linux/drivers/dma/ppc4xx/adma.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2006-2009 DENX Software Engineering.
   3 *
   4 * Author: Yuri Tikhonov <yur@emcraft.com>
   5 *
   6 * Further porting to arch/powerpc by
   7 *      Anatolij Gustschin <agust@denx.de>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * The full GNU General Public License is included in this distribution in the
  20 * file called COPYING.
  21 */
  22
  23/*
  24 * This driver supports the asynchrounous DMA copy and RAID engines available
  25 * on the AMCC PPC440SPe Processors.
  26 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  27 * ADMA driver written by D.Williams.
  28 */
  29
  30#include <linux/init.h>
  31#include <linux/module.h>
  32#include <linux/async_tx.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/spinlock.h>
  36#include <linux/interrupt.h>
  37#include <linux/slab.h>
  38#include <linux/uaccess.h>
  39#include <linux/proc_fs.h>
  40#include <linux/of.h>
  41#include <linux/of_address.h>
  42#include <linux/of_irq.h>
  43#include <linux/of_platform.h>
  44#include <asm/dcr.h>
  45#include <asm/dcr-regs.h>
  46#include "adma.h"
  47#include "../dmaengine.h"
  48
  49enum ppc_adma_init_code {
  50        PPC_ADMA_INIT_OK = 0,
  51        PPC_ADMA_INIT_MEMRES,
  52        PPC_ADMA_INIT_MEMREG,
  53        PPC_ADMA_INIT_ALLOC,
  54        PPC_ADMA_INIT_COHERENT,
  55        PPC_ADMA_INIT_CHANNEL,
  56        PPC_ADMA_INIT_IRQ1,
  57        PPC_ADMA_INIT_IRQ2,
  58        PPC_ADMA_INIT_REGISTER
  59};
  60
  61static char *ppc_adma_errors[] = {
  62        [PPC_ADMA_INIT_OK] = "ok",
  63        [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  64        [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  65        [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  66                                "structure",
  67        [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  68                                   "hardware descriptors",
  69        [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  70        [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  71        [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  72        [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  73};
  74
  75static enum ppc_adma_init_code
  76ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  77
  78struct ppc_dma_chan_ref {
  79        struct dma_chan *chan;
  80        struct list_head node;
  81};
  82
  83/* The list of channels exported by ppc440spe ADMA */
  84struct list_head
  85ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  86
  87/* This flag is set when want to refetch the xor chain in the interrupt
  88 * handler
  89 */
  90static u32 do_xor_refetch;
  91
  92/* Pointer to DMA0, DMA1 CP/CS FIFO */
  93static void *ppc440spe_dma_fifo_buf;
  94
  95/* Pointers to last submitted to DMA0, DMA1 CDBs */
  96static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  97static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  98
  99/* Pointer to last linked and submitted xor CB */
 100static struct ppc440spe_adma_desc_slot *xor_last_linked;
 101static struct ppc440spe_adma_desc_slot *xor_last_submit;
 102
 103/* This array is used in data-check operations for storing a pattern */
 104static char ppc440spe_qword[16];
 105
 106static atomic_t ppc440spe_adma_err_irq_ref;
 107static dcr_host_t ppc440spe_mq_dcr_host;
 108static unsigned int ppc440spe_mq_dcr_len;
 109
 110/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
 111 * the block size in transactions, then we do not allow to activate more than
 112 * only one RXOR transactions simultaneously. So use this var to store
 113 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
 114 * set) or not (PPC440SPE_RXOR_RUN is clear).
 115 */
 116static unsigned long ppc440spe_rxor_state;
 117
 118/* These are used in enable & check routines
 119 */
 120static u32 ppc440spe_r6_enabled;
 121static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
 122static struct completion ppc440spe_r6_test_comp;
 123
 124static int ppc440spe_adma_dma2rxor_prep_src(
 125                struct ppc440spe_adma_desc_slot *desc,
 126                struct ppc440spe_rxor *cursor, int index,
 127                int src_cnt, u32 addr);
 128static void ppc440spe_adma_dma2rxor_set_src(
 129                struct ppc440spe_adma_desc_slot *desc,
 130                int index, dma_addr_t addr);
 131static void ppc440spe_adma_dma2rxor_set_mult(
 132                struct ppc440spe_adma_desc_slot *desc,
 133                int index, u8 mult);
 134
 135#ifdef ADMA_LL_DEBUG
 136#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
 137#else
 138#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
 139#endif
 140
 141static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
 142{
 143        struct dma_cdb *cdb;
 144        struct xor_cb *cb;
 145        int i;
 146
 147        switch (chan->device->id) {
 148        case 0:
 149        case 1:
 150                cdb = block;
 151
 152                pr_debug("CDB at %p [%d]:\n"
 153                        "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
 154                        "\t sg1u 0x%08x sg1l 0x%08x\n"
 155                        "\t sg2u 0x%08x sg2l 0x%08x\n"
 156                        "\t sg3u 0x%08x sg3l 0x%08x\n",
 157                        cdb, chan->device->id,
 158                        cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
 159                        le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
 160                        le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
 161                        le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
 162                );
 163                break;
 164        case 2:
 165                cb = block;
 166
 167                pr_debug("CB at %p [%d]:\n"
 168                        "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
 169                        "\t cbtah 0x%08x cbtal 0x%08x\n"
 170                        "\t cblah 0x%08x cblal 0x%08x\n",
 171                        cb, chan->device->id,
 172                        cb->cbc, cb->cbbc, cb->cbs,
 173                        cb->cbtah, cb->cbtal,
 174                        cb->cblah, cb->cblal);
 175                for (i = 0; i < 16; i++) {
 176                        if (i && !cb->ops[i].h && !cb->ops[i].l)
 177                                continue;
 178                        pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
 179                                i, cb->ops[i].h, cb->ops[i].l);
 180                }
 181                break;
 182        }
 183}
 184
 185static void print_cb_list(struct ppc440spe_adma_chan *chan,
 186                          struct ppc440spe_adma_desc_slot *iter)
 187{
 188        for (; iter; iter = iter->hw_next)
 189                print_cb(chan, iter->hw_desc);
 190}
 191
 192static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
 193                             unsigned int src_cnt)
 194{
 195        int i;
 196
 197        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 198        for (i = 0; i < src_cnt; i++)
 199                pr_debug("\t0x%016llx ", src[i]);
 200        pr_debug("dst:\n\t0x%016llx\n", dst);
 201}
 202
 203static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
 204                            unsigned int src_cnt)
 205{
 206        int i;
 207
 208        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 209        for (i = 0; i < src_cnt; i++)
 210                pr_debug("\t0x%016llx ", src[i]);
 211        pr_debug("dst: ");
 212        for (i = 0; i < 2; i++)
 213                pr_debug("\t0x%016llx ", dst[i]);
 214}
 215
 216static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
 217                                    unsigned int src_cnt,
 218                                    const unsigned char *scf)
 219{
 220        int i;
 221
 222        pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
 223        if (scf) {
 224                for (i = 0; i < src_cnt; i++)
 225                        pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
 226        } else {
 227                for (i = 0; i < src_cnt; i++)
 228                        pr_debug("\t0x%016llx(no) ", src[i]);
 229        }
 230
 231        pr_debug("dst: ");
 232        for (i = 0; i < 2; i++)
 233                pr_debug("\t0x%016llx ", src[src_cnt + i]);
 234}
 235
 236/******************************************************************************
 237 * Command (Descriptor) Blocks low-level routines
 238 ******************************************************************************/
 239/**
 240 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
 241 * pseudo operation
 242 */
 243static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
 244                                          struct ppc440spe_adma_chan *chan)
 245{
 246        struct xor_cb *p;
 247
 248        switch (chan->device->id) {
 249        case PPC440SPE_XOR_ID:
 250                p = desc->hw_desc;
 251                memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 252                /* NOP with Command Block Complete Enable */
 253                p->cbc = XOR_CBCR_CBCE_BIT;
 254                break;
 255        case PPC440SPE_DMA0_ID:
 256        case PPC440SPE_DMA1_ID:
 257                memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 258                /* NOP with interrupt */
 259                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 260                break;
 261        default:
 262                printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
 263                                __func__);
 264                break;
 265        }
 266}
 267
 268/**
 269 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
 270 * pseudo operation
 271 */
 272static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
 273{
 274        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 275        desc->hw_next = NULL;
 276        desc->src_cnt = 0;
 277        desc->dst_cnt = 1;
 278}
 279
 280/**
 281 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
 282 */
 283static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
 284                                         int src_cnt, unsigned long flags)
 285{
 286        struct xor_cb *hw_desc = desc->hw_desc;
 287
 288        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 289        desc->hw_next = NULL;
 290        desc->src_cnt = src_cnt;
 291        desc->dst_cnt = 1;
 292
 293        hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
 294        if (flags & DMA_PREP_INTERRUPT)
 295                /* Enable interrupt on completion */
 296                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 297}
 298
 299/**
 300 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
 301 * operation in DMA2 controller
 302 */
 303static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
 304                int dst_cnt, int src_cnt, unsigned long flags)
 305{
 306        struct xor_cb *hw_desc = desc->hw_desc;
 307
 308        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 309        desc->hw_next = NULL;
 310        desc->src_cnt = src_cnt;
 311        desc->dst_cnt = dst_cnt;
 312        memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
 313        desc->descs_per_op = 0;
 314
 315        hw_desc->cbc = XOR_CBCR_TGT_BIT;
 316        if (flags & DMA_PREP_INTERRUPT)
 317                /* Enable interrupt on completion */
 318                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 319}
 320
 321#define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
 322#define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
 323#define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
 324
 325/**
 326 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
 327 * with DMA0/1
 328 */
 329static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
 330                                int dst_cnt, int src_cnt, unsigned long flags,
 331                                unsigned long op)
 332{
 333        struct dma_cdb *hw_desc;
 334        struct ppc440spe_adma_desc_slot *iter;
 335        u8 dopc;
 336
 337        /* Common initialization of a PQ descriptors chain */
 338        set_bits(op, &desc->flags);
 339        desc->src_cnt = src_cnt;
 340        desc->dst_cnt = dst_cnt;
 341
 342        /* WXOR MULTICAST if both P and Q are being computed
 343         * MV_SG1_SG2 if Q only
 344         */
 345        dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
 346                DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
 347
 348        list_for_each_entry(iter, &desc->group_list, chain_node) {
 349                hw_desc = iter->hw_desc;
 350                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 351
 352                if (likely(!list_is_last(&iter->chain_node,
 353                                &desc->group_list))) {
 354                        /* set 'next' pointer */
 355                        iter->hw_next = list_entry(iter->chain_node.next,
 356                                struct ppc440spe_adma_desc_slot, chain_node);
 357                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 358                } else {
 359                        /* this is the last descriptor.
 360                         * this slot will be pasted from ADMA level
 361                         * each time it wants to configure parameters
 362                         * of the transaction (src, dst, ...)
 363                         */
 364                        iter->hw_next = NULL;
 365                        if (flags & DMA_PREP_INTERRUPT)
 366                                set_bit(PPC440SPE_DESC_INT, &iter->flags);
 367                        else
 368                                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 369                }
 370        }
 371
 372        /* Set OPS depending on WXOR/RXOR type of operation */
 373        if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
 374                /* This is a WXOR only chain:
 375                 * - first descriptors are for zeroing destinations
 376                 *   if PPC440SPE_ZERO_P/Q set;
 377                 * - descriptors remained are for GF-XOR operations.
 378                 */
 379                iter = list_first_entry(&desc->group_list,
 380                                        struct ppc440spe_adma_desc_slot,
 381                                        chain_node);
 382
 383                if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
 384                        hw_desc = iter->hw_desc;
 385                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 386                        iter = list_first_entry(&iter->chain_node,
 387                                        struct ppc440spe_adma_desc_slot,
 388                                        chain_node);
 389                }
 390
 391                if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
 392                        hw_desc = iter->hw_desc;
 393                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 394                        iter = list_first_entry(&iter->chain_node,
 395                                        struct ppc440spe_adma_desc_slot,
 396                                        chain_node);
 397                }
 398
 399                list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 400                        hw_desc = iter->hw_desc;
 401                        hw_desc->opc = dopc;
 402                }
 403        } else {
 404                /* This is either RXOR-only or mixed RXOR/WXOR */
 405
 406                /* The first 1 or 2 slots in chain are always RXOR,
 407                 * if need to calculate P & Q, then there are two
 408                 * RXOR slots; if only P or only Q, then there is one
 409                 */
 410                iter = list_first_entry(&desc->group_list,
 411                                        struct ppc440spe_adma_desc_slot,
 412                                        chain_node);
 413                hw_desc = iter->hw_desc;
 414                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 415
 416                if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
 417                        iter = list_first_entry(&iter->chain_node,
 418                                                struct ppc440spe_adma_desc_slot,
 419                                                chain_node);
 420                        hw_desc = iter->hw_desc;
 421                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 422                }
 423
 424                /* The remaining descs (if any) are WXORs */
 425                if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
 426                        iter = list_first_entry(&iter->chain_node,
 427                                                struct ppc440spe_adma_desc_slot,
 428                                                chain_node);
 429                        list_for_each_entry_from(iter, &desc->group_list,
 430                                                chain_node) {
 431                                hw_desc = iter->hw_desc;
 432                                hw_desc->opc = dopc;
 433                        }
 434                }
 435        }
 436}
 437
 438/**
 439 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
 440 * for PQ_ZERO_SUM operation
 441 */
 442static void ppc440spe_desc_init_dma01pqzero_sum(
 443                                struct ppc440spe_adma_desc_slot *desc,
 444                                int dst_cnt, int src_cnt)
 445{
 446        struct dma_cdb *hw_desc;
 447        struct ppc440spe_adma_desc_slot *iter;
 448        int i = 0;
 449        u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
 450                                   DMA_CDB_OPC_MV_SG1_SG2;
 451        /*
 452         * Initialize starting from 2nd or 3rd descriptor dependent
 453         * on dst_cnt. First one or two slots are for cloning P
 454         * and/or Q to chan->pdest and/or chan->qdest as we have
 455         * to preserve original P/Q.
 456         */
 457        iter = list_first_entry(&desc->group_list,
 458                                struct ppc440spe_adma_desc_slot, chain_node);
 459        iter = list_entry(iter->chain_node.next,
 460                          struct ppc440spe_adma_desc_slot, chain_node);
 461
 462        if (dst_cnt > 1) {
 463                iter = list_entry(iter->chain_node.next,
 464                                  struct ppc440spe_adma_desc_slot, chain_node);
 465        }
 466        /* initialize each source descriptor in chain */
 467        list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 468                hw_desc = iter->hw_desc;
 469                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 470                iter->src_cnt = 0;
 471                iter->dst_cnt = 0;
 472
 473                /* This is a ZERO_SUM operation:
 474                 * - <src_cnt> descriptors starting from 2nd or 3rd
 475                 *   descriptor are for GF-XOR operations;
 476                 * - remaining <dst_cnt> descriptors are for checking the result
 477                 */
 478                if (i++ < src_cnt)
 479                        /* MV_SG1_SG2 if only Q is being verified
 480                         * MULTICAST if both P and Q are being verified
 481                         */
 482                        hw_desc->opc = dopc;
 483                else
 484                        /* DMA_CDB_OPC_DCHECK128 operation */
 485                        hw_desc->opc = DMA_CDB_OPC_DCHECK128;
 486
 487                if (likely(!list_is_last(&iter->chain_node,
 488                                         &desc->group_list))) {
 489                        /* set 'next' pointer */
 490                        iter->hw_next = list_entry(iter->chain_node.next,
 491                                                struct ppc440spe_adma_desc_slot,
 492                                                chain_node);
 493                } else {
 494                        /* this is the last descriptor.
 495                         * this slot will be pasted from ADMA level
 496                         * each time it wants to configure parameters
 497                         * of the transaction (src, dst, ...)
 498                         */
 499                        iter->hw_next = NULL;
 500                        /* always enable interrupt generation since we get
 501                         * the status of pqzero from the handler
 502                         */
 503                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
 504                }
 505        }
 506        desc->src_cnt = src_cnt;
 507        desc->dst_cnt = dst_cnt;
 508}
 509
 510/**
 511 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
 512 */
 513static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
 514                                        unsigned long flags)
 515{
 516        struct dma_cdb *hw_desc = desc->hw_desc;
 517
 518        memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 519        desc->hw_next = NULL;
 520        desc->src_cnt = 1;
 521        desc->dst_cnt = 1;
 522
 523        if (flags & DMA_PREP_INTERRUPT)
 524                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 525        else
 526                clear_bit(PPC440SPE_DESC_INT, &desc->flags);
 527
 528        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 529}
 530
 531/**
 532 * ppc440spe_desc_set_src_addr - set source address into the descriptor
 533 */
 534static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
 535                                        struct ppc440spe_adma_chan *chan,
 536                                        int src_idx, dma_addr_t addrh,
 537                                        dma_addr_t addrl)
 538{
 539        struct dma_cdb *dma_hw_desc;
 540        struct xor_cb *xor_hw_desc;
 541        phys_addr_t addr64, tmplow, tmphi;
 542
 543        switch (chan->device->id) {
 544        case PPC440SPE_DMA0_ID:
 545        case PPC440SPE_DMA1_ID:
 546                if (!addrh) {
 547                        addr64 = addrl;
 548                        tmphi = (addr64 >> 32);
 549                        tmplow = (addr64 & 0xFFFFFFFF);
 550                } else {
 551                        tmphi = addrh;
 552                        tmplow = addrl;
 553                }
 554                dma_hw_desc = desc->hw_desc;
 555                dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
 556                dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
 557                break;
 558        case PPC440SPE_XOR_ID:
 559                xor_hw_desc = desc->hw_desc;
 560                xor_hw_desc->ops[src_idx].l = addrl;
 561                xor_hw_desc->ops[src_idx].h |= addrh;
 562                break;
 563        }
 564}
 565
 566/**
 567 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
 568 */
 569static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
 570                        struct ppc440spe_adma_chan *chan, u32 mult_index,
 571                        int sg_index, unsigned char mult_value)
 572{
 573        struct dma_cdb *dma_hw_desc;
 574        struct xor_cb *xor_hw_desc;
 575        u32 *psgu;
 576
 577        switch (chan->device->id) {
 578        case PPC440SPE_DMA0_ID:
 579        case PPC440SPE_DMA1_ID:
 580                dma_hw_desc = desc->hw_desc;
 581
 582                switch (sg_index) {
 583                /* for RXOR operations set multiplier
 584                 * into source cued address
 585                 */
 586                case DMA_CDB_SG_SRC:
 587                        psgu = &dma_hw_desc->sg1u;
 588                        break;
 589                /* for WXOR operations set multiplier
 590                 * into destination cued address(es)
 591                 */
 592                case DMA_CDB_SG_DST1:
 593                        psgu = &dma_hw_desc->sg2u;
 594                        break;
 595                case DMA_CDB_SG_DST2:
 596                        psgu = &dma_hw_desc->sg3u;
 597                        break;
 598                default:
 599                        BUG();
 600                }
 601
 602                *psgu |= cpu_to_le32(mult_value << mult_index);
 603                break;
 604        case PPC440SPE_XOR_ID:
 605                xor_hw_desc = desc->hw_desc;
 606                break;
 607        default:
 608                BUG();
 609        }
 610}
 611
 612/**
 613 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
 614 */
 615static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
 616                                struct ppc440spe_adma_chan *chan,
 617                                dma_addr_t addrh, dma_addr_t addrl,
 618                                u32 dst_idx)
 619{
 620        struct dma_cdb *dma_hw_desc;
 621        struct xor_cb *xor_hw_desc;
 622        phys_addr_t addr64, tmphi, tmplow;
 623        u32 *psgu, *psgl;
 624
 625        switch (chan->device->id) {
 626        case PPC440SPE_DMA0_ID:
 627        case PPC440SPE_DMA1_ID:
 628                if (!addrh) {
 629                        addr64 = addrl;
 630                        tmphi = (addr64 >> 32);
 631                        tmplow = (addr64 & 0xFFFFFFFF);
 632                } else {
 633                        tmphi = addrh;
 634                        tmplow = addrl;
 635                }
 636                dma_hw_desc = desc->hw_desc;
 637
 638                psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
 639                psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
 640
 641                *psgl = cpu_to_le32((u32)tmplow);
 642                *psgu |= cpu_to_le32((u32)tmphi);
 643                break;
 644        case PPC440SPE_XOR_ID:
 645                xor_hw_desc = desc->hw_desc;
 646                xor_hw_desc->cbtal = addrl;
 647                xor_hw_desc->cbtah |= addrh;
 648                break;
 649        }
 650}
 651
 652/**
 653 * ppc440spe_desc_set_byte_count - set number of data bytes involved
 654 * into the operation
 655 */
 656static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
 657                                struct ppc440spe_adma_chan *chan,
 658                                u32 byte_count)
 659{
 660        struct dma_cdb *dma_hw_desc;
 661        struct xor_cb *xor_hw_desc;
 662
 663        switch (chan->device->id) {
 664        case PPC440SPE_DMA0_ID:
 665        case PPC440SPE_DMA1_ID:
 666                dma_hw_desc = desc->hw_desc;
 667                dma_hw_desc->cnt = cpu_to_le32(byte_count);
 668                break;
 669        case PPC440SPE_XOR_ID:
 670                xor_hw_desc = desc->hw_desc;
 671                xor_hw_desc->cbbc = byte_count;
 672                break;
 673        }
 674}
 675
 676/**
 677 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
 678 */
 679static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
 680{
 681        /* assume that byte_count is aligned on the 512-boundary;
 682         * thus write it directly to the register (bits 23:31 are
 683         * reserved there).
 684         */
 685        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
 686}
 687
 688/**
 689 * ppc440spe_desc_set_dcheck - set CHECK pattern
 690 */
 691static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
 692                                struct ppc440spe_adma_chan *chan, u8 *qword)
 693{
 694        struct dma_cdb *dma_hw_desc;
 695
 696        switch (chan->device->id) {
 697        case PPC440SPE_DMA0_ID:
 698        case PPC440SPE_DMA1_ID:
 699                dma_hw_desc = desc->hw_desc;
 700                iowrite32(qword[0], &dma_hw_desc->sg3l);
 701                iowrite32(qword[4], &dma_hw_desc->sg3u);
 702                iowrite32(qword[8], &dma_hw_desc->sg2l);
 703                iowrite32(qword[12], &dma_hw_desc->sg2u);
 704                break;
 705        default:
 706                BUG();
 707        }
 708}
 709
 710/**
 711 * ppc440spe_xor_set_link - set link address in xor CB
 712 */
 713static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
 714                                struct ppc440spe_adma_desc_slot *next_desc)
 715{
 716        struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
 717
 718        if (unlikely(!next_desc || !(next_desc->phys))) {
 719                printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
 720                        __func__, next_desc,
 721                        next_desc ? next_desc->phys : 0);
 722                BUG();
 723        }
 724
 725        xor_hw_desc->cbs = 0;
 726        xor_hw_desc->cblal = next_desc->phys;
 727        xor_hw_desc->cblah = 0;
 728        xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
 729}
 730
 731/**
 732 * ppc440spe_desc_set_link - set the address of descriptor following this
 733 * descriptor in chain
 734 */
 735static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
 736                                struct ppc440spe_adma_desc_slot *prev_desc,
 737                                struct ppc440spe_adma_desc_slot *next_desc)
 738{
 739        unsigned long flags;
 740        struct ppc440spe_adma_desc_slot *tail = next_desc;
 741
 742        if (unlikely(!prev_desc || !next_desc ||
 743                (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
 744                /* If previous next is overwritten something is wrong.
 745                 * though we may refetch from append to initiate list
 746                 * processing; in this case - it's ok.
 747                 */
 748                printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
 749                        "prev->hw_next=0x%p\n", __func__, prev_desc,
 750                        next_desc, prev_desc ? prev_desc->hw_next : 0);
 751                BUG();
 752        }
 753
 754        local_irq_save(flags);
 755
 756        /* do s/w chaining both for DMA and XOR descriptors */
 757        prev_desc->hw_next = next_desc;
 758
 759        switch (chan->device->id) {
 760        case PPC440SPE_DMA0_ID:
 761        case PPC440SPE_DMA1_ID:
 762                break;
 763        case PPC440SPE_XOR_ID:
 764                /* bind descriptor to the chain */
 765                while (tail->hw_next)
 766                        tail = tail->hw_next;
 767                xor_last_linked = tail;
 768
 769                if (prev_desc == xor_last_submit)
 770                        /* do not link to the last submitted CB */
 771                        break;
 772                ppc440spe_xor_set_link(prev_desc, next_desc);
 773                break;
 774        }
 775
 776        local_irq_restore(flags);
 777}
 778
 779/**
 780 * ppc440spe_desc_get_link - get the address of the descriptor that
 781 * follows this one
 782 */
 783static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
 784                                        struct ppc440spe_adma_chan *chan)
 785{
 786        if (!desc->hw_next)
 787                return 0;
 788
 789        return desc->hw_next->phys;
 790}
 791
 792/**
 793 * ppc440spe_desc_is_aligned - check alignment
 794 */
 795static inline int ppc440spe_desc_is_aligned(
 796        struct ppc440spe_adma_desc_slot *desc, int num_slots)
 797{
 798        return (desc->idx & (num_slots - 1)) ? 0 : 1;
 799}
 800
 801/**
 802 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
 803 * XOR operation
 804 */
 805static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
 806                        int *slots_per_op)
 807{
 808        int slot_cnt;
 809
 810        /* each XOR descriptor provides up to 16 source operands */
 811        slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
 812
 813        if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
 814                return slot_cnt;
 815
 816        printk(KERN_ERR "%s: len %d > max %d !!\n",
 817                __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
 818        BUG();
 819        return slot_cnt;
 820}
 821
 822/**
 823 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
 824 * DMA2 PQ operation
 825 */
 826static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
 827                int src_cnt, size_t len)
 828{
 829        signed long long order = 0;
 830        int state = 0;
 831        int addr_count = 0;
 832        int i;
 833        for (i = 1; i < src_cnt; i++) {
 834                dma_addr_t cur_addr = srcs[i];
 835                dma_addr_t old_addr = srcs[i-1];
 836                switch (state) {
 837                case 0:
 838                        if (cur_addr == old_addr + len) {
 839                                /* direct RXOR */
 840                                order = 1;
 841                                state = 1;
 842                                if (i == src_cnt-1)
 843                                        addr_count++;
 844                        } else if (old_addr == cur_addr + len) {
 845                                /* reverse RXOR */
 846                                order = -1;
 847                                state = 1;
 848                                if (i == src_cnt-1)
 849                                        addr_count++;
 850                        } else {
 851                                state = 3;
 852                        }
 853                        break;
 854                case 1:
 855                        if (i == src_cnt-2 || (order == -1
 856                                && cur_addr != old_addr - len)) {
 857                                order = 0;
 858                                state = 0;
 859                                addr_count++;
 860                        } else if (cur_addr == old_addr + len*order) {
 861                                state = 2;
 862                                if (i == src_cnt-1)
 863                                        addr_count++;
 864                        } else if (cur_addr == old_addr + 2*len) {
 865                                state = 2;
 866                                if (i == src_cnt-1)
 867                                        addr_count++;
 868                        } else if (cur_addr == old_addr + 3*len) {
 869                                state = 2;
 870                                if (i == src_cnt-1)
 871                                        addr_count++;
 872                        } else {
 873                                order = 0;
 874                                state = 0;
 875                                addr_count++;
 876                        }
 877                        break;
 878                case 2:
 879                        order = 0;
 880                        state = 0;
 881                        addr_count++;
 882                                break;
 883                }
 884                if (state == 3)
 885                        break;
 886        }
 887        if (src_cnt <= 1 || (state != 1 && state != 2)) {
 888                pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
 889                        __func__, src_cnt, state, addr_count, order);
 890                for (i = 0; i < src_cnt; i++)
 891                        pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
 892                BUG();
 893        }
 894
 895        return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
 896}
 897
 898
 899/******************************************************************************
 900 * ADMA channel low-level routines
 901 ******************************************************************************/
 902
 903static u32
 904ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
 905static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
 906
 907/**
 908 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
 909 */
 910static void ppc440spe_adma_device_clear_eot_status(
 911                                        struct ppc440spe_adma_chan *chan)
 912{
 913        struct dma_regs *dma_reg;
 914        struct xor_regs *xor_reg;
 915        u8 *p = chan->device->dma_desc_pool_virt;
 916        struct dma_cdb *cdb;
 917        u32 rv, i;
 918
 919        switch (chan->device->id) {
 920        case PPC440SPE_DMA0_ID:
 921        case PPC440SPE_DMA1_ID:
 922                /* read FIFO to ack */
 923                dma_reg = chan->device->dma_reg;
 924                while ((rv = ioread32(&dma_reg->csfpl))) {
 925                        i = rv & DMA_CDB_ADDR_MSK;
 926                        cdb = (struct dma_cdb *)&p[i -
 927                            (u32)chan->device->dma_desc_pool];
 928
 929                        /* Clear opcode to ack. This is necessary for
 930                         * ZeroSum operations only
 931                         */
 932                        cdb->opc = 0;
 933
 934                        if (test_bit(PPC440SPE_RXOR_RUN,
 935                            &ppc440spe_rxor_state)) {
 936                                /* probably this is a completed RXOR op,
 937                                 * get pointer to CDB using the fact that
 938                                 * physical and virtual addresses of CDB
 939                                 * in pools have the same offsets
 940                                 */
 941                                if (le32_to_cpu(cdb->sg1u) &
 942                                    DMA_CUED_XOR_BASE) {
 943                                        /* this is a RXOR */
 944                                        clear_bit(PPC440SPE_RXOR_RUN,
 945                                                  &ppc440spe_rxor_state);
 946                                }
 947                        }
 948
 949                        if (rv & DMA_CDB_STATUS_MSK) {
 950                                /* ZeroSum check failed
 951                                 */
 952                                struct ppc440spe_adma_desc_slot *iter;
 953                                dma_addr_t phys = rv & ~DMA_CDB_MSK;
 954
 955                                /*
 956                                 * Update the status of corresponding
 957                                 * descriptor.
 958                                 */
 959                                list_for_each_entry(iter, &chan->chain,
 960                                    chain_node) {
 961                                        if (iter->phys == phys)
 962                                                break;
 963                                }
 964                                /*
 965                                 * if cannot find the corresponding
 966                                 * slot it's a bug
 967                                 */
 968                                BUG_ON(&iter->chain_node == &chan->chain);
 969
 970                                if (iter->xor_check_result) {
 971                                        if (test_bit(PPC440SPE_DESC_PCHECK,
 972                                                     &iter->flags)) {
 973                                                *iter->xor_check_result |=
 974                                                        SUM_CHECK_P_RESULT;
 975                                        } else
 976                                        if (test_bit(PPC440SPE_DESC_QCHECK,
 977                                                     &iter->flags)) {
 978                                                *iter->xor_check_result |=
 979                                                        SUM_CHECK_Q_RESULT;
 980                                        } else
 981                                                BUG();
 982                                }
 983                        }
 984                }
 985
 986                rv = ioread32(&dma_reg->dsts);
 987                if (rv) {
 988                        pr_err("DMA%d err status: 0x%x\n",
 989                               chan->device->id, rv);
 990                        /* write back to clear */
 991                        iowrite32(rv, &dma_reg->dsts);
 992                }
 993                break;
 994        case PPC440SPE_XOR_ID:
 995                /* reset status bits to ack */
 996                xor_reg = chan->device->xor_reg;
 997                rv = ioread32be(&xor_reg->sr);
 998                iowrite32be(rv, &xor_reg->sr);
 999
1000                if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1001                        if (rv & XOR_IE_RPTIE_BIT) {
1002                                /* Read PLB Timeout Error.
1003                                 * Try to resubmit the CB
1004                                 */
1005                                u32 val = ioread32be(&xor_reg->ccbalr);
1006
1007                                iowrite32be(val, &xor_reg->cblalr);
1008
1009                                val = ioread32be(&xor_reg->crsr);
1010                                iowrite32be(val | XOR_CRSR_XAE_BIT,
1011                                            &xor_reg->crsr);
1012                        } else
1013                                pr_err("XOR ERR 0x%x status\n", rv);
1014                        break;
1015                }
1016
1017                /*  if the XORcore is idle, but there are unprocessed CBs
1018                 * then refetch the s/w chain here
1019                 */
1020                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1021                    do_xor_refetch)
1022                        ppc440spe_chan_append(chan);
1023                break;
1024        }
1025}
1026
1027/**
1028 * ppc440spe_chan_is_busy - get the channel status
1029 */
1030static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1031{
1032        struct dma_regs *dma_reg;
1033        struct xor_regs *xor_reg;
1034        int busy = 0;
1035
1036        switch (chan->device->id) {
1037        case PPC440SPE_DMA0_ID:
1038        case PPC440SPE_DMA1_ID:
1039                dma_reg = chan->device->dma_reg;
1040                /*  if command FIFO's head and tail pointers are equal and
1041                 * status tail is the same as command, then channel is free
1042                 */
1043                if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1044                    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1045                        busy = 1;
1046                break;
1047        case PPC440SPE_XOR_ID:
1048                /* use the special status bit for the XORcore
1049                 */
1050                xor_reg = chan->device->xor_reg;
1051                busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1052                break;
1053        }
1054
1055        return busy;
1056}
1057
1058/**
1059 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1060 */
1061static void ppc440spe_chan_set_first_xor_descriptor(
1062                                struct ppc440spe_adma_chan *chan,
1063                                struct ppc440spe_adma_desc_slot *next_desc)
1064{
1065        struct xor_regs *xor_reg = chan->device->xor_reg;
1066
1067        if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1068                printk(KERN_INFO "%s: Warn: XORcore is running "
1069                        "when try to set the first CDB!\n",
1070                        __func__);
1071
1072        xor_last_submit = xor_last_linked = next_desc;
1073
1074        iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1075
1076        iowrite32be(next_desc->phys, &xor_reg->cblalr);
1077        iowrite32be(0, &xor_reg->cblahr);
1078        iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1079                    &xor_reg->cbcr);
1080
1081        chan->hw_chain_inited = 1;
1082}
1083
1084/**
1085 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1086 * called with irqs disabled
1087 */
1088static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1089                struct ppc440spe_adma_desc_slot *desc)
1090{
1091        u32 pcdb;
1092        struct dma_regs *dma_reg = chan->device->dma_reg;
1093
1094        pcdb = desc->phys;
1095        if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1096                pcdb |= DMA_CDB_NO_INT;
1097
1098        chan_last_sub[chan->device->id] = desc;
1099
1100        ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1101
1102        iowrite32(pcdb, &dma_reg->cpfpl);
1103}
1104
1105/**
1106 * ppc440spe_chan_append - update the h/w chain in the channel
1107 */
1108static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1109{
1110        struct xor_regs *xor_reg;
1111        struct ppc440spe_adma_desc_slot *iter;
1112        struct xor_cb *xcb;
1113        u32 cur_desc;
1114        unsigned long flags;
1115
1116        local_irq_save(flags);
1117
1118        switch (chan->device->id) {
1119        case PPC440SPE_DMA0_ID:
1120        case PPC440SPE_DMA1_ID:
1121                cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1122
1123                if (likely(cur_desc)) {
1124                        iter = chan_last_sub[chan->device->id];
1125                        BUG_ON(!iter);
1126                } else {
1127                        /* first peer */
1128                        iter = chan_first_cdb[chan->device->id];
1129                        BUG_ON(!iter);
1130                        ppc440spe_dma_put_desc(chan, iter);
1131                        chan->hw_chain_inited = 1;
1132                }
1133
1134                /* is there something new to append */
1135                if (!iter->hw_next)
1136                        break;
1137
1138                /* flush descriptors from the s/w queue to fifo */
1139                list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1140                        ppc440spe_dma_put_desc(chan, iter);
1141                        if (!iter->hw_next)
1142                                break;
1143                }
1144                break;
1145        case PPC440SPE_XOR_ID:
1146                /* update h/w links and refetch */
1147                if (!xor_last_submit->hw_next)
1148                        break;
1149
1150                xor_reg = chan->device->xor_reg;
1151                /* the last linked CDB has to generate an interrupt
1152                 * that we'd be able to append the next lists to h/w
1153                 * regardless of the XOR engine state at the moment of
1154                 * appending of these next lists
1155                 */
1156                xcb = xor_last_linked->hw_desc;
1157                xcb->cbc |= XOR_CBCR_CBCE_BIT;
1158
1159                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1160                        /* XORcore is idle. Refetch now */
1161                        do_xor_refetch = 0;
1162                        ppc440spe_xor_set_link(xor_last_submit,
1163                                xor_last_submit->hw_next);
1164
1165                        ADMA_LL_DBG(print_cb_list(chan,
1166                                xor_last_submit->hw_next));
1167
1168                        xor_last_submit = xor_last_linked;
1169                        iowrite32be(ioread32be(&xor_reg->crsr) |
1170                                    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1171                                    &xor_reg->crsr);
1172                } else {
1173                        /* XORcore is running. Refetch later in the handler */
1174                        do_xor_refetch = 1;
1175                }
1176
1177                break;
1178        }
1179
1180        local_irq_restore(flags);
1181}
1182
1183/**
1184 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1185 */
1186static u32
1187ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1188{
1189        struct dma_regs *dma_reg;
1190        struct xor_regs *xor_reg;
1191
1192        if (unlikely(!chan->hw_chain_inited))
1193                /* h/w descriptor chain is not initialized yet */
1194                return 0;
1195
1196        switch (chan->device->id) {
1197        case PPC440SPE_DMA0_ID:
1198        case PPC440SPE_DMA1_ID:
1199                dma_reg = chan->device->dma_reg;
1200                return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1201        case PPC440SPE_XOR_ID:
1202                xor_reg = chan->device->xor_reg;
1203                return ioread32be(&xor_reg->ccbalr);
1204        }
1205        return 0;
1206}
1207
1208/**
1209 * ppc440spe_chan_run - enable the channel
1210 */
1211static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1212{
1213        struct xor_regs *xor_reg;
1214
1215        switch (chan->device->id) {
1216        case PPC440SPE_DMA0_ID:
1217        case PPC440SPE_DMA1_ID:
1218                /* DMAs are always enabled, do nothing */
1219                break;
1220        case PPC440SPE_XOR_ID:
1221                /* drain write buffer */
1222                xor_reg = chan->device->xor_reg;
1223
1224                /* fetch descriptor pointed to in <link> */
1225                iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1226                            &xor_reg->crsr);
1227                break;
1228        }
1229}
1230
1231/******************************************************************************
1232 * ADMA device level
1233 ******************************************************************************/
1234
1235static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1236static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1237
1238static dma_cookie_t
1239ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1240
1241static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1242                                    dma_addr_t addr, int index);
1243static void
1244ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1245                                  dma_addr_t addr, int index);
1246
1247static void
1248ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1249                           dma_addr_t *paddr, unsigned long flags);
1250static void
1251ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1252                          dma_addr_t addr, int index);
1253static void
1254ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1255                               unsigned char mult, int index, int dst_pos);
1256static void
1257ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1258                                   dma_addr_t paddr, dma_addr_t qaddr);
1259
1260static struct page *ppc440spe_rxor_srcs[32];
1261
1262/**
1263 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1264 */
1265static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1266{
1267        int i, order = 0, state = 0;
1268        int idx = 0;
1269
1270        if (unlikely(!(src_cnt > 1)))
1271                return 0;
1272
1273        BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1274
1275        /* Skip holes in the source list before checking */
1276        for (i = 0; i < src_cnt; i++) {
1277                if (!srcs[i])
1278                        continue;
1279                ppc440spe_rxor_srcs[idx++] = srcs[i];
1280        }
1281        src_cnt = idx;
1282
1283        for (i = 1; i < src_cnt; i++) {
1284                char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1285                char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1286
1287                switch (state) {
1288                case 0:
1289                        if (cur_addr == old_addr + len) {
1290                                /* direct RXOR */
1291                                order = 1;
1292                                state = 1;
1293                        } else if (old_addr == cur_addr + len) {
1294                                /* reverse RXOR */
1295                                order = -1;
1296                                state = 1;
1297                        } else
1298                                goto out;
1299                        break;
1300                case 1:
1301                        if ((i == src_cnt - 2) ||
1302                            (order == -1 && cur_addr != old_addr - len)) {
1303                                order = 0;
1304                                state = 0;
1305                        } else if ((cur_addr == old_addr + len * order) ||
1306                                   (cur_addr == old_addr + 2 * len) ||
1307                                   (cur_addr == old_addr + 3 * len)) {
1308                                state = 2;
1309                        } else {
1310                                order = 0;
1311                                state = 0;
1312                        }
1313                        break;
1314                case 2:
1315                        order = 0;
1316                        state = 0;
1317                        break;
1318                }
1319        }
1320
1321out:
1322        if (state == 1 || state == 2)
1323                return 1;
1324
1325        return 0;
1326}
1327
1328/**
1329 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1330 *      the operation given on this channel. It's assumed that 'chan' is
1331 *      capable to process 'cap' type of operation.
1332 * @chan: channel to use
1333 * @cap: type of transaction
1334 * @dst_lst: array of destination pointers
1335 * @dst_cnt: number of destination operands
1336 * @src_lst: array of source pointers
1337 * @src_cnt: number of source operands
1338 * @src_sz: size of each source operand
1339 */
1340static int ppc440spe_adma_estimate(struct dma_chan *chan,
1341        enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1342        struct page **src_lst, int src_cnt, size_t src_sz)
1343{
1344        int ef = 1;
1345
1346        if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1347                /* If RAID-6 capabilities were not activated don't try
1348                 * to use them
1349                 */
1350                if (unlikely(!ppc440spe_r6_enabled))
1351                        return -1;
1352        }
1353        /*  In the current implementation of ppc440spe ADMA driver it
1354         * makes sense to pick out only pq case, because it may be
1355         * processed:
1356         * (1) either using Biskup method on DMA2;
1357         * (2) or on DMA0/1.
1358         *  Thus we give a favour to (1) if the sources are suitable;
1359         * else let it be processed on one of the DMA0/1 engines.
1360         *  In the sum_product case where destination is also the
1361         * source process it on DMA0/1 only.
1362         */
1363        if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1364
1365                if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1366                        ef = 0; /* sum_product case, process on DMA0/1 */
1367                else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1368                        ef = 3; /* override (DMA0/1 + idle) */
1369                else
1370                        ef = 0; /* can't process on DMA2 if !rxor */
1371        }
1372
1373        /* channel idleness increases the priority */
1374        if (likely(ef) &&
1375            !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1376                ef++;
1377
1378        return ef;
1379}
1380
1381struct dma_chan *
1382ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1383        struct page **dst_lst, int dst_cnt, struct page **src_lst,
1384        int src_cnt, size_t src_sz)
1385{
1386        struct dma_chan *best_chan = NULL;
1387        struct ppc_dma_chan_ref *ref;
1388        int best_rank = -1;
1389
1390        if (unlikely(!src_sz))
1391                return NULL;
1392        if (src_sz > PAGE_SIZE) {
1393                /*
1394                 * should a user of the api ever pass > PAGE_SIZE requests
1395                 * we sort out cases where temporary page-sized buffers
1396                 * are used.
1397                 */
1398                switch (cap) {
1399                case DMA_PQ:
1400                        if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1401                                return NULL;
1402                        if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1403                                return NULL;
1404                        break;
1405                case DMA_PQ_VAL:
1406                case DMA_XOR_VAL:
1407                        return NULL;
1408                default:
1409                        break;
1410                }
1411        }
1412
1413        list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1414                if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1415                        int rank;
1416
1417                        rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1418                                        dst_cnt, src_lst, src_cnt, src_sz);
1419                        if (rank > best_rank) {
1420                                best_rank = rank;
1421                                best_chan = ref->chan;
1422                        }
1423                }
1424        }
1425
1426        return best_chan;
1427}
1428EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1429
1430/**
1431 * ppc440spe_get_group_entry - get group entry with index idx
1432 * @tdesc: is the last allocated slot in the group.
1433 */
1434static struct ppc440spe_adma_desc_slot *
1435ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1436{
1437        struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1438        int i = 0;
1439
1440        if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1441                printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1442                        __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1443                BUG();
1444        }
1445
1446        list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1447                if (i++ == entry_idx)
1448                        break;
1449        }
1450        return iter;
1451}
1452
1453/**
1454 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1455 * @slot: Slot to free
1456 * Caller must hold &ppc440spe_chan->lock while calling this function
1457 */
1458static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1459                                      struct ppc440spe_adma_chan *chan)
1460{
1461        int stride = slot->slots_per_op;
1462
1463        while (stride--) {
1464                slot->slots_per_op = 0;
1465                slot = list_entry(slot->slot_node.next,
1466                                struct ppc440spe_adma_desc_slot,
1467                                slot_node);
1468        }
1469}
1470
1471/**
1472 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1473 * upon completion
1474 */
1475static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1476                struct ppc440spe_adma_desc_slot *desc,
1477                struct ppc440spe_adma_chan *chan,
1478                dma_cookie_t cookie)
1479{
1480        BUG_ON(desc->async_tx.cookie < 0);
1481        if (desc->async_tx.cookie > 0) {
1482                cookie = desc->async_tx.cookie;
1483                desc->async_tx.cookie = 0;
1484
1485                /* call the callback (must not sleep or submit new
1486                 * operations to this channel)
1487                 */
1488                if (desc->async_tx.callback)
1489                        desc->async_tx.callback(
1490                                desc->async_tx.callback_param);
1491
1492                dma_descriptor_unmap(&desc->async_tx);
1493        }
1494
1495        /* run dependent operations */
1496        dma_run_dependencies(&desc->async_tx);
1497
1498        return cookie;
1499}
1500
1501/**
1502 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1503 */
1504static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1505                struct ppc440spe_adma_chan *chan)
1506{
1507        /* the client is allowed to attach dependent operations
1508         * until 'ack' is set
1509         */
1510        if (!async_tx_test_ack(&desc->async_tx))
1511                return 0;
1512
1513        /* leave the last descriptor in the chain
1514         * so we can append to it
1515         */
1516        if (list_is_last(&desc->chain_node, &chan->chain) ||
1517            desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1518                return 1;
1519
1520        if (chan->device->id != PPC440SPE_XOR_ID) {
1521                /* our DMA interrupt handler clears opc field of
1522                 * each processed descriptor. For all types of
1523                 * operations except for ZeroSum we do not actually
1524                 * need ack from the interrupt handler. ZeroSum is a
1525                 * special case since the result of this operation
1526                 * is available from the handler only, so if we see
1527                 * such type of descriptor (which is unprocessed yet)
1528                 * then leave it in chain.
1529                 */
1530                struct dma_cdb *cdb = desc->hw_desc;
1531                if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1532                        return 1;
1533        }
1534
1535        dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1536                desc->phys, desc->idx, desc->slots_per_op);
1537
1538        list_del(&desc->chain_node);
1539        ppc440spe_adma_free_slots(desc, chan);
1540        return 0;
1541}
1542
1543/**
1544 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1545 *      which runs through the channel CDBs list until reach the descriptor
1546 *      currently processed. When routine determines that all CDBs of group
1547 *      are completed then corresponding callbacks (if any) are called and slots
1548 *      are freed.
1549 */
1550static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1551{
1552        struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1553        dma_cookie_t cookie = 0;
1554        u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1555        int busy = ppc440spe_chan_is_busy(chan);
1556        int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1557
1558        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1559                chan->device->id, __func__);
1560
1561        if (!current_desc) {
1562                /*  There were no transactions yet, so
1563                 * nothing to clean
1564                 */
1565                return;
1566        }
1567
1568        /* free completed slots from the chain starting with
1569         * the oldest descriptor
1570         */
1571        list_for_each_entry_safe(iter, _iter, &chan->chain,
1572                                        chain_node) {
1573                dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1574                    "busy: %d this_desc: %#llx next_desc: %#x "
1575                    "cur: %#x ack: %d\n",
1576                    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1577                    ppc440spe_desc_get_link(iter, chan), current_desc,
1578                    async_tx_test_ack(&iter->async_tx));
1579                prefetch(_iter);
1580                prefetch(&_iter->async_tx);
1581
1582                /* do not advance past the current descriptor loaded into the
1583                 * hardware channel,subsequent descriptors are either in process
1584                 * or have not been submitted
1585                 */
1586                if (seen_current)
1587                        break;
1588
1589                /* stop the search if we reach the current descriptor and the
1590                 * channel is busy, or if it appears that the current descriptor
1591                 * needs to be re-read (i.e. has been appended to)
1592                 */
1593                if (iter->phys == current_desc) {
1594                        BUG_ON(seen_current++);
1595                        if (busy || ppc440spe_desc_get_link(iter, chan)) {
1596                                /* not all descriptors of the group have
1597                                 * been completed; exit.
1598                                 */
1599                                break;
1600                        }
1601                }
1602
1603                /* detect the start of a group transaction */
1604                if (!slot_cnt && !slots_per_op) {
1605                        slot_cnt = iter->slot_cnt;
1606                        slots_per_op = iter->slots_per_op;
1607                        if (slot_cnt <= slots_per_op) {
1608                                slot_cnt = 0;
1609                                slots_per_op = 0;
1610                        }
1611                }
1612
1613                if (slot_cnt) {
1614                        if (!group_start)
1615                                group_start = iter;
1616                        slot_cnt -= slots_per_op;
1617                }
1618
1619                /* all the members of a group are complete */
1620                if (slots_per_op != 0 && slot_cnt == 0) {
1621                        struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1622                        int end_of_chain = 0;
1623
1624                        /* clean up the group */
1625                        slot_cnt = group_start->slot_cnt;
1626                        grp_iter = group_start;
1627                        list_for_each_entry_safe_from(grp_iter, _grp_iter,
1628                                &chan->chain, chain_node) {
1629
1630                                cookie = ppc440spe_adma_run_tx_complete_actions(
1631                                        grp_iter, chan, cookie);
1632
1633                                slot_cnt -= slots_per_op;
1634                                end_of_chain = ppc440spe_adma_clean_slot(
1635                                    grp_iter, chan);
1636                                if (end_of_chain && slot_cnt) {
1637                                        /* Should wait for ZeroSum completion */
1638                                        if (cookie > 0)
1639                                                chan->common.completed_cookie = cookie;
1640                                        return;
1641                                }
1642
1643                                if (slot_cnt == 0 || end_of_chain)
1644                                        break;
1645                        }
1646
1647                        /* the group should be complete at this point */
1648                        BUG_ON(slot_cnt);
1649
1650                        slots_per_op = 0;
1651                        group_start = NULL;
1652                        if (end_of_chain)
1653                                break;
1654                        else
1655                                continue;
1656                } else if (slots_per_op) /* wait for group completion */
1657                        continue;
1658
1659                cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1660                    cookie);
1661
1662                if (ppc440spe_adma_clean_slot(iter, chan))
1663                        break;
1664        }
1665
1666        BUG_ON(!seen_current);
1667
1668        if (cookie > 0) {
1669                chan->common.completed_cookie = cookie;
1670                pr_debug("\tcompleted cookie %d\n", cookie);
1671        }
1672
1673}
1674
1675/**
1676 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1677 */
1678static void ppc440spe_adma_tasklet(unsigned long data)
1679{
1680        struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1681
1682        spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1683        __ppc440spe_adma_slot_cleanup(chan);
1684        spin_unlock(&chan->lock);
1685}
1686
1687/**
1688 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1689 */
1690static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1691{
1692        spin_lock_bh(&chan->lock);
1693        __ppc440spe_adma_slot_cleanup(chan);
1694        spin_unlock_bh(&chan->lock);
1695}
1696
1697/**
1698 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1699 */
1700static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1701                struct ppc440spe_adma_chan *chan, int num_slots,
1702                int slots_per_op)
1703{
1704        struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1705        struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1706        struct list_head chain = LIST_HEAD_INIT(chain);
1707        int slots_found, retry = 0;
1708
1709
1710        BUG_ON(!num_slots || !slots_per_op);
1711        /* start search from the last allocated descrtiptor
1712         * if a contiguous allocation can not be found start searching
1713         * from the beginning of the list
1714         */
1715retry:
1716        slots_found = 0;
1717        if (retry == 0)
1718                iter = chan->last_used;
1719        else
1720                iter = list_entry(&chan->all_slots,
1721                                  struct ppc440spe_adma_desc_slot,
1722                                  slot_node);
1723        list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1724            slot_node) {
1725                prefetch(_iter);
1726                prefetch(&_iter->async_tx);
1727                if (iter->slots_per_op) {
1728                        slots_found = 0;
1729                        continue;
1730                }
1731
1732                /* start the allocation if the slot is correctly aligned */
1733                if (!slots_found++)
1734                        alloc_start = iter;
1735
1736                if (slots_found == num_slots) {
1737                        struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1738                        struct ppc440spe_adma_desc_slot *last_used = NULL;
1739
1740                        iter = alloc_start;
1741                        while (num_slots) {
1742                                int i;
1743                                /* pre-ack all but the last descriptor */
1744                                if (num_slots != slots_per_op)
1745                                        async_tx_ack(&iter->async_tx);
1746
1747                                list_add_tail(&iter->chain_node, &chain);
1748                                alloc_tail = iter;
1749                                iter->async_tx.cookie = 0;
1750                                iter->hw_next = NULL;
1751                                iter->flags = 0;
1752                                iter->slot_cnt = num_slots;
1753                                iter->xor_check_result = NULL;
1754                                for (i = 0; i < slots_per_op; i++) {
1755                                        iter->slots_per_op = slots_per_op - i;
1756                                        last_used = iter;
1757                                        iter = list_entry(iter->slot_node.next,
1758                                                struct ppc440spe_adma_desc_slot,
1759                                                slot_node);
1760                                }
1761                                num_slots -= slots_per_op;
1762                        }
1763                        alloc_tail->group_head = alloc_start;
1764                        alloc_tail->async_tx.cookie = -EBUSY;
1765                        list_splice(&chain, &alloc_tail->group_list);
1766                        chan->last_used = last_used;
1767                        return alloc_tail;
1768                }
1769        }
1770        if (!retry++)
1771                goto retry;
1772
1773        /* try to free some slots if the allocation fails */
1774        tasklet_schedule(&chan->irq_tasklet);
1775        return NULL;
1776}
1777
1778/**
1779 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1780 */
1781static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1782{
1783        struct ppc440spe_adma_chan *ppc440spe_chan;
1784        struct ppc440spe_adma_desc_slot *slot = NULL;
1785        char *hw_desc;
1786        int i, db_sz;
1787        int init;
1788
1789        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1790        init = ppc440spe_chan->slots_allocated ? 0 : 1;
1791        chan->chan_id = ppc440spe_chan->device->id;
1792
1793        /* Allocate descriptor slots */
1794        i = ppc440spe_chan->slots_allocated;
1795        if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1796                db_sz = sizeof(struct dma_cdb);
1797        else
1798                db_sz = sizeof(struct xor_cb);
1799
1800        for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1801                slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1802                               GFP_KERNEL);
1803                if (!slot) {
1804                        printk(KERN_INFO "SPE ADMA Channel only initialized"
1805                                " %d descriptor slots", i--);
1806                        break;
1807                }
1808
1809                hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1810                slot->hw_desc = (void *) &hw_desc[i * db_sz];
1811                dma_async_tx_descriptor_init(&slot->async_tx, chan);
1812                slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1813                INIT_LIST_HEAD(&slot->chain_node);
1814                INIT_LIST_HEAD(&slot->slot_node);
1815                INIT_LIST_HEAD(&slot->group_list);
1816                slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1817                slot->idx = i;
1818
1819                spin_lock_bh(&ppc440spe_chan->lock);
1820                ppc440spe_chan->slots_allocated++;
1821                list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1822                spin_unlock_bh(&ppc440spe_chan->lock);
1823        }
1824
1825        if (i && !ppc440spe_chan->last_used) {
1826                ppc440spe_chan->last_used =
1827                        list_entry(ppc440spe_chan->all_slots.next,
1828                                struct ppc440spe_adma_desc_slot,
1829                                slot_node);
1830        }
1831
1832        dev_dbg(ppc440spe_chan->device->common.dev,
1833                "ppc440spe adma%d: allocated %d descriptor slots\n",
1834                ppc440spe_chan->device->id, i);
1835
1836        /* initialize the channel and the chain with a null operation */
1837        if (init) {
1838                switch (ppc440spe_chan->device->id) {
1839                case PPC440SPE_DMA0_ID:
1840                case PPC440SPE_DMA1_ID:
1841                        ppc440spe_chan->hw_chain_inited = 0;
1842                        /* Use WXOR for self-testing */
1843                        if (!ppc440spe_r6_tchan)
1844                                ppc440spe_r6_tchan = ppc440spe_chan;
1845                        break;
1846                case PPC440SPE_XOR_ID:
1847                        ppc440spe_chan_start_null_xor(ppc440spe_chan);
1848                        break;
1849                default:
1850                        BUG();
1851                }
1852                ppc440spe_chan->needs_unmap = 1;
1853        }
1854
1855        return (i > 0) ? i : -ENOMEM;
1856}
1857
1858/**
1859 * ppc440spe_rxor_set_region_data -
1860 */
1861static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1862        u8 xor_arg_no, u32 mask)
1863{
1864        struct xor_cb *xcb = desc->hw_desc;
1865
1866        xcb->ops[xor_arg_no].h |= mask;
1867}
1868
1869/**
1870 * ppc440spe_rxor_set_src -
1871 */
1872static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1873        u8 xor_arg_no, dma_addr_t addr)
1874{
1875        struct xor_cb *xcb = desc->hw_desc;
1876
1877        xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1878        xcb->ops[xor_arg_no].l = addr;
1879}
1880
1881/**
1882 * ppc440spe_rxor_set_mult -
1883 */
1884static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1885        u8 xor_arg_no, u8 idx, u8 mult)
1886{
1887        struct xor_cb *xcb = desc->hw_desc;
1888
1889        xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1890}
1891
1892/**
1893 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1894 *      has been achieved
1895 */
1896static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1897{
1898        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1899                chan->device->id, chan->pending);
1900
1901        if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1902                chan->pending = 0;
1903                ppc440spe_chan_append(chan);
1904        }
1905}
1906
1907/**
1908 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1909 *      (it's not necessary that descriptors will be submitted to the h/w
1910 *      chains too right now)
1911 */
1912static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1913{
1914        struct ppc440spe_adma_desc_slot *sw_desc;
1915        struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1916        struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1917        int slot_cnt;
1918        int slots_per_op;
1919        dma_cookie_t cookie;
1920
1921        sw_desc = tx_to_ppc440spe_adma_slot(tx);
1922
1923        group_start = sw_desc->group_head;
1924        slot_cnt = group_start->slot_cnt;
1925        slots_per_op = group_start->slots_per_op;
1926
1927        spin_lock_bh(&chan->lock);
1928        cookie = dma_cookie_assign(tx);
1929
1930        if (unlikely(list_empty(&chan->chain))) {
1931                /* first peer */
1932                list_splice_init(&sw_desc->group_list, &chan->chain);
1933                chan_first_cdb[chan->device->id] = group_start;
1934        } else {
1935                /* isn't first peer, bind CDBs to chain */
1936                old_chain_tail = list_entry(chan->chain.prev,
1937                                        struct ppc440spe_adma_desc_slot,
1938                                        chain_node);
1939                list_splice_init(&sw_desc->group_list,
1940                    &old_chain_tail->chain_node);
1941                /* fix up the hardware chain */
1942                ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1943        }
1944
1945        /* increment the pending count by the number of operations */
1946        chan->pending += slot_cnt / slots_per_op;
1947        ppc440spe_adma_check_threshold(chan);
1948        spin_unlock_bh(&chan->lock);
1949
1950        dev_dbg(chan->device->common.dev,
1951                "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1952                chan->device->id, __func__,
1953                sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1954
1955        return cookie;
1956}
1957
1958/**
1959 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1960 */
1961static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1962                struct dma_chan *chan, unsigned long flags)
1963{
1964        struct ppc440spe_adma_chan *ppc440spe_chan;
1965        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1966        int slot_cnt, slots_per_op;
1967
1968        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1969
1970        dev_dbg(ppc440spe_chan->device->common.dev,
1971                "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1972                __func__);
1973
1974        spin_lock_bh(&ppc440spe_chan->lock);
1975        slot_cnt = slots_per_op = 1;
1976        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1977                        slots_per_op);
1978        if (sw_desc) {
1979                group_start = sw_desc->group_head;
1980                ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1981                group_start->unmap_len = 0;
1982                sw_desc->async_tx.flags = flags;
1983        }
1984        spin_unlock_bh(&ppc440spe_chan->lock);
1985
1986        return sw_desc ? &sw_desc->async_tx : NULL;
1987}
1988
1989/**
1990 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1991 */
1992static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1993                struct dma_chan *chan, dma_addr_t dma_dest,
1994                dma_addr_t dma_src, size_t len, unsigned long flags)
1995{
1996        struct ppc440spe_adma_chan *ppc440spe_chan;
1997        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1998        int slot_cnt, slots_per_op;
1999
2000        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2001
2002        if (unlikely(!len))
2003                return NULL;
2004
2005        BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2006
2007        spin_lock_bh(&ppc440spe_chan->lock);
2008
2009        dev_dbg(ppc440spe_chan->device->common.dev,
2010                "ppc440spe adma%d: %s len: %u int_en %d\n",
2011                ppc440spe_chan->device->id, __func__, len,
2012                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2013        slot_cnt = slots_per_op = 1;
2014        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2015                slots_per_op);
2016        if (sw_desc) {
2017                group_start = sw_desc->group_head;
2018                ppc440spe_desc_init_memcpy(group_start, flags);
2019                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2020                ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2021                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2022                sw_desc->unmap_len = len;
2023                sw_desc->async_tx.flags = flags;
2024        }
2025        spin_unlock_bh(&ppc440spe_chan->lock);
2026
2027        return sw_desc ? &sw_desc->async_tx : NULL;
2028}
2029
2030/**
2031 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2032 */
2033static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2034                struct dma_chan *chan, dma_addr_t dma_dest,
2035                dma_addr_t *dma_src, u32 src_cnt, size_t len,
2036                unsigned long flags)
2037{
2038        struct ppc440spe_adma_chan *ppc440spe_chan;
2039        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2040        int slot_cnt, slots_per_op;
2041
2042        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2043
2044        ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2045                                     dma_dest, dma_src, src_cnt));
2046        if (unlikely(!len))
2047                return NULL;
2048        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2049
2050        dev_dbg(ppc440spe_chan->device->common.dev,
2051                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2052                ppc440spe_chan->device->id, __func__, src_cnt, len,
2053                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2054
2055        spin_lock_bh(&ppc440spe_chan->lock);
2056        slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2057        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2058                        slots_per_op);
2059        if (sw_desc) {
2060                group_start = sw_desc->group_head;
2061                ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2062                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2063                while (src_cnt--)
2064                        ppc440spe_adma_memcpy_xor_set_src(group_start,
2065                                dma_src[src_cnt], src_cnt);
2066                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2067                sw_desc->unmap_len = len;
2068                sw_desc->async_tx.flags = flags;
2069        }
2070        spin_unlock_bh(&ppc440spe_chan->lock);
2071
2072        return sw_desc ? &sw_desc->async_tx : NULL;
2073}
2074
2075static inline void
2076ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2077                                int src_cnt);
2078static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2079
2080/**
2081 * ppc440spe_adma_init_dma2rxor_slot -
2082 */
2083static void ppc440spe_adma_init_dma2rxor_slot(
2084                struct ppc440spe_adma_desc_slot *desc,
2085                dma_addr_t *src, int src_cnt)
2086{
2087        int i;
2088
2089        /* initialize CDB */
2090        for (i = 0; i < src_cnt; i++) {
2091                ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2092                                                 desc->src_cnt, (u32)src[i]);
2093        }
2094}
2095
2096/**
2097 * ppc440spe_dma01_prep_mult -
2098 * for Q operation where destination is also the source
2099 */
2100static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2101                struct ppc440spe_adma_chan *ppc440spe_chan,
2102                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2103                const unsigned char *scf, size_t len, unsigned long flags)
2104{
2105        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2106        unsigned long op = 0;
2107        int slot_cnt;
2108
2109        set_bit(PPC440SPE_DESC_WXOR, &op);
2110        slot_cnt = 2;
2111
2112        spin_lock_bh(&ppc440spe_chan->lock);
2113
2114        /* use WXOR, each descriptor occupies one slot */
2115        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2116        if (sw_desc) {
2117                struct ppc440spe_adma_chan *chan;
2118                struct ppc440spe_adma_desc_slot *iter;
2119                struct dma_cdb *hw_desc;
2120
2121                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2122                set_bits(op, &sw_desc->flags);
2123                sw_desc->src_cnt = src_cnt;
2124                sw_desc->dst_cnt = dst_cnt;
2125                /* First descriptor, zero data in the destination and copy it
2126                 * to q page using MULTICAST transfer.
2127                 */
2128                iter = list_first_entry(&sw_desc->group_list,
2129                                        struct ppc440spe_adma_desc_slot,
2130                                        chain_node);
2131                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2132                /* set 'next' pointer */
2133                iter->hw_next = list_entry(iter->chain_node.next,
2134                                           struct ppc440spe_adma_desc_slot,
2135                                           chain_node);
2136                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2137                hw_desc = iter->hw_desc;
2138                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2139
2140                ppc440spe_desc_set_dest_addr(iter, chan,
2141                                             DMA_CUED_XOR_BASE, dst[0], 0);
2142                ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2143                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2144                                            src[0]);
2145                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2146                iter->unmap_len = len;
2147
2148                /*
2149                 * Second descriptor, multiply data from the q page
2150                 * and store the result in real destination.
2151                 */
2152                iter = list_first_entry(&iter->chain_node,
2153                                        struct ppc440spe_adma_desc_slot,
2154                                        chain_node);
2155                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2156                iter->hw_next = NULL;
2157                if (flags & DMA_PREP_INTERRUPT)
2158                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2159                else
2160                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2161
2162                hw_desc = iter->hw_desc;
2163                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2164                ppc440spe_desc_set_src_addr(iter, chan, 0,
2165                                            DMA_CUED_XOR_HB, dst[1]);
2166                ppc440spe_desc_set_dest_addr(iter, chan,
2167                                             DMA_CUED_XOR_BASE, dst[0], 0);
2168
2169                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2170                                            DMA_CDB_SG_DST1, scf[0]);
2171                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2172                iter->unmap_len = len;
2173                sw_desc->async_tx.flags = flags;
2174        }
2175
2176        spin_unlock_bh(&ppc440spe_chan->lock);
2177
2178        return sw_desc;
2179}
2180
2181/**
2182 * ppc440spe_dma01_prep_sum_product -
2183 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2184 * the source.
2185 */
2186static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2187                struct ppc440spe_adma_chan *ppc440spe_chan,
2188                dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2189                const unsigned char *scf, size_t len, unsigned long flags)
2190{
2191        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2192        unsigned long op = 0;
2193        int slot_cnt;
2194
2195        set_bit(PPC440SPE_DESC_WXOR, &op);
2196        slot_cnt = 3;
2197
2198        spin_lock_bh(&ppc440spe_chan->lock);
2199
2200        /* WXOR, each descriptor occupies one slot */
2201        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2202        if (sw_desc) {
2203                struct ppc440spe_adma_chan *chan;
2204                struct ppc440spe_adma_desc_slot *iter;
2205                struct dma_cdb *hw_desc;
2206
2207                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2208                set_bits(op, &sw_desc->flags);
2209                sw_desc->src_cnt = src_cnt;
2210                sw_desc->dst_cnt = 1;
2211                /* 1st descriptor, src[1] data to q page and zero destination */
2212                iter = list_first_entry(&sw_desc->group_list,
2213                                        struct ppc440spe_adma_desc_slot,
2214                                        chain_node);
2215                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2216                iter->hw_next = list_entry(iter->chain_node.next,
2217                                           struct ppc440spe_adma_desc_slot,
2218                                           chain_node);
2219                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2220                hw_desc = iter->hw_desc;
2221                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2222
2223                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2224                                             *dst, 0);
2225                ppc440spe_desc_set_dest_addr(iter, chan, 0,
2226                                             ppc440spe_chan->qdest, 1);
2227                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2228                                            src[1]);
2229                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2230                iter->unmap_len = len;
2231
2232                /* 2nd descriptor, multiply src[1] data and store the
2233                 * result in destination */
2234                iter = list_first_entry(&iter->chain_node,
2235                                        struct ppc440spe_adma_desc_slot,
2236                                        chain_node);
2237                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2238                /* set 'next' pointer */
2239                iter->hw_next = list_entry(iter->chain_node.next,
2240                                           struct ppc440spe_adma_desc_slot,
2241                                           chain_node);
2242                if (flags & DMA_PREP_INTERRUPT)
2243                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2244                else
2245                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2246
2247                hw_desc = iter->hw_desc;
2248                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2249                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2250                                            ppc440spe_chan->qdest);
2251                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2252                                             *dst, 0);
2253                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2254                                            DMA_CDB_SG_DST1, scf[1]);
2255                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2256                iter->unmap_len = len;
2257
2258                /*
2259                 * 3rd descriptor, multiply src[0] data and xor it
2260                 * with destination
2261                 */
2262                iter = list_first_entry(&iter->chain_node,
2263                                        struct ppc440spe_adma_desc_slot,
2264                                        chain_node);
2265                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2266                iter->hw_next = NULL;
2267                if (flags & DMA_PREP_INTERRUPT)
2268                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2269                else
2270                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2271
2272                hw_desc = iter->hw_desc;
2273                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2274                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2275                                            src[0]);
2276                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2277                                             *dst, 0);
2278                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2279                                            DMA_CDB_SG_DST1, scf[0]);
2280                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2281                iter->unmap_len = len;
2282                sw_desc->async_tx.flags = flags;
2283        }
2284
2285        spin_unlock_bh(&ppc440spe_chan->lock);
2286
2287        return sw_desc;
2288}
2289
2290static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2291                struct ppc440spe_adma_chan *ppc440spe_chan,
2292                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2293                const unsigned char *scf, size_t len, unsigned long flags)
2294{
2295        int slot_cnt;
2296        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2297        unsigned long op = 0;
2298        unsigned char mult = 1;
2299
2300        pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2301                 __func__, dst_cnt, src_cnt, len);
2302        /*  select operations WXOR/RXOR depending on the
2303         * source addresses of operators and the number
2304         * of destinations (RXOR support only Q-parity calculations)
2305         */
2306        set_bit(PPC440SPE_DESC_WXOR, &op);
2307        if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2308                /* no active RXOR;
2309                 * do RXOR if:
2310                 * - there are more than 1 source,
2311                 * - len is aligned on 512-byte boundary,
2312                 * - source addresses fit to one of 4 possible regions.
2313                 */
2314                if (src_cnt > 1 &&
2315                    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2316                    (src[0] + len) == src[1]) {
2317                        /* may do RXOR R1 R2 */
2318                        set_bit(PPC440SPE_DESC_RXOR, &op);
2319                        if (src_cnt != 2) {
2320                                /* may try to enhance region of RXOR */
2321                                if ((src[1] + len) == src[2]) {
2322                                        /* do RXOR R1 R2 R3 */
2323                                        set_bit(PPC440SPE_DESC_RXOR123,
2324                                                &op);
2325                                } else if ((src[1] + len * 2) == src[2]) {
2326                                        /* do RXOR R1 R2 R4 */
2327                                        set_bit(PPC440SPE_DESC_RXOR124, &op);
2328                                } else if ((src[1] + len * 3) == src[2]) {
2329                                        /* do RXOR R1 R2 R5 */
2330                                        set_bit(PPC440SPE_DESC_RXOR125,
2331                                                &op);
2332                                } else {
2333                                        /* do RXOR R1 R2 */
2334                                        set_bit(PPC440SPE_DESC_RXOR12,
2335                                                &op);
2336                                }
2337                        } else {
2338                                /* do RXOR R1 R2 */
2339                                set_bit(PPC440SPE_DESC_RXOR12, &op);
2340                        }
2341                }
2342
2343                if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2344                        /* can not do this operation with RXOR */
2345                        clear_bit(PPC440SPE_RXOR_RUN,
2346                                &ppc440spe_rxor_state);
2347                } else {
2348                        /* can do; set block size right now */
2349                        ppc440spe_desc_set_rxor_block_size(len);
2350                }
2351        }
2352
2353        /* Number of necessary slots depends on operation type selected */
2354        if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2355                /*  This is a WXOR only chain. Need descriptors for each
2356                 * source to GF-XOR them with WXOR, and need descriptors
2357                 * for each destination to zero them with WXOR
2358                 */
2359                slot_cnt = src_cnt;
2360
2361                if (flags & DMA_PREP_ZERO_P) {
2362                        slot_cnt++;
2363                        set_bit(PPC440SPE_ZERO_P, &op);
2364                }
2365                if (flags & DMA_PREP_ZERO_Q) {
2366                        slot_cnt++;
2367                        set_bit(PPC440SPE_ZERO_Q, &op);
2368                }
2369        } else {
2370                /*  Need 1/2 descriptor for RXOR operation, and
2371                 * need (src_cnt - (2 or 3)) for WXOR of sources
2372                 * remained (if any)
2373                 */
2374                slot_cnt = dst_cnt;
2375
2376                if (flags & DMA_PREP_ZERO_P)
2377                        set_bit(PPC440SPE_ZERO_P, &op);
2378                if (flags & DMA_PREP_ZERO_Q)
2379                        set_bit(PPC440SPE_ZERO_Q, &op);
2380
2381                if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2382                        slot_cnt += src_cnt - 2;
2383                else
2384                        slot_cnt += src_cnt - 3;
2385
2386                /*  Thus we have either RXOR only chain or
2387                 * mixed RXOR/WXOR
2388                 */
2389                if (slot_cnt == dst_cnt)
2390                        /* RXOR only chain */
2391                        clear_bit(PPC440SPE_DESC_WXOR, &op);
2392        }
2393
2394        spin_lock_bh(&ppc440spe_chan->lock);
2395        /* for both RXOR/WXOR each descriptor occupies one slot */
2396        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2397        if (sw_desc) {
2398                ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2399                                flags, op);
2400
2401                /* setup dst/src/mult */
2402                pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2403                         __func__, dst[0], dst[1]);
2404                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2405                while (src_cnt--) {
2406                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2407                                                  src_cnt);
2408
2409                        /* NOTE: "Multi = 0 is equivalent to = 1" as it
2410                         * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2411                         * doesn't work for RXOR with DMA0/1! Instead, multi=0
2412                         * leads to zeroing source data after RXOR.
2413                         * So, for P case set-up mult=1 explicitly.
2414                         */
2415                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2416                                mult = scf[src_cnt];
2417                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2418                                mult, src_cnt,  dst_cnt - 1);
2419                }
2420
2421                /* Setup byte count foreach slot just allocated */
2422                sw_desc->async_tx.flags = flags;
2423                list_for_each_entry(iter, &sw_desc->group_list,
2424                                chain_node) {
2425                        ppc440spe_desc_set_byte_count(iter,
2426                                ppc440spe_chan, len);
2427                        iter->unmap_len = len;
2428                }
2429        }
2430        spin_unlock_bh(&ppc440spe_chan->lock);
2431
2432        return sw_desc;
2433}
2434
2435static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2436                struct ppc440spe_adma_chan *ppc440spe_chan,
2437                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2438                const unsigned char *scf, size_t len, unsigned long flags)
2439{
2440        int slot_cnt, descs_per_op;
2441        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2442        unsigned long op = 0;
2443        unsigned char mult = 1;
2444
2445        BUG_ON(!dst_cnt);
2446        /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2447                 __func__, dst_cnt, src_cnt, len);*/
2448
2449        spin_lock_bh(&ppc440spe_chan->lock);
2450        descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2451        if (descs_per_op < 0) {
2452                spin_unlock_bh(&ppc440spe_chan->lock);
2453                return NULL;
2454        }
2455
2456        /* depending on number of sources we have 1 or 2 RXOR chains */
2457        slot_cnt = descs_per_op * dst_cnt;
2458
2459        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2460        if (sw_desc) {
2461                op = slot_cnt;
2462                sw_desc->async_tx.flags = flags;
2463                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2464                        ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2465                                --op ? 0 : flags);
2466                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2467                                len);
2468                        iter->unmap_len = len;
2469
2470                        ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2471                        iter->rxor_cursor.len = len;
2472                        iter->descs_per_op = descs_per_op;
2473                }
2474                op = 0;
2475                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2476                        op++;
2477                        if (op % descs_per_op == 0)
2478                                ppc440spe_adma_init_dma2rxor_slot(iter, src,
2479                                                                  src_cnt);
2480                        if (likely(!list_is_last(&iter->chain_node,
2481                                                 &sw_desc->group_list))) {
2482                                /* set 'next' pointer */
2483                                iter->hw_next =
2484                                        list_entry(iter->chain_node.next,
2485                                                struct ppc440spe_adma_desc_slot,
2486                                                chain_node);
2487                                ppc440spe_xor_set_link(iter, iter->hw_next);
2488                        } else {
2489                                /* this is the last descriptor. */
2490                                iter->hw_next = NULL;
2491                        }
2492                }
2493
2494                /* fixup head descriptor */
2495                sw_desc->dst_cnt = dst_cnt;
2496                if (flags & DMA_PREP_ZERO_P)
2497                        set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2498                if (flags & DMA_PREP_ZERO_Q)
2499                        set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2500
2501                /* setup dst/src/mult */
2502                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2503
2504                while (src_cnt--) {
2505                        /* handle descriptors (if dst_cnt == 2) inside
2506                         * the ppc440spe_adma_pq_set_srcxxx() functions
2507                         */
2508                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2509                                                  src_cnt);
2510                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2511                                mult = scf[src_cnt];
2512                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2513                                        mult, src_cnt, dst_cnt - 1);
2514                }
2515        }
2516        spin_unlock_bh(&ppc440spe_chan->lock);
2517        ppc440spe_desc_set_rxor_block_size(len);
2518        return sw_desc;
2519}
2520
2521/**
2522 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2523 */
2524static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2525                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2526                unsigned int src_cnt, const unsigned char *scf,
2527                size_t len, unsigned long flags)
2528{
2529        struct ppc440spe_adma_chan *ppc440spe_chan;
2530        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2531        int dst_cnt = 0;
2532
2533        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2534
2535        ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2536                                    dst, src, src_cnt));
2537        BUG_ON(!len);
2538        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2539        BUG_ON(!src_cnt);
2540
2541        if (src_cnt == 1 && dst[1] == src[0]) {
2542                dma_addr_t dest[2];
2543
2544                /* dst[1] is real destination (Q) */
2545                dest[0] = dst[1];
2546                /* this is the page to multicast source data to */
2547                dest[1] = ppc440spe_chan->qdest;
2548                sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2549                                dest, 2, src, src_cnt, scf, len, flags);
2550                return sw_desc ? &sw_desc->async_tx : NULL;
2551        }
2552
2553        if (src_cnt == 2 && dst[1] == src[1]) {
2554                sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2555                                        &dst[1], src, 2, scf, len, flags);
2556                return sw_desc ? &sw_desc->async_tx : NULL;
2557        }
2558
2559        if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2560                BUG_ON(!dst[0]);
2561                dst_cnt++;
2562                flags |= DMA_PREP_ZERO_P;
2563        }
2564
2565        if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2566                BUG_ON(!dst[1]);
2567                dst_cnt++;
2568                flags |= DMA_PREP_ZERO_Q;
2569        }
2570
2571        BUG_ON(!dst_cnt);
2572
2573        dev_dbg(ppc440spe_chan->device->common.dev,
2574                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2575                ppc440spe_chan->device->id, __func__, src_cnt, len,
2576                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2577
2578        switch (ppc440spe_chan->device->id) {
2579        case PPC440SPE_DMA0_ID:
2580        case PPC440SPE_DMA1_ID:
2581                sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2582                                dst, dst_cnt, src, src_cnt, scf,
2583                                len, flags);
2584                break;
2585
2586        case PPC440SPE_XOR_ID:
2587                sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2588                                dst, dst_cnt, src, src_cnt, scf,
2589                                len, flags);
2590                break;
2591        }
2592
2593        return sw_desc ? &sw_desc->async_tx : NULL;
2594}
2595
2596/**
2597 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2598 * a PQ_ZERO_SUM operation
2599 */
2600static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2601                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2602                unsigned int src_cnt, const unsigned char *scf, size_t len,
2603                enum sum_check_flags *pqres, unsigned long flags)
2604{
2605        struct ppc440spe_adma_chan *ppc440spe_chan;
2606        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2607        dma_addr_t pdest, qdest;
2608        int slot_cnt, slots_per_op, idst, dst_cnt;
2609
2610        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2611
2612        if (flags & DMA_PREP_PQ_DISABLE_P)
2613                pdest = 0;
2614        else
2615                pdest = pq[0];
2616
2617        if (flags & DMA_PREP_PQ_DISABLE_Q)
2618                qdest = 0;
2619        else
2620                qdest = pq[1];
2621
2622        ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2623                                            src, src_cnt, scf));
2624
2625        /* Always use WXOR for P/Q calculations (two destinations).
2626         * Need 1 or 2 extra slots to verify results are zero.
2627         */
2628        idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2629
2630        /* One additional slot per destination to clone P/Q
2631         * before calculation (we have to preserve destinations).
2632         */
2633        slot_cnt = src_cnt + dst_cnt * 2;
2634        slots_per_op = 1;
2635
2636        spin_lock_bh(&ppc440spe_chan->lock);
2637        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2638                                             slots_per_op);
2639        if (sw_desc) {
2640                ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2641
2642                /* Setup byte count for each slot just allocated */
2643                sw_desc->async_tx.flags = flags;
2644                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2645                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2646                                                      len);
2647                        iter->unmap_len = len;
2648                }
2649
2650                if (pdest) {
2651                        struct dma_cdb *hw_desc;
2652                        struct ppc440spe_adma_chan *chan;
2653
2654                        iter = sw_desc->group_head;
2655                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2656                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2657                        iter->hw_next = list_entry(iter->chain_node.next,
2658                                                struct ppc440spe_adma_desc_slot,
2659                                                chain_node);
2660                        hw_desc = iter->hw_desc;
2661                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2662                        iter->src_cnt = 0;
2663                        iter->dst_cnt = 0;
2664                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2665                                                     ppc440spe_chan->pdest, 0);
2666                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2667                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2668                                                      len);
2669                        iter->unmap_len = 0;
2670                        /* override pdest to preserve original P */
2671                        pdest = ppc440spe_chan->pdest;
2672                }
2673                if (qdest) {
2674                        struct dma_cdb *hw_desc;
2675                        struct ppc440spe_adma_chan *chan;
2676
2677                        iter = list_first_entry(&sw_desc->group_list,
2678                                                struct ppc440spe_adma_desc_slot,
2679                                                chain_node);
2680                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2681
2682                        if (pdest) {
2683                                iter = list_entry(iter->chain_node.next,
2684                                                struct ppc440spe_adma_desc_slot,
2685                                                chain_node);
2686                        }
2687
2688                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2689                        iter->hw_next = list_entry(iter->chain_node.next,
2690                                                struct ppc440spe_adma_desc_slot,
2691                                                chain_node);
2692                        hw_desc = iter->hw_desc;
2693                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2694                        iter->src_cnt = 0;
2695                        iter->dst_cnt = 0;
2696                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2697                                                     ppc440spe_chan->qdest, 0);
2698                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2699                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2700                                                      len);
2701                        iter->unmap_len = 0;
2702                        /* override qdest to preserve original Q */
2703                        qdest = ppc440spe_chan->qdest;
2704                }
2705
2706                /* Setup destinations for P/Q ops */
2707                ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2708
2709                /* Setup zero QWORDs into DCHECK CDBs */
2710                idst = dst_cnt;
2711                list_for_each_entry_reverse(iter, &sw_desc->group_list,
2712                                            chain_node) {
2713                        /*
2714                         * The last CDB corresponds to Q-parity check,
2715                         * the one before last CDB corresponds
2716                         * P-parity check
2717                         */
2718                        if (idst == DMA_DEST_MAX_NUM) {
2719                                if (idst == dst_cnt) {
2720                                        set_bit(PPC440SPE_DESC_QCHECK,
2721                                                &iter->flags);
2722                                } else {
2723                                        set_bit(PPC440SPE_DESC_PCHECK,
2724                                                &iter->flags);
2725                                }
2726                        } else {
2727                                if (qdest) {
2728                                        set_bit(PPC440SPE_DESC_QCHECK,
2729                                                &iter->flags);
2730                                } else {
2731                                        set_bit(PPC440SPE_DESC_PCHECK,
2732                                                &iter->flags);
2733                                }
2734                        }
2735                        iter->xor_check_result = pqres;
2736
2737                        /*
2738                         * set it to zero, if check fail then result will
2739                         * be updated
2740                         */
2741                        *iter->xor_check_result = 0;
2742                        ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2743                                ppc440spe_qword);
2744
2745                        if (!(--dst_cnt))
2746                                break;
2747                }
2748
2749                /* Setup sources and mults for P/Q ops */
2750                list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2751                                                     chain_node) {
2752                        struct ppc440spe_adma_chan *chan;
2753                        u32 mult_dst;
2754
2755                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2756                        ppc440spe_desc_set_src_addr(iter, chan, 0,
2757                                                    DMA_CUED_XOR_HB,
2758                                                    src[src_cnt - 1]);
2759                        if (qdest) {
2760                                mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2761                                                           DMA_CDB_SG_DST1;
2762                                ppc440spe_desc_set_src_mult(iter, chan,
2763                                                            DMA_CUED_MULT1_OFF,
2764                                                            mult_dst,
2765                                                            scf[src_cnt - 1]);
2766                        }
2767                        if (!(--src_cnt))
2768                                break;
2769                }
2770        }
2771        spin_unlock_bh(&ppc440spe_chan->lock);
2772        return sw_desc ? &sw_desc->async_tx : NULL;
2773}
2774
2775/**
2776 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2777 * XOR ZERO_SUM operation
2778 */
2779static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2780                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2781                size_t len, enum sum_check_flags *result, unsigned long flags)
2782{
2783        struct dma_async_tx_descriptor *tx;
2784        dma_addr_t pq[2];
2785
2786        /* validate P, disable Q */
2787        pq[0] = src[0];
2788        pq[1] = 0;
2789        flags |= DMA_PREP_PQ_DISABLE_Q;
2790
2791        tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2792                                                src_cnt - 1, 0, len,
2793                                                result, flags);
2794        return tx;
2795}
2796
2797/**
2798 * ppc440spe_adma_set_dest - set destination address into descriptor
2799 */
2800static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2801                dma_addr_t addr, int index)
2802{
2803        struct ppc440spe_adma_chan *chan;
2804
2805        BUG_ON(index >= sw_desc->dst_cnt);
2806
2807        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2808
2809        switch (chan->device->id) {
2810        case PPC440SPE_DMA0_ID:
2811        case PPC440SPE_DMA1_ID:
2812                /* to do: support transfers lengths >
2813                 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2814                 */
2815                ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2816                        chan, 0, addr, index);
2817                break;
2818        case PPC440SPE_XOR_ID:
2819                sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2820                ppc440spe_desc_set_dest_addr(sw_desc,
2821                        chan, 0, addr, index);
2822                break;
2823        }
2824}
2825
2826static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2827                struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2828{
2829        /*  To clear destinations update the descriptor
2830         * (P or Q depending on index) as follows:
2831         * addr is destination (0 corresponds to SG2):
2832         */
2833        ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2834
2835        /* ... and the addr is source: */
2836        ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2837
2838        /* addr is always SG2 then the mult is always DST1 */
2839        ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2840                                    DMA_CDB_SG_DST1, 1);
2841}
2842
2843/**
2844 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2845 * for the PQXOR operation
2846 */
2847static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2848                dma_addr_t *addrs, unsigned long flags)
2849{
2850        struct ppc440spe_adma_desc_slot *iter;
2851        struct ppc440spe_adma_chan *chan;
2852        dma_addr_t paddr, qaddr;
2853        dma_addr_t addr = 0, ppath, qpath;
2854        int index = 0, i;
2855
2856        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2857
2858        if (flags & DMA_PREP_PQ_DISABLE_P)
2859                paddr = 0;
2860        else
2861                paddr = addrs[0];
2862
2863        if (flags & DMA_PREP_PQ_DISABLE_Q)
2864                qaddr = 0;
2865        else
2866                qaddr = addrs[1];
2867
2868        if (!paddr || !qaddr)
2869                addr = paddr ? paddr : qaddr;
2870
2871        switch (chan->device->id) {
2872        case PPC440SPE_DMA0_ID:
2873        case PPC440SPE_DMA1_ID:
2874                /* walk through the WXOR source list and set P/Q-destinations
2875                 * for each slot:
2876                 */
2877                if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2878                        /* This is WXOR-only chain; may have 1/2 zero descs */
2879                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2880                                index++;
2881                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2882                                index++;
2883
2884                        iter = ppc440spe_get_group_entry(sw_desc, index);
2885                        if (addr) {
2886                                /* one destination */
2887                                list_for_each_entry_from(iter,
2888                                        &sw_desc->group_list, chain_node)
2889                                        ppc440spe_desc_set_dest_addr(iter, chan,
2890                                                DMA_CUED_XOR_BASE, addr, 0);
2891                        } else {
2892                                /* two destinations */
2893                                list_for_each_entry_from(iter,
2894                                        &sw_desc->group_list, chain_node) {
2895                                        ppc440spe_desc_set_dest_addr(iter, chan,
2896                                                DMA_CUED_XOR_BASE, paddr, 0);
2897                                        ppc440spe_desc_set_dest_addr(iter, chan,
2898                                                DMA_CUED_XOR_BASE, qaddr, 1);
2899                                }
2900                        }
2901
2902                        if (index) {
2903                                /*  To clear destinations update the descriptor
2904                                 * (1st,2nd, or both depending on flags)
2905                                 */
2906                                index = 0;
2907                                if (test_bit(PPC440SPE_ZERO_P,
2908                                                &sw_desc->flags)) {
2909                                        iter = ppc440spe_get_group_entry(
2910                                                        sw_desc, index++);
2911                                        ppc440spe_adma_pq_zero_op(iter, chan,
2912                                                        paddr);
2913                                }
2914
2915                                if (test_bit(PPC440SPE_ZERO_Q,
2916                                                &sw_desc->flags)) {
2917                                        iter = ppc440spe_get_group_entry(
2918                                                        sw_desc, index++);
2919                                        ppc440spe_adma_pq_zero_op(iter, chan,
2920                                                        qaddr);
2921                                }
2922
2923                                return;
2924                        }
2925                } else {
2926                        /* This is RXOR-only or RXOR/WXOR mixed chain */
2927
2928                        /* If we want to include destination into calculations,
2929                         * then make dest addresses cued with mult=1 (XOR).
2930                         */
2931                        ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2932                                        DMA_CUED_XOR_HB :
2933                                        DMA_CUED_XOR_BASE |
2934                                                (1 << DMA_CUED_MULT1_OFF);
2935                        qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2936                                        DMA_CUED_XOR_HB :
2937                                        DMA_CUED_XOR_BASE |
2938                                                (1 << DMA_CUED_MULT1_OFF);
2939
2940                        /* Setup destination(s) in RXOR slot(s) */
2941                        iter = ppc440spe_get_group_entry(sw_desc, index++);
2942                        ppc440spe_desc_set_dest_addr(iter, chan,
2943                                                paddr ? ppath : qpath,
2944                                                paddr ? paddr : qaddr, 0);
2945                        if (!addr) {
2946                                /* two destinations */
2947                                iter = ppc440spe_get_group_entry(sw_desc,
2948                                                                 index++);
2949                                ppc440spe_desc_set_dest_addr(iter, chan,
2950                                                qpath, qaddr, 0);
2951                        }
2952
2953                        if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2954                                /* Setup destination(s) in remaining WXOR
2955                                 * slots
2956                                 */
2957                                iter = ppc440spe_get_group_entry(sw_desc,
2958                                                                 index);
2959                                if (addr) {
2960                                        /* one destination */
2961                                        list_for_each_entry_from(iter,
2962                                            &sw_desc->group_list,
2963                                            chain_node)
2964                                                ppc440spe_desc_set_dest_addr(
2965                                                        iter, chan,
2966                                                        DMA_CUED_XOR_BASE,
2967                                                        addr, 0);
2968
2969                                } else {
2970                                        /* two destinations */
2971                                        list_for_each_entry_from(iter,
2972                                            &sw_desc->group_list,
2973                                            chain_node) {
2974                                                ppc440spe_desc_set_dest_addr(
2975                                                        iter, chan,
2976                                                        DMA_CUED_XOR_BASE,
2977                                                        paddr, 0);
2978                                                ppc440spe_desc_set_dest_addr(
2979                                                        iter, chan,
2980                                                        DMA_CUED_XOR_BASE,
2981                                                        qaddr, 1);
2982                                        }
2983                                }
2984                        }
2985
2986                }
2987                break;
2988
2989        case PPC440SPE_XOR_ID:
2990                /* DMA2 descriptors have only 1 destination, so there are
2991                 * two chains - one for each dest.
2992                 * If we want to include destination into calculations,
2993                 * then make dest addresses cued with mult=1 (XOR).
2994                 */
2995                ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2996                                DMA_CUED_XOR_HB :
2997                                DMA_CUED_XOR_BASE |
2998                                        (1 << DMA_CUED_MULT1_OFF);
2999
3000                qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3001                                DMA_CUED_XOR_HB :
3002                                DMA_CUED_XOR_BASE |
3003                                        (1 << DMA_CUED_MULT1_OFF);
3004
3005                iter = ppc440spe_get_group_entry(sw_desc, 0);
3006                for (i = 0; i < sw_desc->descs_per_op; i++) {
3007                        ppc440spe_desc_set_dest_addr(iter, chan,
3008                                paddr ? ppath : qpath,
3009                                paddr ? paddr : qaddr, 0);
3010                        iter = list_entry(iter->chain_node.next,
3011                                          struct ppc440spe_adma_desc_slot,
3012                                          chain_node);
3013                }
3014
3015                if (!addr) {
3016                        /* Two destinations; setup Q here */
3017                        iter = ppc440spe_get_group_entry(sw_desc,
3018                                sw_desc->descs_per_op);
3019                        for (i = 0; i < sw_desc->descs_per_op; i++) {
3020                                ppc440spe_desc_set_dest_addr(iter,
3021                                        chan, qpath, qaddr, 0);
3022                                iter = list_entry(iter->chain_node.next,
3023                                                struct ppc440spe_adma_desc_slot,
3024                                                chain_node);
3025                        }
3026                }
3027
3028                break;
3029        }
3030}
3031
3032/**
3033 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3034 * for the PQ_ZERO_SUM operation
3035 */
3036static void ppc440spe_adma_pqzero_sum_set_dest(
3037                struct ppc440spe_adma_desc_slot *sw_desc,
3038                dma_addr_t paddr, dma_addr_t qaddr)
3039{
3040        struct ppc440spe_adma_desc_slot *iter, *end;
3041        struct ppc440spe_adma_chan *chan;
3042        dma_addr_t addr = 0;
3043        int idx;
3044
3045        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3046
3047        /* walk through the WXOR source list and set P/Q-destinations
3048         * for each slot
3049         */
3050        idx = (paddr && qaddr) ? 2 : 1;
3051        /* set end */
3052        list_for_each_entry_reverse(end, &sw_desc->group_list,
3053                                    chain_node) {
3054                if (!(--idx))
3055                        break;
3056        }
3057        /* set start */
3058        idx = (paddr && qaddr) ? 2 : 1;
3059        iter = ppc440spe_get_group_entry(sw_desc, idx);
3060
3061        if (paddr && qaddr) {
3062                /* two destinations */
3063                list_for_each_entry_from(iter, &sw_desc->group_list,
3064                                         chain_node) {
3065                        if (unlikely(iter == end))
3066                                break;
3067                        ppc440spe_desc_set_dest_addr(iter, chan,
3068                                                DMA_CUED_XOR_BASE, paddr, 0);
3069                        ppc440spe_desc_set_dest_addr(iter, chan,
3070                                                DMA_CUED_XOR_BASE, qaddr, 1);
3071                }
3072        } else {
3073                /* one destination */
3074                addr = paddr ? paddr : qaddr;
3075                list_for_each_entry_from(iter, &sw_desc->group_list,
3076                                         chain_node) {
3077                        if (unlikely(iter == end))
3078                                break;
3079                        ppc440spe_desc_set_dest_addr(iter, chan,
3080                                                DMA_CUED_XOR_BASE, addr, 0);
3081                }
3082        }
3083
3084        /*  The remaining descriptors are DATACHECK. These have no need in
3085         * destination. Actually, these destinations are used there
3086         * as sources for check operation. So, set addr as source.
3087         */
3088        ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3089
3090        if (!addr) {
3091                end = list_entry(end->chain_node.next,
3092                                 struct ppc440spe_adma_desc_slot, chain_node);
3093                ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3094        }
3095}
3096
3097/**
3098 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3099 */
3100static inline void ppc440spe_desc_set_xor_src_cnt(
3101                        struct ppc440spe_adma_desc_slot *desc,
3102                        int src_cnt)
3103{
3104        struct xor_cb *hw_desc = desc->hw_desc;
3105
3106        hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3107        hw_desc->cbc |= src_cnt;
3108}
3109
3110/**
3111 * ppc440spe_adma_pq_set_src - set source address into descriptor
3112 */
3113static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3114                dma_addr_t addr, int index)
3115{
3116        struct ppc440spe_adma_chan *chan;
3117        dma_addr_t haddr = 0;
3118        struct ppc440spe_adma_desc_slot *iter = NULL;
3119
3120        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3121
3122        switch (chan->device->id) {
3123        case PPC440SPE_DMA0_ID:
3124        case PPC440SPE_DMA1_ID:
3125                /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3126                 */
3127                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3128                        /* RXOR-only or RXOR/WXOR operation */
3129                        int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3130                                &sw_desc->flags) ?  2 : 3;
3131
3132                        if (index == 0) {
3133                                /* 1st slot (RXOR) */
3134                                /* setup sources region (R1-2-3, R1-2-4,
3135                                 * or R1-2-5)
3136                                 */
3137                                if (test_bit(PPC440SPE_DESC_RXOR12,
3138                                                &sw_desc->flags))
3139                                        haddr = DMA_RXOR12 <<
3140                                                DMA_CUED_REGION_OFF;
3141                                else if (test_bit(PPC440SPE_DESC_RXOR123,
3142                                    &sw_desc->flags))
3143                                        haddr = DMA_RXOR123 <<
3144                                                DMA_CUED_REGION_OFF;
3145                                else if (test_bit(PPC440SPE_DESC_RXOR124,
3146                                    &sw_desc->flags))
3147                                        haddr = DMA_RXOR124 <<
3148                                                DMA_CUED_REGION_OFF;
3149                                else if (test_bit(PPC440SPE_DESC_RXOR125,
3150                                    &sw_desc->flags))
3151                                        haddr = DMA_RXOR125 <<
3152                                                DMA_CUED_REGION_OFF;
3153                                else
3154                                        BUG();
3155                                haddr |= DMA_CUED_XOR_BASE;
3156                                iter = ppc440spe_get_group_entry(sw_desc, 0);
3157                        } else if (index < iskip) {
3158                                /* 1st slot (RXOR)
3159                                 * shall actually set source address only once
3160                                 * instead of first <iskip>
3161                                 */
3162                                iter = NULL;
3163                        } else {
3164                                /* 2nd/3d and next slots (WXOR);
3165                                 * skip first slot with RXOR
3166                                 */
3167                                haddr = DMA_CUED_XOR_HB;
3168                                iter = ppc440spe_get_group_entry(sw_desc,
3169                                    index - iskip + sw_desc->dst_cnt);
3170                        }
3171                } else {
3172                        int znum = 0;
3173
3174                        /* WXOR-only operation; skip first slots with
3175                         * zeroing destinations
3176                         */
3177                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3178                                znum++;
3179                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3180                                znum++;
3181
3182                        haddr = DMA_CUED_XOR_HB;
3183                        iter = ppc440spe_get_group_entry(sw_desc,
3184                                        index + znum);
3185                }
3186
3187                if (likely(iter)) {
3188                        ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3189
3190                        if (!index &&
3191                            test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3192                            sw_desc->dst_cnt == 2) {
3193                                /* if we have two destinations for RXOR, then
3194                                 * setup source in the second descr too
3195                                 */
3196                                iter = ppc440spe_get_group_entry(sw_desc, 1);
3197                                ppc440spe_desc_set_src_addr(iter, chan, 0,
3198                                        haddr, addr);
3199                        }
3200                }
3201                break;
3202
3203        case PPC440SPE_XOR_ID:
3204                /* DMA2 may do Biskup */
3205                iter = sw_desc->group_head;
3206                if (iter->dst_cnt == 2) {
3207                        /* both P & Q calculations required; set P src here */
3208                        ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3209
3210                        /* this is for Q */
3211                        iter = ppc440spe_get_group_entry(sw_desc,
3212                                sw_desc->descs_per_op);
3213                }
3214                ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3215                break;
3216        }
3217}
3218
3219/**
3220 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3221 */
3222static void ppc440spe_adma_memcpy_xor_set_src(
3223                struct ppc440spe_adma_desc_slot *sw_desc,
3224                dma_addr_t addr, int index)
3225{
3226        struct ppc440spe_adma_chan *chan;
3227
3228        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3229        sw_desc = sw_desc->group_head;
3230
3231        if (likely(sw_desc))
3232                ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3233}
3234
3235/**
3236 * ppc440spe_adma_dma2rxor_inc_addr  -
3237 */
3238static void ppc440spe_adma_dma2rxor_inc_addr(
3239                struct ppc440spe_adma_desc_slot *desc,
3240                struct ppc440spe_rxor *cursor, int index, int src_cnt)
3241{
3242        cursor->addr_count++;
3243        if (index == src_cnt - 1) {
3244                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3245        } else if (cursor->addr_count == XOR_MAX_OPS) {
3246                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3247                cursor->addr_count = 0;
3248                cursor->desc_count++;
3249        }
3250}
3251
3252/**
3253 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3254 */
3255static int ppc440spe_adma_dma2rxor_prep_src(
3256                struct ppc440spe_adma_desc_slot *hdesc,
3257                struct ppc440spe_rxor *cursor, int index,
3258                int src_cnt, u32 addr)
3259{
3260        int rval = 0;
3261        u32 sign;
3262        struct ppc440spe_adma_desc_slot *desc = hdesc;
3263        int i;
3264
3265        for (i = 0; i < cursor->desc_count; i++) {
3266                desc = list_entry(hdesc->chain_node.next,
3267                                  struct ppc440spe_adma_desc_slot,
3268                                  chain_node);
3269        }
3270
3271        switch (cursor->state) {
3272        case 0:
3273                if (addr == cursor->addrl + cursor->len) {
3274                        /* direct RXOR */
3275                        cursor->state = 1;
3276                        cursor->xor_count++;
3277                        if (index == src_cnt-1) {
3278                                ppc440spe_rxor_set_region(desc,
3279                                        cursor->addr_count,
3280                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3281                                ppc440spe_adma_dma2rxor_inc_addr(
3282                                        desc, cursor, index, src_cnt);
3283                        }
3284                } else if (cursor->addrl == addr + cursor->len) {
3285                        /* reverse RXOR */
3286                        cursor->state = 1;
3287                        cursor->xor_count++;
3288                        set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3289                        if (index == src_cnt-1) {
3290                                ppc440spe_rxor_set_region(desc,
3291                                        cursor->addr_count,
3292                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3293                                ppc440spe_adma_dma2rxor_inc_addr(
3294                                        desc, cursor, index, src_cnt);
3295                        }
3296                } else {
3297                        printk(KERN_ERR "Cannot build "
3298                                "DMA2 RXOR command block.\n");
3299                        BUG();
3300                }
3301                break;
3302        case 1:
3303                sign = test_bit(cursor->addr_count,
3304                                desc->reverse_flags)
3305                        ? -1 : 1;
3306                if (index == src_cnt-2 || (sign == -1
3307                        && addr != cursor->addrl - 2*cursor->len)) {
3308                        cursor->state = 0;
3309                        cursor->xor_count = 1;
3310                        cursor->addrl = addr;
3311                        ppc440spe_rxor_set_region(desc,
3312                                cursor->addr_count,
3313                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3314                        ppc440spe_adma_dma2rxor_inc_addr(
3315                                desc, cursor, index, src_cnt);
3316                } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3317                        cursor->state = 2;
3318                        cursor->xor_count = 0;
3319                        ppc440spe_rxor_set_region(desc,
3320                                cursor->addr_count,
3321                                DMA_RXOR123 << DMA_CUED_REGION_OFF);
3322                        if (index == src_cnt-1) {
3323                                ppc440spe_adma_dma2rxor_inc_addr(
3324                                        desc, cursor, index, src_cnt);
3325                        }
3326                } else if (addr == cursor->addrl + 3*cursor->len) {
3327                        cursor->state = 2;
3328                        cursor->xor_count = 0;
3329                        ppc440spe_rxor_set_region(desc,
3330                                cursor->addr_count,
3331                                DMA_RXOR124 << DMA_CUED_REGION_OFF);
3332                        if (index == src_cnt-1) {
3333                                ppc440spe_adma_dma2rxor_inc_addr(
3334                                        desc, cursor, index, src_cnt);
3335                        }
3336                } else if (addr == cursor->addrl + 4*cursor->len) {
3337                        cursor->state = 2;
3338                        cursor->xor_count = 0;
3339                        ppc440spe_rxor_set_region(desc,
3340                                cursor->addr_count,
3341                                DMA_RXOR125 << DMA_CUED_REGION_OFF);
3342                        if (index == src_cnt-1) {
3343                                ppc440spe_adma_dma2rxor_inc_addr(
3344                                        desc, cursor, index, src_cnt);
3345                        }
3346                } else {
3347                        cursor->state = 0;
3348                        cursor->xor_count = 1;
3349                        cursor->addrl = addr;
3350                        ppc440spe_rxor_set_region(desc,
3351                                cursor->addr_count,
3352                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3353                        ppc440spe_adma_dma2rxor_inc_addr(
3354                                desc, cursor, index, src_cnt);
3355                }
3356                break;
3357        case 2:
3358                cursor->state = 0;
3359                cursor->addrl = addr;
3360                cursor->xor_count++;
3361                if (index) {
3362                        ppc440spe_adma_dma2rxor_inc_addr(
3363                                desc, cursor, index, src_cnt);
3364                }
3365                break;
3366        }
3367
3368        return rval;
3369}
3370
3371/**
3372 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3373 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3374 */
3375static void ppc440spe_adma_dma2rxor_set_src(
3376                struct ppc440spe_adma_desc_slot *desc,
3377                int index, dma_addr_t addr)
3378{
3379        struct xor_cb *xcb = desc->hw_desc;
3380        int k = 0, op = 0, lop = 0;
3381
3382        /* get the RXOR operand which corresponds to index addr */
3383        while (op <= index) {
3384                lop = op;
3385                if (k == XOR_MAX_OPS) {
3386                        k = 0;
3387                        desc = list_entry(desc->chain_node.next,
3388                                struct ppc440spe_adma_desc_slot, chain_node);
3389                        xcb = desc->hw_desc;
3390
3391                }
3392                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3393                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3394                        op += 2;
3395                else
3396                        op += 3;
3397        }
3398
3399        BUG_ON(k < 1);
3400
3401        if (test_bit(k-1, desc->reverse_flags)) {
3402                /* reverse operand order; put last op in RXOR group */
3403                if (index == op - 1)
3404                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3405        } else {
3406                /* direct operand order; put first op in RXOR group */
3407                if (index == lop)
3408                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3409        }
3410}
3411
3412/**
3413 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3414 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3415 */
3416static void ppc440spe_adma_dma2rxor_set_mult(
3417                struct ppc440spe_adma_desc_slot *desc,
3418                int index, u8 mult)
3419{
3420        struct xor_cb *xcb = desc->hw_desc;
3421        int k = 0, op = 0, lop = 0;
3422
3423        /* get the RXOR operand which corresponds to index mult */
3424        while (op <= index) {
3425                lop = op;
3426                if (k == XOR_MAX_OPS) {
3427                        k = 0;
3428                        desc = list_entry(desc->chain_node.next,
3429                                          struct ppc440spe_adma_desc_slot,
3430                                          chain_node);
3431                        xcb = desc->hw_desc;
3432
3433                }
3434                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3435                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3436                        op += 2;
3437                else
3438                        op += 3;
3439        }
3440
3441        BUG_ON(k < 1);
3442        if (test_bit(k-1, desc->reverse_flags)) {
3443                /* reverse order */
3444                ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3445        } else {
3446                /* direct order */
3447                ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3448        }
3449}
3450
3451/**
3452 * ppc440spe_init_rxor_cursor -
3453 */
3454static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3455{
3456        memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3457        cursor->state = 2;
3458}
3459
3460/**
3461 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3462 * descriptor for the PQXOR operation
3463 */
3464static void ppc440spe_adma_pq_set_src_mult(
3465                struct ppc440spe_adma_desc_slot *sw_desc,
3466                unsigned char mult, int index, int dst_pos)
3467{
3468        struct ppc440spe_adma_chan *chan;
3469        u32 mult_idx, mult_dst;
3470        struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3471
3472        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3473
3474        switch (chan->device->id) {
3475        case PPC440SPE_DMA0_ID:
3476        case PPC440SPE_DMA1_ID:
3477                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3478                        int region = test_bit(PPC440SPE_DESC_RXOR12,
3479                                        &sw_desc->flags) ? 2 : 3;
3480
3481                        if (index < region) {
3482                                /* RXOR multipliers */
3483                                iter = ppc440spe_get_group_entry(sw_desc,
3484                                        sw_desc->dst_cnt - 1);
3485                                if (sw_desc->dst_cnt == 2)
3486                                        iter1 = ppc440spe_get_group_entry(
3487                                                        sw_desc, 0);
3488
3489                                mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3490                                mult_dst = DMA_CDB_SG_SRC;
3491                        } else {
3492                                /* WXOR multiplier */
3493                                iter = ppc440spe_get_group_entry(sw_desc,
3494                                                        index - region +
3495                                                        sw_desc->dst_cnt);
3496                                mult_idx = DMA_CUED_MULT1_OFF;
3497                                mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3498                                                     DMA_CDB_SG_DST1;
3499                        }
3500                } else {
3501                        int znum = 0;
3502
3503                        /* WXOR-only;
3504                         * skip first slots with destinations (if ZERO_DST has
3505                         * place)
3506                         */
3507                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3508                                znum++;
3509                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3510                                znum++;
3511
3512                        iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3513                        mult_idx = DMA_CUED_MULT1_OFF;
3514                        mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3515                }
3516
3517                if (likely(iter)) {
3518                        ppc440spe_desc_set_src_mult(iter, chan,
3519                                mult_idx, mult_dst, mult);
3520
3521                        if (unlikely(iter1)) {
3522                                /* if we have two destinations for RXOR, then
3523                                 * we've just set Q mult. Set-up P now.
3524                                 */
3525                                ppc440spe_desc_set_src_mult(iter1, chan,
3526                                        mult_idx, mult_dst, 1);
3527                        }
3528
3529                }
3530                break;
3531
3532        case PPC440SPE_XOR_ID:
3533                iter = sw_desc->group_head;
3534                if (sw_desc->dst_cnt == 2) {
3535                        /* both P & Q calculations required; set P mult here */
3536                        ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3537
3538                        /* and then set Q mult */
3539                        iter = ppc440spe_get_group_entry(sw_desc,
3540                               sw_desc->descs_per_op);
3541                }
3542                ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3543                break;
3544        }
3545}
3546
3547/**
3548 * ppc440spe_adma_free_chan_resources - free the resources allocated
3549 */
3550static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3551{
3552        struct ppc440spe_adma_chan *ppc440spe_chan;
3553        struct ppc440spe_adma_desc_slot *iter, *_iter;
3554        int in_use_descs = 0;
3555
3556        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3557        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3558
3559        spin_lock_bh(&ppc440spe_chan->lock);
3560        list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3561                                        chain_node) {
3562                in_use_descs++;
3563                list_del(&iter->chain_node);
3564        }
3565        list_for_each_entry_safe_reverse(iter, _iter,
3566                        &ppc440spe_chan->all_slots, slot_node) {
3567                list_del(&iter->slot_node);
3568                kfree(iter);
3569                ppc440spe_chan->slots_allocated--;
3570        }
3571        ppc440spe_chan->last_used = NULL;
3572
3573        dev_dbg(ppc440spe_chan->device->common.dev,
3574                "ppc440spe adma%d %s slots_allocated %d\n",
3575                ppc440spe_chan->device->id,
3576                __func__, ppc440spe_chan->slots_allocated);
3577        spin_unlock_bh(&ppc440spe_chan->lock);
3578
3579        /* one is ok since we left it on there on purpose */
3580        if (in_use_descs > 1)
3581                printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3582                        in_use_descs - 1);
3583}
3584
3585/**
3586 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3587 * @chan: ADMA channel handle
3588 * @cookie: ADMA transaction identifier
3589 * @txstate: a holder for the current state of the channel
3590 */
3591static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3592                        dma_cookie_t cookie, struct dma_tx_state *txstate)
3593{
3594        struct ppc440spe_adma_chan *ppc440spe_chan;
3595        enum dma_status ret;
3596
3597        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3598        ret = dma_cookie_status(chan, cookie, txstate);
3599        if (ret == DMA_COMPLETE)
3600                return ret;
3601
3602        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3603
3604        return dma_cookie_status(chan, cookie, txstate);
3605}
3606
3607/**
3608 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3609 */
3610static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3611{
3612        struct ppc440spe_adma_chan *chan = data;
3613
3614        dev_dbg(chan->device->common.dev,
3615                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3616
3617        tasklet_schedule(&chan->irq_tasklet);
3618        ppc440spe_adma_device_clear_eot_status(chan);
3619
3620        return IRQ_HANDLED;
3621}
3622
3623/**
3624 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3625 *      do the same things as a eot handler
3626 */
3627static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3628{
3629        struct ppc440spe_adma_chan *chan = data;
3630
3631        dev_dbg(chan->device->common.dev,
3632                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3633
3634        tasklet_schedule(&chan->irq_tasklet);
3635        ppc440spe_adma_device_clear_eot_status(chan);
3636
3637        return IRQ_HANDLED;
3638}
3639
3640/**
3641 * ppc440spe_test_callback - called when test operation has been done
3642 */
3643static void ppc440spe_test_callback(void *unused)
3644{
3645        complete(&ppc440spe_r6_test_comp);
3646}
3647
3648/**
3649 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3650 */
3651static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3652{
3653        struct ppc440spe_adma_chan *ppc440spe_chan;
3654
3655        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3656        dev_dbg(ppc440spe_chan->device->common.dev,
3657                "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3658                __func__, ppc440spe_chan->pending);
3659
3660        if (ppc440spe_chan->pending) {
3661                ppc440spe_chan->pending = 0;
3662                ppc440spe_chan_append(ppc440spe_chan);
3663        }
3664}
3665
3666/**
3667 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3668 *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
3669 *      specific operation)
3670 */
3671static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3672{
3673        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3674        dma_cookie_t cookie;
3675        int slot_cnt, slots_per_op;
3676
3677        dev_dbg(chan->device->common.dev,
3678                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3679
3680        spin_lock_bh(&chan->lock);
3681        slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3682        sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3683        if (sw_desc) {
3684                group_start = sw_desc->group_head;
3685                list_splice_init(&sw_desc->group_list, &chan->chain);
3686                async_tx_ack(&sw_desc->async_tx);
3687                ppc440spe_desc_init_null_xor(group_start);
3688
3689                cookie = dma_cookie_assign(&sw_desc->async_tx);
3690
3691                /* initialize the completed cookie to be less than
3692                 * the most recently used cookie
3693                 */
3694                chan->common.completed_cookie = cookie - 1;
3695
3696                /* channel should not be busy */
3697                BUG_ON(ppc440spe_chan_is_busy(chan));
3698
3699                /* set the descriptor address */
3700                ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3701
3702                /* run the descriptor */
3703                ppc440spe_chan_run(chan);
3704        } else
3705                printk(KERN_ERR "ppc440spe adma%d"
3706                        " failed to allocate null descriptor\n",
3707                        chan->device->id);
3708        spin_unlock_bh(&chan->lock);
3709}
3710
3711/**
3712 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3713 *      For this we just perform one WXOR operation with the same source
3714 *      and destination addresses, the GF-multiplier is 1; so if RAID-6
3715 *      capabilities are enabled then we'll get src/dst filled with zero.
3716 */
3717static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3718{
3719        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3720        struct page *pg;
3721        char *a;
3722        dma_addr_t dma_addr, addrs[2];
3723        unsigned long op = 0;
3724        int rval = 0;
3725
3726        set_bit(PPC440SPE_DESC_WXOR, &op);
3727
3728        pg = alloc_page(GFP_KERNEL);
3729        if (!pg)
3730                return -ENOMEM;
3731
3732        spin_lock_bh(&chan->lock);
3733        sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3734        if (sw_desc) {
3735                /* 1 src, 1 dsr, int_ena, WXOR */
3736                ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3737                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3738                        ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3739                        iter->unmap_len = PAGE_SIZE;
3740                }
3741        } else {
3742                rval = -EFAULT;
3743                spin_unlock_bh(&chan->lock);
3744                goto exit;
3745        }
3746        spin_unlock_bh(&chan->lock);
3747
3748        /* Fill the test page with ones */
3749        memset(page_address(pg), 0xFF, PAGE_SIZE);
3750        dma_addr = dma_map_page(chan->device->dev, pg, 0,
3751                                PAGE_SIZE, DMA_BIDIRECTIONAL);
3752
3753        /* Setup addresses */
3754        ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3755        ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3756        addrs[0] = dma_addr;
3757        addrs[1] = 0;
3758        ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3759
3760        async_tx_ack(&sw_desc->async_tx);
3761        sw_desc->async_tx.callback = ppc440spe_test_callback;
3762        sw_desc->async_tx.callback_param = NULL;
3763
3764        init_completion(&ppc440spe_r6_test_comp);
3765
3766        ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3767        ppc440spe_adma_issue_pending(&chan->common);
3768
3769        wait_for_completion(&ppc440spe_r6_test_comp);
3770
3771        /* Now check if the test page is zeroed */
3772        a = page_address(pg);
3773        if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3774                /* page is zero - RAID-6 enabled */
3775                rval = 0;
3776        } else {
3777                /* RAID-6 was not enabled */
3778                rval = -EINVAL;
3779        }
3780exit:
3781        __free_page(pg);
3782        return rval;
3783}
3784
3785static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3786{
3787        switch (adev->id) {
3788        case PPC440SPE_DMA0_ID:
3789        case PPC440SPE_DMA1_ID:
3790                dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3791                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3792                dma_cap_set(DMA_PQ, adev->common.cap_mask);
3793                dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3794                dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3795                break;
3796        case PPC440SPE_XOR_ID:
3797                dma_cap_set(DMA_XOR, adev->common.cap_mask);
3798                dma_cap_set(DMA_PQ, adev->common.cap_mask);
3799                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3800                adev->common.cap_mask = adev->common.cap_mask;
3801                break;
3802        }
3803
3804        /* Set base routines */
3805        adev->common.device_alloc_chan_resources =
3806                                ppc440spe_adma_alloc_chan_resources;
3807        adev->common.device_free_chan_resources =
3808                                ppc440spe_adma_free_chan_resources;
3809        adev->common.device_tx_status = ppc440spe_adma_tx_status;
3810        adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3811
3812        /* Set prep routines based on capability */
3813        if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3814                adev->common.device_prep_dma_memcpy =
3815                        ppc440spe_adma_prep_dma_memcpy;
3816        }
3817        if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3818                adev->common.max_xor = XOR_MAX_OPS;
3819                adev->common.device_prep_dma_xor =
3820                        ppc440spe_adma_prep_dma_xor;
3821        }
3822        if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3823                switch (adev->id) {
3824                case PPC440SPE_DMA0_ID:
3825                        dma_set_maxpq(&adev->common,
3826                                DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3827                        break;
3828                case PPC440SPE_DMA1_ID:
3829                        dma_set_maxpq(&adev->common,
3830                                DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3831                        break;
3832                case PPC440SPE_XOR_ID:
3833                        adev->common.max_pq = XOR_MAX_OPS * 3;
3834                        break;
3835                }
3836                adev->common.device_prep_dma_pq =
3837                        ppc440spe_adma_prep_dma_pq;
3838        }
3839        if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3840                switch (adev->id) {
3841                case PPC440SPE_DMA0_ID:
3842                        adev->common.max_pq = DMA0_FIFO_SIZE /
3843                                                sizeof(struct dma_cdb);
3844                        break;
3845                case PPC440SPE_DMA1_ID:
3846                        adev->common.max_pq = DMA1_FIFO_SIZE /
3847                                                sizeof(struct dma_cdb);
3848                        break;
3849                }
3850                adev->common.device_prep_dma_pq_val =
3851                        ppc440spe_adma_prep_dma_pqzero_sum;
3852        }
3853        if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3854                switch (adev->id) {
3855                case PPC440SPE_DMA0_ID:
3856                        adev->common.max_xor = DMA0_FIFO_SIZE /
3857                                                sizeof(struct dma_cdb);
3858                        break;
3859                case PPC440SPE_DMA1_ID:
3860                        adev->common.max_xor = DMA1_FIFO_SIZE /
3861                                                sizeof(struct dma_cdb);
3862                        break;
3863                }
3864                adev->common.device_prep_dma_xor_val =
3865                        ppc440spe_adma_prep_dma_xor_zero_sum;
3866        }
3867        if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3868                adev->common.device_prep_dma_interrupt =
3869                        ppc440spe_adma_prep_dma_interrupt;
3870        }
3871        pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3872          "( %s%s%s%s%s%s)\n",
3873          dev_name(adev->dev),
3874          dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3875          dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3876          dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3877          dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3878          dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3879          dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3880}
3881
3882static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3883                                     struct ppc440spe_adma_chan *chan,
3884                                     int *initcode)
3885{
3886        struct platform_device *ofdev;
3887        struct device_node *np;
3888        int ret;
3889
3890        ofdev = container_of(adev->dev, struct platform_device, dev);
3891        np = ofdev->dev.of_node;
3892        if (adev->id != PPC440SPE_XOR_ID) {
3893                adev->err_irq = irq_of_parse_and_map(np, 1);
3894                if (adev->err_irq == NO_IRQ) {
3895                        dev_warn(adev->dev, "no err irq resource?\n");
3896                        *initcode = PPC_ADMA_INIT_IRQ2;
3897                        adev->err_irq = -ENXIO;
3898                } else
3899                        atomic_inc(&ppc440spe_adma_err_irq_ref);
3900        } else {
3901                adev->err_irq = -ENXIO;
3902        }
3903
3904        adev->irq = irq_of_parse_and_map(np, 0);
3905        if (adev->irq == NO_IRQ) {
3906                dev_err(adev->dev, "no irq resource\n");
3907                *initcode = PPC_ADMA_INIT_IRQ1;
3908                ret = -ENXIO;
3909                goto err_irq_map;
3910        }
3911        dev_dbg(adev->dev, "irq %d, err irq %d\n",
3912                adev->irq, adev->err_irq);
3913
3914        ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3915                          0, dev_driver_string(adev->dev), chan);
3916        if (ret) {
3917                dev_err(adev->dev, "can't request irq %d\n",
3918                        adev->irq);
3919                *initcode = PPC_ADMA_INIT_IRQ1;
3920                ret = -EIO;
3921                goto err_req1;
3922        }
3923
3924        /* only DMA engines have a separate error IRQ
3925         * so it's Ok if err_irq < 0 in XOR engine case.
3926         */
3927        if (adev->err_irq > 0) {
3928                /* both DMA engines share common error IRQ */
3929                ret = request_irq(adev->err_irq,
3930                                  ppc440spe_adma_err_handler,
3931                                  IRQF_SHARED,
3932                                  dev_driver_string(adev->dev),
3933                                  chan);
3934                if (ret) {
3935                        dev_err(adev->dev, "can't request irq %d\n",
3936                                adev->err_irq);
3937                        *initcode = PPC_ADMA_INIT_IRQ2;
3938                        ret = -EIO;
3939                        goto err_req2;
3940                }
3941        }
3942
3943        if (adev->id == PPC440SPE_XOR_ID) {
3944                /* enable XOR engine interrupts */
3945                iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3946                            XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3947                            &adev->xor_reg->ier);
3948        } else {
3949                u32 mask, enable;
3950
3951                np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3952                if (!np) {
3953                        pr_err("%s: can't find I2O device tree node\n",
3954                                __func__);
3955                        ret = -ENODEV;
3956                        goto err_req2;
3957                }
3958                adev->i2o_reg = of_iomap(np, 0);
3959                if (!adev->i2o_reg) {
3960                        pr_err("%s: failed to map I2O registers\n", __func__);
3961                        of_node_put(np);
3962                        ret = -EINVAL;
3963                        goto err_req2;
3964                }
3965                of_node_put(np);
3966                /* Unmask 'CS FIFO Attention' interrupts and
3967                 * enable generating interrupts on errors
3968                 */
3969                enable = (adev->id == PPC440SPE_DMA0_ID) ?
3970                         ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3971                         ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3972                mask = ioread32(&adev->i2o_reg->iopim) & enable;
3973                iowrite32(mask, &adev->i2o_reg->iopim);
3974        }
3975        return 0;
3976
3977err_req2:
3978        free_irq(adev->irq, chan);
3979err_req1:
3980        irq_dispose_mapping(adev->irq);
3981err_irq_map:
3982        if (adev->err_irq > 0) {
3983                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3984                        irq_dispose_mapping(adev->err_irq);
3985        }
3986        return ret;
3987}
3988
3989static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3990                                        struct ppc440spe_adma_chan *chan)
3991{
3992        u32 mask, disable;
3993
3994        if (adev->id == PPC440SPE_XOR_ID) {
3995                /* disable XOR engine interrupts */
3996                mask = ioread32be(&adev->xor_reg->ier);
3997                mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3998                          XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3999                iowrite32be(mask, &adev->xor_reg->ier);
4000        } else {
4001                /* disable DMAx engine interrupts */
4002                disable = (adev->id == PPC440SPE_DMA0_ID) ?
4003                          (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4004                          (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4005                mask = ioread32(&adev->i2o_reg->iopim) | disable;
4006                iowrite32(mask, &adev->i2o_reg->iopim);
4007        }
4008        free_irq(adev->irq, chan);
4009        irq_dispose_mapping(adev->irq);
4010        if (adev->err_irq > 0) {
4011                free_irq(adev->err_irq, chan);
4012                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4013                        irq_dispose_mapping(adev->err_irq);
4014                        iounmap(adev->i2o_reg);
4015                }
4016        }
4017}
4018
4019/**
4020 * ppc440spe_adma_probe - probe the asynch device
4021 */
4022static int ppc440spe_adma_probe(struct platform_device *ofdev)
4023{
4024        struct device_node *np = ofdev->dev.of_node;
4025        struct resource res;
4026        struct ppc440spe_adma_device *adev;
4027        struct ppc440spe_adma_chan *chan;
4028        struct ppc_dma_chan_ref *ref, *_ref;
4029        int ret = 0, initcode = PPC_ADMA_INIT_OK;
4030        const u32 *idx;
4031        int len;
4032        void *regs;
4033        u32 id, pool_size;
4034
4035        if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4036                id = PPC440SPE_XOR_ID;
4037                /* As far as the XOR engine is concerned, it does not
4038                 * use FIFOs but uses linked list. So there is no dependency
4039                 * between pool size to allocate and the engine configuration.
4040                 */
4041                pool_size = PAGE_SIZE << 1;
4042        } else {
4043                /* it is DMA0 or DMA1 */
4044                idx = of_get_property(np, "cell-index", &len);
4045                if (!idx || (len != sizeof(u32))) {
4046                        dev_err(&ofdev->dev, "Device node %s has missing "
4047                                "or invalid cell-index property\n",
4048                                np->full_name);
4049                        return -EINVAL;
4050                }
4051                id = *idx;
4052                /* DMA0,1 engines use FIFO to maintain CDBs, so we
4053                 * should allocate the pool accordingly to size of this
4054                 * FIFO. Thus, the pool size depends on the FIFO depth:
4055                 * how much CDBs pointers the FIFO may contain then so
4056                 * much CDBs we should provide in the pool.
4057                 * That is
4058                 *   CDB size = 32B;
4059                 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4060                 *   Pool size = CDBs number * CDB size =
4061                 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4062                 */
4063                pool_size = (id == PPC440SPE_DMA0_ID) ?
4064                            DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4065                pool_size <<= 2;
4066        }
4067
4068        if (of_address_to_resource(np, 0, &res)) {
4069                dev_err(&ofdev->dev, "failed to get memory resource\n");
4070                initcode = PPC_ADMA_INIT_MEMRES;
4071                ret = -ENODEV;
4072                goto out;
4073        }
4074
4075        if (!request_mem_region(res.start, resource_size(&res),
4076                                dev_driver_string(&ofdev->dev))) {
4077                dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4078                        &res);
4079                initcode = PPC_ADMA_INIT_MEMREG;
4080                ret = -EBUSY;
4081                goto out;
4082        }
4083
4084        /* create a device */
4085        adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4086        if (!adev) {
4087                dev_err(&ofdev->dev, "failed to allocate device\n");
4088                initcode = PPC_ADMA_INIT_ALLOC;
4089                ret = -ENOMEM;
4090                goto err_adev_alloc;
4091        }
4092
4093        adev->id = id;
4094        adev->pool_size = pool_size;
4095        /* allocate coherent memory for hardware descriptors */
4096        adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4097                                        adev->pool_size, &adev->dma_desc_pool,
4098                                        GFP_KERNEL);
4099        if (adev->dma_desc_pool_virt == NULL) {
4100                dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4101                        "memory for hardware descriptors\n",
4102                        adev->pool_size);
4103                initcode = PPC_ADMA_INIT_COHERENT;
4104                ret = -ENOMEM;
4105                goto err_dma_alloc;
4106        }
4107        dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4108                adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4109
4110        regs = ioremap(res.start, resource_size(&res));
4111        if (!regs) {
4112                dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4113                ret = -ENOMEM;
4114                goto err_regs_alloc;
4115        }
4116
4117        if (adev->id == PPC440SPE_XOR_ID) {
4118                adev->xor_reg = regs;
4119                /* Reset XOR */
4120                iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4121                iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4122        } else {
4123                size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4124                                   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4125                adev->dma_reg = regs;
4126                /* DMAx_FIFO_SIZE is defined in bytes,
4127                 * <fsiz> - is defined in number of CDB pointers (8byte).
4128                 * DMA FIFO Length = CSlength + CPlength, where
4129                 * CSlength = CPlength = (fsiz + 1) * 8.
4130                 */
4131                iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4132                          &adev->dma_reg->fsiz);
4133                /* Configure DMA engine */
4134                iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4135                          &adev->dma_reg->cfg);
4136                /* Clear Status */
4137                iowrite32(~0, &adev->dma_reg->dsts);
4138        }
4139
4140        adev->dev = &ofdev->dev;
4141        adev->common.dev = &ofdev->dev;
4142        INIT_LIST_HEAD(&adev->common.channels);
4143        platform_set_drvdata(ofdev, adev);
4144
4145        /* create a channel */
4146        chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4147        if (!chan) {
4148                dev_err(&ofdev->dev, "can't allocate channel structure\n");
4149                initcode = PPC_ADMA_INIT_CHANNEL;
4150                ret = -ENOMEM;
4151                goto err_chan_alloc;
4152        }
4153
4154        spin_lock_init(&chan->lock);
4155        INIT_LIST_HEAD(&chan->chain);
4156        INIT_LIST_HEAD(&chan->all_slots);
4157        chan->device = adev;
4158        chan->common.device = &adev->common;
4159        dma_cookie_init(&chan->common);
4160        list_add_tail(&chan->common.device_node, &adev->common.channels);
4161        tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4162                     (unsigned long)chan);
4163
4164        /* allocate and map helper pages for async validation or
4165         * async_mult/async_sum_product operations on DMA0/1.
4166         */
4167        if (adev->id != PPC440SPE_XOR_ID) {
4168                chan->pdest_page = alloc_page(GFP_KERNEL);
4169                chan->qdest_page = alloc_page(GFP_KERNEL);
4170                if (!chan->pdest_page ||
4171                    !chan->qdest_page) {
4172                        if (chan->pdest_page)
4173                                __free_page(chan->pdest_page);
4174                        if (chan->qdest_page)
4175                                __free_page(chan->qdest_page);
4176                        ret = -ENOMEM;
4177                        goto err_page_alloc;
4178                }
4179                chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4180                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4181                chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4182                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4183        }
4184
4185        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4186        if (ref) {
4187                ref->chan = &chan->common;
4188                INIT_LIST_HEAD(&ref->node);
4189                list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4190        } else {
4191                dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4192                ret = -ENOMEM;
4193                goto err_ref_alloc;
4194        }
4195
4196        ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4197        if (ret)
4198                goto err_irq;
4199
4200        ppc440spe_adma_init_capabilities(adev);
4201
4202        ret = dma_async_device_register(&adev->common);
4203        if (ret) {
4204                initcode = PPC_ADMA_INIT_REGISTER;
4205                dev_err(&ofdev->dev, "failed to register dma device\n");
4206                goto err_dev_reg;
4207        }
4208
4209        goto out;
4210
4211err_dev_reg:
4212        ppc440spe_adma_release_irqs(adev, chan);
4213err_irq:
4214        list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4215                if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4216                        list_del(&ref->node);
4217                        kfree(ref);
4218                }
4219        }
4220err_ref_alloc:
4221        if (adev->id != PPC440SPE_XOR_ID) {
4222                dma_unmap_page(&ofdev->dev, chan->pdest,
4223                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4224                dma_unmap_page(&ofdev->dev, chan->qdest,
4225                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4226                __free_page(chan->pdest_page);
4227                __free_page(chan->qdest_page);
4228        }
4229err_page_alloc:
4230        kfree(chan);
4231err_chan_alloc:
4232        if (adev->id == PPC440SPE_XOR_ID)
4233                iounmap(adev->xor_reg);
4234        else
4235                iounmap(adev->dma_reg);
4236err_regs_alloc:
4237        dma_free_coherent(adev->dev, adev->pool_size,
4238                          adev->dma_desc_pool_virt,
4239                          adev->dma_desc_pool);
4240err_dma_alloc:
4241        kfree(adev);
4242err_adev_alloc:
4243        release_mem_region(res.start, resource_size(&res));
4244out:
4245        if (id < PPC440SPE_ADMA_ENGINES_NUM)
4246                ppc440spe_adma_devices[id] = initcode;
4247
4248        return ret;
4249}
4250
4251/**
4252 * ppc440spe_adma_remove - remove the asynch device
4253 */
4254static int ppc440spe_adma_remove(struct platform_device *ofdev)
4255{
4256        struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4257        struct device_node *np = ofdev->dev.of_node;
4258        struct resource res;
4259        struct dma_chan *chan, *_chan;
4260        struct ppc_dma_chan_ref *ref, *_ref;
4261        struct ppc440spe_adma_chan *ppc440spe_chan;
4262
4263        if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4264                ppc440spe_adma_devices[adev->id] = -1;
4265
4266        dma_async_device_unregister(&adev->common);
4267
4268        list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4269                                 device_node) {
4270                ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4271                ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4272                tasklet_kill(&ppc440spe_chan->irq_tasklet);
4273                if (adev->id != PPC440SPE_XOR_ID) {
4274                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4275                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4276                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4277                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4278                        __free_page(ppc440spe_chan->pdest_page);
4279                        __free_page(ppc440spe_chan->qdest_page);
4280                }
4281                list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4282                                         node) {
4283                        if (ppc440spe_chan ==
4284                            to_ppc440spe_adma_chan(ref->chan)) {
4285                                list_del(&ref->node);
4286                                kfree(ref);
4287                        }
4288                }
4289                list_del(&chan->device_node);
4290                kfree(ppc440spe_chan);
4291        }
4292
4293        dma_free_coherent(adev->dev, adev->pool_size,
4294                          adev->dma_desc_pool_virt, adev->dma_desc_pool);
4295        if (adev->id == PPC440SPE_XOR_ID)
4296                iounmap(adev->xor_reg);
4297        else
4298                iounmap(adev->dma_reg);
4299        of_address_to_resource(np, 0, &res);
4300        release_mem_region(res.start, resource_size(&res));
4301        kfree(adev);
4302        return 0;
4303}
4304
4305/*
4306 * /sys driver interface to enable h/w RAID-6 capabilities
4307 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4308 * directory are "devices", "enable" and "poly".
4309 * "devices" shows available engines.
4310 * "enable" is used to enable RAID-6 capabilities or to check
4311 * whether these has been activated.
4312 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4313 */
4314
4315static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4316{
4317        ssize_t size = 0;
4318        int i;
4319
4320        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4321                if (ppc440spe_adma_devices[i] == -1)
4322                        continue;
4323                size += snprintf(buf + size, PAGE_SIZE - size,
4324                                 "PPC440SP(E)-ADMA.%d: %s\n", i,
4325                                 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4326        }
4327        return size;
4328}
4329
4330static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4331{
4332        return snprintf(buf, PAGE_SIZE,
4333                        "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4334                        ppc440spe_r6_enabled ? "EN" : "DIS");
4335}
4336
4337static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4338                                        const char *buf, size_t count)
4339{
4340        unsigned long val;
4341
4342        if (!count || count > 11)
4343                return -EINVAL;
4344
4345        if (!ppc440spe_r6_tchan)
4346                return -EFAULT;
4347
4348        /* Write a key */
4349        sscanf(buf, "%lx", &val);
4350        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4351        isync();
4352
4353        /* Verify whether it really works now */
4354        if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4355                pr_info("PPC440SP(e) RAID-6 has been activated "
4356                        "successfully\n");
4357                ppc440spe_r6_enabled = 1;
4358        } else {
4359                pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4360                        " Error key ?\n");
4361                ppc440spe_r6_enabled = 0;
4362        }
4363        return count;
4364}
4365
4366static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4367{
4368        ssize_t size = 0;
4369        u32 reg;
4370
4371#ifdef CONFIG_440SP
4372        /* 440SP has fixed polynomial */
4373        reg = 0x4d;
4374#else
4375        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4376        reg >>= MQ0_CFBHL_POLY;
4377        reg &= 0xFF;
4378#endif
4379
4380        size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4381                        "uses 0x1%02x polynomial.\n", reg);
4382        return size;
4383}
4384
4385static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4386                                      const char *buf, size_t count)
4387{
4388        unsigned long reg, val;
4389
4390#ifdef CONFIG_440SP
4391        /* 440SP uses default 0x14D polynomial only */
4392        return -EINVAL;
4393#endif
4394
4395        if (!count || count > 6)
4396                return -EINVAL;
4397
4398        /* e.g., 0x14D or 0x11D */
4399        sscanf(buf, "%lx", &val);
4400
4401        if (val & ~0x1FF)
4402                return -EINVAL;
4403
4404        val &= 0xFF;
4405        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4406        reg &= ~(0xFF << MQ0_CFBHL_POLY);
4407        reg |= val << MQ0_CFBHL_POLY;
4408        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4409
4410        return count;
4411}
4412
4413static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4414static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4415                   store_ppc440spe_r6enable);
4416static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4417                   store_ppc440spe_r6poly);
4418
4419/*
4420 * Common initialisation for RAID engines; allocate memory for
4421 * DMAx FIFOs, perform configuration common for all DMA engines.
4422 * Further DMA engine specific configuration is done at probe time.
4423 */
4424static int ppc440spe_configure_raid_devices(void)
4425{
4426        struct device_node *np;
4427        struct resource i2o_res;
4428        struct i2o_regs __iomem *i2o_reg;
4429        dcr_host_t i2o_dcr_host;
4430        unsigned int dcr_base, dcr_len;
4431        int i, ret;
4432
4433        np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4434        if (!np) {
4435                pr_err("%s: can't find I2O device tree node\n",
4436                        __func__);
4437                return -ENODEV;
4438        }
4439
4440        if (of_address_to_resource(np, 0, &i2o_res)) {
4441                of_node_put(np);
4442                return -EINVAL;
4443        }
4444
4445        i2o_reg = of_iomap(np, 0);
4446        if (!i2o_reg) {
4447                pr_err("%s: failed to map I2O registers\n", __func__);
4448                of_node_put(np);
4449                return -EINVAL;
4450        }
4451
4452        /* Get I2O DCRs base */
4453        dcr_base = dcr_resource_start(np, 0);
4454        dcr_len = dcr_resource_len(np, 0);
4455        if (!dcr_base && !dcr_len) {
4456                pr_err("%s: can't get DCR registers base/len!\n",
4457                        np->full_name);
4458                of_node_put(np);
4459                iounmap(i2o_reg);
4460                return -ENODEV;
4461        }
4462
4463        i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4464        if (!DCR_MAP_OK(i2o_dcr_host)) {
4465                pr_err("%s: failed to map DCRs!\n", np->full_name);
4466                of_node_put(np);
4467                iounmap(i2o_reg);
4468                return -ENODEV;
4469        }
4470        of_node_put(np);
4471
4472        /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4473         * the base address of FIFO memory space.
4474         * Actually we need twice more physical memory than programmed in the
4475         * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4476         */
4477        ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4478                                         GFP_KERNEL);
4479        if (!ppc440spe_dma_fifo_buf) {
4480                pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4481                iounmap(i2o_reg);
4482                dcr_unmap(i2o_dcr_host, dcr_len);
4483                return -ENOMEM;
4484        }
4485
4486        /*
4487         * Configure h/w
4488         */
4489        /* Reset I2O/DMA */
4490        mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4491        mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4492
4493        /* Setup the base address of mmaped registers */
4494        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4495        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4496                                                I2O_REG_ENABLE);
4497        dcr_unmap(i2o_dcr_host, dcr_len);
4498
4499        /* Setup FIFO memory space base address */
4500        iowrite32(0, &i2o_reg->ifbah);
4501        iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4502
4503        /* set zero FIFO size for I2O, so the whole
4504         * ppc440spe_dma_fifo_buf is used by DMAs.
4505         * DMAx_FIFOs will be configured while probe.
4506         */
4507        iowrite32(0, &i2o_reg->ifsiz);
4508        iounmap(i2o_reg);
4509
4510        /* To prepare WXOR/RXOR functionality we need access to
4511         * Memory Queue Module DCRs (finally it will be enabled
4512         * via /sys interface of the ppc440spe ADMA driver).
4513         */
4514        np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4515        if (!np) {
4516                pr_err("%s: can't find MQ device tree node\n",
4517                        __func__);
4518                ret = -ENODEV;
4519                goto out_free;
4520        }
4521
4522        /* Get MQ DCRs base */
4523        dcr_base = dcr_resource_start(np, 0);
4524        dcr_len = dcr_resource_len(np, 0);
4525        if (!dcr_base && !dcr_len) {
4526                pr_err("%s: can't get DCR registers base/len!\n",
4527                        np->full_name);
4528                ret = -ENODEV;
4529                goto out_mq;
4530        }
4531
4532        ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4533        if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4534                pr_err("%s: failed to map DCRs!\n", np->full_name);
4535                ret = -ENODEV;
4536                goto out_mq;
4537        }
4538        of_node_put(np);
4539        ppc440spe_mq_dcr_len = dcr_len;
4540
4541        /* Set HB alias */
4542        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4543
4544        /* Set:
4545         * - LL transaction passing limit to 1;
4546         * - Memory controller cycle limit to 1;
4547         * - Galois Polynomial to 0x14d (default)
4548         */
4549        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4550                  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4551                  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4552
4553        atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4554        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4555                ppc440spe_adma_devices[i] = -1;
4556
4557        return 0;
4558
4559out_mq:
4560        of_node_put(np);
4561out_free:
4562        kfree(ppc440spe_dma_fifo_buf);
4563        return ret;
4564}
4565
4566static const struct of_device_id ppc440spe_adma_of_match[] = {
4567        { .compatible   = "ibm,dma-440spe", },
4568        { .compatible   = "amcc,xor-accelerator", },
4569        {},
4570};
4571MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4572
4573static struct platform_driver ppc440spe_adma_driver = {
4574        .probe = ppc440spe_adma_probe,
4575        .remove = ppc440spe_adma_remove,
4576        .driver = {
4577                .name = "PPC440SP(E)-ADMA",
4578                .of_match_table = ppc440spe_adma_of_match,
4579        },
4580};
4581
4582static __init int ppc440spe_adma_init(void)
4583{
4584        int ret;
4585
4586        ret = ppc440spe_configure_raid_devices();
4587        if (ret)
4588                return ret;
4589
4590        ret = platform_driver_register(&ppc440spe_adma_driver);
4591        if (ret) {
4592                pr_err("%s: failed to register platform driver\n",
4593                        __func__);
4594                goto out_reg;
4595        }
4596
4597        /* Initialization status */
4598        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4599                                 &driver_attr_devices);
4600        if (ret)
4601                goto out_dev;
4602
4603        /* RAID-6 h/w enable entry */
4604        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4605                                 &driver_attr_enable);
4606        if (ret)
4607                goto out_en;
4608
4609        /* GF polynomial to use */
4610        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4611                                 &driver_attr_poly);
4612        if (!ret)
4613                return ret;
4614
4615        driver_remove_file(&ppc440spe_adma_driver.driver,
4616                           &driver_attr_enable);
4617out_en:
4618        driver_remove_file(&ppc440spe_adma_driver.driver,
4619                           &driver_attr_devices);
4620out_dev:
4621        /* User will not be able to enable h/w RAID-6 */
4622        pr_err("%s: failed to create RAID-6 driver interface\n",
4623                __func__);
4624        platform_driver_unregister(&ppc440spe_adma_driver);
4625out_reg:
4626        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4627        kfree(ppc440spe_dma_fifo_buf);
4628        return ret;
4629}
4630
4631static void __exit ppc440spe_adma_exit(void)
4632{
4633        driver_remove_file(&ppc440spe_adma_driver.driver,
4634                           &driver_attr_poly);
4635        driver_remove_file(&ppc440spe_adma_driver.driver,
4636                           &driver_attr_enable);
4637        driver_remove_file(&ppc440spe_adma_driver.driver,
4638                           &driver_attr_devices);
4639        platform_driver_unregister(&ppc440spe_adma_driver);
4640        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4641        kfree(ppc440spe_dma_fifo_buf);
4642}
4643
4644arch_initcall(ppc440spe_adma_init);
4645module_exit(ppc440spe_adma_exit);
4646
4647MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4648MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4649MODULE_LICENSE("GPL");
4650