linux/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
<<
>>
Prefs
   1/*
   2 * Copyright 2015 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/fb.h>
  26
  27#include "ppatomctrl.h"
  28#include "atombios.h"
  29#include "cgs_common.h"
  30#include "pp_debug.h"
  31#include "ppevvmath.h"
  32
  33#define MEM_ID_MASK           0xff000000
  34#define MEM_ID_SHIFT          24
  35#define CLOCK_RANGE_MASK      0x00ffffff
  36#define CLOCK_RANGE_SHIFT     0
  37#define LOW_NIBBLE_MASK       0xf
  38#define DATA_EQU_PREV         0
  39#define DATA_FROM_TABLE       4
  40
  41union voltage_object_info {
  42        struct _ATOM_VOLTAGE_OBJECT_INFO v1;
  43        struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
  44        struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
  45};
  46
  47static int atomctrl_retrieve_ac_timing(
  48                uint8_t index,
  49                ATOM_INIT_REG_BLOCK *reg_block,
  50                pp_atomctrl_mc_reg_table *table)
  51{
  52        uint32_t i, j;
  53        uint8_t tmem_id;
  54        ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  55                ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
  56
  57        uint8_t num_ranges = 0;
  58
  59        while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
  60                        num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
  61                tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
  62
  63                if (index == tmem_id) {
  64                        table->mc_reg_table_entry[num_ranges].mclk_max =
  65                                (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
  66                                                CLOCK_RANGE_SHIFT);
  67
  68                        for (i = 0, j = 1; i < table->last; i++) {
  69                                if ((table->mc_reg_address[i].uc_pre_reg_data &
  70                                                        LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
  71                                        table->mc_reg_table_entry[num_ranges].mc_data[i] =
  72                                                (uint32_t)*((uint32_t *)reg_data + j);
  73                                        j++;
  74                                } else if ((table->mc_reg_address[i].uc_pre_reg_data &
  75                                                        LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
  76                                        table->mc_reg_table_entry[num_ranges].mc_data[i] =
  77                                                table->mc_reg_table_entry[num_ranges].mc_data[i-1];
  78                                }
  79                        }
  80                        num_ranges++;
  81                }
  82
  83                reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  84                        ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
  85        }
  86
  87        PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
  88                        "Invalid VramInfo table.", return -1);
  89        table->num_entries = num_ranges;
  90
  91        return 0;
  92}
  93
  94/**
  95 * Get memory clock AC timing registers index from VBIOS table
  96 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
  97 * @param    reg_block the address ATOM_INIT_REG_BLOCK
  98 * @param    table the address of MCRegTable
  99 * @return   0
 100 */
 101static int atomctrl_set_mc_reg_address_table(
 102                ATOM_INIT_REG_BLOCK *reg_block,
 103                pp_atomctrl_mc_reg_table *table)
 104{
 105        uint8_t i = 0;
 106        uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
 107                        / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 108        ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
 109
 110        num_entries--;        /* subtract 1 data end mark entry */
 111
 112        PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
 113                        "Invalid VramInfo table.", return -1);
 114
 115        /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
 116        while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
 117                        (i < num_entries)) {
 118                table->mc_reg_address[i].s1 =
 119                        (uint16_t)(le16_to_cpu(format->usRegIndex));
 120                table->mc_reg_address[i].uc_pre_reg_data =
 121                        format->ucPreRegDataLength;
 122
 123                i++;
 124                format = (ATOM_INIT_REG_INDEX_FORMAT *)
 125                        ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 126        }
 127
 128        table->last = i;
 129        return 0;
 130}
 131
 132
 133int atomctrl_initialize_mc_reg_table(
 134                struct pp_hwmgr *hwmgr,
 135                uint8_t module_index,
 136                pp_atomctrl_mc_reg_table *table)
 137{
 138        ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
 139        ATOM_INIT_REG_BLOCK *reg_block;
 140        int result = 0;
 141        u8 frev, crev;
 142        u16 size;
 143
 144        vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
 145                cgs_atom_get_data_table(hwmgr->device,
 146                                GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
 147
 148        if (module_index >= vram_info->ucNumOfVRAMModule) {
 149                printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
 150                result = -1;
 151        } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
 152                printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
 153                result = -1;
 154        }
 155
 156        if (0 == result) {
 157                reg_block = (ATOM_INIT_REG_BLOCK *)
 158                        ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
 159                result = atomctrl_set_mc_reg_address_table(reg_block, table);
 160        }
 161
 162        if (0 == result) {
 163                result = atomctrl_retrieve_ac_timing(module_index,
 164                                        reg_block, table);
 165        }
 166
 167        return result;
 168}
 169
 170/**
 171 * Set DRAM timings based on engine clock and memory clock.
 172 */
 173int atomctrl_set_engine_dram_timings_rv770(
 174                struct pp_hwmgr *hwmgr,
 175                uint32_t engine_clock,
 176                uint32_t memory_clock)
 177{
 178        SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
 179
 180        /* They are both in 10KHz Units. */
 181        engine_clock_parameters.ulTargetEngineClock =
 182                (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
 183        engine_clock_parameters.ulTargetEngineClock |=
 184                (COMPUTE_ENGINE_PLL_PARAM << 24);
 185
 186        /* in 10 khz units.*/
 187        engine_clock_parameters.sReserved.ulClock =
 188                (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
 189        return cgs_atom_exec_cmd_table(hwmgr->device,
 190                        GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
 191                        &engine_clock_parameters);
 192}
 193
 194/**
 195 * Private Function to get the PowerPlay Table Address.
 196 * WARNING: The tabled returned by this function is in
 197 * dynamically allocated memory.
 198 * The caller has to release if by calling kfree.
 199 */
 200static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
 201{
 202        int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
 203        u8 frev, crev;
 204        u16 size;
 205        union voltage_object_info *voltage_info;
 206
 207        voltage_info = (union voltage_object_info *)
 208                cgs_atom_get_data_table(device, index,
 209                        &size, &frev, &crev);
 210
 211        if (voltage_info != NULL)
 212                return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
 213        else
 214                return NULL;
 215}
 216
 217static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
 218                const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
 219                uint8_t voltage_type, uint8_t voltage_mode)
 220{
 221        unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
 222        unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
 223        uint8_t *start = (uint8_t *)voltage_object_info_table;
 224
 225        while (offset < size) {
 226                const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
 227                        (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
 228
 229                if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
 230                        voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
 231                        return voltage_object;
 232
 233                offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
 234        }
 235
 236        return NULL;
 237}
 238
 239/** atomctrl_get_memory_pll_dividers_si().
 240 *
 241 * @param hwmgr                 input parameter: pointer to HwMgr
 242 * @param clock_value             input parameter: memory clock
 243 * @param dividers                 output parameter: memory PLL dividers
 244 * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
 245 */
 246int atomctrl_get_memory_pll_dividers_si(
 247                struct pp_hwmgr *hwmgr,
 248                uint32_t clock_value,
 249                pp_atomctrl_memory_clock_param *mpll_param,
 250                bool strobe_mode)
 251{
 252        COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
 253        int result;
 254
 255        mpll_parameters.ulClock = (uint32_t) clock_value;
 256        mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
 257
 258        result = cgs_atom_exec_cmd_table
 259                (hwmgr->device,
 260                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 261                 &mpll_parameters);
 262
 263        if (0 == result) {
 264                mpll_param->mpll_fb_divider.clk_frac =
 265                        mpll_parameters.ulFbDiv.usFbDivFrac;
 266                mpll_param->mpll_fb_divider.cl_kf =
 267                        mpll_parameters.ulFbDiv.usFbDiv;
 268                mpll_param->mpll_post_divider =
 269                        (uint32_t)mpll_parameters.ucPostDiv;
 270                mpll_param->vco_mode =
 271                        (uint32_t)(mpll_parameters.ucPllCntlFlag &
 272                                        MPLL_CNTL_FLAG_VCO_MODE_MASK);
 273                mpll_param->yclk_sel =
 274                        (uint32_t)((mpll_parameters.ucPllCntlFlag &
 275                                                MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
 276                mpll_param->qdr =
 277                        (uint32_t)((mpll_parameters.ucPllCntlFlag &
 278                                                MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
 279                mpll_param->half_rate =
 280                        (uint32_t)((mpll_parameters.ucPllCntlFlag &
 281                                                MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
 282                mpll_param->dll_speed =
 283                        (uint32_t)(mpll_parameters.ucDllSpeed);
 284                mpll_param->bw_ctrl =
 285                        (uint32_t)(mpll_parameters.ucBWCntl);
 286        }
 287
 288        return result;
 289}
 290
 291/** atomctrl_get_memory_pll_dividers_vi().
 292 *
 293 * @param hwmgr                 input parameter: pointer to HwMgr
 294 * @param clock_value             input parameter: memory clock
 295 * @param dividers               output parameter: memory PLL dividers
 296 */
 297int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
 298                uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
 299{
 300        COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
 301        int result;
 302
 303        mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
 304
 305        result = cgs_atom_exec_cmd_table(hwmgr->device,
 306                        GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 307                        &mpll_parameters);
 308
 309        if (!result)
 310                mpll_param->mpll_post_divider =
 311                                (uint32_t)mpll_parameters.ulClock.ucPostDiv;
 312
 313        return result;
 314}
 315
 316int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
 317                                          uint32_t clock_value,
 318                                          pp_atomctrl_clock_dividers_kong *dividers)
 319{
 320        COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
 321        int result;
 322
 323        pll_parameters.ulClock = clock_value;
 324
 325        result = cgs_atom_exec_cmd_table
 326                (hwmgr->device,
 327                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 328                 &pll_parameters);
 329
 330        if (0 == result) {
 331                dividers->pll_post_divider = pll_parameters.ucPostDiv;
 332                dividers->real_clock = pll_parameters.ulClock;
 333        }
 334
 335        return result;
 336}
 337
 338int atomctrl_get_engine_pll_dividers_vi(
 339                struct pp_hwmgr *hwmgr,
 340                uint32_t clock_value,
 341                pp_atomctrl_clock_dividers_vi *dividers)
 342{
 343        COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 344        int result;
 345
 346        pll_patameters.ulClock.ulClock = clock_value;
 347        pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
 348
 349        result = cgs_atom_exec_cmd_table
 350                (hwmgr->device,
 351                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 352                 &pll_patameters);
 353
 354        if (0 == result) {
 355                dividers->pll_post_divider =
 356                        pll_patameters.ulClock.ucPostDiv;
 357                dividers->real_clock =
 358                        pll_patameters.ulClock.ulClock;
 359
 360                dividers->ul_fb_div.ul_fb_div_frac =
 361                        pll_patameters.ulFbDiv.usFbDivFrac;
 362                dividers->ul_fb_div.ul_fb_div =
 363                        pll_patameters.ulFbDiv.usFbDiv;
 364
 365                dividers->uc_pll_ref_div =
 366                        pll_patameters.ucPllRefDiv;
 367                dividers->uc_pll_post_div =
 368                        pll_patameters.ucPllPostDiv;
 369                dividers->uc_pll_cntl_flag =
 370                        pll_patameters.ucPllCntlFlag;
 371        }
 372
 373        return result;
 374}
 375
 376int atomctrl_get_dfs_pll_dividers_vi(
 377                struct pp_hwmgr *hwmgr,
 378                uint32_t clock_value,
 379                pp_atomctrl_clock_dividers_vi *dividers)
 380{
 381        COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 382        int result;
 383
 384        pll_patameters.ulClock.ulClock = clock_value;
 385        pll_patameters.ulClock.ucPostDiv =
 386                COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
 387
 388        result = cgs_atom_exec_cmd_table
 389                (hwmgr->device,
 390                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 391                 &pll_patameters);
 392
 393        if (0 == result) {
 394                dividers->pll_post_divider =
 395                        pll_patameters.ulClock.ucPostDiv;
 396                dividers->real_clock =
 397                        pll_patameters.ulClock.ulClock;
 398
 399                dividers->ul_fb_div.ul_fb_div_frac =
 400                        pll_patameters.ulFbDiv.usFbDivFrac;
 401                dividers->ul_fb_div.ul_fb_div =
 402                        pll_patameters.ulFbDiv.usFbDiv;
 403
 404                dividers->uc_pll_ref_div =
 405                        pll_patameters.ucPllRefDiv;
 406                dividers->uc_pll_post_div =
 407                        pll_patameters.ucPllPostDiv;
 408                dividers->uc_pll_cntl_flag =
 409                        pll_patameters.ucPllCntlFlag;
 410        }
 411
 412        return result;
 413}
 414
 415/**
 416 * Get the reference clock in 10KHz
 417 */
 418uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
 419{
 420        ATOM_FIRMWARE_INFO *fw_info;
 421        u8 frev, crev;
 422        u16 size;
 423        uint32_t clock;
 424
 425        fw_info = (ATOM_FIRMWARE_INFO *)
 426                cgs_atom_get_data_table(hwmgr->device,
 427                        GetIndexIntoMasterTable(DATA, FirmwareInfo),
 428                        &size, &frev, &crev);
 429
 430        if (fw_info == NULL)
 431                clock = 2700;
 432        else
 433                clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
 434
 435        return clock;
 436}
 437
 438/**
 439 * Returns true if the given voltage type is controlled by GPIO pins.
 440 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
 441 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
 442 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
 443 */
 444bool atomctrl_is_voltage_controled_by_gpio_v3(
 445                struct pp_hwmgr *hwmgr,
 446                uint8_t voltage_type,
 447                uint8_t voltage_mode)
 448{
 449        ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 450                (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
 451        bool ret;
 452
 453        PP_ASSERT_WITH_CODE((NULL != voltage_info),
 454                        "Could not find Voltage Table in BIOS.", return false;);
 455
 456        ret = (NULL != atomctrl_lookup_voltage_type_v3
 457                        (voltage_info, voltage_type, voltage_mode)) ? true : false;
 458
 459        return ret;
 460}
 461
 462int atomctrl_get_voltage_table_v3(
 463                struct pp_hwmgr *hwmgr,
 464                uint8_t voltage_type,
 465                uint8_t voltage_mode,
 466                pp_atomctrl_voltage_table *voltage_table)
 467{
 468        ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 469                (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
 470        const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
 471        unsigned int i;
 472
 473        PP_ASSERT_WITH_CODE((NULL != voltage_info),
 474                        "Could not find Voltage Table in BIOS.", return -1;);
 475
 476        voltage_object = atomctrl_lookup_voltage_type_v3
 477                (voltage_info, voltage_type, voltage_mode);
 478
 479        if (voltage_object == NULL)
 480                return -1;
 481
 482        PP_ASSERT_WITH_CODE(
 483                        (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
 484                        PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
 485                        "Too many voltage entries!",
 486                        return -1;
 487                        );
 488
 489        for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
 490                voltage_table->entries[i].value =
 491                        voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
 492                voltage_table->entries[i].smio_low =
 493                        voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
 494        }
 495
 496        voltage_table->mask_low    =
 497                voltage_object->asGpioVoltageObj.ulGpioMaskVal;
 498        voltage_table->count      =
 499                voltage_object->asGpioVoltageObj.ucGpioEntryNum;
 500        voltage_table->phase_delay =
 501                voltage_object->asGpioVoltageObj.ucPhaseDelay;
 502
 503        return 0;
 504}
 505
 506static bool atomctrl_lookup_gpio_pin(
 507                ATOM_GPIO_PIN_LUT * gpio_lookup_table,
 508                const uint32_t pinId,
 509                pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 510{
 511        unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
 512        unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
 513        uint8_t *start = (uint8_t *)gpio_lookup_table;
 514
 515        while (offset < size) {
 516                const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
 517                        (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
 518
 519                if (pinId == pin_assignment->ucGPIO_ID) {
 520                        gpio_pin_assignment->uc_gpio_pin_bit_shift =
 521                                pin_assignment->ucGpioPinBitShift;
 522                        gpio_pin_assignment->us_gpio_pin_aindex =
 523                                le16_to_cpu(pin_assignment->usGpioPin_AIndex);
 524                        return false;
 525                }
 526
 527                offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
 528        }
 529
 530        return true;
 531}
 532
 533/**
 534 * Private Function to get the PowerPlay Table Address.
 535 * WARNING: The tabled returned by this function is in
 536 * dynamically allocated memory.
 537 * The caller has to release if by calling kfree.
 538 */
 539static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
 540{
 541        u8 frev, crev;
 542        u16 size;
 543        void *table_address;
 544
 545        table_address = (ATOM_GPIO_PIN_LUT *)
 546                cgs_atom_get_data_table(device,
 547                                GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
 548                                &size, &frev, &crev);
 549
 550        PP_ASSERT_WITH_CODE((NULL != table_address),
 551                        "Error retrieving BIOS Table Address!", return NULL;);
 552
 553        return (ATOM_GPIO_PIN_LUT *)table_address;
 554}
 555
 556/**
 557 * Returns 1 if the given pin id find in lookup table.
 558 */
 559bool atomctrl_get_pp_assign_pin(
 560                struct pp_hwmgr *hwmgr,
 561                const uint32_t pinId,
 562                pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 563{
 564        bool bRet = 0;
 565        ATOM_GPIO_PIN_LUT *gpio_lookup_table =
 566                get_gpio_lookup_table(hwmgr->device);
 567
 568        PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
 569                        "Could not find GPIO lookup Table in BIOS.", return -1);
 570
 571        bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
 572                gpio_pin_assignment);
 573
 574        return bRet;
 575}
 576
 577int atomctrl_calculate_voltage_evv_on_sclk(
 578                struct pp_hwmgr *hwmgr,
 579                uint8_t voltage_type,
 580                uint32_t sclk,
 581                uint16_t virtual_voltage_Id,
 582                uint16_t *voltage,
 583                uint16_t dpm_level,
 584                bool debug)
 585{
 586        ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
 587
 588        EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
 589        EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
 590        EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
 591        EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
 592        EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
 593        EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
 594        EFUSE_INPUT_PARAMETER sInput_FuseValues;
 595        READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
 596
 597        uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
 598        fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
 599        fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
 600        fInt fLkg_FT, repeat;
 601        fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
 602        fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
 603        fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
 604        fInt fSclk_margin, fSclk, fEVV_V;
 605        fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
 606        uint32_t ul_FT_Lkg_V0NORM;
 607        fInt fLn_MaxDivMin, fMin, fAverage, fRange;
 608        fInt fRoots[2];
 609        fInt fStepSize = GetScaledFraction(625, 100000);
 610
 611        int result;
 612
 613        getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
 614                        cgs_atom_get_data_table(hwmgr->device,
 615                                        GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
 616                                        NULL, NULL, NULL);
 617
 618        if (!getASICProfilingInfo)
 619                return -1;
 620
 621        if(getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
 622                        (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
 623                        getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
 624                return -1;
 625
 626        /*-----------------------------------------------------------
 627         *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
 628         *-----------------------------------------------------------
 629         */
 630        fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
 631
 632        switch (dpm_level) {
 633        case 1:
 634                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
 635                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
 636                break;
 637        case 2:
 638                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
 639                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
 640                break;
 641        case 3:
 642                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
 643                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
 644                break;
 645        case 4:
 646                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
 647                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
 648                break;
 649        case 5:
 650                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
 651                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
 652                break;
 653        case 6:
 654                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
 655                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
 656                break;
 657        case 7:
 658                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
 659                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
 660                break;
 661        default:
 662                printk(KERN_ERR "DPM Level not supported\n");
 663                fPowerDPMx = Convert_ULONG_ToFraction(1);
 664                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
 665        }
 666
 667        /*-------------------------
 668         * DECODING FUSE VALUES
 669         * ------------------------
 670         */
 671        /*Decode RO_Fused*/
 672        sRO_fuse = getASICProfilingInfo->sRoFuse;
 673
 674        sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
 675        sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
 676        sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
 677
 678        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 679
 680        result = cgs_atom_exec_cmd_table(hwmgr->device,
 681                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 682                        &sOutput_FuseValues);
 683
 684        if (result)
 685                return result;
 686
 687        /* Finally, the actual fuse value */
 688        ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
 689        fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
 690        fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
 691        fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
 692
 693        sCACm_fuse = getASICProfilingInfo->sCACm;
 694
 695        sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
 696        sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
 697        sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
 698
 699        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 700
 701        result = cgs_atom_exec_cmd_table(hwmgr->device,
 702                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 703                        &sOutput_FuseValues);
 704
 705        if (result)
 706                return result;
 707
 708        ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
 709        fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
 710        fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
 711
 712        fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
 713
 714        sCACb_fuse = getASICProfilingInfo->sCACb;
 715
 716        sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
 717        sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
 718        sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
 719        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 720
 721        result = cgs_atom_exec_cmd_table(hwmgr->device,
 722                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 723                        &sOutput_FuseValues);
 724
 725        if (result)
 726                return result;
 727
 728        ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
 729        fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
 730        fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
 731
 732        fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
 733
 734        sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
 735
 736        sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
 737        sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
 738        sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
 739
 740        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 741
 742        result = cgs_atom_exec_cmd_table(hwmgr->device,
 743                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 744                        &sOutput_FuseValues);
 745
 746        if (result)
 747                return result;
 748
 749        ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
 750        fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
 751        fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
 752
 753        fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
 754                        fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
 755
 756        sKv_m_fuse = getASICProfilingInfo->sKv_m;
 757
 758        sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
 759        sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
 760        sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
 761
 762        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 763
 764        result = cgs_atom_exec_cmd_table(hwmgr->device,
 765                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 766                        &sOutput_FuseValues);
 767        if (result)
 768                return result;
 769
 770        ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
 771        fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
 772        fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
 773        fRange = fMultiply(fRange, ConvertToFraction(-1));
 774
 775        fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
 776                        fAverage, fRange, sKv_m_fuse.ucEfuseLength);
 777
 778        sKv_b_fuse = getASICProfilingInfo->sKv_b;
 779
 780        sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
 781        sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
 782        sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
 783        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 784
 785        result = cgs_atom_exec_cmd_table(hwmgr->device,
 786                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 787                        &sOutput_FuseValues);
 788
 789        if (result)
 790                return result;
 791
 792        ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
 793        fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
 794        fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
 795
 796        fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
 797                        fAverage, fRange, sKv_b_fuse.ucEfuseLength);
 798
 799        /* Decoding the Leakage - No special struct container */
 800        /*
 801         * usLkgEuseIndex=56
 802         * ucLkgEfuseBitLSB=6
 803         * ucLkgEfuseLength=10
 804         * ulLkgEncodeLn_MaxDivMin=69077
 805         * ulLkgEncodeMax=1000000
 806         * ulLkgEncodeMin=1000
 807         * ulEfuseLogisticAlpha=13
 808         */
 809
 810        sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
 811        sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
 812        sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
 813
 814        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 815
 816        result = cgs_atom_exec_cmd_table(hwmgr->device,
 817                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 818                        &sOutput_FuseValues);
 819
 820        if (result)
 821                return result;
 822
 823        ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
 824        fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
 825        fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
 826
 827        fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
 828                        fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
 829        fLkg_FT = fFT_Lkg_V0NORM;
 830
 831        /*-------------------------------------------
 832         * PART 2 - Grabbing all required values
 833         *-------------------------------------------
 834         */
 835        fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
 836                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
 837        fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
 838                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
 839        fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
 840                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
 841        fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
 842                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
 843        fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
 844                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
 845        fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
 846                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
 847        fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
 848                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
 849        fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
 850                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
 851
 852        fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
 853        fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
 854        fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
 855
 856        fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
 857
 858        fMargin_FMAX_mean = GetScaledFraction(
 859                        getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
 860        fMargin_Plat_mean = GetScaledFraction(
 861                        getASICProfilingInfo->ulMargin_plat_mean, 10000);
 862        fMargin_FMAX_sigma = GetScaledFraction(
 863                        getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
 864        fMargin_Plat_sigma = GetScaledFraction(
 865                        getASICProfilingInfo->ulMargin_plat_sigma, 10000);
 866
 867        fMargin_DC_sigma = GetScaledFraction(
 868                        getASICProfilingInfo->ulMargin_DC_sigma, 100);
 869        fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
 870
 871        fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
 872        fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
 873        fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
 874        fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
 875        fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
 876
 877        fSclk = GetScaledFraction(sclk, 100);
 878
 879        fV_max = fDivide(GetScaledFraction(
 880                        getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
 881        fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
 882        fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
 883        fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
 884        fV_FT = fDivide(GetScaledFraction(
 885                        getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
 886        fV_min = fDivide(GetScaledFraction(
 887                        getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
 888
 889        /*-----------------------
 890         * PART 3
 891         *-----------------------
 892         */
 893
 894        fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4,fSclk), fSM_A5));
 895        fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
 896        fC_Term = fAdd(fMargin_RO_c,
 897                        fAdd(fMultiply(fSM_A0,fLkg_FT),
 898                        fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT,fSclk)),
 899                        fAdd(fMultiply(fSM_A3, fSclk),
 900                        fSubtract(fSM_A7,fRO_fused)))));
 901
 902        fVDDC_base = fSubtract(fRO_fused,
 903                        fSubtract(fMargin_RO_c,
 904                                        fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
 905        fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0,fSclk), fSM_A2));
 906
 907        repeat = fSubtract(fVDDC_base,
 908                        fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
 909
 910        fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
 911                        fGetSquare(repeat)),
 912                        fAdd(fMultiply(fMargin_RO_b, repeat),
 913                        fMargin_RO_c));
 914
 915        fDC_SCLK = fSubtract(fRO_fused,
 916                        fSubtract(fRO_DC_margin,
 917                        fSubtract(fSM_A3,
 918                        fMultiply(fSM_A2, repeat))));
 919        fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0,repeat), fSM_A1));
 920
 921        fSigma_DC = fSubtract(fSclk, fDC_SCLK);
 922
 923        fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
 924        fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
 925        fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
 926        fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
 927
 928        fSquared_Sigma_DC = fGetSquare(fSigma_DC);
 929        fSquared_Sigma_CR = fGetSquare(fSigma_CR);
 930        fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
 931
 932        fSclk_margin = fAdd(fMicro_FMAX,
 933                        fAdd(fMicro_CR,
 934                        fAdd(fMargin_fixed,
 935                        fSqrt(fAdd(fSquared_Sigma_FMAX,
 936                        fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
 937        /*
 938         fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
 939         fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
 940         fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
 941         */
 942
 943        fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
 944        fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
 945        fC_Term = fAdd(fRO_DC_margin,
 946                        fAdd(fMultiply(fSM_A0, fLkg_FT),
 947                        fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
 948                        fAdd(fSclk, fSclk_margin)),
 949                        fAdd(fMultiply(fSM_A3,
 950                        fAdd(fSclk, fSclk_margin)),
 951                        fSubtract(fSM_A7, fRO_fused)))));
 952
 953        SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
 954
 955        if (GreaterThan(fRoots[0], fRoots[1]))
 956                fEVV_V = fRoots[1];
 957        else
 958                fEVV_V = fRoots[0];
 959
 960        if (GreaterThan(fV_min, fEVV_V))
 961                fEVV_V = fV_min;
 962        else if (GreaterThan(fEVV_V, fV_max))
 963                fEVV_V = fSubtract(fV_max, fStepSize);
 964
 965        fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
 966
 967        /*-----------------
 968         * PART 4
 969         *-----------------
 970         */
 971
 972        fV_x = fV_min;
 973
 974        while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
 975                fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
 976                                fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
 977                                fGetSquare(fV_x)), fDerateTDP);
 978
 979                fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
 980                                fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
 981                                fT_prod), fKv_b_fused), fV_x)), fV_x)));
 982                fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
 983                                fKt_Beta_fused, fT_prod)));
 984                fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
 985                                fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
 986                fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
 987                                fKt_Beta_fused, fT_FT)));
 988
 989                fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
 990
 991                fTDP_Current = fDivide(fTDP_Power, fV_x);
 992
 993                fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
 994                                ConvertToFraction(10)));
 995
 996                fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
 997
 998                if (GreaterThan(fV_max, fV_NL) &&
 999                        (GreaterThan(fV_NL,fEVV_V) ||
1000                        Equal(fV_NL, fEVV_V))) {
1001                        fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1002
1003                        *voltage = (uint16_t)fV_NL.partial.real;
1004                        break;
1005                } else
1006                        fV_x = fAdd(fV_x, fStepSize);
1007        }
1008
1009        return result;
1010}
1011
1012/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1013 * @param hwmgr                 input: pointer to hwManager
1014 * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1015 * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1016 *                                              which is define in PPTable SCLK/VDDC dependence
1017 *                              table associated with this virtual_voltage_Id
1018 * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1019 * @param voltage                      output: real voltage level in unit of mv
1020 */
1021int atomctrl_get_voltage_evv_on_sclk(
1022                struct pp_hwmgr *hwmgr,
1023                uint8_t voltage_type,
1024                uint32_t sclk, uint16_t virtual_voltage_Id,
1025                uint16_t *voltage)
1026{
1027        int result;
1028        GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1029
1030        get_voltage_info_param_space.ucVoltageType   =
1031                voltage_type;
1032        get_voltage_info_param_space.ucVoltageMode   =
1033                ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1034        get_voltage_info_param_space.usVoltageLevel  =
1035                virtual_voltage_Id;
1036        get_voltage_info_param_space.ulSCLKFreq      =
1037                sclk;
1038
1039        result = cgs_atom_exec_cmd_table(hwmgr->device,
1040                        GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1041                        &get_voltage_info_param_space);
1042
1043        if (0 != result)
1044                return result;
1045
1046        *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1047                        (&get_voltage_info_param_space))->usVoltageLevel;
1048
1049        return result;
1050}
1051
1052/**
1053 * Get the mpll reference clock in 10KHz
1054 */
1055uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1056{
1057        ATOM_COMMON_TABLE_HEADER *fw_info;
1058        uint32_t clock;
1059        u8 frev, crev;
1060        u16 size;
1061
1062        fw_info = (ATOM_COMMON_TABLE_HEADER *)
1063                cgs_atom_get_data_table(hwmgr->device,
1064                                GetIndexIntoMasterTable(DATA, FirmwareInfo),
1065                                &size, &frev, &crev);
1066
1067        if (fw_info == NULL)
1068                clock = 2700;
1069        else {
1070                if ((fw_info->ucTableFormatRevision == 2) &&
1071                        (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1072                        ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1073                                (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1074                        clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1075                } else {
1076                        ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1077                                (ATOM_FIRMWARE_INFO *)fw_info;
1078                        clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1079                }
1080        }
1081
1082        return clock;
1083}
1084
1085/**
1086 * Get the asic internal spread spectrum table
1087 */
1088static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1089{
1090        ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1091        u8 frev, crev;
1092        u16 size;
1093
1094        table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1095                cgs_atom_get_data_table(device,
1096                        GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1097                        &size, &frev, &crev);
1098
1099        return table;
1100}
1101
1102/**
1103 * Get the asic internal spread spectrum assignment
1104 */
1105static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1106                const uint8_t clockSource,
1107                const uint32_t clockSpeed,
1108                pp_atomctrl_internal_ss_info *ssEntry)
1109{
1110        ATOM_ASIC_INTERNAL_SS_INFO *table;
1111        ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1112        int entry_found = 0;
1113
1114        memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1115
1116        table = asic_internal_ss_get_ss_table(hwmgr->device);
1117
1118        if (NULL == table)
1119                return -1;
1120
1121        ssInfo = &table->asSpreadSpectrum[0];
1122
1123        while (((uint8_t *)ssInfo - (uint8_t *)table) <
1124                le16_to_cpu(table->sHeader.usStructureSize)) {
1125                if ((clockSource == ssInfo->ucClockIndication) &&
1126                        ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1127                        entry_found = 1;
1128                        break;
1129                }
1130
1131                ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1132                                sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1133        }
1134
1135        if (entry_found) {
1136                ssEntry->speed_spectrum_percentage =
1137                        ssInfo->usSpreadSpectrumPercentage;
1138                ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
1139
1140                if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1141                        (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1142                        (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1143                        ssEntry->speed_spectrum_rate /= 100;
1144                }
1145
1146                switch (ssInfo->ucSpreadSpectrumMode) {
1147                case 0:
1148                        ssEntry->speed_spectrum_mode =
1149                                pp_atomctrl_spread_spectrum_mode_down;
1150                        break;
1151                case 1:
1152                        ssEntry->speed_spectrum_mode =
1153                                pp_atomctrl_spread_spectrum_mode_center;
1154                        break;
1155                default:
1156                        ssEntry->speed_spectrum_mode =
1157                                pp_atomctrl_spread_spectrum_mode_down;
1158                        break;
1159                }
1160        }
1161
1162        return entry_found ? 0 : 1;
1163}
1164
1165/**
1166 * Get the memory clock spread spectrum info
1167 */
1168int atomctrl_get_memory_clock_spread_spectrum(
1169                struct pp_hwmgr *hwmgr,
1170                const uint32_t memory_clock,
1171                pp_atomctrl_internal_ss_info *ssInfo)
1172{
1173        return asic_internal_ss_get_ss_asignment(hwmgr,
1174                        ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1175}
1176/**
1177 * Get the engine clock spread spectrum info
1178 */
1179int atomctrl_get_engine_clock_spread_spectrum(
1180                struct pp_hwmgr *hwmgr,
1181                const uint32_t engine_clock,
1182                pp_atomctrl_internal_ss_info *ssInfo)
1183{
1184        return asic_internal_ss_get_ss_asignment(hwmgr,
1185                        ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1186}
1187
1188int atomctrl_read_efuse(void *device, uint16_t start_index,
1189                uint16_t end_index, uint32_t mask, uint32_t *efuse)
1190{
1191        int result;
1192        READ_EFUSE_VALUE_PARAMETER efuse_param;
1193
1194        efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
1195        efuse_param.sEfuse.ucBitShift = (uint8_t)
1196                        (start_index - ((start_index / 32) * 32));
1197        efuse_param.sEfuse.ucBitLength  = (uint8_t)
1198                        ((end_index - start_index) + 1);
1199
1200        result = cgs_atom_exec_cmd_table(device,
1201                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1202                        &efuse_param);
1203        if (!result)
1204                *efuse = efuse_param.ulEfuseValue & mask;
1205
1206        return result;
1207}
1208