_size = 16,
 269        },
 270        [NBPF8B4] = {
 271                .num_channels = 8,
 272                .buffer_size = 4,
 273        },
 274        [NBPF8B8] = {
 275                .num_channels = 8,
 276                .buffer_size = 8,
 277        },
 278        [NBPF8B16] = {
 279                .num_channels = 8,
 280                .buffer_size = 16,
 281        },
 282};
 283
 284#define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
 285
 286/*
 287 * dmaengine drivers seem to have a lot in common and instead of sharing more
 288 * code, they reimplement those common algorithms independently. In this driver
 289 * we try to separate the hardware-specific part from the (largely) generic
 290 * part. This improves code readability and makes it possible in the future to
 291 * reuse the generic code in form of a helper library. That generic code should
 292 * be suitable for various DMA controllers, using transfer descriptors in RAM
 293 * and pushing one SG list at a time to the DMA controller.
 294 */
 295
 296/*              Hardware-specific part          */
 297
 298static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
 299                                 unsigned int offset)
 300{
 301        u32 data = ioread32(chan->base + offset);
 302        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 303                __func__, chan->base, offset, data);
 304        return data;
 305}
 306
 307static inline void nbpf_chan_write(struct nbpf_channel *chan,
 308                                   unsigned int offset, u32 data)
 309{
 310        iowrite32(data, chan->base + offset);
 311        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 312                __func__, chan->base, offset, data);
 313}
 314
 315static inline u32 nbpf_read(struct nbpf_device *nbpf,
 316                            unsigned int offset)
 317{
 318        u32 data = ioread32(nbpf->base + offset);
 319        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 320                __func__, nbpf->base, offset, data);
 321        return data;
 322}
 323
 324static inline void nbpf_write(struct nbpf_device *nbpf,
 325                              unsigned int offset, u32 data)
 326{
 327        iowrite32(data, nbpf->base + offset);
 328        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 329                __func__, nbpf->base, offset, data);
 330}
 331
 332static void nbpf_chan_halt(struct nbpf_channel *chan)
 333{
 334        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 335}
 336
 337static bool nbpf_status_get(struct nbpf_channel *chan)
 338{
 339        u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
 340
 341        return status & BIT(chan - chan->nbpf->chan);
 342}
 343
 344static void nbpf_status_ack(struct nbpf_channel *chan)
 345{
 346        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
 347}
 348
 349static u32 nbpf_error_get(struct nbpf_device *nbpf)
 350{
 351        return nbpf_read(nbpf, NBPF_DSTAT_ER);
 352}
 353
 354static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
 355{
 356        return nbpf->chan + __ffs(error);
 357}
 358
 359static void nbpf_error_clear(struct nbpf_channel *chan)
 360{
 361        u32 status;
 362        int i;
 363
 364        /* Stop the channel, make sure DMA has been aborted */
 365        nbpf_chan_halt(chan);
 366
 367        for (i = 1000; i; i--) {
 368                status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
 369                if (!(status & NBPF_CHAN_STAT_TACT))
 370                        break;
 371                cpu_relax();
 372        }
 373
 374        if (!i)
 375                dev_err(chan->dma_chan.device->dev,
 376                        "%s(): abort timeout, channel status 0x%x\n", __func__, status);
 377
 378        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
 379}
 380
 381static int nbpf_start(struct nbpf_desc *desc)
 382{
 383        struct nbpf_channel *chan = desc->chan;
 384        struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
 385
 386        nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
 387        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
 388        chan->paused = false;
 389
 390        /* Software trigger MEMCPY - only MEMCPY uses the block mode */
 391        if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
 392                nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
 393
 394        dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
 395                nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
 396
 397        return 0;
 398}
 399
 400static void nbpf_chan_prepare(struct nbpf_channel *chan)
 401{
 402        chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
 403                (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
 404                (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
 405                 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
 406                chan->terminal;
 407}
 408
 409static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
 410{
 411        /* Don't output DMAACK */
 412        chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
 413        chan->terminal = 0;
 414        chan->flags = 0;
 415}
 416
 417static void nbpf_chan_configure(struct nbpf_channel *chan)
 418{
 419        /*
 420         * We assume, that only the link mode and DMA request line configuration
 421         * have to be set in the configuration register manually. Dynamic
 422         * per-transfer configuration will be loaded from transfer descriptors.
 423         */
 424        nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
 425}
 426
 427static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
 428{
 429        /* Maximum supported bursts depend on the buffer size */
 430        return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
 431}
 432
 433static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
 434                             enum dma_slave_buswidth width, u32 burst)
 435{
 436        size_t size;
 437
 438        if (!burst)
 439                burst = 1;
 440
 441        switch (width) {
 442        case DMA_SLAVE_BUSWIDTH_8_BYTES:
 443                size = 8 * burst;
 444                break;
 445
 446        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 447                size = 4 * burst;
 448                break;
 449
 450        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 451                size = 2 * burst;
 452                break;
 453
 454        default:
 455                pr_warn("%s(): invalid bus width %u\n", __func__, width);
 456        case DMA_SLAVE_BUSWIDTH_1_BYTE:
 457                size = burst;
 458        }
 459
 460        return nbpf_xfer_ds(nbpf, size);
 461}
 462
 463/*
 464 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
 465 * i.e. it isn't known in advance how many bytes will be received. Therefore
 466 * the slave driver has to provide a "large enough" buffer and either read the
 467 * buffer, when it is full, or detect, that some data has arrived, then wait for
 468 * a timeout, if no more data arrives - receive what's already there. We want to
 469 * handle such slaves in a special way to allow an optimised mode for other
 470 * users, for whom the amount of data is known in advance. So far there's no way
 471 * to recognise such slaves. We use a data-width check to distinguish between
 472 * the SD host and the PL011 UART.
 473 */
 474
 475static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
 476                         enum dma_transfer_direction direction,
 477                         dma_addr_t src, dma_addr_t dst, size_t size, bool last)
 478{
 479        struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
 480        struct nbpf_desc *desc = ldesc->desc;
 481        struct nbpf_channel *chan = desc->chan;
 482        struct device *dev = chan->dma_chan.device->dev;
 483        size_t mem_xfer, slave_xfer;
 484        bool can_burst;
 485
 486        hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
 487                (last ? NBPF_HEADER_LE : 0);
 488
 489        hwdesc->src_addr = src;
 490        hwdesc->dst_addr = dst;
 491        hwdesc->transaction_size = size;
 492
 493        /*
 494         * set config: SAD, DAD, DDS, SDS, etc.
 495         * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
 496         * but it is important to have transaction size a multiple of both
 497         * receiver and transmitter transfer sizes. It is also possible to use
 498         * different RAM and device transfer sizes, and it does work well with
 499         * some devices, e.g. with V08R07S01E SD host controllers, which can use
 500         * 128 byte transfers. But this doesn't work with other devices,
 501         * especially when the transaction size is unknown. This is the case,
 502         * e.g. with serial drivers like amba-pl011.c. For reception it sets up
 503         * the transaction size of 4K and if fewer bytes are received, it
 504         * pauses DMA and reads out data received via DMA as well as those left
 505         * in the Rx FIFO. For this to work with the RAM side using burst
 506         * transfers we enable the SBE bit and terminate the transfer in our
 507         * .device_pause handler.
 508         */
 509        mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
 510
 511        switch (direction) {
 512        case DMA_DEV_TO_MEM:
 513                can_burst = chan->slave_src_width >= 3;
 514                slave_xfer = min(mem_xfer, can_burst ?
 515                                 chan->slave_src_burst : chan->slave_src_width);
 516                /*
 517                 * Is the slave narrower than 64 bits, i.e. isn't using the full
 518                 * bus width and cannot use bursts?
 519                 */
 520                if (mem_xfer > chan->slave_src_burst && !can_burst)
 521                        mem_xfer = chan->slave_src_burst;
 522                /* Device-to-RAM DMA is unreliable without REQD set */
 523                hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
 524                        (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
 525                        NBPF_CHAN_CFG_SBE;
 526                break;
 527
 528        case DMA_MEM_TO_DEV:
 529                slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
 530                                 chan->slave_dst_burst : chan->slave_dst_width);
 531                hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 532                        (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
 533                break;
 534
 535        case DMA_MEM_TO_MEM:
 536                hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
 537                        (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 538                        (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
 539                break;
 540
 541        default:
 542                return -EINVAL;
 543        }
 544
 545        hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
 546                NBPF_CHAN_CFG_DMS;
 547
 548        dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
 549                __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
 550                hwdesc->config, size, &src, &dst);
 551
 552        dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
 553                                   DMA_TO_DEVICE);
 554
 555        return 0;
 556}
 557
 558static size_t nbpf_bytes_left(struct nbpf_channel *chan)
 559{
 560        return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
 561}
 562
 563static void nbpf_configure(struct nbpf_device *nbpf)
 564{
 565        nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
 566}
 567
 568/*              Generic part                    */
 569
 570/* DMA ENGINE functions */
 571static void nbpf_issue_pending(struct dma_chan *dchan)
 572{
 573        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 574        unsigned long flags;
 575
 576        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
 577
 578        spin_lock_irqsave(&chan->lock, flags);
 579        if (list_empty(&chan->queued))
 580                goto unlock;
 581
 582        list_splice_tail_init(&chan->queued, &chan->active);
 583
 584        if (!chan->running) {
 585                struct nbpf_desc *desc = list_first_entry(&chan->active,
 586                                                struct nbpf_desc, node);
 587                if (!nbpf_start(desc))
 588                        chan->running = desc;
 589        }
 590
 591unlock:
 592        spin_unlock_irqrestore(&chan->lock, flags);
 593}
 594
 595static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
 596                dma_cookie_t cookie, struct dma_tx_state *state)
 597{
 598        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 599        enum dma_status status = dma_cookie_status(dchan, cookie, state);
 600
 601        if (state) {
 602                dma_cookie_t running;
 603                unsigned long flags;
 604
 605                spin_lock_irqsave(&chan->lock, flags);
 606                running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
 607
 608                if (cookie == running) {
 609                        state->residue = nbpf_bytes_left(chan);
 610                        dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
 611                                state->residue);
 612                } else if (status == DMA_IN_PROGRESS) {
 613                        struct nbpf_desc *desc;
 614                        bool found = false;
 615
 616                        list_for_each_entry(desc, &chan->active, node)
 617                                if (desc->async_tx.cookie == cookie) {
 618                                        found = true;
 619                                        break;
 620                                }
 621
 622                        if (!found)
 623                                list_for_each_entry(desc, &chan->queued, node)
 624                                        if (desc->async_tx.cookie == cookie) {
 625                                                found = true;
 626                                                break;
 627
 628                                        }
 629
 630                        state->residue = found ? desc->length : 0;
 631                }
 632
 633                spin_unlock_irqrestore(&chan->lock, flags);
 634        }
 635
 636        if (chan->paused)
 637                status = DMA_PAUSED;
 638
 639        return status;
 640}
 641
 642static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
 643{
 644        struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
 645        struct nbpf_channel *chan = desc->chan;
 646        unsigned long flags;
 647        dma_cookie_t cookie;
 648
 649        spin_lock_irqsave(&chan->lock, flags);
 650        cookie = dma_cookie_assign(tx);
 651        list_add_tail(&desc->node, &chan->queued);
 652        spin_unlock_irqrestore(&chan->lock, flags);
 653
 654        dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
 655
 656        return cookie;
 657}
 658
 659static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
 660{
 661        struct dma_chan *dchan = &chan->dma_chan;
 662        struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
 663        struct nbpf_link_desc *ldesc;
 664        struct nbpf_link_reg *hwdesc;
 665        struct nbpf_desc *desc;
 666        LIST_HEAD(head);
 667        LIST_HEAD(lhead);
 668        int i;
 669        struct device *dev = dchan->device->dev;
 670
 671        if (!dpage)
 672                return -ENOMEM;
 673
 674        dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
 675                __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
 676
 677        for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
 678             i < ARRAY_SIZE(dpage->ldesc);
 679             i++, ldesc++, hwdesc++) {
 680                ldesc->hwdesc = hwdesc;
 681                list_add_tail(&ldesc->node, &lhead);
 682                ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
 683                                        hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
 684
 685                dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
 686                        hwdesc, &ldesc->hwdesc_dma_addr);
 687        }
 688
 689        for (i = 0, desc = dpage->desc;
 690             i < ARRAY_SIZE(dpage->desc);
 691             i++, desc++) {
 692                dma_async_tx_descriptor_init(&desc->async_tx, dchan);
 693                desc->async_tx.tx_submit = nbpf_tx_submit;
 694                desc->chan = chan;
 695                INIT_LIST_HEAD(&desc->sg);
 696                list_add_tail(&desc->node, &head);
 697        }
 698
 699        /*
 700         * This function cannot be called from interrupt context, so, no need to
 701         * save flags
 702         */
 703        spin_lock_irq(&chan->lock);
 704        list_splice_tail(&lhead, &chan->free_links);
 705        list_splice_tail(&head, &chan->free);
 706        list_add(&dpage->node, &chan->desc_page);
 707        spin_unlock_irq(&chan->lock);
 708
 709        return ARRAY_SIZE(dpage->desc);
 710}
 711
 712static void nbpf_desc_put(struct nbpf_desc *desc)
 713{
 714        struct nbpf_channel *chan = desc->chan;
 715        struct nbpf_link_desc *ldesc, *tmp;
 716        unsigned long flags;
 717
 718        spin_lock_irqsave(&chan->lock, flags);
 719        list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
 720                list_move(&ldesc->node, &chan->free_links);
 721
 722        list_add(&desc->node, &chan->free);
 723        spin_unlock_irqrestore(&chan->lock, flags);
 724}
 725
 726static void nbpf_scan_acked(struct nbpf_channel *chan)
 727{
 728        struct nbpf_desc *desc, *tmp;
 729        unsigned long flags;
 730        LIST_HEAD(head);
 731
 732        spin_lock_irqsave(&chan->lock, flags);
 733        list_for_each_entry_safe(desc, tmp, &chan->done, node)
 734                if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
 735                        list_move(&desc->node, &head);
 736                        desc->user_wait = false;
 737                }
 738        spin_unlock_irqrestore(&chan->lock, flags);
 739
 740        list_for_each_entry_safe(desc, tmp, &head, node) {
 741                list_del(&desc->node);
 742                nbpf_desc_put(desc);
 743        }
 744}
 745
 746/*
 747 * We have to allocate descriptors with the channel lock dropped. This means,
 748 * before we re-acquire the lock buffers can be taken already, so we have to
 749 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
 750 * again.
 751 */
 752static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
 753{
 754        struct nbpf_desc *desc = NULL;
 755        struct nbpf_link_desc *ldesc, *prev = NULL;
 756
 757        nbpf_scan_acked(chan);
 758
 759        spin_lock_irq(&chan->lock);
 760
 761        do {
 762                int i = 0, ret;
 763
 764                if (list_empty(&chan->free)) {
 765                        /* No more free descriptors */
 766                        spin_unlock_irq(&chan->lock);
 767                        ret = nbpf_desc_page_alloc(chan);
 768                        if (ret < 0)
 769                                return NULL;
 770                        spin_lock_irq(&chan->lock);
 771                        continue;
 772                }
 773                desc = list_first_entry(&chan->free, struct nbpf_desc, node);
 774                list_del(&desc->node);
 775
 776                do {
 777                        if (list_empty(&chan->free_links)) {
 778                                /* No more free link descriptors */
 779                                spin_unlock_irq(&chan->lock);
 780                                ret = nbpf_desc_page_alloc(chan);
 781                                if (ret < 0) {
 782                                        nbpf_desc_put(desc);
 783                                        return NULL;
 784                                }
 785                                spin_lock_irq(&chan->lock);
 786                                continue;
 787                        }
 788
 789                        ldesc = list_first_entry(&chan->free_links,
 790                                                 struct nbpf_link_desc, node);
 791                        ldesc->desc = desc;
 792                        if (prev)
 793                                prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
 794
 795                        prev = ldesc;
 796                        list_move_tail(&ldesc->node, &desc->sg);
 797
 798                        i++;
 799                } while (i < len);
 800        } while (!desc);
 801
 802        prev->hwdesc->next = 0;
 803
 804        spin_unlock_irq(&chan->lock);
 805
 806        return desc;
 807}
 808
 809static void nbpf_chan_idle(struct nbpf_channel *chan)
 810{
 811        struct nbpf_desc *desc, *tmp;
 812        unsigned long flags;
 813        LIST_HEAD(head);
 814
 815        spin_lock_irqsave(&chan->lock, flags);
 816
 817        list_splice_init(&chan->done, &head);
 818        list_splice_init(&chan->active, &head);
 819        list_splice_init(&chan->queued, &head);
 820
 821        chan->running = NULL;
 822
 823        spin_unlock_irqrestore(&chan->lock, flags);
 824
 825        list_for_each_entry_safe(desc, tmp, &head, node) {
 826                dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
 827                        __func__, desc, desc->async_tx.cookie);
 828                list_del(&desc->node);
 829                nbpf_desc_put(desc);
 830        }
 831}
 832
 833static int nbpf_pause(struct dma_chan *dchan)
 834{
 835        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 836
 837        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 838
 839        chan->paused = true;
 840        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
 841        /* See comment in nbpf_prep_one() */
 842        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 843
 844        return 0;
 845}
 846
 847static int nbpf_terminate_all(struct dma_chan *dchan)
 848{
 849        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 850
 851        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 852        dev_dbg(dchan->device->dev, "Terminating\n");
 853
 854        nbpf_chan_halt(chan);
 855        nbpf_chan_idle(chan);
 856
 857        return 0;
 858}
 859
 860static int nbpf_config(struct dma_chan *dchan,
 861                       struct dma_slave_config *config)
 862{
 863        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 864
 865        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 866
 867        /*
 868         * We could check config->slave_id to match chan->terminal here,
 869         * but with DT they would be coming from the same source, so
 870         * such a check would be superflous
 871         */
 872
 873        chan->slave_dst_addr = config->dst_addr;
 874        chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
 875                                               config->dst_addr_width, 1);
 876        chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
 877                                               config->dst_addr_width,
 878                                               config->dst_maxburst);
 879        chan->slave_src_addr = config->src_addr;
 880        chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
 881                                               config->src_addr_width, 1);
 882        chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
 883                                               config->src_addr_width,
 884                                               config->src_maxburst);
 885
 886        return 0;
 887}
 888
 889static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
 890                struct scatterlist *src_sg, struct scatterlist *dst_sg,
 891                size_t len, enum dma_transfer_direction direction,
 892                unsigned long flags)
 893{
 894        struct nbpf_link_desc *ldesc;
 895        struct scatterlist *mem_sg;
 896        struct nbpf_desc *desc;
 897        bool inc_src, inc_dst;
 898        size_t data_len = 0;
 899        int i = 0;
 900
 901        switch (direction) {
 902        case DMA_DEV_TO_MEM:
 903                mem_sg = dst_sg;
 904                inc_src = false;
 905                inc_dst = true;
 906                break;
 907
 908        case DMA_MEM_TO_DEV:
 909                mem_sg = src_sg;
 910                inc_src = true;
 911                inc_dst = false;
 912                break;
 913
 914        default:
 915        case DMA_MEM_TO_MEM:
 916                mem_sg = src_sg;
 917                inc_src = true;
 918                inc_dst = true;
 919        }
 920
 921        desc = nbpf_desc_get(chan, len);
 922        if (!desc)
 923                return NULL;
 924
 925        desc->async_tx.flags = flags;
 926        desc->async_tx.cookie = -EBUSY;
 927        desc->user_wait = false;
 928
 929        /*
 930         * This is a private descriptor list, and we own the descriptor. No need
 931         * to lock.
 932         */
 933        list_for_each_entry(ldesc, &desc->sg, node) {
 934                int ret = nbpf_prep_one(ldesc, direction,
 935                                        sg_dma_address(src_sg),
 936                                        sg_dma_address(dst_sg),
 937                                        sg_dma_len(mem_sg),
 938                                        i == len - 1);
 939                if (ret < 0) {
 940                        nbpf_desc_put(desc);
 941                        return NULL;
 942                }
 943                data_len += sg_dma_len(mem_sg);
 944                if (inc_src)
 945                        src_sg = sg_next(src_sg);
 946                if (inc_dst)
 947                        dst_sg = sg_next(dst_sg);
 948                mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
 949                i++;
 950        }
 951
 952        desc->length = data_len;
 953
 954        /* The user has to return the descriptor to us ASAP via .tx_submit() */
 955        return &desc->async_tx;
 956}
 957
 958static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
 959        struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
 960        size_t len, unsigned long flags)
 961{
 962        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 963        struct scatterlist dst_sg;
 964        struct scatterlist src_sg;
 965
 966        sg_init_table(&dst_sg, 1);
 967        sg_init_table(&src_sg, 1);
 968
 969        sg_dma_address(&dst_sg) = dst;
 970        sg_dma_address(&src_sg) = src;
 971
 972        sg_dma_len(&dst_sg) = len;
 973        sg_dma_len(&src_sg) = len;
 974
 975        dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
 976                __func__, len, &src, &dst);
 977
 978        return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
 979                            DMA_MEM_TO_MEM, flags);
 980}
 981
 982static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
 983        struct dma_chan *dchan,
 984        struct scatterlist *dst_sg, unsigned int dst_nents,
 985        struct scatterlist *src_sg, unsigned int src_nents,
 986        unsigned long flags)
 987{
 988        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 989
 990        if (dst_nents != src_nents)
 991                return NULL;
 992
 993        return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
 994                            DMA_MEM_TO_MEM, flags);
 995}
 996
 997static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
 998        struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
 999        enum dma_transfer_direction direction, unsigned long flags, void *context)
1000{
1001        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1002        struct scatterlist slave_sg;
1003
1004        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1005
1006        sg_init_table(&slave_sg, 1);
1007
1008        switch (direction) {
1009        case DMA_MEM_TO_DEV:
1010                sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1011                return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1012                                    direction, flags);
1013
1014        case DMA_DEV_TO_MEM:
1015                sg_dma_address(&slave_sg) = chan->slave_src_addr;
1016                return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1017                                    direction, flags);
1018
1019        default:
1020                return NULL;
1021        }
1022}
1023
1024static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1025{
1026        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1027        int ret;
1028
1029        INIT_LIST_HEAD(&chan->free);
1030        INIT_LIST_HEAD(&chan->free_links);
1031        INIT_LIST_HEAD(&chan->queued);
1032        INIT_LIST_HEAD(&chan->active);
1033        INIT_LIST_HEAD(&chan->done);
1034
1035        ret = nbpf_desc_page_alloc(chan);
1036        if (ret < 0)
1037                return ret;
1038
1039        dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1040                chan->terminal);
1041
1042        nbpf_chan_configure(chan);
1043
1044        return ret;
1045}
1046
1047static void nbpf_free_chan_resources(struct dma_chan *dchan)
1048{
1049        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1050        struct nbpf_desc_page *dpage, *tmp;
1051
1052        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1053
1054        nbpf_chan_halt(chan);
1055        nbpf_chan_idle(chan);
1056        /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1057        nbpf_chan_prepare_default(chan);
1058
1059        list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1060                struct nbpf_link_desc *ldesc;
1061                int i;
1062                list_del(&dpage->node);
1063                for (i = 0, ldesc = dpage->ldesc;
1064                     i < ARRAY_SIZE(dpage->ldesc);
1065                     i++, ldesc++)
1066                        dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1067                                         sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1068                free_page((unsigned long)dpage);
1069        }
1070}
1071
1072static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1073                                      struct of_dma *ofdma)
1074{
1075        struct nbpf_device *nbpf = ofdma->of_dma_data;
1076        struct dma_chan *dchan;
1077        struct nbpf_channel *chan;
1078
1079        if (dma_spec->args_count != 2)
1080                return NULL;
1081
1082        dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1083        if (!dchan)
1084                return NULL;
1085
1086        dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1087                dma_spec->np->name);
1088
1089        chan = nbpf_to_chan(dchan);
1090
1091        chan->terminal = dma_spec->args[0];
1092        chan->flags = dma_spec->args[1];
1093
1094        nbpf_chan_prepare(chan);
1095        nbpf_chan_configure(chan);
1096
1097        return dchan;
1098}
1099
1100static void nbpf_chan_tasklet(unsigned long data)
1101{
1102        struct nbpf_channel *chan = (struct nbpf_channel *)data;
1103        struct nbpf_desc *desc, *tmp;
1104        dma_async_tx_callback callback;
1105        void *param;
1106
1107        while (!list_empty(&chan->done)) {
1108                bool found = false, must_put, recycling = false;
1109
1110                spin_lock_irq(&chan->lock);
1111
1112                list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1113                        if (!desc->user_wait) {
1114                                /* Newly completed descriptor, have to process */
1115                                found = true;
1116                                break;
1117                        } else if (async_tx_test_ack(&desc->async_tx)) {
1118                                /*
1119                                 * This descriptor was waiting for a user ACK,
1120                                 * it can be recycled now.
1121                                 */
1122                                list_del(&desc->node);
1123                                spin_unlock_irq(&chan->lock);
1124                                nbpf_desc_put(desc);
1125                                recycling = true;
1126                                break;
1127                        }
1128                }
1129
1130                if (recycling)
1131                        continue;
1132
1133                if (!found) {
1134                        /* This can happen if TERMINATE_ALL has been called */
1135                        spin_unlock_irq(&chan->lock);
1136                        break;
1137                }
1138
1139                dma_cookie_complete(&desc->async_tx);
1140
1141                /*
1142                 * With released lock we cannot dereference desc, maybe it's
1143                 * still on the "done" list
1144                 */
1145                if (async_tx_test_ack(&desc->async_tx)) {
1146                        list_del(&desc->node);
1147                        must_put = true;
1148                } else {
1149                        desc->user_wait = true;
1150                        must_put = false;
1151                }
1152
1153                callback = desc->async_tx.callback;
1154                param = desc->async_tx.callback_param;
1155
1156                /* ack and callback completed descriptor */
1157                spin_unlock_irq(&chan->lock);
1158
1159                if (callback)
1160                        callback(param);
1161
1162                if (must_put)
1163                        nbpf_desc_put(desc);
1164        }
1165}
1166
1167static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1168{
1169        struct nbpf_channel *chan = dev;
1170        bool done = nbpf_status_get(chan);
1171        struct nbpf_desc *desc;
1172        irqreturn_t ret;
1173        bool bh = false;
1174
1175        if (!done)
1176                return IRQ_NONE;
1177
1178        nbpf_status_ack(chan);
1179
1180        dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1181
1182        spin_lock(&chan->lock);
1183        desc = chan->running;
1184        if (WARN_ON(!desc)) {
1185                ret = IRQ_NONE;
1186                goto unlock;
1187        } else {
1188                ret = IRQ_HANDLED;
1189                bh = true;
1190        }
1191
1192        list_move_tail(&desc->node, &chan->done);
1193        chan->running = NULL;
1194
1195        if (!list_empty(&chan->active)) {
1196                desc = list_first_entry(&chan->active,
1197                                        struct nbpf_desc, node);
1198                if (!nbpf_start(desc))
1199                        chan->running = desc;
1200        }
1201
1202unlock:
1203        spin_unlock(&chan->lock);
1204
1205        if (bh)
1206                tasklet_schedule(&chan->tasklet);
1207
1208        return ret;
1209}
1210
1211static irqreturn_t nbpf_err_irq(int irq, void *dev)
1212{
1213        struct nbpf_device *nbpf = dev;
1214        u32 error = nbpf_error_get(nbpf);
1215
1216        dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1217
1218        if (!error)
1219                return IRQ_NONE;
1220
1221        do {
1222                struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1223                /* On error: abort all queued transfers, no callback */
1224                nbpf_error_clear(chan);
1225                nbpf_chan_idle(chan);
1226                error = nbpf_error_get(nbpf);
1227        } while (error);
1228
1229        return IRQ_HANDLED;
1230}
1231
1232static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1233{
1234        struct dma_device *dma_dev = &nbpf->dma_dev;
1235        struct nbpf_channel *chan = nbpf->chan + n;
1236        int ret;
1237
1238        chan->nbpf = nbpf;
1239        chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1240        INIT_LIST_HEAD(&chan->desc_page);
1241        spin_lock_init(&chan->lock);
1242        chan->dma_chan.device = dma_dev;
1243        dma_cookie_init(&chan->dma_chan);
1244        nbpf_chan_prepare_default(chan);
1245
1246        dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1247
1248        snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1249
1250        tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1251        ret = devm_request_irq(dma_dev->dev, chan->irq,
1252                        nbpf_chan_irq, IRQF_SHARED,
1253                        chan->name, chan);
1254        if (ret < 0)
1255                return ret;
1256
1257        /* Add the channel to DMA device channel list */
1258        list_add_tail(&chan->dma_chan.device_node,
1259                      &dma_dev->channels);
1260
1261        return 0;
1262}
1263
1264static const struct of_device_id nbpf_match[] = {
1265        {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1266        {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1267        {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1268        {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1269        {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1270        {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1271        {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1272        {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1273        {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1274        {}
1275};
1276MODULE_DEVICE_TABLE(of, nbpf_match);
1277
1278static int nbpf_probe(struct platform_device *pdev)
1279{
1280        struct device *dev = &pdev->dev;
1281        const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1282        struct device_node *np = dev->of_node;
1283        struct nbpf_device *nbpf;
1284        struct dma_device *dma_dev;
1285        struct resource *iomem, *irq_res;
1286        const struct nbpf_config *cfg;
1287        int num_channels;
1288        int ret, irq, eirq, i;
1289        int irqbuf[9] /* maximum 8 channels + error IRQ */;
1290        unsigned int irqs = 0;
1291
1292        BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1293
1294        /* DT only */
1295        if (!np || !of_id || !of_id->data)
1296                return -ENODEV;
1297
1298        cfg = of_id->data;
1299        num_channels = cfg->num_channels;
1300
1301        nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1302                            sizeof(nbpf->chan[0]), GFP_KERNEL);
1303        if (!nbpf) {
1304                dev_err(dev, "Memory allocation failed\n");
1305                return -ENOMEM;
1306        }
1307        dma_dev = &nbpf->dma_dev;
1308        dma_dev->dev = dev;
1309
1310        iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311        nbpf->base = devm_ioremap_resource(dev, iomem);
1312        if (IS_ERR(nbpf->base))
1313                return PTR_ERR(nbpf->base);
1314
1315        nbpf->clk = devm_clk_get(dev, NULL);
1316        if (IS_ERR(nbpf->clk))
1317                return PTR_ERR(nbpf->clk);
1318
1319        nbpf->config = cfg;
1320
1321        for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1322                irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1323                if (!irq_res)
1324                        break;
1325
1326                for (irq = irq_res->start; irq <= irq_res->end;
1327                     irq++, irqs++)
1328                        irqbuf[irqs] = irq;
1329        }
1330
1331        /*
1332         * 3 IRQ resource schemes are supported:
1333         * 1. 1 shared IRQ for error and all channels
1334         * 2. 2 IRQs: one for error and one shared for all channels
1335         * 3. 1 IRQ for error and an own IRQ for each channel
1336         */
1337        if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1338                return -ENXIO;
1339
1340        if (irqs == 1) {
1341                eirq = irqbuf[0];
1342
1343                for (i = 0; i <= num_channels; i++)
1344                        nbpf->chan[i].irq = irqbuf[0];
1345        } else {
1346                eirq = platform_get_irq_byname(pdev, "error");
1347                if (eirq < 0)
1348                        return eirq;
1349
1350                if (irqs == num_channels + 1) {
1351                        struct nbpf_channel *chan;
1352
1353                        for (i = 0, chan = nbpf->chan; i <= num_channels;
1354                             i++, chan++) {
1355                                /* Skip the error IRQ */
1356                                if (irqbuf[i] == eirq)
1357                                        i++;
1358                                chan->irq = irqbuf[i];
1359                        }
1360
1361                        if (chan != nbpf->chan + num_channels)
1362                                return -EINVAL;
1363                } else {
1364                        /* 2 IRQs and more than one channel */
1365                        if (irqbuf[0] == eirq)
1366                                irq = irqbuf[1];
1367                        else
1368                                irq = irqbuf[0];
1369
1370                        for (i = 0; i <= num_channels; i++)
1371                                nbpf->chan[i].irq = irq;
1372                }
1373        }
1374
1375        ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1376                               IRQF_SHARED, "dma error", nbpf);
1377        if (ret < 0)
1378                return ret;
1379
1380        INIT_LIST_HEAD(&dma_dev->channels);
1381
1382        /* Create DMA Channel */
1383        for (i = 0; i < num_channels; i++) {
1384                ret = nbpf_chan_probe(nbpf, i);
1385                if (ret < 0)
1386                        return ret;
1387        }
1388
1389        dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1390        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1391        dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1392        dma_cap_set(DMA_SG, dma_dev->cap_mask);
1393
1394        /* Common and MEMCPY operations */
1395        dma_dev->device_alloc_chan_resources
1396                = nbpf_alloc_chan_resources;
1397        dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1398        dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1399        dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1400        dma_dev->device_tx_status = nbpf_tx_status;
1401        dma_dev->device_issue_pending = nbpf_issue_pending;
1402
1403        /*
1404         * If we drop support for unaligned MEMCPY buffer addresses and / or
1405         * lengths by setting
1406         * dma_dev->copy_align = 4;
1407         * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1408         * DMA_MEM_TO_MEM
1409         */
1410
1411        /* Compulsory for DMA_SLAVE fields */
1412        dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1413        dma_dev->device_config = nbpf_config;
1414        dma_dev->device_pause = nbpf_pause;
1415        dma_dev->device_terminate_all = nbpf_terminate_all;
1416
1417        dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1418        dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1419        dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1420
1421        platform_set_drvdata(pdev, nbpf);
1422
1423        ret = clk_prepare_enable(nbpf->clk);
1424        if (ret < 0)
1425                return ret;
1426
1427        nbpf_configure(nbpf);
1428
1429        ret = dma_async_device_register(dma_dev);
1430        if (ret < 0)
1431                goto e_clk_off;
1432
1433        ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1434        if (ret < 0)
1435                goto e_dma_dev_unreg;
1436
1437        return 0;
1438
1439e_dma_dev_unreg:
1440        dma_async_device_unregister(dma_dev);
1441e_clk_off:
1442        clk_disable_unprepare(nbpf->clk);
1443
1444        return ret;
1445}
1446
1447static int nbpf_remove(struct platform_device *pdev)
1448{
1449        struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1450
1451        of_dma_controller_free(pdev->dev.of_node);
1452        dma_async_device_unregister(&nbpf->dma_dev);
1453        clk_disable_unprepare(nbpf->clk);
1454
1455        return 0;
1456}
1457
1458static const struct platform_device_id nbpf_ids[] = {
1459        {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1460        {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1461        {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1462        {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1463        {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1464        {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1465        {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1466        {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1467        {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1468        {},
1469};
1470MODULE_DEVICE_TABLE(platform, nbpf_ids);
1471
1472#ifdef CONFIG_PM
1473static int nbpf_runtime_suspend(struct device *dev)
1474{
1475        struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1476        clk_disable_unprepare(nbpf->clk);
1477        return 0;
1478}
1479
1480static int nbpf_runtime_resume(struct device *dev)
1481{
1482        struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1483        return clk_prepare_enable(nbpf->clk);
1484}
1485#endif
1486
1487static const struct dev_pm_ops nbpf_pm_ops = {
1488        SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1489};
1490
1491static struct platform_driver nbpf_driver = {
1492        .driver = {
1493                .name = "dma-nbpf",
1494                .of_match_table = nbpf_match,
1495                .pm = &nbpf_pm_ops,
1496        },
1497        .id_table = nbpf_ids,
1498        .probe = nbpf_probe,
1499        .remove = nbpf_remove,
1500};
1501
1502module_platform_driver(nbpf_driver);
1503
1504MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1505MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1506MODULE_LICENSE("GPL v2");
1507