linux/drivers/firmware/efi/libstub/fdt.c
<<
>>
Prefs
   1/*
   2 * FDT related Helper functions used by the EFI stub on multiple
   3 * architectures. This should be #included by the EFI stub
   4 * implementation files.
   5 *
   6 * Copyright 2013 Linaro Limited; author Roy Franz
   7 *
   8 * This file is part of the Linux kernel, and is made available
   9 * under the terms of the GNU General Public License version 2.
  10 *
  11 */
  12
  13#include <linux/efi.h>
  14#include <linux/libfdt.h>
  15#include <asm/efi.h>
  16
  17#include "efistub.h"
  18
  19efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
  20                        unsigned long orig_fdt_size,
  21                        void *fdt, int new_fdt_size, char *cmdline_ptr,
  22                        u64 initrd_addr, u64 initrd_size,
  23                        efi_memory_desc_t *memory_map,
  24                        unsigned long map_size, unsigned long desc_size,
  25                        u32 desc_ver)
  26{
  27        int node, prev, num_rsv;
  28        int status;
  29        u32 fdt_val32;
  30        u64 fdt_val64;
  31
  32        /* Do some checks on provided FDT, if it exists*/
  33        if (orig_fdt) {
  34                if (fdt_check_header(orig_fdt)) {
  35                        pr_efi_err(sys_table, "Device Tree header not valid!\n");
  36                        return EFI_LOAD_ERROR;
  37                }
  38                /*
  39                 * We don't get the size of the FDT if we get if from a
  40                 * configuration table.
  41                 */
  42                if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
  43                        pr_efi_err(sys_table, "Truncated device tree! foo!\n");
  44                        return EFI_LOAD_ERROR;
  45                }
  46        }
  47
  48        if (orig_fdt)
  49                status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
  50        else
  51                status = fdt_create_empty_tree(fdt, new_fdt_size);
  52
  53        if (status != 0)
  54                goto fdt_set_fail;
  55
  56        /*
  57         * Delete any memory nodes present. We must delete nodes which
  58         * early_init_dt_scan_memory may try to use.
  59         */
  60        prev = 0;
  61        for (;;) {
  62                const char *type;
  63                int len;
  64
  65                node = fdt_next_node(fdt, prev, NULL);
  66                if (node < 0)
  67                        break;
  68
  69                type = fdt_getprop(fdt, node, "device_type", &len);
  70                if (type && strncmp(type, "memory", len) == 0) {
  71                        fdt_del_node(fdt, node);
  72                        continue;
  73                }
  74
  75                prev = node;
  76        }
  77
  78        /*
  79         * Delete all memory reserve map entries. When booting via UEFI,
  80         * kernel will use the UEFI memory map to find reserved regions.
  81         */
  82        num_rsv = fdt_num_mem_rsv(fdt);
  83        while (num_rsv-- > 0)
  84                fdt_del_mem_rsv(fdt, num_rsv);
  85
  86        node = fdt_subnode_offset(fdt, 0, "chosen");
  87        if (node < 0) {
  88                node = fdt_add_subnode(fdt, 0, "chosen");
  89                if (node < 0) {
  90                        status = node; /* node is error code when negative */
  91                        goto fdt_set_fail;
  92                }
  93        }
  94
  95        if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
  96                status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
  97                                     strlen(cmdline_ptr) + 1);
  98                if (status)
  99                        goto fdt_set_fail;
 100        }
 101
 102        /* Set initrd address/end in device tree, if present */
 103        if (initrd_size != 0) {
 104                u64 initrd_image_end;
 105                u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
 106
 107                status = fdt_setprop(fdt, node, "linux,initrd-start",
 108                                     &initrd_image_start, sizeof(u64));
 109                if (status)
 110                        goto fdt_set_fail;
 111                initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
 112                status = fdt_setprop(fdt, node, "linux,initrd-end",
 113                                     &initrd_image_end, sizeof(u64));
 114                if (status)
 115                        goto fdt_set_fail;
 116        }
 117
 118        /* Add FDT entries for EFI runtime services in chosen node. */
 119        node = fdt_subnode_offset(fdt, 0, "chosen");
 120        fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
 121        status = fdt_setprop(fdt, node, "linux,uefi-system-table",
 122                             &fdt_val64, sizeof(fdt_val64));
 123        if (status)
 124                goto fdt_set_fail;
 125
 126        fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
 127        status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
 128                             &fdt_val64,  sizeof(fdt_val64));
 129        if (status)
 130                goto fdt_set_fail;
 131
 132        fdt_val32 = cpu_to_fdt32(map_size);
 133        status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
 134                             &fdt_val32,  sizeof(fdt_val32));
 135        if (status)
 136                goto fdt_set_fail;
 137
 138        fdt_val32 = cpu_to_fdt32(desc_size);
 139        status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
 140                             &fdt_val32, sizeof(fdt_val32));
 141        if (status)
 142                goto fdt_set_fail;
 143
 144        fdt_val32 = cpu_to_fdt32(desc_ver);
 145        status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
 146                             &fdt_val32, sizeof(fdt_val32));
 147        if (status)
 148                goto fdt_set_fail;
 149
 150        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
 151                efi_status_t efi_status;
 152
 153                efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
 154                                                  (u8 *)&fdt_val64);
 155                if (efi_status == EFI_SUCCESS) {
 156                        status = fdt_setprop(fdt, node, "kaslr-seed",
 157                                             &fdt_val64, sizeof(fdt_val64));
 158                        if (status)
 159                                goto fdt_set_fail;
 160                } else if (efi_status != EFI_NOT_FOUND) {
 161                        return efi_status;
 162                }
 163        }
 164        return EFI_SUCCESS;
 165
 166fdt_set_fail:
 167        if (status == -FDT_ERR_NOSPACE)
 168                return EFI_BUFFER_TOO_SMALL;
 169
 170        return EFI_LOAD_ERROR;
 171}
 172
 173#ifndef EFI_FDT_ALIGN
 174#define EFI_FDT_ALIGN EFI_PAGE_SIZE
 175#endif
 176
 177/*
 178 * Allocate memory for a new FDT, then add EFI, commandline, and
 179 * initrd related fields to the FDT.  This routine increases the
 180 * FDT allocation size until the allocated memory is large
 181 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
 182 * which are fixed at 4K bytes, so in most cases the first
 183 * allocation should succeed.
 184 * EFI boot services are exited at the end of this function.
 185 * There must be no allocations between the get_memory_map()
 186 * call and the exit_boot_services() call, so the exiting of
 187 * boot services is very tightly tied to the creation of the FDT
 188 * with the final memory map in it.
 189 */
 190
 191efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
 192                                            void *handle,
 193                                            unsigned long *new_fdt_addr,
 194                                            unsigned long max_addr,
 195                                            u64 initrd_addr, u64 initrd_size,
 196                                            char *cmdline_ptr,
 197                                            unsigned long fdt_addr,
 198                                            unsigned long fdt_size)
 199{
 200        unsigned long map_size, desc_size;
 201        u32 desc_ver;
 202        unsigned long mmap_key;
 203        efi_memory_desc_t *memory_map, *runtime_map;
 204        unsigned long new_fdt_size;
 205        efi_status_t status;
 206        int runtime_entry_count = 0;
 207
 208        /*
 209         * Get a copy of the current memory map that we will use to prepare
 210         * the input for SetVirtualAddressMap(). We don't have to worry about
 211         * subsequent allocations adding entries, since they could not affect
 212         * the number of EFI_MEMORY_RUNTIME regions.
 213         */
 214        status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
 215                                    &desc_size, &desc_ver, &mmap_key);
 216        if (status != EFI_SUCCESS) {
 217                pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
 218                return status;
 219        }
 220
 221        pr_efi(sys_table,
 222               "Exiting boot services and installing virtual address map...\n");
 223
 224        /*
 225         * Estimate size of new FDT, and allocate memory for it. We
 226         * will allocate a bigger buffer if this ends up being too
 227         * small, so a rough guess is OK here.
 228         */
 229        new_fdt_size = fdt_size + EFI_PAGE_SIZE;
 230        while (1) {
 231                status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
 232                                        new_fdt_addr, max_addr);
 233                if (status != EFI_SUCCESS) {
 234                        pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
 235                        goto fail;
 236                }
 237
 238                /*
 239                 * Now that we have done our final memory allocation (and free)
 240                 * we can get the memory map key  needed for
 241                 * exit_boot_services().
 242                 */
 243                status = efi_get_memory_map(sys_table, &memory_map, &map_size,
 244                                            &desc_size, &desc_ver, &mmap_key);
 245                if (status != EFI_SUCCESS)
 246                        goto fail_free_new_fdt;
 247
 248                status = update_fdt(sys_table,
 249                                    (void *)fdt_addr, fdt_size,
 250                                    (void *)*new_fdt_addr, new_fdt_size,
 251                                    cmdline_ptr, initrd_addr, initrd_size,
 252                                    memory_map, map_size, desc_size, desc_ver);
 253
 254                /* Succeeding the first time is the expected case. */
 255                if (status == EFI_SUCCESS)
 256                        break;
 257
 258                if (status == EFI_BUFFER_TOO_SMALL) {
 259                        /*
 260                         * We need to allocate more space for the new
 261                         * device tree, so free existing buffer that is
 262                         * too small.  Also free memory map, as we will need
 263                         * to get new one that reflects the free/alloc we do
 264                         * on the device tree buffer.
 265                         */
 266                        efi_free(sys_table, new_fdt_size, *new_fdt_addr);
 267                        sys_table->boottime->free_pool(memory_map);
 268                        new_fdt_size += EFI_PAGE_SIZE;
 269                } else {
 270                        pr_efi_err(sys_table, "Unable to construct new device tree.\n");
 271                        goto fail_free_mmap;
 272                }
 273        }
 274
 275        /*
 276         * Update the memory map with virtual addresses. The function will also
 277         * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
 278         * entries so that we can pass it straight into SetVirtualAddressMap()
 279         */
 280        efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
 281                        &runtime_entry_count);
 282
 283        /* Now we are ready to exit_boot_services.*/
 284        status = sys_table->boottime->exit_boot_services(handle, mmap_key);
 285
 286        if (status == EFI_SUCCESS) {
 287                efi_set_virtual_address_map_t *svam;
 288
 289                /* Install the new virtual address map */
 290                svam = sys_table->runtime->set_virtual_address_map;
 291                status = svam(runtime_entry_count * desc_size, desc_size,
 292                              desc_ver, runtime_map);
 293
 294                /*
 295                 * We are beyond the point of no return here, so if the call to
 296                 * SetVirtualAddressMap() failed, we need to signal that to the
 297                 * incoming kernel but proceed normally otherwise.
 298                 */
 299                if (status != EFI_SUCCESS) {
 300                        int l;
 301
 302                        /*
 303                         * Set the virtual address field of all
 304                         * EFI_MEMORY_RUNTIME entries to 0. This will signal
 305                         * the incoming kernel that no virtual translation has
 306                         * been installed.
 307                         */
 308                        for (l = 0; l < map_size; l += desc_size) {
 309                                efi_memory_desc_t *p = (void *)memory_map + l;
 310
 311                                if (p->attribute & EFI_MEMORY_RUNTIME)
 312                                        p->virt_addr = 0;
 313                        }
 314                }
 315                return EFI_SUCCESS;
 316        }
 317
 318        pr_efi_err(sys_table, "Exit boot services failed.\n");
 319
 320fail_free_mmap:
 321        sys_table->boottime->free_pool(memory_map);
 322
 323fail_free_new_fdt:
 324        efi_free(sys_table, new_fdt_size, *new_fdt_addr);
 325
 326fail:
 327        sys_table->boottime->free_pool(runtime_map);
 328        return EFI_LOAD_ERROR;
 329}
 330
 331void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
 332{
 333        efi_guid_t fdt_guid = DEVICE_TREE_GUID;
 334        efi_config_table_t *tables;
 335        void *fdt;
 336        int i;
 337
 338        tables = (efi_config_table_t *) sys_table->tables;
 339        fdt = NULL;
 340
 341        for (i = 0; i < sys_table->nr_tables; i++)
 342                if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
 343                        fdt = (void *) tables[i].table;
 344                        if (fdt_check_header(fdt) != 0) {
 345                                pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
 346                                return NULL;
 347                        }
 348                        *fdt_size = fdt_totalsize(fdt);
 349                        break;
 350         }
 351
 352        return fdt;
 353}
 354