linux/drivers/gpu/drm/i915/i915_irq.c
<<
>>
Prefs
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include <linux/circ_buf.h>
  34#include <drm/drmP.h>
  35#include <drm/i915_drm.h>
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/**
  41 * DOC: interrupt handling
  42 *
  43 * These functions provide the basic support for enabling and disabling the
  44 * interrupt handling support. There's a lot more functionality in i915_irq.c
  45 * and related files, but that will be described in separate chapters.
  46 */
  47
  48static const u32 hpd_ilk[HPD_NUM_PINS] = {
  49        [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  50};
  51
  52static const u32 hpd_ivb[HPD_NUM_PINS] = {
  53        [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  54};
  55
  56static const u32 hpd_bdw[HPD_NUM_PINS] = {
  57        [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  58};
  59
  60static const u32 hpd_ibx[HPD_NUM_PINS] = {
  61        [HPD_CRT] = SDE_CRT_HOTPLUG,
  62        [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  63        [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  64        [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  65        [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  66};
  67
  68static const u32 hpd_cpt[HPD_NUM_PINS] = {
  69        [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  70        [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  71        [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  72        [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  73        [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  74};
  75
  76static const u32 hpd_spt[HPD_NUM_PINS] = {
  77        [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  78        [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  79        [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  80        [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  81        [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  82};
  83
  84static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  85        [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  86        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  87        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  88        [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  89        [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  90        [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  91};
  92
  93static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  94        [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  95        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  96        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  97        [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  98        [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  99        [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 100};
 101
 102static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 103        [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 104        [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 105        [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 106        [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 107        [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 108        [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 109};
 110
 111/* BXT hpd list */
 112static const u32 hpd_bxt[HPD_NUM_PINS] = {
 113        [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 114        [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 115        [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 116};
 117
 118/* IIR can theoretically queue up two events. Be paranoid. */
 119#define GEN8_IRQ_RESET_NDX(type, which) do { \
 120        I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
 121        POSTING_READ(GEN8_##type##_IMR(which)); \
 122        I915_WRITE(GEN8_##type##_IER(which), 0); \
 123        I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 124        POSTING_READ(GEN8_##type##_IIR(which)); \
 125        I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 126        POSTING_READ(GEN8_##type##_IIR(which)); \
 127} while (0)
 128
 129#define GEN5_IRQ_RESET(type) do { \
 130        I915_WRITE(type##IMR, 0xffffffff); \
 131        POSTING_READ(type##IMR); \
 132        I915_WRITE(type##IER, 0); \
 133        I915_WRITE(type##IIR, 0xffffffff); \
 134        POSTING_READ(type##IIR); \
 135        I915_WRITE(type##IIR, 0xffffffff); \
 136        POSTING_READ(type##IIR); \
 137} while (0)
 138
 139/*
 140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 141 */
 142static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
 143                                    i915_reg_t reg)
 144{
 145        u32 val = I915_READ(reg);
 146
 147        if (val == 0)
 148                return;
 149
 150        WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 151             i915_mmio_reg_offset(reg), val);
 152        I915_WRITE(reg, 0xffffffff);
 153        POSTING_READ(reg);
 154        I915_WRITE(reg, 0xffffffff);
 155        POSTING_READ(reg);
 156}
 157
 158#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
 159        gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
 160        I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
 161        I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
 162        POSTING_READ(GEN8_##type##_IMR(which)); \
 163} while (0)
 164
 165#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
 166        gen5_assert_iir_is_zero(dev_priv, type##IIR); \
 167        I915_WRITE(type##IER, (ier_val)); \
 168        I915_WRITE(type##IMR, (imr_val)); \
 169        POSTING_READ(type##IMR); \
 170} while (0)
 171
 172static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 173
 174/* For display hotplug interrupt */
 175static inline void
 176i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 177                                     uint32_t mask,
 178                                     uint32_t bits)
 179{
 180        uint32_t val;
 181
 182        assert_spin_locked(&dev_priv->irq_lock);
 183        WARN_ON(bits & ~mask);
 184
 185        val = I915_READ(PORT_HOTPLUG_EN);
 186        val &= ~mask;
 187        val |= bits;
 188        I915_WRITE(PORT_HOTPLUG_EN, val);
 189}
 190
 191/**
 192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 193 * @dev_priv: driver private
 194 * @mask: bits to update
 195 * @bits: bits to enable
 196 * NOTE: the HPD enable bits are modified both inside and outside
 197 * of an interrupt context. To avoid that read-modify-write cycles
 198 * interfer, these bits are protected by a spinlock. Since this
 199 * function is usually not called from a context where the lock is
 200 * held already, this function acquires the lock itself. A non-locking
 201 * version is also available.
 202 */
 203void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 204                                   uint32_t mask,
 205                                   uint32_t bits)
 206{
 207        spin_lock_irq(&dev_priv->irq_lock);
 208        i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 209        spin_unlock_irq(&dev_priv->irq_lock);
 210}
 211
 212/**
 213 * ilk_update_display_irq - update DEIMR
 214 * @dev_priv: driver private
 215 * @interrupt_mask: mask of interrupt bits to update
 216 * @enabled_irq_mask: mask of interrupt bits to enable
 217 */
 218void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 219                            uint32_t interrupt_mask,
 220                            uint32_t enabled_irq_mask)
 221{
 222        uint32_t new_val;
 223
 224        assert_spin_locked(&dev_priv->irq_lock);
 225
 226        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 227
 228        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 229                return;
 230
 231        new_val = dev_priv->irq_mask;
 232        new_val &= ~interrupt_mask;
 233        new_val |= (~enabled_irq_mask & interrupt_mask);
 234
 235        if (new_val != dev_priv->irq_mask) {
 236                dev_priv->irq_mask = new_val;
 237                I915_WRITE(DEIMR, dev_priv->irq_mask);
 238                POSTING_READ(DEIMR);
 239        }
 240}
 241
 242/**
 243 * ilk_update_gt_irq - update GTIMR
 244 * @dev_priv: driver private
 245 * @interrupt_mask: mask of interrupt bits to update
 246 * @enabled_irq_mask: mask of interrupt bits to enable
 247 */
 248static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 249                              uint32_t interrupt_mask,
 250                              uint32_t enabled_irq_mask)
 251{
 252        assert_spin_locked(&dev_priv->irq_lock);
 253
 254        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 255
 256        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 257                return;
 258
 259        dev_priv->gt_irq_mask &= ~interrupt_mask;
 260        dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 261        I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 262        POSTING_READ(GTIMR);
 263}
 264
 265void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 266{
 267        ilk_update_gt_irq(dev_priv, mask, mask);
 268}
 269
 270void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 271{
 272        ilk_update_gt_irq(dev_priv, mask, 0);
 273}
 274
 275static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 276{
 277        return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 278}
 279
 280static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
 281{
 282        return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
 283}
 284
 285static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
 286{
 287        return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
 288}
 289
 290/**
 291 * snb_update_pm_irq - update GEN6_PMIMR
 292 * @dev_priv: driver private
 293 * @interrupt_mask: mask of interrupt bits to update
 294 * @enabled_irq_mask: mask of interrupt bits to enable
 295 */
 296static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 297                              uint32_t interrupt_mask,
 298                              uint32_t enabled_irq_mask)
 299{
 300        uint32_t new_val;
 301
 302        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 303
 304        assert_spin_locked(&dev_priv->irq_lock);
 305
 306        new_val = dev_priv->pm_irq_mask;
 307        new_val &= ~interrupt_mask;
 308        new_val |= (~enabled_irq_mask & interrupt_mask);
 309
 310        if (new_val != dev_priv->pm_irq_mask) {
 311                dev_priv->pm_irq_mask = new_val;
 312                I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
 313                POSTING_READ(gen6_pm_imr(dev_priv));
 314        }
 315}
 316
 317void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 318{
 319        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 320                return;
 321
 322        snb_update_pm_irq(dev_priv, mask, mask);
 323}
 324
 325static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
 326                                  uint32_t mask)
 327{
 328        snb_update_pm_irq(dev_priv, mask, 0);
 329}
 330
 331void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 332{
 333        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 334                return;
 335
 336        __gen6_disable_pm_irq(dev_priv, mask);
 337}
 338
 339void gen6_reset_rps_interrupts(struct drm_device *dev)
 340{
 341        struct drm_i915_private *dev_priv = dev->dev_private;
 342        i915_reg_t reg = gen6_pm_iir(dev_priv);
 343
 344        spin_lock_irq(&dev_priv->irq_lock);
 345        I915_WRITE(reg, dev_priv->pm_rps_events);
 346        I915_WRITE(reg, dev_priv->pm_rps_events);
 347        POSTING_READ(reg);
 348        dev_priv->rps.pm_iir = 0;
 349        spin_unlock_irq(&dev_priv->irq_lock);
 350}
 351
 352void gen6_enable_rps_interrupts(struct drm_device *dev)
 353{
 354        struct drm_i915_private *dev_priv = dev->dev_private;
 355
 356        spin_lock_irq(&dev_priv->irq_lock);
 357
 358        WARN_ON(dev_priv->rps.pm_iir);
 359        WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 360        dev_priv->rps.interrupts_enabled = true;
 361        I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
 362                                dev_priv->pm_rps_events);
 363        gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 364
 365        spin_unlock_irq(&dev_priv->irq_lock);
 366}
 367
 368u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
 369{
 370        /*
 371         * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
 372         * if GEN6_PM_UP_EI_EXPIRED is masked.
 373         *
 374         * TODO: verify if this can be reproduced on VLV,CHV.
 375         */
 376        if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
 377                mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
 378
 379        if (INTEL_INFO(dev_priv)->gen >= 8)
 380                mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
 381
 382        return mask;
 383}
 384
 385void gen6_disable_rps_interrupts(struct drm_device *dev)
 386{
 387        struct drm_i915_private *dev_priv = dev->dev_private;
 388
 389        spin_lock_irq(&dev_priv->irq_lock);
 390        dev_priv->rps.interrupts_enabled = false;
 391        spin_unlock_irq(&dev_priv->irq_lock);
 392
 393        cancel_work_sync(&dev_priv->rps.work);
 394
 395        spin_lock_irq(&dev_priv->irq_lock);
 396
 397        I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
 398
 399        __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 400        I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
 401                                ~dev_priv->pm_rps_events);
 402
 403        spin_unlock_irq(&dev_priv->irq_lock);
 404
 405        synchronize_irq(dev->irq);
 406}
 407
 408/**
 409 * bdw_update_port_irq - update DE port interrupt
 410 * @dev_priv: driver private
 411 * @interrupt_mask: mask of interrupt bits to update
 412 * @enabled_irq_mask: mask of interrupt bits to enable
 413 */
 414static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 415                                uint32_t interrupt_mask,
 416                                uint32_t enabled_irq_mask)
 417{
 418        uint32_t new_val;
 419        uint32_t old_val;
 420
 421        assert_spin_locked(&dev_priv->irq_lock);
 422
 423        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 424
 425        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 426                return;
 427
 428        old_val = I915_READ(GEN8_DE_PORT_IMR);
 429
 430        new_val = old_val;
 431        new_val &= ~interrupt_mask;
 432        new_val |= (~enabled_irq_mask & interrupt_mask);
 433
 434        if (new_val != old_val) {
 435                I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 436                POSTING_READ(GEN8_DE_PORT_IMR);
 437        }
 438}
 439
 440/**
 441 * bdw_update_pipe_irq - update DE pipe interrupt
 442 * @dev_priv: driver private
 443 * @pipe: pipe whose interrupt to update
 444 * @interrupt_mask: mask of interrupt bits to update
 445 * @enabled_irq_mask: mask of interrupt bits to enable
 446 */
 447void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 448                         enum pipe pipe,
 449                         uint32_t interrupt_mask,
 450                         uint32_t enabled_irq_mask)
 451{
 452        uint32_t new_val;
 453
 454        assert_spin_locked(&dev_priv->irq_lock);
 455
 456        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 457
 458        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 459                return;
 460
 461        new_val = dev_priv->de_irq_mask[pipe];
 462        new_val &= ~interrupt_mask;
 463        new_val |= (~enabled_irq_mask & interrupt_mask);
 464
 465        if (new_val != dev_priv->de_irq_mask[pipe]) {
 466                dev_priv->de_irq_mask[pipe] = new_val;
 467                I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 468                POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 469        }
 470}
 471
 472/**
 473 * ibx_display_interrupt_update - update SDEIMR
 474 * @dev_priv: driver private
 475 * @interrupt_mask: mask of interrupt bits to update
 476 * @enabled_irq_mask: mask of interrupt bits to enable
 477 */
 478void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 479                                  uint32_t interrupt_mask,
 480                                  uint32_t enabled_irq_mask)
 481{
 482        uint32_t sdeimr = I915_READ(SDEIMR);
 483        sdeimr &= ~interrupt_mask;
 484        sdeimr |= (~enabled_irq_mask & interrupt_mask);
 485
 486        WARN_ON(enabled_irq_mask & ~interrupt_mask);
 487
 488        assert_spin_locked(&dev_priv->irq_lock);
 489
 490        if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 491                return;
 492
 493        I915_WRITE(SDEIMR, sdeimr);
 494        POSTING_READ(SDEIMR);
 495}
 496
 497static void
 498__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 499                       u32 enable_mask, u32 status_mask)
 500{
 501        i915_reg_t reg = PIPESTAT(pipe);
 502        u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 503
 504        assert_spin_locked(&dev_priv->irq_lock);
 505        WARN_ON(!intel_irqs_enabled(dev_priv));
 506
 507        if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 508                      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 509                      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 510                      pipe_name(pipe), enable_mask, status_mask))
 511                return;
 512
 513        if ((pipestat & enable_mask) == enable_mask)
 514                return;
 515
 516        dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 517
 518        /* Enable the interrupt, clear any pending status */
 519        pipestat |= enable_mask | status_mask;
 520        I915_WRITE(reg, pipestat);
 521        POSTING_READ(reg);
 522}
 523
 524static void
 525__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 526                        u32 enable_mask, u32 status_mask)
 527{
 528        i915_reg_t reg = PIPESTAT(pipe);
 529        u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 530
 531        assert_spin_locked(&dev_priv->irq_lock);
 532        WARN_ON(!intel_irqs_enabled(dev_priv));
 533
 534        if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 535                      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 536                      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 537                      pipe_name(pipe), enable_mask, status_mask))
 538                return;
 539
 540        if ((pipestat & enable_mask) == 0)
 541                return;
 542
 543        dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 544
 545        pipestat &= ~enable_mask;
 546        I915_WRITE(reg, pipestat);
 547        POSTING_READ(reg);
 548}
 549
 550static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
 551{
 552        u32 enable_mask = status_mask << 16;
 553
 554        /*
 555         * On pipe A we don't support the PSR interrupt yet,
 556         * on pipe B and C the same bit MBZ.
 557         */
 558        if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 559                return 0;
 560        /*
 561         * On pipe B and C we don't support the PSR interrupt yet, on pipe
 562         * A the same bit is for perf counters which we don't use either.
 563         */
 564        if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 565                return 0;
 566
 567        enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 568                         SPRITE0_FLIP_DONE_INT_EN_VLV |
 569                         SPRITE1_FLIP_DONE_INT_EN_VLV);
 570        if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 571                enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 572        if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 573                enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 574
 575        return enable_mask;
 576}
 577
 578void
 579i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 580                     u32 status_mask)
 581{
 582        u32 enable_mask;
 583
 584        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 585                enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 586                                                           status_mask);
 587        else
 588                enable_mask = status_mask << 16;
 589        __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 590}
 591
 592void
 593i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 594                      u32 status_mask)
 595{
 596        u32 enable_mask;
 597
 598        if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 599                enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 600                                                           status_mask);
 601        else
 602                enable_mask = status_mask << 16;
 603        __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 604}
 605
 606/**
 607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 608 * @dev: drm device
 609 */
 610static void i915_enable_asle_pipestat(struct drm_device *dev)
 611{
 612        struct drm_i915_private *dev_priv = dev->dev_private;
 613
 614        if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
 615                return;
 616
 617        spin_lock_irq(&dev_priv->irq_lock);
 618
 619        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 620        if (INTEL_INFO(dev)->gen >= 4)
 621                i915_enable_pipestat(dev_priv, PIPE_A,
 622                                     PIPE_LEGACY_BLC_EVENT_STATUS);
 623
 624        spin_unlock_irq(&dev_priv->irq_lock);
 625}
 626
 627/*
 628 * This timing diagram depicts the video signal in and
 629 * around the vertical blanking period.
 630 *
 631 * Assumptions about the fictitious mode used in this example:
 632 *  vblank_start >= 3
 633 *  vsync_start = vblank_start + 1
 634 *  vsync_end = vblank_start + 2
 635 *  vtotal = vblank_start + 3
 636 *
 637 *           start of vblank:
 638 *           latch double buffered registers
 639 *           increment frame counter (ctg+)
 640 *           generate start of vblank interrupt (gen4+)
 641 *           |
 642 *           |          frame start:
 643 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 644 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 645 *           |          |
 646 *           |          |  start of vsync:
 647 *           |          |  generate vsync interrupt
 648 *           |          |  |
 649 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 650 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 651 * ----va---> <-----------------vb--------------------> <--------va-------------
 652 *       |          |       <----vs----->                     |
 653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 656 *       |          |                                         |
 657 *       last visible pixel                                   first visible pixel
 658 *                  |                                         increment frame counter (gen3/4)
 659 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 660 *
 661 * x  = horizontal active
 662 * _  = horizontal blanking
 663 * hs = horizontal sync
 664 * va = vertical active
 665 * vb = vertical blanking
 666 * vs = vertical sync
 667 * vbs = vblank_start (number)
 668 *
 669 * Summary:
 670 * - most events happen at the start of horizontal sync
 671 * - frame start happens at the start of horizontal blank, 1-4 lines
 672 *   (depending on PIPECONF settings) after the start of vblank
 673 * - gen3/4 pixel and frame counter are synchronized with the start
 674 *   of horizontal active on the first line of vertical active
 675 */
 676
 677static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 678{
 679        /* Gen2 doesn't have a hardware frame counter */
 680        return 0;
 681}
 682
 683/* Called from drm generic code, passed a 'crtc', which
 684 * we use as a pipe index
 685 */
 686static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 687{
 688        struct drm_i915_private *dev_priv = dev->dev_private;
 689        i915_reg_t high_frame, low_frame;
 690        u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 691        struct intel_crtc *intel_crtc =
 692                to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 693        const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
 694
 695        htotal = mode->crtc_htotal;
 696        hsync_start = mode->crtc_hsync_start;
 697        vbl_start = mode->crtc_vblank_start;
 698        if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 699                vbl_start = DIV_ROUND_UP(vbl_start, 2);
 700
 701        /* Convert to pixel count */
 702        vbl_start *= htotal;
 703
 704        /* Start of vblank event occurs at start of hsync */
 705        vbl_start -= htotal - hsync_start;
 706
 707        high_frame = PIPEFRAME(pipe);
 708        low_frame = PIPEFRAMEPIXEL(pipe);
 709
 710        /*
 711         * High & low register fields aren't synchronized, so make sure
 712         * we get a low value that's stable across two reads of the high
 713         * register.
 714         */
 715        do {
 716                high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 717                low   = I915_READ(low_frame);
 718                high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 719        } while (high1 != high2);
 720
 721        high1 >>= PIPE_FRAME_HIGH_SHIFT;
 722        pixel = low & PIPE_PIXEL_MASK;
 723        low >>= PIPE_FRAME_LOW_SHIFT;
 724
 725        /*
 726         * The frame counter increments at beginning of active.
 727         * Cook up a vblank counter by also checking the pixel
 728         * counter against vblank start.
 729         */
 730        return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 731}
 732
 733static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 734{
 735        struct drm_i915_private *dev_priv = dev->dev_private;
 736
 737        return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 738}
 739
 740/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 741static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 742{
 743        struct drm_device *dev = crtc->base.dev;
 744        struct drm_i915_private *dev_priv = dev->dev_private;
 745        const struct drm_display_mode *mode = &crtc->base.hwmode;
 746        enum pipe pipe = crtc->pipe;
 747        int position, vtotal;
 748
 749        vtotal = mode->crtc_vtotal;
 750        if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 751                vtotal /= 2;
 752
 753        if (IS_GEN2(dev))
 754                position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 755        else
 756                position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 757
 758        /*
 759         * On HSW, the DSL reg (0x70000) appears to return 0 if we
 760         * read it just before the start of vblank.  So try it again
 761         * so we don't accidentally end up spanning a vblank frame
 762         * increment, causing the pipe_update_end() code to squak at us.
 763         *
 764         * The nature of this problem means we can't simply check the ISR
 765         * bit and return the vblank start value; nor can we use the scanline
 766         * debug register in the transcoder as it appears to have the same
 767         * problem.  We may need to extend this to include other platforms,
 768         * but so far testing only shows the problem on HSW.
 769         */
 770        if (HAS_DDI(dev) && !position) {
 771                int i, temp;
 772
 773                for (i = 0; i < 100; i++) {
 774                        udelay(1);
 775                        temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
 776                                DSL_LINEMASK_GEN3;
 777                        if (temp != position) {
 778                                position = temp;
 779                                break;
 780                        }
 781                }
 782        }
 783
 784        /*
 785         * See update_scanline_offset() for the details on the
 786         * scanline_offset adjustment.
 787         */
 788        return (position + crtc->scanline_offset) % vtotal;
 789}
 790
 791static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 792                                    unsigned int flags, int *vpos, int *hpos,
 793                                    ktime_t *stime, ktime_t *etime,
 794                                    const struct drm_display_mode *mode)
 795{
 796        struct drm_i915_private *dev_priv = dev->dev_private;
 797        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 798        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 799        int position;
 800        int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 801        bool in_vbl = true;
 802        int ret = 0;
 803        unsigned long irqflags;
 804
 805        if (WARN_ON(!mode->crtc_clock)) {
 806                DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 807                                 "pipe %c\n", pipe_name(pipe));
 808                return 0;
 809        }
 810
 811        htotal = mode->crtc_htotal;
 812        hsync_start = mode->crtc_hsync_start;
 813        vtotal = mode->crtc_vtotal;
 814        vbl_start = mode->crtc_vblank_start;
 815        vbl_end = mode->crtc_vblank_end;
 816
 817        if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 818                vbl_start = DIV_ROUND_UP(vbl_start, 2);
 819                vbl_end /= 2;
 820                vtotal /= 2;
 821        }
 822
 823        ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 824
 825        /*
 826         * Lock uncore.lock, as we will do multiple timing critical raw
 827         * register reads, potentially with preemption disabled, so the
 828         * following code must not block on uncore.lock.
 829         */
 830        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 831
 832        /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 833
 834        /* Get optional system timestamp before query. */
 835        if (stime)
 836                *stime = ktime_get();
 837
 838        if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 839                /* No obvious pixelcount register. Only query vertical
 840                 * scanout position from Display scan line register.
 841                 */
 842                position = __intel_get_crtc_scanline(intel_crtc);
 843        } else {
 844                /* Have access to pixelcount since start of frame.
 845                 * We can split this into vertical and horizontal
 846                 * scanout position.
 847                 */
 848                position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 849
 850                /* convert to pixel counts */
 851                vbl_start *= htotal;
 852                vbl_end *= htotal;
 853                vtotal *= htotal;
 854
 855                /*
 856                 * In interlaced modes, the pixel counter counts all pixels,
 857                 * so one field will have htotal more pixels. In order to avoid
 858                 * the reported position from jumping backwards when the pixel
 859                 * counter is beyond the length of the shorter field, just
 860                 * clamp the position the length of the shorter field. This
 861                 * matches how the scanline counter based position works since
 862                 * the scanline counter doesn't count the two half lines.
 863                 */
 864                if (position >= vtotal)
 865                        position = vtotal - 1;
 866
 867                /*
 868                 * Start of vblank interrupt is triggered at start of hsync,
 869                 * just prior to the first active line of vblank. However we
 870                 * consider lines to start at the leading edge of horizontal
 871                 * active. So, should we get here before we've crossed into
 872                 * the horizontal active of the first line in vblank, we would
 873                 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 874                 * always add htotal-hsync_start to the current pixel position.
 875                 */
 876                position = (position + htotal - hsync_start) % vtotal;
 877        }
 878
 879        /* Get optional system timestamp after query. */
 880        if (etime)
 881                *etime = ktime_get();
 882
 883        /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 884
 885        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 886
 887        in_vbl = position >= vbl_start && position < vbl_end;
 888
 889        /*
 890         * While in vblank, position will be negative
 891         * counting up towards 0 at vbl_end. And outside
 892         * vblank, position will be positive counting
 893         * up since vbl_end.
 894         */
 895        if (position >= vbl_start)
 896                position -= vbl_end;
 897        else
 898                position += vtotal - vbl_end;
 899
 900        if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 901                *vpos = position;
 902                *hpos = 0;
 903        } else {
 904                *vpos = position / htotal;
 905                *hpos = position - (*vpos * htotal);
 906        }
 907
 908        /* In vblank? */
 909        if (in_vbl)
 910                ret |= DRM_SCANOUTPOS_IN_VBLANK;
 911
 912        return ret;
 913}
 914
 915int intel_get_crtc_scanline(struct intel_crtc *crtc)
 916{
 917        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
 918        unsigned long irqflags;
 919        int position;
 920
 921        spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 922        position = __intel_get_crtc_scanline(crtc);
 923        spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 924
 925        return position;
 926}
 927
 928static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
 929                              int *max_error,
 930                              struct timeval *vblank_time,
 931                              unsigned flags)
 932{
 933        struct drm_crtc *crtc;
 934
 935        if (pipe >= INTEL_INFO(dev)->num_pipes) {
 936                DRM_ERROR("Invalid crtc %u\n", pipe);
 937                return -EINVAL;
 938        }
 939
 940        /* Get drm_crtc to timestamp: */
 941        crtc = intel_get_crtc_for_pipe(dev, pipe);
 942        if (crtc == NULL) {
 943                DRM_ERROR("Invalid crtc %u\n", pipe);
 944                return -EINVAL;
 945        }
 946
 947        if (!crtc->hwmode.crtc_clock) {
 948                DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
 949                return -EBUSY;
 950        }
 951
 952        /* Helper routine in DRM core does all the work: */
 953        return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 954                                                     vblank_time, flags,
 955                                                     &crtc->hwmode);
 956}
 957
 958static void ironlake_rps_change_irq_handler(struct drm_device *dev)
 959{
 960        struct drm_i915_private *dev_priv = dev->dev_private;
 961        u32 busy_up, busy_down, max_avg, min_avg;
 962        u8 new_delay;
 963
 964        spin_lock(&mchdev_lock);
 965
 966        I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 967
 968        new_delay = dev_priv->ips.cur_delay;
 969
 970        I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 971        busy_up = I915_READ(RCPREVBSYTUPAVG);
 972        busy_down = I915_READ(RCPREVBSYTDNAVG);
 973        max_avg = I915_READ(RCBMAXAVG);
 974        min_avg = I915_READ(RCBMINAVG);
 975
 976        /* Handle RCS change request from hw */
 977        if (busy_up > max_avg) {
 978                if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
 979                        new_delay = dev_priv->ips.cur_delay - 1;
 980                if (new_delay < dev_priv->ips.max_delay)
 981                        new_delay = dev_priv->ips.max_delay;
 982        } else if (busy_down < min_avg) {
 983                if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
 984                        new_delay = dev_priv->ips.cur_delay + 1;
 985                if (new_delay > dev_priv->ips.min_delay)
 986                        new_delay = dev_priv->ips.min_delay;
 987        }
 988
 989        if (ironlake_set_drps(dev, new_delay))
 990                dev_priv->ips.cur_delay = new_delay;
 991
 992        spin_unlock(&mchdev_lock);
 993
 994        return;
 995}
 996
 997static void notify_ring(struct intel_engine_cs *ring)
 998{
 999        if (!intel_ring_initialized(ring))
1000                return;
1001
1002        trace_i915_gem_request_notify(ring);
1003
1004        wake_up_all(&ring->irq_queue);
1005}
1006
1007static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008                        struct intel_rps_ei *ei)
1009{
1010        ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011        ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012        ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013}
1014
1015static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016                         const struct intel_rps_ei *old,
1017                         const struct intel_rps_ei *now,
1018                         int threshold)
1019{
1020        u64 time, c0;
1021        unsigned int mul = 100;
1022
1023        if (old->cz_clock == 0)
1024                return false;
1025
1026        if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027                mul <<= 8;
1028
1029        time = now->cz_clock - old->cz_clock;
1030        time *= threshold * dev_priv->czclk_freq;
1031
1032        /* Workload can be split between render + media, e.g. SwapBuffers
1033         * being blitted in X after being rendered in mesa. To account for
1034         * this we need to combine both engines into our activity counter.
1035         */
1036        c0 = now->render_c0 - old->render_c0;
1037        c0 += now->media_c0 - old->media_c0;
1038        c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040        return c0 >= time;
1041}
1042
1043void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044{
1045        vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046        dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047}
1048
1049static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050{
1051        struct intel_rps_ei now;
1052        u32 events = 0;
1053
1054        if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055                return 0;
1056
1057        vlv_c0_read(dev_priv, &now);
1058        if (now.cz_clock == 0)
1059                return 0;
1060
1061        if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062                if (!vlv_c0_above(dev_priv,
1063                                  &dev_priv->rps.down_ei, &now,
1064                                  dev_priv->rps.down_threshold))
1065                        events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066                dev_priv->rps.down_ei = now;
1067        }
1068
1069        if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070                if (vlv_c0_above(dev_priv,
1071                                 &dev_priv->rps.up_ei, &now,
1072                                 dev_priv->rps.up_threshold))
1073                        events |= GEN6_PM_RP_UP_THRESHOLD;
1074                dev_priv->rps.up_ei = now;
1075        }
1076
1077        return events;
1078}
1079
1080static bool any_waiters(struct drm_i915_private *dev_priv)
1081{
1082        struct intel_engine_cs *ring;
1083        int i;
1084
1085        for_each_ring(ring, dev_priv, i)
1086                if (ring->irq_refcount)
1087                        return true;
1088
1089        return false;
1090}
1091
1092static void gen6_pm_rps_work(struct work_struct *work)
1093{
1094        struct drm_i915_private *dev_priv =
1095                container_of(work, struct drm_i915_private, rps.work);
1096        bool client_boost;
1097        int new_delay, adj, min, max;
1098        u32 pm_iir;
1099
1100        spin_lock_irq(&dev_priv->irq_lock);
1101        /* Speed up work cancelation during disabling rps interrupts. */
1102        if (!dev_priv->rps.interrupts_enabled) {
1103                spin_unlock_irq(&dev_priv->irq_lock);
1104                return;
1105        }
1106
1107        /*
1108         * The RPS work is synced during runtime suspend, we don't require a
1109         * wakeref. TODO: instead of disabling the asserts make sure that we
1110         * always hold an RPM reference while the work is running.
1111         */
1112        DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114        pm_iir = dev_priv->rps.pm_iir;
1115        dev_priv->rps.pm_iir = 0;
1116        /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117        gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118        client_boost = dev_priv->rps.client_boost;
1119        dev_priv->rps.client_boost = false;
1120        spin_unlock_irq(&dev_priv->irq_lock);
1121
1122        /* Make sure we didn't queue anything we're not going to process. */
1123        WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125        if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126                goto out;
1127
1128        mutex_lock(&dev_priv->rps.hw_lock);
1129
1130        pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132        adj = dev_priv->rps.last_adj;
1133        new_delay = dev_priv->rps.cur_freq;
1134        min = dev_priv->rps.min_freq_softlimit;
1135        max = dev_priv->rps.max_freq_softlimit;
1136
1137        if (client_boost) {
1138                new_delay = dev_priv->rps.max_freq_softlimit;
1139                adj = 0;
1140        } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141                if (adj > 0)
1142                        adj *= 2;
1143                else /* CHV needs even encode values */
1144                        adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145                /*
1146                 * For better performance, jump directly
1147                 * to RPe if we're below it.
1148                 */
1149                if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150                        new_delay = dev_priv->rps.efficient_freq;
1151                        adj = 0;
1152                }
1153        } else if (any_waiters(dev_priv)) {
1154                adj = 0;
1155        } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156                if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157                        new_delay = dev_priv->rps.efficient_freq;
1158                else
1159                        new_delay = dev_priv->rps.min_freq_softlimit;
1160                adj = 0;
1161        } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162                if (adj < 0)
1163                        adj *= 2;
1164                else /* CHV needs even encode values */
1165                        adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166        } else { /* unknown event */
1167                adj = 0;
1168        }
1169
1170        dev_priv->rps.last_adj = adj;
1171
1172        /* sysfs frequency interfaces may have snuck in while servicing the
1173         * interrupt
1174         */
1175        new_delay += adj;
1176        new_delay = clamp_t(int, new_delay, min, max);
1177
1178        intel_set_rps(dev_priv->dev, new_delay);
1179
1180        mutex_unlock(&dev_priv->rps.hw_lock);
1181out:
1182        ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183}
1184
1185
1186/**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195static void ivybridge_parity_work(struct work_struct *work)
1196{
1197        struct drm_i915_private *dev_priv =
1198                container_of(work, struct drm_i915_private, l3_parity.error_work);
1199        u32 error_status, row, bank, subbank;
1200        char *parity_event[6];
1201        uint32_t misccpctl;
1202        uint8_t slice = 0;
1203
1204        /* We must turn off DOP level clock gating to access the L3 registers.
1205         * In order to prevent a get/put style interface, acquire struct mutex
1206         * any time we access those registers.
1207         */
1208        mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210        /* If we've screwed up tracking, just let the interrupt fire again */
1211        if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212                goto out;
1213
1214        misccpctl = I915_READ(GEN7_MISCCPCTL);
1215        I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216        POSTING_READ(GEN7_MISCCPCTL);
1217
1218        while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219                i915_reg_t reg;
1220
1221                slice--;
1222                if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223                        break;
1224
1225                dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227                reg = GEN7_L3CDERRST1(slice);
1228
1229                error_status = I915_READ(reg);
1230                row = GEN7_PARITY_ERROR_ROW(error_status);
1231                bank = GEN7_PARITY_ERROR_BANK(error_status);
1232                subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234                I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235                POSTING_READ(reg);
1236
1237                parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238                parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239                parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240                parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241                parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242                parity_event[5] = NULL;
1243
1244                kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245                                   KOBJ_CHANGE, parity_event);
1246
1247                DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248                          slice, row, bank, subbank);
1249
1250                kfree(parity_event[4]);
1251                kfree(parity_event[3]);
1252                kfree(parity_event[2]);
1253                kfree(parity_event[1]);
1254        }
1255
1256        I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258out:
1259        WARN_ON(dev_priv->l3_parity.which_slice);
1260        spin_lock_irq(&dev_priv->irq_lock);
1261        gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262        spin_unlock_irq(&dev_priv->irq_lock);
1263
1264        mutex_unlock(&dev_priv->dev->struct_mutex);
1265}
1266
1267static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268{
1269        struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271        if (!HAS_L3_DPF(dev))
1272                return;
1273
1274        spin_lock(&dev_priv->irq_lock);
1275        gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276        spin_unlock(&dev_priv->irq_lock);
1277
1278        iir &= GT_PARITY_ERROR(dev);
1279        if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280                dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282        if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283                dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285        queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286}
1287
1288static void ilk_gt_irq_handler(struct drm_device *dev,
1289                               struct drm_i915_private *dev_priv,
1290                               u32 gt_iir)
1291{
1292        if (gt_iir &
1293            (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294                notify_ring(&dev_priv->ring[RCS]);
1295        if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296                notify_ring(&dev_priv->ring[VCS]);
1297}
1298
1299static void snb_gt_irq_handler(struct drm_device *dev,
1300                               struct drm_i915_private *dev_priv,
1301                               u32 gt_iir)
1302{
1303
1304        if (gt_iir &
1305            (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306                notify_ring(&dev_priv->ring[RCS]);
1307        if (gt_iir & GT_BSD_USER_INTERRUPT)
1308                notify_ring(&dev_priv->ring[VCS]);
1309        if (gt_iir & GT_BLT_USER_INTERRUPT)
1310                notify_ring(&dev_priv->ring[BCS]);
1311
1312        if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313                      GT_BSD_CS_ERROR_INTERRUPT |
1314                      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315                DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317        if (gt_iir & GT_PARITY_ERROR(dev))
1318                ivybridge_parity_error_irq_handler(dev, gt_iir);
1319}
1320
1321static __always_inline void
1322gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323{
1324        if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325                notify_ring(ring);
1326        if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327                intel_lrc_irq_handler(ring);
1328}
1329
1330static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331                                       u32 master_ctl)
1332{
1333        irqreturn_t ret = IRQ_NONE;
1334
1335        if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336                u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337                if (iir) {
1338                        I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339                        ret = IRQ_HANDLED;
1340
1341                        gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342                                        iir, GEN8_RCS_IRQ_SHIFT);
1343
1344                        gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345                                        iir, GEN8_BCS_IRQ_SHIFT);
1346                } else
1347                        DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348        }
1349
1350        if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351                u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352                if (iir) {
1353                        I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354                        ret = IRQ_HANDLED;
1355
1356                        gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357                                        iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359                        gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360                                        iir, GEN8_VCS2_IRQ_SHIFT);
1361                } else
1362                        DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363        }
1364
1365        if (master_ctl & GEN8_GT_VECS_IRQ) {
1366                u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367                if (iir) {
1368                        I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369                        ret = IRQ_HANDLED;
1370
1371                        gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372                                        iir, GEN8_VECS_IRQ_SHIFT);
1373                } else
1374                        DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375        }
1376
1377        if (master_ctl & GEN8_GT_PM_IRQ) {
1378                u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379                if (iir & dev_priv->pm_rps_events) {
1380                        I915_WRITE_FW(GEN8_GT_IIR(2),
1381                                      iir & dev_priv->pm_rps_events);
1382                        ret = IRQ_HANDLED;
1383                        gen6_rps_irq_handler(dev_priv, iir);
1384                } else
1385                        DRM_ERROR("The master control interrupt lied (PM)!\n");
1386        }
1387
1388        return ret;
1389}
1390
1391static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392{
1393        switch (port) {
1394        case PORT_A:
1395                return val & PORTA_HOTPLUG_LONG_DETECT;
1396        case PORT_B:
1397                return val & PORTB_HOTPLUG_LONG_DETECT;
1398        case PORT_C:
1399                return val & PORTC_HOTPLUG_LONG_DETECT;
1400        default:
1401                return false;
1402        }
1403}
1404
1405static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406{
1407        switch (port) {
1408        case PORT_E:
1409                return val & PORTE_HOTPLUG_LONG_DETECT;
1410        default:
1411                return false;
1412        }
1413}
1414
1415static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416{
1417        switch (port) {
1418        case PORT_A:
1419                return val & PORTA_HOTPLUG_LONG_DETECT;
1420        case PORT_B:
1421                return val & PORTB_HOTPLUG_LONG_DETECT;
1422        case PORT_C:
1423                return val & PORTC_HOTPLUG_LONG_DETECT;
1424        case PORT_D:
1425                return val & PORTD_HOTPLUG_LONG_DETECT;
1426        default:
1427                return false;
1428        }
1429}
1430
1431static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432{
1433        switch (port) {
1434        case PORT_A:
1435                return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436        default:
1437                return false;
1438        }
1439}
1440
1441static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442{
1443        switch (port) {
1444        case PORT_B:
1445                return val & PORTB_HOTPLUG_LONG_DETECT;
1446        case PORT_C:
1447                return val & PORTC_HOTPLUG_LONG_DETECT;
1448        case PORT_D:
1449                return val & PORTD_HOTPLUG_LONG_DETECT;
1450        default:
1451                return false;
1452        }
1453}
1454
1455static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456{
1457        switch (port) {
1458        case PORT_B:
1459                return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460        case PORT_C:
1461                return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462        case PORT_D:
1463                return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464        default:
1465                return false;
1466        }
1467}
1468
1469/*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477                             u32 hotplug_trigger, u32 dig_hotplug_reg,
1478                             const u32 hpd[HPD_NUM_PINS],
1479                             bool long_pulse_detect(enum port port, u32 val))
1480{
1481        enum port port;
1482        int i;
1483
1484        for_each_hpd_pin(i) {
1485                if ((hpd[i] & hotplug_trigger) == 0)
1486                        continue;
1487
1488                *pin_mask |= BIT(i);
1489
1490                if (!intel_hpd_pin_to_port(i, &port))
1491                        continue;
1492
1493                if (long_pulse_detect(port, dig_hotplug_reg))
1494                        *long_mask |= BIT(i);
1495        }
1496
1497        DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498                         hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500}
1501
1502static void gmbus_irq_handler(struct drm_device *dev)
1503{
1504        struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506        wake_up_all(&dev_priv->gmbus_wait_queue);
1507}
1508
1509static void dp_aux_irq_handler(struct drm_device *dev)
1510{
1511        struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513        wake_up_all(&dev_priv->gmbus_wait_queue);
1514}
1515
1516#if defined(CONFIG_DEBUG_FS)
1517static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518                                         uint32_t crc0, uint32_t crc1,
1519                                         uint32_t crc2, uint32_t crc3,
1520                                         uint32_t crc4)
1521{
1522        struct drm_i915_private *dev_priv = dev->dev_private;
1523        struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524        struct intel_pipe_crc_entry *entry;
1525        int head, tail;
1526
1527        spin_lock(&pipe_crc->lock);
1528
1529        if (!pipe_crc->entries) {
1530                spin_unlock(&pipe_crc->lock);
1531                DRM_DEBUG_KMS("spurious interrupt\n");
1532                return;
1533        }
1534
1535        head = pipe_crc->head;
1536        tail = pipe_crc->tail;
1537
1538        if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539                spin_unlock(&pipe_crc->lock);
1540                DRM_ERROR("CRC buffer overflowing\n");
1541                return;
1542        }
1543
1544        entry = &pipe_crc->entries[head];
1545
1546        entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547        entry->crc[0] = crc0;
1548        entry->crc[1] = crc1;
1549        entry->crc[2] = crc2;
1550        entry->crc[3] = crc3;
1551        entry->crc[4] = crc4;
1552
1553        head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554        pipe_crc->head = head;
1555
1556        spin_unlock(&pipe_crc->lock);
1557
1558        wake_up_interruptible(&pipe_crc->wq);
1559}
1560#else
1561static inline void
1562display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563                             uint32_t crc0, uint32_t crc1,
1564                             uint32_t crc2, uint32_t crc3,
1565                             uint32_t crc4) {}
1566#endif
1567
1568
1569static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570{
1571        struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573        display_pipe_crc_irq_handler(dev, pipe,
1574                                     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575                                     0, 0, 0, 0);
1576}
1577
1578static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579{
1580        struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582        display_pipe_crc_irq_handler(dev, pipe,
1583                                     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584                                     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585                                     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586                                     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587                                     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588}
1589
1590static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591{
1592        struct drm_i915_private *dev_priv = dev->dev_private;
1593        uint32_t res1, res2;
1594
1595        if (INTEL_INFO(dev)->gen >= 3)
1596                res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597        else
1598                res1 = 0;
1599
1600        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601                res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602        else
1603                res2 = 0;
1604
1605        display_pipe_crc_irq_handler(dev, pipe,
1606                                     I915_READ(PIPE_CRC_RES_RED(pipe)),
1607                                     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608                                     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609                                     res1, res2);
1610}
1611
1612/* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616{
1617        if (pm_iir & dev_priv->pm_rps_events) {
1618                spin_lock(&dev_priv->irq_lock);
1619                gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620                if (dev_priv->rps.interrupts_enabled) {
1621                        dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622                        queue_work(dev_priv->wq, &dev_priv->rps.work);
1623                }
1624                spin_unlock(&dev_priv->irq_lock);
1625        }
1626
1627        if (INTEL_INFO(dev_priv)->gen >= 8)
1628                return;
1629
1630        if (HAS_VEBOX(dev_priv->dev)) {
1631                if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632                        notify_ring(&dev_priv->ring[VECS]);
1633
1634                if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635                        DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636        }
1637}
1638
1639static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640{
1641        if (!drm_handle_vblank(dev, pipe))
1642                return false;
1643
1644        return true;
1645}
1646
1647static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648{
1649        struct drm_i915_private *dev_priv = dev->dev_private;
1650        u32 pipe_stats[I915_MAX_PIPES] = { };
1651        int pipe;
1652
1653        spin_lock(&dev_priv->irq_lock);
1654
1655        if (!dev_priv->display_irqs_enabled) {
1656                spin_unlock(&dev_priv->irq_lock);
1657                return;
1658        }
1659
1660        for_each_pipe(dev_priv, pipe) {
1661                i915_reg_t reg;
1662                u32 mask, iir_bit = 0;
1663
1664                /*
1665                 * PIPESTAT bits get signalled even when the interrupt is
1666                 * disabled with the mask bits, and some of the status bits do
1667                 * not generate interrupts at all (like the underrun bit). Hence
1668                 * we need to be careful that we only handle what we want to
1669                 * handle.
1670                 */
1671
1672                /* fifo underruns are filterered in the underrun handler. */
1673                mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675                switch (pipe) {
1676                case PIPE_A:
1677                        iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678                        break;
1679                case PIPE_B:
1680                        iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681                        break;
1682                case PIPE_C:
1683                        iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684                        break;
1685                }
1686                if (iir & iir_bit)
1687                        mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689                if (!mask)
1690                        continue;
1691
1692                reg = PIPESTAT(pipe);
1693                mask |= PIPESTAT_INT_ENABLE_MASK;
1694                pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696                /*
1697                 * Clear the PIPE*STAT regs before the IIR
1698                 */
1699                if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700                                        PIPESTAT_INT_STATUS_MASK))
1701                        I915_WRITE(reg, pipe_stats[pipe]);
1702        }
1703        spin_unlock(&dev_priv->irq_lock);
1704
1705        for_each_pipe(dev_priv, pipe) {
1706                if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707                    intel_pipe_handle_vblank(dev, pipe))
1708                        intel_check_page_flip(dev, pipe);
1709
1710                if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711                        intel_prepare_page_flip(dev, pipe);
1712                        intel_finish_page_flip(dev, pipe);
1713                }
1714
1715                if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716                        i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718                if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720        }
1721
1722        if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723                gmbus_irq_handler(dev);
1724}
1725
1726static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727{
1728        struct drm_i915_private *dev_priv = dev->dev_private;
1729        u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730        u32 pin_mask = 0, long_mask = 0;
1731
1732        if (!hotplug_status)
1733                return;
1734
1735        I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736        /*
1737         * Make sure hotplug status is cleared before we clear IIR, or else we
1738         * may miss hotplug events.
1739         */
1740        POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742        if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743                u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745                if (hotplug_trigger) {
1746                        intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747                                           hotplug_trigger, hpd_status_g4x,
1748                                           i9xx_port_hotplug_long_detect);
1749
1750                        intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751                }
1752
1753                if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754                        dp_aux_irq_handler(dev);
1755        } else {
1756                u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758                if (hotplug_trigger) {
1759                        intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760                                           hotplug_trigger, hpd_status_i915,
1761                                           i9xx_port_hotplug_long_detect);
1762                        intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763                }
1764        }
1765}
1766
1767static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768{
1769        struct drm_device *dev = arg;
1770        struct drm_i915_private *dev_priv = dev->dev_private;
1771        u32 iir, gt_iir, pm_iir;
1772        irqreturn_t ret = IRQ_NONE;
1773
1774        if (!intel_irqs_enabled(dev_priv))
1775                return IRQ_NONE;
1776
1777        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778        disable_rpm_wakeref_asserts(dev_priv);
1779
1780        while (true) {
1781                /* Find, clear, then process each source of interrupt */
1782
1783                gt_iir = I915_READ(GTIIR);
1784                if (gt_iir)
1785                        I915_WRITE(GTIIR, gt_iir);
1786
1787                pm_iir = I915_READ(GEN6_PMIIR);
1788                if (pm_iir)
1789                        I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791                iir = I915_READ(VLV_IIR);
1792                if (iir) {
1793                        /* Consume port before clearing IIR or we'll miss events */
1794                        if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795                                i9xx_hpd_irq_handler(dev);
1796                        I915_WRITE(VLV_IIR, iir);
1797                }
1798
1799                if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800                        goto out;
1801
1802                ret = IRQ_HANDLED;
1803
1804                if (gt_iir)
1805                        snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806                if (pm_iir)
1807                        gen6_rps_irq_handler(dev_priv, pm_iir);
1808                /* Call regardless, as some status bits might not be
1809                 * signalled in iir */
1810                valleyview_pipestat_irq_handler(dev, iir);
1811        }
1812
1813out:
1814        enable_rpm_wakeref_asserts(dev_priv);
1815
1816        return ret;
1817}
1818
1819static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820{
1821        struct drm_device *dev = arg;
1822        struct drm_i915_private *dev_priv = dev->dev_private;
1823        u32 master_ctl, iir;
1824        irqreturn_t ret = IRQ_NONE;
1825
1826        if (!intel_irqs_enabled(dev_priv))
1827                return IRQ_NONE;
1828
1829        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830        disable_rpm_wakeref_asserts(dev_priv);
1831
1832        do {
1833                master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834                iir = I915_READ(VLV_IIR);
1835
1836                if (master_ctl == 0 && iir == 0)
1837                        break;
1838
1839                ret = IRQ_HANDLED;
1840
1841                I915_WRITE(GEN8_MASTER_IRQ, 0);
1842
1843                /* Find, clear, then process each source of interrupt */
1844
1845                if (iir) {
1846                        /* Consume port before clearing IIR or we'll miss events */
1847                        if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848                                i9xx_hpd_irq_handler(dev);
1849                        I915_WRITE(VLV_IIR, iir);
1850                }
1851
1852                gen8_gt_irq_handler(dev_priv, master_ctl);
1853
1854                /* Call regardless, as some status bits might not be
1855                 * signalled in iir */
1856                valleyview_pipestat_irq_handler(dev, iir);
1857
1858                I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859                POSTING_READ(GEN8_MASTER_IRQ);
1860        } while (0);
1861
1862        enable_rpm_wakeref_asserts(dev_priv);
1863
1864        return ret;
1865}
1866
1867static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868                                const u32 hpd[HPD_NUM_PINS])
1869{
1870        struct drm_i915_private *dev_priv = to_i915(dev);
1871        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873        /*
1874         * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875         * unless we touch the hotplug register, even if hotplug_trigger is
1876         * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877         * errors.
1878         */
1879        dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880        if (!hotplug_trigger) {
1881                u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882                        PORTD_HOTPLUG_STATUS_MASK |
1883                        PORTC_HOTPLUG_STATUS_MASK |
1884                        PORTB_HOTPLUG_STATUS_MASK;
1885                dig_hotplug_reg &= ~mask;
1886        }
1887
1888        I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889        if (!hotplug_trigger)
1890                return;
1891
1892        intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893                           dig_hotplug_reg, hpd,
1894                           pch_port_hotplug_long_detect);
1895
1896        intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897}
1898
1899static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900{
1901        struct drm_i915_private *dev_priv = dev->dev_private;
1902        int pipe;
1903        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905        ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907        if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908                int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909                               SDE_AUDIO_POWER_SHIFT);
1910                DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911                                 port_name(port));
1912        }
1913
1914        if (pch_iir & SDE_AUX_MASK)
1915                dp_aux_irq_handler(dev);
1916
1917        if (pch_iir & SDE_GMBUS)
1918                gmbus_irq_handler(dev);
1919
1920        if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921                DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923        if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924                DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926        if (pch_iir & SDE_POISON)
1927                DRM_ERROR("PCH poison interrupt\n");
1928
1929        if (pch_iir & SDE_FDI_MASK)
1930                for_each_pipe(dev_priv, pipe)
1931                        DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1932                                         pipe_name(pipe),
1933                                         I915_READ(FDI_RX_IIR(pipe)));
1934
1935        if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936                DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938        if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939                DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941        if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942                intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944        if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945                intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946}
1947
1948static void ivb_err_int_handler(struct drm_device *dev)
1949{
1950        struct drm_i915_private *dev_priv = dev->dev_private;
1951        u32 err_int = I915_READ(GEN7_ERR_INT);
1952        enum pipe pipe;
1953
1954        if (err_int & ERR_INT_POISON)
1955                DRM_ERROR("Poison interrupt\n");
1956
1957        for_each_pipe(dev_priv, pipe) {
1958                if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961                if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962                        if (IS_IVYBRIDGE(dev))
1963                                ivb_pipe_crc_irq_handler(dev, pipe);
1964                        else
1965                                hsw_pipe_crc_irq_handler(dev, pipe);
1966                }
1967        }
1968
1969        I915_WRITE(GEN7_ERR_INT, err_int);
1970}
1971
1972static void cpt_serr_int_handler(struct drm_device *dev)
1973{
1974        struct drm_i915_private *dev_priv = dev->dev_private;
1975        u32 serr_int = I915_READ(SERR_INT);
1976
1977        if (serr_int & SERR_INT_POISON)
1978                DRM_ERROR("PCH poison interrupt\n");
1979
1980        if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981                intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983        if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984                intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986        if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987                intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989        I915_WRITE(SERR_INT, serr_int);
1990}
1991
1992static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993{
1994        struct drm_i915_private *dev_priv = dev->dev_private;
1995        int pipe;
1996        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998        ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000        if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001                int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002                               SDE_AUDIO_POWER_SHIFT_CPT);
2003                DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004                                 port_name(port));
2005        }
2006
2007        if (pch_iir & SDE_AUX_MASK_CPT)
2008                dp_aux_irq_handler(dev);
2009
2010        if (pch_iir & SDE_GMBUS_CPT)
2011                gmbus_irq_handler(dev);
2012
2013        if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014                DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016        if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017                DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019        if (pch_iir & SDE_FDI_MASK_CPT)
2020                for_each_pipe(dev_priv, pipe)
2021                        DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2022                                         pipe_name(pipe),
2023                                         I915_READ(FDI_RX_IIR(pipe)));
2024
2025        if (pch_iir & SDE_ERROR_CPT)
2026                cpt_serr_int_handler(dev);
2027}
2028
2029static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030{
2031        struct drm_i915_private *dev_priv = dev->dev_private;
2032        u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033                ~SDE_PORTE_HOTPLUG_SPT;
2034        u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035        u32 pin_mask = 0, long_mask = 0;
2036
2037        if (hotplug_trigger) {
2038                u32 dig_hotplug_reg;
2039
2040                dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041                I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043                intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044                                   dig_hotplug_reg, hpd_spt,
2045                                   spt_port_hotplug_long_detect);
2046        }
2047
2048        if (hotplug2_trigger) {
2049                u32 dig_hotplug_reg;
2050
2051                dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052                I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054                intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055                                   dig_hotplug_reg, hpd_spt,
2056                                   spt_port_hotplug2_long_detect);
2057        }
2058
2059        if (pin_mask)
2060                intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062        if (pch_iir & SDE_GMBUS_CPT)
2063                gmbus_irq_handler(dev);
2064}
2065
2066static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067                                const u32 hpd[HPD_NUM_PINS])
2068{
2069        struct drm_i915_private *dev_priv = to_i915(dev);
2070        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072        dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073        I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075        intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076                           dig_hotplug_reg, hpd,
2077                           ilk_port_hotplug_long_detect);
2078
2079        intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080}
2081
2082static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083{
2084        struct drm_i915_private *dev_priv = dev->dev_private;
2085        enum pipe pipe;
2086        u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088        if (hotplug_trigger)
2089                ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091        if (de_iir & DE_AUX_CHANNEL_A)
2092                dp_aux_irq_handler(dev);
2093
2094        if (de_iir & DE_GSE)
2095                intel_opregion_asle_intr(dev);
2096
2097        if (de_iir & DE_POISON)
2098                DRM_ERROR("Poison interrupt\n");
2099
2100        for_each_pipe(dev_priv, pipe) {
2101                if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102                    intel_pipe_handle_vblank(dev, pipe))
2103                        intel_check_page_flip(dev, pipe);
2104
2105                if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108                if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109                        i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111                /* plane/pipes map 1:1 on ilk+ */
2112                if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113                        intel_prepare_page_flip(dev, pipe);
2114                        intel_finish_page_flip_plane(dev, pipe);
2115                }
2116        }
2117
2118        /* check event from PCH */
2119        if (de_iir & DE_PCH_EVENT) {
2120                u32 pch_iir = I915_READ(SDEIIR);
2121
2122                if (HAS_PCH_CPT(dev))
2123                        cpt_irq_handler(dev, pch_iir);
2124                else
2125                        ibx_irq_handler(dev, pch_iir);
2126
2127                /* should clear PCH hotplug event before clear CPU irq */
2128                I915_WRITE(SDEIIR, pch_iir);
2129        }
2130
2131        if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132                ironlake_rps_change_irq_handler(dev);
2133}
2134
2135static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136{
2137        struct drm_i915_private *dev_priv = dev->dev_private;
2138        enum pipe pipe;
2139        u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141        if (hotplug_trigger)
2142                ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144        if (de_iir & DE_ERR_INT_IVB)
2145                ivb_err_int_handler(dev);
2146
2147        if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148                dp_aux_irq_handler(dev);
2149
2150        if (de_iir & DE_GSE_IVB)
2151                intel_opregion_asle_intr(dev);
2152
2153        for_each_pipe(dev_priv, pipe) {
2154                if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155                    intel_pipe_handle_vblank(dev, pipe))
2156                        intel_check_page_flip(dev, pipe);
2157
2158                /* plane/pipes map 1:1 on ilk+ */
2159                if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160                        intel_prepare_page_flip(dev, pipe);
2161                        intel_finish_page_flip_plane(dev, pipe);
2162                }
2163        }
2164
2165        /* check event from PCH */
2166        if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167                u32 pch_iir = I915_READ(SDEIIR);
2168
2169                cpt_irq_handler(dev, pch_iir);
2170
2171                /* clear PCH hotplug event before clear CPU irq */
2172                I915_WRITE(SDEIIR, pch_iir);
2173        }
2174}
2175
2176/*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185{
2186        struct drm_device *dev = arg;
2187        struct drm_i915_private *dev_priv = dev->dev_private;
2188        u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189        irqreturn_t ret = IRQ_NONE;
2190
2191        if (!intel_irqs_enabled(dev_priv))
2192                return IRQ_NONE;
2193
2194        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195        disable_rpm_wakeref_asserts(dev_priv);
2196
2197        /* disable master interrupt before clearing iir  */
2198        de_ier = I915_READ(DEIER);
2199        I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200        POSTING_READ(DEIER);
2201
2202        /* Disable south interrupts. We'll only write to SDEIIR once, so further
2203         * interrupts will will be stored on its back queue, and then we'll be
2204         * able to process them after we restore SDEIER (as soon as we restore
2205         * it, we'll get an interrupt if SDEIIR still has something to process
2206         * due to its back queue). */
2207        if (!HAS_PCH_NOP(dev)) {
2208                sde_ier = I915_READ(SDEIER);
2209                I915_WRITE(SDEIER, 0);
2210                POSTING_READ(SDEIER);
2211        }
2212
2213        /* Find, clear, then process each source of interrupt */
2214
2215        gt_iir = I915_READ(GTIIR);
2216        if (gt_iir) {
2217                I915_WRITE(GTIIR, gt_iir);
2218                ret = IRQ_HANDLED;
2219                if (INTEL_INFO(dev)->gen >= 6)
2220                        snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221                else
2222                        ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223        }
2224
2225        de_iir = I915_READ(DEIIR);
2226        if (de_iir) {
2227                I915_WRITE(DEIIR, de_iir);
2228                ret = IRQ_HANDLED;
2229                if (INTEL_INFO(dev)->gen >= 7)
2230                        ivb_display_irq_handler(dev, de_iir);
2231                else
2232                        ilk_display_irq_handler(dev, de_iir);
2233        }
2234
2235        if (INTEL_INFO(dev)->gen >= 6) {
2236                u32 pm_iir = I915_READ(GEN6_PMIIR);
2237                if (pm_iir) {
2238                        I915_WRITE(GEN6_PMIIR, pm_iir);
2239                        ret = IRQ_HANDLED;
2240                        gen6_rps_irq_handler(dev_priv, pm_iir);
2241                }
2242        }
2243
2244        I915_WRITE(DEIER, de_ier);
2245        POSTING_READ(DEIER);
2246        if (!HAS_PCH_NOP(dev)) {
2247                I915_WRITE(SDEIER, sde_ier);
2248                POSTING_READ(SDEIER);
2249        }
2250
2251        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252        enable_rpm_wakeref_asserts(dev_priv);
2253
2254        return ret;
2255}
2256
2257static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258                                const u32 hpd[HPD_NUM_PINS])
2259{
2260        struct drm_i915_private *dev_priv = to_i915(dev);
2261        u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263        dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264        I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266        intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267                           dig_hotplug_reg, hpd,
2268                           bxt_port_hotplug_long_detect);
2269
2270        intel_hpd_irq_handler(dev, pin_mask, long_mask);
2271}
2272
2273static irqreturn_t
2274gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275{
2276        struct drm_device *dev = dev_priv->dev;
2277        irqreturn_t ret = IRQ_NONE;
2278        u32 iir;
2279        enum pipe pipe;
2280
2281        if (master_ctl & GEN8_DE_MISC_IRQ) {
2282                iir = I915_READ(GEN8_DE_MISC_IIR);
2283                if (iir) {
2284                        I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285                        ret = IRQ_HANDLED;
2286                        if (iir & GEN8_DE_MISC_GSE)
2287                                intel_opregion_asle_intr(dev);
2288                        else
2289                                DRM_ERROR("Unexpected DE Misc interrupt\n");
2290                }
2291                else
2292                        DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293        }
2294
2295        if (master_ctl & GEN8_DE_PORT_IRQ) {
2296                iir = I915_READ(GEN8_DE_PORT_IIR);
2297                if (iir) {
2298                        u32 tmp_mask;
2299                        bool found = false;
2300
2301                        I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302                        ret = IRQ_HANDLED;
2303
2304                        tmp_mask = GEN8_AUX_CHANNEL_A;
2305                        if (INTEL_INFO(dev_priv)->gen >= 9)
2306                                tmp_mask |= GEN9_AUX_CHANNEL_B |
2307                                            GEN9_AUX_CHANNEL_C |
2308                                            GEN9_AUX_CHANNEL_D;
2309
2310                        if (iir & tmp_mask) {
2311                                dp_aux_irq_handler(dev);
2312                                found = true;
2313                        }
2314
2315                        if (IS_BROXTON(dev_priv)) {
2316                                tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317                                if (tmp_mask) {
2318                                        bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319                                        found = true;
2320                                }
2321                        } else if (IS_BROADWELL(dev_priv)) {
2322                                tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323                                if (tmp_mask) {
2324                                        ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325                                        found = true;
2326                                }
2327                        }
2328
2329                        if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330                                gmbus_irq_handler(dev);
2331                                found = true;
2332                        }
2333
2334                        if (!found)
2335                                DRM_ERROR("Unexpected DE Port interrupt\n");
2336                }
2337                else
2338                        DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339        }
2340
2341        for_each_pipe(dev_priv, pipe) {
2342                u32 flip_done, fault_errors;
2343
2344                if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345                        continue;
2346
2347                iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348                if (!iir) {
2349                        DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350                        continue;
2351                }
2352
2353                ret = IRQ_HANDLED;
2354                I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356                if (iir & GEN8_PIPE_VBLANK &&
2357                    intel_pipe_handle_vblank(dev, pipe))
2358                        intel_check_page_flip(dev, pipe);
2359
2360                flip_done = iir;
2361                if (INTEL_INFO(dev_priv)->gen >= 9)
2362                        flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363                else
2364                        flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366                if (flip_done) {
2367                        intel_prepare_page_flip(dev, pipe);
2368                        intel_finish_page_flip_plane(dev, pipe);
2369                }
2370
2371                if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372                        hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374                if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375                        intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377                fault_errors = iir;
2378                if (INTEL_INFO(dev_priv)->gen >= 9)
2379                        fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380                else
2381                        fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383                if (fault_errors)
2384                        DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385                                  pipe_name(pipe),
2386                                  fault_errors);
2387        }
2388
2389        if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390            master_ctl & GEN8_DE_PCH_IRQ) {
2391                /*
2392                 * FIXME(BDW): Assume for now that the new interrupt handling
2393                 * scheme also closed the SDE interrupt handling race we've seen
2394                 * on older pch-split platforms. But this needs testing.
2395                 */
2396                iir = I915_READ(SDEIIR);
2397                if (iir) {
2398                        I915_WRITE(SDEIIR, iir);
2399                        ret = IRQ_HANDLED;
2400
2401                        if (HAS_PCH_SPT(dev_priv))
2402                                spt_irq_handler(dev, iir);
2403                        else
2404                                cpt_irq_handler(dev, iir);
2405                } else {
2406                        /*
2407                         * Like on previous PCH there seems to be something
2408                         * fishy going on with forwarding PCH interrupts.
2409                         */
2410                        DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411                }
2412        }
2413
2414        return ret;
2415}
2416
2417static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418{
2419        struct drm_device *dev = arg;
2420        struct drm_i915_private *dev_priv = dev->dev_private;
2421        u32 master_ctl;
2422        irqreturn_t ret;
2423
2424        if (!intel_irqs_enabled(dev_priv))
2425                return IRQ_NONE;
2426
2427        master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428        master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429        if (!master_ctl)
2430                return IRQ_NONE;
2431
2432        I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2433
2434        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435        disable_rpm_wakeref_asserts(dev_priv);
2436
2437        /* Find, clear, then process each source of interrupt */
2438        ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439        ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441        I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442        POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444        enable_rpm_wakeref_asserts(dev_priv);
2445
2446        return ret;
2447}
2448
2449static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450                               bool reset_completed)
2451{
2452        struct intel_engine_cs *ring;
2453        int i;
2454
2455        /*
2456         * Notify all waiters for GPU completion events that reset state has
2457         * been changed, and that they need to restart their wait after
2458         * checking for potential errors (and bail out to drop locks if there is
2459         * a gpu reset pending so that i915_error_work_func can acquire them).
2460         */
2461
2462        /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463        for_each_ring(ring, dev_priv, i)
2464                wake_up_all(&ring->irq_queue);
2465
2466        /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467        wake_up_all(&dev_priv->pending_flip_queue);
2468
2469        /*
2470         * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471         * reset state is cleared.
2472         */
2473        if (reset_completed)
2474                wake_up_all(&dev_priv->gpu_error.reset_queue);
2475}
2476
2477/**
2478 * i915_reset_and_wakeup - do process context error handling work
2479 * @dev: drm device
2480 *
2481 * Fire an error uevent so userspace can see that a hang or error
2482 * was detected.
2483 */
2484static void i915_reset_and_wakeup(struct drm_device *dev)
2485{
2486        struct drm_i915_private *dev_priv = to_i915(dev);
2487        struct i915_gpu_error *error = &dev_priv->gpu_error;
2488        char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489        char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490        char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491        int ret;
2492
2493        kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2494
2495        /*
2496         * Note that there's only one work item which does gpu resets, so we
2497         * need not worry about concurrent gpu resets potentially incrementing
2498         * error->reset_counter twice. We only need to take care of another
2499         * racing irq/hangcheck declaring the gpu dead for a second time. A
2500         * quick check for that is good enough: schedule_work ensures the
2501         * correct ordering between hang detection and this work item, and since
2502         * the reset in-progress bit is only ever set by code outside of this
2503         * work we don't need to worry about any other races.
2504         */
2505        if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506                DRM_DEBUG_DRIVER("resetting chip\n");
2507                kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508                                   reset_event);
2509
2510                /*
2511                 * In most cases it's guaranteed that we get here with an RPM
2512                 * reference held, for example because there is a pending GPU
2513                 * request that won't finish until the reset is done. This
2514                 * isn't the case at least when we get here by doing a
2515                 * simulated reset via debugs, so get an RPM reference.
2516                 */
2517                intel_runtime_pm_get(dev_priv);
2518
2519                intel_prepare_reset(dev);
2520
2521                /*
2522                 * All state reset _must_ be completed before we update the
2523                 * reset counter, for otherwise waiters might miss the reset
2524                 * pending state and not properly drop locks, resulting in
2525                 * deadlocks with the reset work.
2526                 */
2527                ret = i915_reset(dev);
2528
2529                intel_finish_reset(dev);
2530
2531                intel_runtime_pm_put(dev_priv);
2532
2533                if (ret == 0) {
2534                        /*
2535                         * After all the gem state is reset, increment the reset
2536                         * counter and wake up everyone waiting for the reset to
2537                         * complete.
2538                         *
2539                         * Since unlock operations are a one-sided barrier only,
2540                         * we need to insert a barrier here to order any seqno
2541                         * updates before
2542                         * the counter increment.
2543                         */
2544                        smp_mb__before_atomic();
2545                        atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547                        kobject_uevent_env(&dev->primary->kdev->kobj,
2548                                           KOBJ_CHANGE, reset_done_event);
2549                } else {
2550                        atomic_or(I915_WEDGED, &error->reset_counter);
2551                }
2552
2553                /*
2554                 * Note: The wake_up also serves as a memory barrier so that
2555                 * waiters see the update value of the reset counter atomic_t.
2556                 */
2557                i915_error_wake_up(dev_priv, true);
2558        }
2559}
2560
2561static void i915_report_and_clear_eir(struct drm_device *dev)
2562{
2563        struct drm_i915_private *dev_priv = dev->dev_private;
2564        uint32_t instdone[I915_NUM_INSTDONE_REG];
2565        u32 eir = I915_READ(EIR);
2566        int pipe, i;
2567
2568        if (!eir)
2569                return;
2570
2571        pr_err("render error detected, EIR: 0x%08x\n", eir);
2572
2573        i915_get_extra_instdone(dev, instdone);
2574
2575        if (IS_G4X(dev)) {
2576                if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577                        u32 ipeir = I915_READ(IPEIR_I965);
2578
2579                        pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580                        pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581                        for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582                                pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583                        pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2584                        pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585                        I915_WRITE(IPEIR_I965, ipeir);
2586                        POSTING_READ(IPEIR_I965);
2587                }
2588                if (eir & GM45_ERROR_PAGE_TABLE) {
2589                        u32 pgtbl_err = I915_READ(PGTBL_ER);
2590                        pr_err("page table error\n");
2591                        pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2592                        I915_WRITE(PGTBL_ER, pgtbl_err);
2593                        POSTING_READ(PGTBL_ER);
2594                }
2595        }
2596
2597        if (!IS_GEN2(dev)) {
2598                if (eir & I915_ERROR_PAGE_TABLE) {
2599                        u32 pgtbl_err = I915_READ(PGTBL_ER);
2600                        pr_err("page table error\n");
2601                        pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2602                        I915_WRITE(PGTBL_ER, pgtbl_err);
2603                        POSTING_READ(PGTBL_ER);
2604                }
2605        }
2606
2607        if (eir & I915_ERROR_MEMORY_REFRESH) {
2608                pr_err("memory refresh error:\n");
2609                for_each_pipe(dev_priv, pipe)
2610                        pr_err("pipe %c stat: 0x%08x\n",
2611                               pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612                /* pipestat has already been acked */
2613        }
2614        if (eir & I915_ERROR_INSTRUCTION) {
2615                pr_err("instruction error\n");
2616                pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617                for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618                        pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619                if (INTEL_INFO(dev)->gen < 4) {
2620                        u32 ipeir = I915_READ(IPEIR);
2621
2622                        pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623                        pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2624                        pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625                        I915_WRITE(IPEIR, ipeir);
2626                        POSTING_READ(IPEIR);
2627                } else {
2628                        u32 ipeir = I915_READ(IPEIR_I965);
2629
2630                        pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631                        pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2632                        pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2633                        pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634                        I915_WRITE(IPEIR_I965, ipeir);
2635                        POSTING_READ(IPEIR_I965);
2636                }
2637        }
2638
2639        I915_WRITE(EIR, eir);
2640        POSTING_READ(EIR);
2641        eir = I915_READ(EIR);
2642        if (eir) {
2643                /*
2644                 * some errors might have become stuck,
2645                 * mask them.
2646                 */
2647                DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648                I915_WRITE(EMR, I915_READ(EMR) | eir);
2649                I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650        }
2651}
2652
2653/**
2654 * i915_handle_error - handle a gpu error
2655 * @dev: drm device
2656 *
2657 * Do some basic checking of register state at error time and
2658 * dump it to the syslog.  Also call i915_capture_error_state() to make
2659 * sure we get a record and make it available in debugfs.  Fire a uevent
2660 * so userspace knows something bad happened (should trigger collection
2661 * of a ring dump etc.).
2662 */
2663void i915_handle_error(struct drm_device *dev, bool wedged,
2664                       const char *fmt, ...)
2665{
2666        struct drm_i915_private *dev_priv = dev->dev_private;
2667        va_list args;
2668        char error_msg[80];
2669
2670        va_start(args, fmt);
2671        vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672        va_end(args);
2673
2674        i915_capture_error_state(dev, wedged, error_msg);
2675        i915_report_and_clear_eir(dev);
2676
2677        if (wedged) {
2678                atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679                                &dev_priv->gpu_error.reset_counter);
2680
2681                /*
2682                 * Wakeup waiting processes so that the reset function
2683                 * i915_reset_and_wakeup doesn't deadlock trying to grab
2684                 * various locks. By bumping the reset counter first, the woken
2685                 * processes will see a reset in progress and back off,
2686                 * releasing their locks and then wait for the reset completion.
2687                 * We must do this for _all_ gpu waiters that might hold locks
2688                 * that the reset work needs to acquire.
2689                 *
2690                 * Note: The wake_up serves as the required memory barrier to
2691                 * ensure that the waiters see the updated value of the reset
2692                 * counter atomic_t.
2693                 */
2694                i915_error_wake_up(dev_priv, false);
2695        }
2696
2697        i915_reset_and_wakeup(dev);
2698}
2699
2700/* Called from drm generic code, passed 'crtc' which
2701 * we use as a pipe index
2702 */
2703static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704{
2705        struct drm_i915_private *dev_priv = dev->dev_private;
2706        unsigned long irqflags;
2707
2708        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709        if (INTEL_INFO(dev)->gen >= 4)
2710                i915_enable_pipestat(dev_priv, pipe,
2711                                     PIPE_START_VBLANK_INTERRUPT_STATUS);
2712        else
2713                i915_enable_pipestat(dev_priv, pipe,
2714                                     PIPE_VBLANK_INTERRUPT_STATUS);
2715        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717        return 0;
2718}
2719
2720static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721{
2722        struct drm_i915_private *dev_priv = dev->dev_private;
2723        unsigned long irqflags;
2724        uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725                                                     DE_PIPE_VBLANK(pipe);
2726
2727        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728        ilk_enable_display_irq(dev_priv, bit);
2729        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731        return 0;
2732}
2733
2734static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735{
2736        struct drm_i915_private *dev_priv = dev->dev_private;
2737        unsigned long irqflags;
2738
2739        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740        i915_enable_pipestat(dev_priv, pipe,
2741                             PIPE_START_VBLANK_INTERRUPT_STATUS);
2742        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744        return 0;
2745}
2746
2747static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748{
2749        struct drm_i915_private *dev_priv = dev->dev_private;
2750        unsigned long irqflags;
2751
2752        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753        bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756        return 0;
2757}
2758
2759/* Called from drm generic code, passed 'crtc' which
2760 * we use as a pipe index
2761 */
2762static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763{
2764        struct drm_i915_private *dev_priv = dev->dev_private;
2765        unsigned long irqflags;
2766
2767        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768        i915_disable_pipestat(dev_priv, pipe,
2769                              PIPE_VBLANK_INTERRUPT_STATUS |
2770                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2771        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772}
2773
2774static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775{
2776        struct drm_i915_private *dev_priv = dev->dev_private;
2777        unsigned long irqflags;
2778        uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779                                                     DE_PIPE_VBLANK(pipe);
2780
2781        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782        ilk_disable_display_irq(dev_priv, bit);
2783        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784}
2785
2786static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787{
2788        struct drm_i915_private *dev_priv = dev->dev_private;
2789        unsigned long irqflags;
2790
2791        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792        i915_disable_pipestat(dev_priv, pipe,
2793                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2794        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795}
2796
2797static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798{
2799        struct drm_i915_private *dev_priv = dev->dev_private;
2800        unsigned long irqflags;
2801
2802        spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803        bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804        spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805}
2806
2807static bool
2808ring_idle(struct intel_engine_cs *ring, u32 seqno)
2809{
2810        return (list_empty(&ring->request_list) ||
2811                i915_seqno_passed(seqno, ring->last_submitted_seqno));
2812}
2813
2814static bool
2815ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816{
2817        if (INTEL_INFO(dev)->gen >= 8) {
2818                return (ipehr >> 23) == 0x1c;
2819        } else {
2820                ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821                return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822                                 MI_SEMAPHORE_REGISTER);
2823        }
2824}
2825
2826static struct intel_engine_cs *
2827semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2828{
2829        struct drm_i915_private *dev_priv = ring->dev->dev_private;
2830        struct intel_engine_cs *signaller;
2831        int i;
2832
2833        if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2834                for_each_ring(signaller, dev_priv, i) {
2835                        if (ring == signaller)
2836                                continue;
2837
2838                        if (offset == signaller->semaphore.signal_ggtt[ring->id])
2839                                return signaller;
2840                }
2841        } else {
2842                u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844                for_each_ring(signaller, dev_priv, i) {
2845                        if(ring == signaller)
2846                                continue;
2847
2848                        if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2849                                return signaller;
2850                }
2851        }
2852
2853        DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854                  ring->id, ipehr, offset);
2855
2856        return NULL;
2857}
2858
2859static struct intel_engine_cs *
2860semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2861{
2862        struct drm_i915_private *dev_priv = ring->dev->dev_private;
2863        u32 cmd, ipehr, head;
2864        u64 offset = 0;
2865        int i, backwards;
2866
2867        /*
2868         * This function does not support execlist mode - any attempt to
2869         * proceed further into this function will result in a kernel panic
2870         * when dereferencing ring->buffer, which is not set up in execlist
2871         * mode.
2872         *
2873         * The correct way of doing it would be to derive the currently
2874         * executing ring buffer from the current context, which is derived
2875         * from the currently running request. Unfortunately, to get the
2876         * current request we would have to grab the struct_mutex before doing
2877         * anything else, which would be ill-advised since some other thread
2878         * might have grabbed it already and managed to hang itself, causing
2879         * the hang checker to deadlock.
2880         *
2881         * Therefore, this function does not support execlist mode in its
2882         * current form. Just return NULL and move on.
2883         */
2884        if (ring->buffer == NULL)
2885                return NULL;
2886
2887        ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2888        if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2889                return NULL;
2890
2891        /*
2892         * HEAD is likely pointing to the dword after the actual command,
2893         * so scan backwards until we find the MBOX. But limit it to just 3
2894         * or 4 dwords depending on the semaphore wait command size.
2895         * Note that we don't care about ACTHD here since that might
2896         * point at at batch, and semaphores are always emitted into the
2897         * ringbuffer itself.
2898         */
2899        head = I915_READ_HEAD(ring) & HEAD_ADDR;
2900        backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2901
2902        for (i = backwards; i; --i) {
2903                /*
2904                 * Be paranoid and presume the hw has gone off into the wild -
2905                 * our ring is smaller than what the hardware (and hence
2906                 * HEAD_ADDR) allows. Also handles wrap-around.
2907                 */
2908                head &= ring->buffer->size - 1;
2909
2910                /* This here seems to blow up */
2911                cmd = ioread32(ring->buffer->virtual_start + head);
2912                if (cmd == ipehr)
2913                        break;
2914
2915                head -= 4;
2916        }
2917
2918        if (!i)
2919                return NULL;
2920
2921        *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2922        if (INTEL_INFO(ring->dev)->gen >= 8) {
2923                offset = ioread32(ring->buffer->virtual_start + head + 12);
2924                offset <<= 32;
2925                offset = ioread32(ring->buffer->virtual_start + head + 8);
2926        }
2927        return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2928}
2929
2930static int semaphore_passed(struct intel_engine_cs *ring)
2931{
2932        struct drm_i915_private *dev_priv = ring->dev->dev_private;
2933        struct intel_engine_cs *signaller;
2934        u32 seqno;
2935
2936        ring->hangcheck.deadlock++;
2937
2938        signaller = semaphore_waits_for(ring, &seqno);
2939        if (signaller == NULL)
2940                return -1;
2941
2942        /* Prevent pathological recursion due to driver bugs */
2943        if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2944                return -1;
2945
2946        if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2947                return 1;
2948
2949        /* cursory check for an unkickable deadlock */
2950        if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2951            semaphore_passed(signaller) < 0)
2952                return -1;
2953
2954        return 0;
2955}
2956
2957static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2958{
2959        struct intel_engine_cs *ring;
2960        int i;
2961
2962        for_each_ring(ring, dev_priv, i)
2963                ring->hangcheck.deadlock = 0;
2964}
2965
2966static bool subunits_stuck(struct intel_engine_cs *ring)
2967{
2968        u32 instdone[I915_NUM_INSTDONE_REG];
2969        bool stuck;
2970        int i;
2971
2972        if (ring->id != RCS)
2973                return true;
2974
2975        i915_get_extra_instdone(ring->dev, instdone);
2976
2977        /* There might be unstable subunit states even when
2978         * actual head is not moving. Filter out the unstable ones by
2979         * accumulating the undone -> done transitions and only
2980         * consider those as progress.
2981         */
2982        stuck = true;
2983        for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2984                const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2985
2986                if (tmp != ring->hangcheck.instdone[i])
2987                        stuck = false;
2988
2989                ring->hangcheck.instdone[i] |= tmp;
2990        }
2991
2992        return stuck;
2993}
2994
2995static enum intel_ring_hangcheck_action
2996head_stuck(struct intel_engine_cs *ring, u64 acthd)
2997{
2998        if (acthd != ring->hangcheck.acthd) {
2999
3000                /* Clear subunit states on head movement */
3001                memset(ring->hangcheck.instdone, 0,
3002                       sizeof(ring->hangcheck.instdone));
3003
3004                if (acthd > ring->hangcheck.max_acthd) {
3005                        ring->hangcheck.max_acthd = acthd;
3006                        return HANGCHECK_ACTIVE;
3007                }
3008
3009                return HANGCHECK_ACTIVE_LOOP;
3010        }
3011
3012        if (!subunits_stuck(ring))
3013                return HANGCHECK_ACTIVE;
3014
3015        return HANGCHECK_HUNG;
3016}
3017
3018static enum intel_ring_hangcheck_action
3019ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3020{
3021        struct drm_device *dev = ring->dev;
3022        struct drm_i915_private *dev_priv = dev->dev_private;
3023        enum intel_ring_hangcheck_action ha;
3024        u32 tmp;
3025
3026        ha = head_stuck(ring, acthd);
3027        if (ha != HANGCHECK_HUNG)
3028                return ha;
3029
3030        if (IS_GEN2(dev))
3031                return HANGCHECK_HUNG;
3032
3033        /* Is the chip hanging on a WAIT_FOR_EVENT?
3034         * If so we can simply poke the RB_WAIT bit
3035         * and break the hang. This should work on
3036         * all but the second generation chipsets.
3037         */
3038        tmp = I915_READ_CTL(ring);
3039        if (tmp & RING_WAIT) {
3040                i915_handle_error(dev, false,
3041                                  "Kicking stuck wait on %s",
3042                                  ring->name);
3043                I915_WRITE_CTL(ring, tmp);
3044                return HANGCHECK_KICK;
3045        }
3046
3047        if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048                switch (semaphore_passed(ring)) {
3049                default:
3050                        return HANGCHECK_HUNG;
3051                case 1:
3052                        i915_handle_error(dev, false,
3053                                          "Kicking stuck semaphore on %s",
3054                                          ring->name);
3055                        I915_WRITE_CTL(ring, tmp);
3056                        return HANGCHECK_KICK;
3057                case 0:
3058                        return HANGCHECK_WAIT;
3059                }
3060        }
3061
3062        return HANGCHECK_HUNG;
3063}
3064
3065/*
3066 * This is called when the chip hasn't reported back with completed
3067 * batchbuffers in a long time. We keep track per ring seqno progress and
3068 * if there are no progress, hangcheck score for that ring is increased.
3069 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070 * we kick the ring. If we see no progress on three subsequent calls
3071 * we assume chip is wedged and try to fix it by resetting the chip.
3072 */
3073static void i915_hangcheck_elapsed(struct work_struct *work)
3074{
3075        struct drm_i915_private *dev_priv =
3076                container_of(work, typeof(*dev_priv),
3077                             gpu_error.hangcheck_work.work);
3078        struct drm_device *dev = dev_priv->dev;
3079        struct intel_engine_cs *ring;
3080        int i;
3081        int busy_count = 0, rings_hung = 0;
3082        bool stuck[I915_NUM_RINGS] = { 0 };
3083#define BUSY 1
3084#define KICK 5
3085#define HUNG 20
3086
3087        if (!i915.enable_hangcheck)
3088                return;
3089
3090        /*
3091         * The hangcheck work is synced during runtime suspend, we don't
3092         * require a wakeref. TODO: instead of disabling the asserts make
3093         * sure that we hold a reference when this work is running.
3094         */
3095        DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3096
3097        /* As enabling the GPU requires fairly extensive mmio access,
3098         * periodically arm the mmio checker to see if we are triggering
3099         * any invalid access.
3100         */
3101        intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3102
3103        for_each_ring(ring, dev_priv, i) {
3104                u64 acthd;
3105                u32 seqno;
3106                bool busy = true;
3107
3108                semaphore_clear_deadlocks(dev_priv);
3109
3110                seqno = ring->get_seqno(ring, false);
3111                acthd = intel_ring_get_active_head(ring);
3112
3113                if (ring->hangcheck.seqno == seqno) {
3114                        if (ring_idle(ring, seqno)) {
3115                                ring->hangcheck.action = HANGCHECK_IDLE;
3116
3117                                if (waitqueue_active(&ring->irq_queue)) {
3118                                        /* Issue a wake-up to catch stuck h/w. */
3119                                        if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3120                                                if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3121                                                        DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3122                                                                  ring->name);
3123                                                else
3124                                                        DRM_INFO("Fake missed irq on %s\n",
3125                                                                 ring->name);
3126                                                wake_up_all(&ring->irq_queue);
3127                                        }
3128                                        /* Safeguard against driver failure */
3129                                        ring->hangcheck.score += BUSY;
3130                                } else
3131                                        busy = false;
3132                        } else {
3133                                /* We always increment the hangcheck score
3134                                 * if the ring is busy and still processing
3135                                 * the same request, so that no single request
3136                                 * can run indefinitely (such as a chain of
3137                                 * batches). The only time we do not increment
3138                                 * the hangcheck score on this ring, if this
3139                                 * ring is in a legitimate wait for another
3140                                 * ring. In that case the waiting ring is a
3141                                 * victim and we want to be sure we catch the
3142                                 * right culprit. Then every time we do kick
3143                                 * the ring, add a small increment to the
3144                                 * score so that we can catch a batch that is
3145                                 * being repeatedly kicked and so responsible
3146                                 * for stalling the machine.
3147                                 */
3148                                ring->hangcheck.action = ring_stuck(ring,
3149                                                                    acthd);
3150
3151                                switch (ring->hangcheck.action) {
3152                                case HANGCHECK_IDLE:
3153                                case HANGCHECK_WAIT:
3154                                case HANGCHECK_ACTIVE:
3155                                        break;
3156                                case HANGCHECK_ACTIVE_LOOP:
3157                                        ring->hangcheck.score += BUSY;
3158                                        break;
3159                                case HANGCHECK_KICK:
3160                                        ring->hangcheck.score += KICK;
3161                                        break;
3162                                case HANGCHECK_HUNG:
3163                                        ring->hangcheck.score += HUNG;
3164                                        stuck[i] = true;
3165                                        break;
3166                                }
3167                        }
3168                } else {
3169                        ring->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171                        /* Gradually reduce the count so that we catch DoS
3172                         * attempts across multiple batches.
3173                         */
3174                        if (ring->hangcheck.score > 0)
3175                                ring->hangcheck.score--;
3176
3177                        /* Clear head and subunit states on seqno movement */
3178                        ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3179
3180                        memset(ring->hangcheck.instdone, 0,
3181                               sizeof(ring->hangcheck.instdone));
3182                }
3183
3184                ring->hangcheck.seqno = seqno;
3185                ring->hangcheck.acthd = acthd;
3186                busy_count += busy;
3187        }
3188
3189        for_each_ring(ring, dev_priv, i) {
3190                if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3191                        DRM_INFO("%s on %s\n",
3192                                 stuck[i] ? "stuck" : "no progress",
3193                                 ring->name);
3194                        rings_hung++;
3195                }
3196        }
3197
3198        if (rings_hung) {
3199                i915_handle_error(dev, true, "Ring hung");
3200                goto out;
3201        }
3202
3203        if (busy_count)
3204                /* Reset timer case chip hangs without another request
3205                 * being added */
3206                i915_queue_hangcheck(dev);
3207
3208out:
3209        ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3210}
3211
3212void i915_queue_hangcheck(struct drm_device *dev)
3213{
3214        struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3215
3216        if (!i915.enable_hangcheck)
3217                return;
3218
3219        /* Don't continually defer the hangcheck so that it is always run at
3220         * least once after work has been scheduled on any ring. Otherwise,
3221         * we will ignore a hung ring if a second ring is kept busy.
3222         */
3223
3224        queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3225                           round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3226}
3227
3228static void ibx_irq_reset(struct drm_device *dev)
3229{
3230        struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232        if (HAS_PCH_NOP(dev))
3233                return;
3234
3235        GEN5_IRQ_RESET(SDE);
3236
3237        if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3238                I915_WRITE(SERR_INT, 0xffffffff);
3239}
3240
3241/*
3242 * SDEIER is also touched by the interrupt handler to work around missed PCH
3243 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3244 * instead we unconditionally enable all PCH interrupt sources here, but then
3245 * only unmask them as needed with SDEIMR.
3246 *
3247 * This function needs to be called before interrupts are enabled.
3248 */
3249static void ibx_irq_pre_postinstall(struct drm_device *dev)
3250{
3251        struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253        if (HAS_PCH_NOP(dev))
3254                return;
3255
3256        WARN_ON(I915_READ(SDEIER) != 0);
3257        I915_WRITE(SDEIER, 0xffffffff);
3258        POSTING_READ(SDEIER);
3259}
3260
3261static void gen5_gt_irq_reset(struct drm_device *dev)
3262{
3263        struct drm_i915_private *dev_priv = dev->dev_private;
3264
3265        GEN5_IRQ_RESET(GT);
3266        if (INTEL_INFO(dev)->gen >= 6)
3267                GEN5_IRQ_RESET(GEN6_PM);
3268}
3269
3270/* drm_dma.h hooks
3271*/
3272static void ironlake_irq_reset(struct drm_device *dev)
3273{
3274        struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276        I915_WRITE(HWSTAM, 0xffffffff);
3277
3278        GEN5_IRQ_RESET(DE);
3279        if (IS_GEN7(dev))
3280                I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3281
3282        gen5_gt_irq_reset(dev);
3283
3284        ibx_irq_reset(dev);
3285}
3286
3287static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3288{
3289        enum pipe pipe;
3290
3291        i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3292        I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3293
3294        for_each_pipe(dev_priv, pipe)
3295                I915_WRITE(PIPESTAT(pipe), 0xffff);
3296
3297        GEN5_IRQ_RESET(VLV_);
3298}
3299
3300static void valleyview_irq_preinstall(struct drm_device *dev)
3301{
3302        struct drm_i915_private *dev_priv = dev->dev_private;
3303
3304        /* VLV magic */
3305        I915_WRITE(VLV_IMR, 0);
3306        I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3307        I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3308        I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3309
3310        gen5_gt_irq_reset(dev);
3311
3312        I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3313
3314        vlv_display_irq_reset(dev_priv);
3315}
3316
3317static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3318{
3319        GEN8_IRQ_RESET_NDX(GT, 0);
3320        GEN8_IRQ_RESET_NDX(GT, 1);
3321        GEN8_IRQ_RESET_NDX(GT, 2);
3322        GEN8_IRQ_RESET_NDX(GT, 3);
3323}
3324
3325static void gen8_irq_reset(struct drm_device *dev)
3326{
3327        struct drm_i915_private *dev_priv = dev->dev_private;
3328        int pipe;
3329
3330        I915_WRITE(GEN8_MASTER_IRQ, 0);
3331        POSTING_READ(GEN8_MASTER_IRQ);
3332
3333        gen8_gt_irq_reset(dev_priv);
3334
3335        for_each_pipe(dev_priv, pipe)
3336                if (intel_display_power_is_enabled(dev_priv,
3337                                                   POWER_DOMAIN_PIPE(pipe)))
3338                        GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3339
3340        GEN5_IRQ_RESET(GEN8_DE_PORT_);
3341        GEN5_IRQ_RESET(GEN8_DE_MISC_);
3342        GEN5_IRQ_RESET(GEN8_PCU_);
3343
3344        if (HAS_PCH_SPLIT(dev))
3345                ibx_irq_reset(dev);
3346}
3347
3348void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3349                                     unsigned int pipe_mask)
3350{
3351        uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3352        enum pipe pipe;
3353
3354        spin_lock_irq(&dev_priv->irq_lock);
3355        for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3356                GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3357                                  dev_priv->de_irq_mask[pipe],
3358                                  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3359        spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3363                                     unsigned int pipe_mask)
3364{
3365        enum pipe pipe;
3366
3367        spin_lock_irq(&dev_priv->irq_lock);
3368        for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3369                GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3370        spin_unlock_irq(&dev_priv->irq_lock);
3371
3372        /* make sure we're done processing display irqs */
3373        synchronize_irq(dev_priv->dev->irq);
3374}
3375
3376static void cherryview_irq_preinstall(struct drm_device *dev)
3377{
3378        struct drm_i915_private *dev_priv = dev->dev_private;
3379
3380        I915_WRITE(GEN8_MASTER_IRQ, 0);
3381        POSTING_READ(GEN8_MASTER_IRQ);
3382
3383        gen8_gt_irq_reset(dev_priv);
3384
3385        GEN5_IRQ_RESET(GEN8_PCU_);
3386
3387        I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3388
3389        vlv_display_irq_reset(dev_priv);
3390}
3391
3392static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3393                                  const u32 hpd[HPD_NUM_PINS])
3394{
3395        struct drm_i915_private *dev_priv = to_i915(dev);
3396        struct intel_encoder *encoder;
3397        u32 enabled_irqs = 0;
3398
3399        for_each_intel_encoder(dev, encoder)
3400                if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3401                        enabled_irqs |= hpd[encoder->hpd_pin];
3402
3403        return enabled_irqs;
3404}
3405
3406static void ibx_hpd_irq_setup(struct drm_device *dev)
3407{
3408        struct drm_i915_private *dev_priv = dev->dev_private;
3409        u32 hotplug_irqs, hotplug, enabled_irqs;
3410
3411        if (HAS_PCH_IBX(dev)) {
3412                hotplug_irqs = SDE_HOTPLUG_MASK;
3413                enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3414        } else {
3415                hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3416                enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3417        }
3418
3419        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3420
3421        /*
3422         * Enable digital hotplug on the PCH, and configure the DP short pulse
3423         * duration to 2ms (which is the minimum in the Display Port spec).
3424         * The pulse duration bits are reserved on LPT+.
3425         */
3426        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427        hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3428        hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3429        hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3430        hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3431        /*
3432         * When CPU and PCH are on the same package, port A
3433         * HPD must be enabled in both north and south.
3434         */
3435        if (HAS_PCH_LPT_LP(dev))
3436                hotplug |= PORTA_HOTPLUG_ENABLE;
3437        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3438}
3439
3440static void spt_hpd_irq_setup(struct drm_device *dev)
3441{
3442        struct drm_i915_private *dev_priv = dev->dev_private;
3443        u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445        hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3446        enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3447
3448        ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3449
3450        /* Enable digital hotplug on the PCH */
3451        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3452        hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3453                PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3454        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3455
3456        hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3457        hotplug |= PORTE_HOTPLUG_ENABLE;
3458        I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3459}
3460
3461static void ilk_hpd_irq_setup(struct drm_device *dev)
3462{
3463        struct drm_i915_private *dev_priv = dev->dev_private;
3464        u32 hotplug_irqs, hotplug, enabled_irqs;
3465
3466        if (INTEL_INFO(dev)->gen >= 8) {
3467                hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3468                enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3469
3470                bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471        } else if (INTEL_INFO(dev)->gen >= 7) {
3472                hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3473                enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3474
3475                ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3476        } else {
3477                hotplug_irqs = DE_DP_A_HOTPLUG;
3478                enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3479
3480                ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3481        }
3482
3483        /*
3484         * Enable digital hotplug on the CPU, and configure the DP short pulse
3485         * duration to 2ms (which is the minimum in the Display Port spec)
3486         * The pulse duration bits are reserved on HSW+.
3487         */
3488        hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3489        hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3490        hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3491        I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3492
3493        ibx_hpd_irq_setup(dev);
3494}
3495
3496static void bxt_hpd_irq_setup(struct drm_device *dev)
3497{
3498        struct drm_i915_private *dev_priv = dev->dev_private;
3499        u32 hotplug_irqs, hotplug, enabled_irqs;
3500
3501        enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3502        hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3503
3504        bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3505
3506        hotplug = I915_READ(PCH_PORT_HOTPLUG);
3507        hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3508                PORTA_HOTPLUG_ENABLE;
3509        I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3510}
3511
3512static void ibx_irq_postinstall(struct drm_device *dev)
3513{
3514        struct drm_i915_private *dev_priv = dev->dev_private;
3515        u32 mask;
3516
3517        if (HAS_PCH_NOP(dev))
3518                return;
3519
3520        if (HAS_PCH_IBX(dev))
3521                mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3522        else
3523                mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3524
3525        gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3526        I915_WRITE(SDEIMR, ~mask);
3527}
3528
3529static void gen5_gt_irq_postinstall(struct drm_device *dev)
3530{
3531        struct drm_i915_private *dev_priv = dev->dev_private;
3532        u32 pm_irqs, gt_irqs;
3533
3534        pm_irqs = gt_irqs = 0;
3535
3536        dev_priv->gt_irq_mask = ~0;
3537        if (HAS_L3_DPF(dev)) {
3538                /* L3 parity interrupt is always unmasked. */
3539                dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3540                gt_irqs |= GT_PARITY_ERROR(dev);
3541        }
3542
3543        gt_irqs |= GT_RENDER_USER_INTERRUPT;
3544        if (IS_GEN5(dev)) {
3545                gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3546                           ILK_BSD_USER_INTERRUPT;
3547        } else {
3548                gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3549        }
3550
3551        GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3552
3553        if (INTEL_INFO(dev)->gen >= 6) {
3554                /*
3555                 * RPS interrupts will get enabled/disabled on demand when RPS
3556                 * itself is enabled/disabled.
3557                 */
3558                if (HAS_VEBOX(dev))
3559                        pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3560
3561                dev_priv->pm_irq_mask = 0xffffffff;
3562                GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3563        }
3564}
3565
3566static int ironlake_irq_postinstall(struct drm_device *dev)
3567{
3568        struct drm_i915_private *dev_priv = dev->dev_private;
3569        u32 display_mask, extra_mask;
3570
3571        if (INTEL_INFO(dev)->gen >= 7) {
3572                display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3573                                DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3574                                DE_PLANEB_FLIP_DONE_IVB |
3575                                DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3576                extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3577                              DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3578                              DE_DP_A_HOTPLUG_IVB);
3579        } else {
3580                display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3581                                DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3582                                DE_AUX_CHANNEL_A |
3583                                DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3584                                DE_POISON);
3585                extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3586                              DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3587                              DE_DP_A_HOTPLUG);
3588        }
3589
3590        dev_priv->irq_mask = ~display_mask;
3591
3592        I915_WRITE(HWSTAM, 0xeffe);
3593
3594        ibx_irq_pre_postinstall(dev);
3595
3596        GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3597
3598        gen5_gt_irq_postinstall(dev);
3599
3600        ibx_irq_postinstall(dev);
3601
3602        if (IS_IRONLAKE_M(dev)) {
3603                /* Enable PCU event interrupts
3604                 *
3605                 * spinlocking not required here for correctness since interrupt
3606                 * setup is guaranteed to run in single-threaded context. But we
3607                 * need it to make the assert_spin_locked happy. */
3608                spin_lock_irq(&dev_priv->irq_lock);
3609                ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3610                spin_unlock_irq(&dev_priv->irq_lock);
3611        }
3612
3613        return 0;
3614}
3615
3616static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3617{
3618        u32 pipestat_mask;
3619        u32 iir_mask;
3620        enum pipe pipe;
3621
3622        pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3623                        PIPE_FIFO_UNDERRUN_STATUS;
3624
3625        for_each_pipe(dev_priv, pipe)
3626                I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3627        POSTING_READ(PIPESTAT(PIPE_A));
3628
3629        pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3630                        PIPE_CRC_DONE_INTERRUPT_STATUS;
3631
3632        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3633        for_each_pipe(dev_priv, pipe)
3634                      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3635
3636        iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3637                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3638                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3639        if (IS_CHERRYVIEW(dev_priv))
3640                iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3641        dev_priv->irq_mask &= ~iir_mask;
3642
3643        I915_WRITE(VLV_IIR, iir_mask);
3644        I915_WRITE(VLV_IIR, iir_mask);
3645        I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3646        I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3647        POSTING_READ(VLV_IMR);
3648}
3649
3650static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3651{
3652        u32 pipestat_mask;
3653        u32 iir_mask;
3654        enum pipe pipe;
3655
3656        iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3657                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3658                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3659        if (IS_CHERRYVIEW(dev_priv))
3660                iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3661
3662        dev_priv->irq_mask |= iir_mask;
3663        I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3664        I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3665        I915_WRITE(VLV_IIR, iir_mask);
3666        I915_WRITE(VLV_IIR, iir_mask);
3667        POSTING_READ(VLV_IIR);
3668
3669        pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3670                        PIPE_CRC_DONE_INTERRUPT_STATUS;
3671
3672        i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3673        for_each_pipe(dev_priv, pipe)
3674                i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3675
3676        pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3677                        PIPE_FIFO_UNDERRUN_STATUS;
3678
3679        for_each_pipe(dev_priv, pipe)
3680                I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3681        POSTING_READ(PIPESTAT(PIPE_A));
3682}
3683
3684void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3685{
3686        assert_spin_locked(&dev_priv->irq_lock);
3687
3688        if (dev_priv->display_irqs_enabled)
3689                return;
3690
3691        dev_priv->display_irqs_enabled = true;
3692
3693        if (intel_irqs_enabled(dev_priv))
3694                valleyview_display_irqs_install(dev_priv);
3695}
3696
3697void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3698{
3699        assert_spin_locked(&dev_priv->irq_lock);
3700
3701        if (!dev_priv->display_irqs_enabled)
3702                return;
3703
3704        dev_priv->display_irqs_enabled = false;
3705
3706        if (intel_irqs_enabled(dev_priv))
3707                valleyview_display_irqs_uninstall(dev_priv);
3708}
3709
3710static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3711{
3712        dev_priv->irq_mask = ~0;
3713
3714        i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3715        POSTING_READ(PORT_HOTPLUG_EN);
3716
3717        I915_WRITE(VLV_IIR, 0xffffffff);
3718        I915_WRITE(VLV_IIR, 0xffffffff);
3719        I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3720        I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3721        POSTING_READ(VLV_IMR);
3722
3723        /* Interrupt setup is already guaranteed to be single-threaded, this is
3724         * just to make the assert_spin_locked check happy. */
3725        spin_lock_irq(&dev_priv->irq_lock);
3726        if (dev_priv->display_irqs_enabled)
3727                valleyview_display_irqs_install(dev_priv);
3728        spin_unlock_irq(&dev_priv->irq_lock);
3729}
3730
3731static int valleyview_irq_postinstall(struct drm_device *dev)
3732{
3733        struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735        vlv_display_irq_postinstall(dev_priv);
3736
3737        gen5_gt_irq_postinstall(dev);
3738
3739        /* ack & enable invalid PTE error interrupts */
3740#if 0 /* FIXME: add support to irq handler for checking these bits */
3741        I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3742        I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3743#endif
3744
3745        I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3746
3747        return 0;
3748}
3749
3750static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3751{
3752        /* These are interrupts we'll toggle with the ring mask register */
3753        uint32_t gt_interrupts[] = {
3754                GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3755                        GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3756                        GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3757                        GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3758                        GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3759                GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3760                        GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3761                        GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3762                        GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3763                0,
3764                GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3765                        GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3766                };
3767
3768        dev_priv->pm_irq_mask = 0xffffffff;
3769        GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3770        GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3771        /*
3772         * RPS interrupts will get enabled/disabled on demand when RPS itself
3773         * is enabled/disabled.
3774         */
3775        GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3776        GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3777}
3778
3779static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3780{
3781        uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3782        uint32_t de_pipe_enables;
3783        u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3784        u32 de_port_enables;
3785        enum pipe pipe;
3786
3787        if (INTEL_INFO(dev_priv)->gen >= 9) {
3788                de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3789                                  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3790                de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3791                                  GEN9_AUX_CHANNEL_D;
3792                if (IS_BROXTON(dev_priv))
3793                        de_port_masked |= BXT_DE_PORT_GMBUS;
3794        } else {
3795                de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3796                                  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3797        }
3798
3799        de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3800                                           GEN8_PIPE_FIFO_UNDERRUN;
3801
3802        de_port_enables = de_port_masked;
3803        if (IS_BROXTON(dev_priv))
3804                de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3805        else if (IS_BROADWELL(dev_priv))
3806                de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3807
3808        dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3809        dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3810        dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3811
3812        for_each_pipe(dev_priv, pipe)
3813                if (intel_display_power_is_enabled(dev_priv,
3814                                POWER_DOMAIN_PIPE(pipe)))
3815                        GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3816                                          dev_priv->de_irq_mask[pipe],
3817                                          de_pipe_enables);
3818
3819        GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3820}
3821
3822static int gen8_irq_postinstall(struct drm_device *dev)
3823{
3824        struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826        if (HAS_PCH_SPLIT(dev))
3827                ibx_irq_pre_postinstall(dev);
3828
3829        gen8_gt_irq_postinstall(dev_priv);
3830        gen8_de_irq_postinstall(dev_priv);
3831
3832        if (HAS_PCH_SPLIT(dev))
3833                ibx_irq_postinstall(dev);
3834
3835        I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3836        POSTING_READ(GEN8_MASTER_IRQ);
3837
3838        return 0;
3839}
3840
3841static int cherryview_irq_postinstall(struct drm_device *dev)
3842{
3843        struct drm_i915_private *dev_priv = dev->dev_private;
3844
3845        vlv_display_irq_postinstall(dev_priv);
3846
3847        gen8_gt_irq_postinstall(dev_priv);
3848
3849        I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3850        POSTING_READ(GEN8_MASTER_IRQ);
3851
3852        return 0;
3853}
3854
3855static void gen8_irq_uninstall(struct drm_device *dev)
3856{
3857        struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859        if (!dev_priv)
3860                return;
3861
3862        gen8_irq_reset(dev);
3863}
3864
3865static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3866{
3867        /* Interrupt setup is already guaranteed to be single-threaded, this is
3868         * just to make the assert_spin_locked check happy. */
3869        spin_lock_irq(&dev_priv->irq_lock);
3870        if (dev_priv->display_irqs_enabled)
3871                valleyview_display_irqs_uninstall(dev_priv);
3872        spin_unlock_irq(&dev_priv->irq_lock);
3873
3874        vlv_display_irq_reset(dev_priv);
3875
3876        dev_priv->irq_mask = ~0;
3877}
3878
3879static void valleyview_irq_uninstall(struct drm_device *dev)
3880{
3881        struct drm_i915_private *dev_priv = dev->dev_private;
3882
3883        if (!dev_priv)
3884                return;
3885
3886        I915_WRITE(VLV_MASTER_IER, 0);
3887
3888        gen5_gt_irq_reset(dev);
3889
3890        I915_WRITE(HWSTAM, 0xffffffff);
3891
3892        vlv_display_irq_uninstall(dev_priv);
3893}
3894
3895static void cherryview_irq_uninstall(struct drm_device *dev)
3896{
3897        struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899        if (!dev_priv)
3900                return;
3901
3902        I915_WRITE(GEN8_MASTER_IRQ, 0);
3903        POSTING_READ(GEN8_MASTER_IRQ);
3904
3905        gen8_gt_irq_reset(dev_priv);
3906
3907        GEN5_IRQ_RESET(GEN8_PCU_);
3908
3909        vlv_display_irq_uninstall(dev_priv);
3910}
3911
3912static void ironlake_irq_uninstall(struct drm_device *dev)
3913{
3914        struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916        if (!dev_priv)
3917                return;
3918
3919        ironlake_irq_reset(dev);
3920}
3921
3922static void i8xx_irq_preinstall(struct drm_device * dev)
3923{
3924        struct drm_i915_private *dev_priv = dev->dev_private;
3925        int pipe;
3926
3927        for_each_pipe(dev_priv, pipe)
3928                I915_WRITE(PIPESTAT(pipe), 0);
3929        I915_WRITE16(IMR, 0xffff);
3930        I915_WRITE16(IER, 0x0);
3931        POSTING_READ16(IER);
3932}
3933
3934static int i8xx_irq_postinstall(struct drm_device *dev)
3935{
3936        struct drm_i915_private *dev_priv = dev->dev_private;
3937
3938        I915_WRITE16(EMR,
3939                     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3940
3941        /* Unmask the interrupts that we always want on. */
3942        dev_priv->irq_mask =
3943                ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3944                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3945                  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3946                  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3947        I915_WRITE16(IMR, dev_priv->irq_mask);
3948
3949        I915_WRITE16(IER,
3950                     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951                     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3952                     I915_USER_INTERRUPT);
3953        POSTING_READ16(IER);
3954
3955        /* Interrupt setup is already guaranteed to be single-threaded, this is
3956         * just to make the assert_spin_locked check happy. */
3957        spin_lock_irq(&dev_priv->irq_lock);
3958        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3959        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960        spin_unlock_irq(&dev_priv->irq_lock);
3961
3962        return 0;
3963}
3964
3965/*
3966 * Returns true when a page flip has completed.
3967 */
3968static bool i8xx_handle_vblank(struct drm_device *dev,
3969                               int plane, int pipe, u32 iir)
3970{
3971        struct drm_i915_private *dev_priv = dev->dev_private;
3972        u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3973
3974        if (!intel_pipe_handle_vblank(dev, pipe))
3975                return false;
3976
3977        if ((iir & flip_pending) == 0)
3978                goto check_page_flip;
3979
3980        /* We detect FlipDone by looking for the change in PendingFlip from '1'
3981         * to '0' on the following vblank, i.e. IIR has the Pendingflip
3982         * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3983         * the flip is completed (no longer pending). Since this doesn't raise
3984         * an interrupt per se, we watch for the change at vblank.
3985         */
3986        if (I915_READ16(ISR) & flip_pending)
3987                goto check_page_flip;
3988
3989        intel_prepare_page_flip(dev, plane);
3990        intel_finish_page_flip(dev, pipe);
3991        return true;
3992
3993check_page_flip:
3994        intel_check_page_flip(dev, pipe);
3995        return false;
3996}
3997
3998static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3999{
4000        struct drm_device *dev = arg;
4001        struct drm_i915_private *dev_priv = dev->dev_private;
4002        u16 iir, new_iir;
4003        u32 pipe_stats[2];
4004        int pipe;
4005        u16 flip_mask =
4006                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4007                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4008        irqreturn_t ret;
4009
4010        if (!intel_irqs_enabled(dev_priv))
4011                return IRQ_NONE;
4012
4013        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4014        disable_rpm_wakeref_asserts(dev_priv);
4015
4016        ret = IRQ_NONE;
4017        iir = I915_READ16(IIR);
4018        if (iir == 0)
4019                goto out;
4020
4021        while (iir & ~flip_mask) {
4022                /* Can't rely on pipestat interrupt bit in iir as it might
4023                 * have been cleared after the pipestat interrupt was received.
4024                 * It doesn't set the bit in iir again, but it still produces
4025                 * interrupts (for non-MSI).
4026                 */
4027                spin_lock(&dev_priv->irq_lock);
4028                if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4029                        DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4030
4031                for_each_pipe(dev_priv, pipe) {
4032                        i915_reg_t reg = PIPESTAT(pipe);
4033                        pipe_stats[pipe] = I915_READ(reg);
4034
4035                        /*
4036                         * Clear the PIPE*STAT regs before the IIR
4037                         */
4038                        if (pipe_stats[pipe] & 0x8000ffff)
4039                                I915_WRITE(reg, pipe_stats[pipe]);
4040                }
4041                spin_unlock(&dev_priv->irq_lock);
4042
4043                I915_WRITE16(IIR, iir & ~flip_mask);
4044                new_iir = I915_READ16(IIR); /* Flush posted writes */
4045
4046                if (iir & I915_USER_INTERRUPT)
4047                        notify_ring(&dev_priv->ring[RCS]);
4048
4049                for_each_pipe(dev_priv, pipe) {
4050                        int plane = pipe;
4051                        if (HAS_FBC(dev))
4052                                plane = !plane;
4053
4054                        if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4055                            i8xx_handle_vblank(dev, plane, pipe, iir))
4056                                flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4057
4058                        if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4059                                i9xx_pipe_crc_irq_handler(dev, pipe);
4060
4061                        if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4062                                intel_cpu_fifo_underrun_irq_handler(dev_priv,
4063                                                                    pipe);
4064                }
4065
4066                iir = new_iir;
4067        }
4068        ret = IRQ_HANDLED;
4069
4070out:
4071        enable_rpm_wakeref_asserts(dev_priv);
4072
4073        return ret;
4074}
4075
4076static void i8xx_irq_uninstall(struct drm_device * dev)
4077{
4078        struct drm_i915_private *dev_priv = dev->dev_private;
4079        int pipe;
4080
4081        for_each_pipe(dev_priv, pipe) {
4082                /* Clear enable bits; then clear status bits */
4083                I915_WRITE(PIPESTAT(pipe), 0);
4084                I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4085        }
4086        I915_WRITE16(IMR, 0xffff);
4087        I915_WRITE16(IER, 0x0);
4088        I915_WRITE16(IIR, I915_READ16(IIR));
4089}
4090
4091static void i915_irq_preinstall(struct drm_device * dev)
4092{
4093        struct drm_i915_private *dev_priv = dev->dev_private;
4094        int pipe;
4095
4096        if (I915_HAS_HOTPLUG(dev)) {
4097                i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4098                I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4099        }
4100
4101        I915_WRITE16(HWSTAM, 0xeffe);
4102        for_each_pipe(dev_priv, pipe)
4103                I915_WRITE(PIPESTAT(pipe), 0);
4104        I915_WRITE(IMR, 0xffffffff);
4105        I915_WRITE(IER, 0x0);
4106        POSTING_READ(IER);
4107}
4108
4109static int i915_irq_postinstall(struct drm_device *dev)
4110{
4111        struct drm_i915_private *dev_priv = dev->dev_private;
4112        u32 enable_mask;
4113
4114        I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4115
4116        /* Unmask the interrupts that we always want on. */
4117        dev_priv->irq_mask =
4118                ~(I915_ASLE_INTERRUPT |
4119                  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120                  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121                  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4122                  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4123
4124        enable_mask =
4125                I915_ASLE_INTERRUPT |
4126                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4128                I915_USER_INTERRUPT;
4129
4130        if (I915_HAS_HOTPLUG(dev)) {
4131                i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4132                POSTING_READ(PORT_HOTPLUG_EN);
4133
4134                /* Enable in IER... */
4135                enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4136                /* and unmask in IMR */
4137                dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4138        }
4139
4140        I915_WRITE(IMR, dev_priv->irq_mask);
4141        I915_WRITE(IER, enable_mask);
4142        POSTING_READ(IER);
4143
4144        i915_enable_asle_pipestat(dev);
4145
4146        /* Interrupt setup is already guaranteed to be single-threaded, this is
4147         * just to make the assert_spin_locked check happy. */
4148        spin_lock_irq(&dev_priv->irq_lock);
4149        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4151        spin_unlock_irq(&dev_priv->irq_lock);
4152
4153        return 0;
4154}
4155
4156/*
4157 * Returns true when a page flip has completed.
4158 */
4159static bool i915_handle_vblank(struct drm_device *dev,
4160                               int plane, int pipe, u32 iir)
4161{
4162        struct drm_i915_private *dev_priv = dev->dev_private;
4163        u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4164
4165        if (!intel_pipe_handle_vblank(dev, pipe))
4166                return false;
4167
4168        if ((iir & flip_pending) == 0)
4169                goto check_page_flip;
4170
4171        /* We detect FlipDone by looking for the change in PendingFlip from '1'
4172         * to '0' on the following vblank, i.e. IIR has the Pendingflip
4173         * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4174         * the flip is completed (no longer pending). Since this doesn't raise
4175         * an interrupt per se, we watch for the change at vblank.
4176         */
4177        if (I915_READ(ISR) & flip_pending)
4178                goto check_page_flip;
4179
4180        intel_prepare_page_flip(dev, plane);
4181        intel_finish_page_flip(dev, pipe);
4182        return true;
4183
4184check_page_flip:
4185        intel_check_page_flip(dev, pipe);
4186        return false;
4187}
4188
4189static irqreturn_t i915_irq_handler(int irq, void *arg)
4190{
4191        struct drm_device *dev = arg;
4192        struct drm_i915_private *dev_priv = dev->dev_private;
4193        u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4194        u32 flip_mask =
4195                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4196                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4197        int pipe, ret = IRQ_NONE;
4198
4199        if (!intel_irqs_enabled(dev_priv))
4200                return IRQ_NONE;
4201
4202        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4203        disable_rpm_wakeref_asserts(dev_priv);
4204
4205        iir = I915_READ(IIR);
4206        do {
4207                bool irq_received = (iir & ~flip_mask) != 0;
4208                bool blc_event = false;
4209
4210                /* Can't rely on pipestat interrupt bit in iir as it might
4211                 * have been cleared after the pipestat interrupt was received.
4212                 * It doesn't set the bit in iir again, but it still produces
4213                 * interrupts (for non-MSI).
4214                 */
4215                spin_lock(&dev_priv->irq_lock);
4216                if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4217                        DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4218
4219                for_each_pipe(dev_priv, pipe) {
4220                        i915_reg_t reg = PIPESTAT(pipe);
4221                        pipe_stats[pipe] = I915_READ(reg);
4222
4223                        /* Clear the PIPE*STAT regs before the IIR */
4224                        if (pipe_stats[pipe] & 0x8000ffff) {
4225                                I915_WRITE(reg, pipe_stats[pipe]);
4226                                irq_received = true;
4227                        }
4228                }
4229                spin_unlock(&dev_priv->irq_lock);
4230
4231                if (!irq_received)
4232                        break;
4233
4234                /* Consume port.  Then clear IIR or we'll miss events */
4235                if (I915_HAS_HOTPLUG(dev) &&
4236                    iir & I915_DISPLAY_PORT_INTERRUPT)
4237                        i9xx_hpd_irq_handler(dev);
4238
4239                I915_WRITE(IIR, iir & ~flip_mask);
4240                new_iir = I915_READ(IIR); /* Flush posted writes */
4241
4242                if (iir & I915_USER_INTERRUPT)
4243                        notify_ring(&dev_priv->ring[RCS]);
4244
4245                for_each_pipe(dev_priv, pipe) {
4246                        int plane = pipe;
4247                        if (HAS_FBC(dev))
4248                                plane = !plane;
4249
4250                        if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4251                            i915_handle_vblank(dev, plane, pipe, iir))
4252                                flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4253
4254                        if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4255                                blc_event = true;
4256
4257                        if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4258                                i9xx_pipe_crc_irq_handler(dev, pipe);
4259
4260                        if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4261                                intel_cpu_fifo_underrun_irq_handler(dev_priv,
4262                                                                    pipe);
4263                }
4264
4265                if (blc_event || (iir & I915_ASLE_INTERRUPT))
4266                        intel_opregion_asle_intr(dev);
4267
4268                /* With MSI, interrupts are only generated when iir
4269                 * transitions from zero to nonzero.  If another bit got
4270                 * set while we were handling the existing iir bits, then
4271                 * we would never get another interrupt.
4272                 *
4273                 * This is fine on non-MSI as well, as if we hit this path
4274                 * we avoid exiting the interrupt handler only to generate
4275                 * another one.
4276                 *
4277                 * Note that for MSI this could cause a stray interrupt report
4278                 * if an interrupt landed in the time between writing IIR and
4279                 * the posting read.  This should be rare enough to never
4280                 * trigger the 99% of 100,000 interrupts test for disabling
4281                 * stray interrupts.
4282                 */
4283                ret = IRQ_HANDLED;
4284                iir = new_iir;
4285        } while (iir & ~flip_mask);
4286
4287        enable_rpm_wakeref_asserts(dev_priv);
4288
4289        return ret;
4290}
4291
4292static void i915_irq_uninstall(struct drm_device * dev)
4293{
4294        struct drm_i915_private *dev_priv = dev->dev_private;
4295        int pipe;
4296
4297        if (I915_HAS_HOTPLUG(dev)) {
4298                i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4299                I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4300        }
4301
4302        I915_WRITE16(HWSTAM, 0xffff);
4303        for_each_pipe(dev_priv, pipe) {
4304                /* Clear enable bits; then clear status bits */
4305                I915_WRITE(PIPESTAT(pipe), 0);
4306                I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4307        }
4308        I915_WRITE(IMR, 0xffffffff);
4309        I915_WRITE(IER, 0x0);
4310
4311        I915_WRITE(IIR, I915_READ(IIR));
4312}
4313
4314static void i965_irq_preinstall(struct drm_device * dev)
4315{
4316        struct drm_i915_private *dev_priv = dev->dev_private;
4317        int pipe;
4318
4319        i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4320        I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4321
4322        I915_WRITE(HWSTAM, 0xeffe);
4323        for_each_pipe(dev_priv, pipe)
4324                I915_WRITE(PIPESTAT(pipe), 0);
4325        I915_WRITE(IMR, 0xffffffff);
4326        I915_WRITE(IER, 0x0);
4327        POSTING_READ(IER);
4328}
4329
4330static int i965_irq_postinstall(struct drm_device *dev)
4331{
4332        struct drm_i915_private *dev_priv = dev->dev_private;
4333        u32 enable_mask;
4334        u32 error_mask;
4335
4336        /* Unmask the interrupts that we always want on. */
4337        dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4338                               I915_DISPLAY_PORT_INTERRUPT |
4339                               I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4340                               I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4341                               I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4342                               I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4343                               I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4344
4345        enable_mask = ~dev_priv->irq_mask;
4346        enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4347                         I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4348        enable_mask |= I915_USER_INTERRUPT;
4349
4350        if (IS_G4X(dev))
4351                enable_mask |= I915_BSD_USER_INTERRUPT;
4352
4353        /* Interrupt setup is already guaranteed to be single-threaded, this is
4354         * just to make the assert_spin_locked check happy. */
4355        spin_lock_irq(&dev_priv->irq_lock);
4356        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4357        i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4358        i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4359        spin_unlock_irq(&dev_priv->irq_lock);
4360
4361        /*
4362         * Enable some error detection, note the instruction error mask
4363         * bit is reserved, so we leave it masked.
4364         */
4365        if (IS_G4X(dev)) {
4366                error_mask = ~(GM45_ERROR_PAGE_TABLE |
4367                               GM45_ERROR_MEM_PRIV |
4368                               GM45_ERROR_CP_PRIV |
4369                               I915_ERROR_MEMORY_REFRESH);
4370        } else {
4371                error_mask = ~(I915_ERROR_PAGE_TABLE |
4372                               I915_ERROR_MEMORY_REFRESH);
4373        }
4374        I915_WRITE(EMR, error_mask);
4375
4376        I915_WRITE(IMR, dev_priv->irq_mask);
4377        I915_WRITE(IER, enable_mask);
4378        POSTING_READ(IER);
4379
4380        i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4381        POSTING_READ(PORT_HOTPLUG_EN);
4382
4383        i915_enable_asle_pipestat(dev);
4384
4385        return 0;
4386}
4387
4388static void i915_hpd_irq_setup(struct drm_device *dev)
4389{
4390        struct drm_i915_private *dev_priv = dev->dev_private;
4391        u32 hotplug_en;
4392
4393        assert_spin_locked(&dev_priv->irq_lock);
4394
4395        /* Note HDMI and DP share hotplug bits */
4396        /* enable bits are the same for all generations */
4397        hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4398        /* Programming the CRT detection parameters tends
4399           to generate a spurious hotplug event about three
4400           seconds later.  So just do it once.
4401        */
4402        if (IS_G4X(dev))
4403                hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404        hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4405
4406        /* Ignore TV since it's buggy */
4407        i915_hotplug_interrupt_update_locked(dev_priv,
4408                                             HOTPLUG_INT_EN_MASK |
4409                                             CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4410                                             CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4411                                             hotplug_en);
4412}
4413
4414static irqreturn_t i965_irq_handler(int irq, void *arg)
4415{
4416        struct drm_device *dev = arg;
4417        struct drm_i915_private *dev_priv = dev->dev_private;
4418        u32 iir, new_iir;
4419        u32 pipe_stats[I915_MAX_PIPES];
4420        int ret = IRQ_NONE, pipe;
4421        u32 flip_mask =
4422                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4423                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4424
4425        if (!intel_irqs_enabled(dev_priv))
4426                return IRQ_NONE;
4427
4428        /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4429        disable_rpm_wakeref_asserts(dev_priv);
4430
4431        iir = I915_READ(IIR);
4432
4433        for (;;) {
4434                bool irq_received = (iir & ~flip_mask) != 0;
4435                bool blc_event = false;
4436
4437                /* Can't rely on pipestat interrupt bit in iir as it might
4438                 * have been cleared after the pipestat interrupt was received.
4439                 * It doesn't set the bit in iir again, but it still produces
4440                 * interrupts (for non-MSI).
4441                 */
4442                spin_lock(&dev_priv->irq_lock);
4443                if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4444                        DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4445
4446                for_each_pipe(dev_priv, pipe) {
4447                        i915_reg_t reg = PIPESTAT(pipe);
4448                        pipe_stats[pipe] = I915_READ(reg);
4449
4450                        /*
4451                         * Clear the PIPE*STAT regs before the IIR
4452                         */
4453                        if (pipe_stats[pipe] & 0x8000ffff) {
4454                                I915_WRITE(reg, pipe_stats[pipe]);
4455                                irq_received = true;
4456                        }
4457                }
4458                spin_unlock(&dev_priv->irq_lock);
4459
4460                if (!irq_received)
4461                        break;
4462
4463                ret = IRQ_HANDLED;
4464
4465                /* Consume port.  Then clear IIR or we'll miss events */
4466                if (iir & I915_DISPLAY_PORT_INTERRUPT)
4467                        i9xx_hpd_irq_handler(dev);
4468
4469                I915_WRITE(IIR, iir & ~flip_mask);
4470                new_iir = I915_READ(IIR); /* Flush posted writes */
4471
4472                if (iir & I915_USER_INTERRUPT)
4473                        notify_ring(&dev_priv->ring[RCS]);
4474                if (iir & I915_BSD_USER_INTERRUPT)
4475                        notify_ring(&dev_priv->ring[VCS]);
4476
4477                for_each_pipe(dev_priv, pipe) {
4478                        if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4479                            i915_handle_vblank(dev, pipe, pipe, iir))
4480                                flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4481
4482                        if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4483                                blc_event = true;
4484
4485                        if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4486                                i9xx_pipe_crc_irq_handler(dev, pipe);
4487
4488                        if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4489                                intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4490                }
4491
4492                if (blc_event || (iir & I915_ASLE_INTERRUPT))
4493                        intel_opregion_asle_intr(dev);
4494
4495                if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4496                        gmbus_irq_handler(dev);
4497
4498                /* With MSI, interrupts are only generated when iir
4499                 * transitions from zero to nonzero.  If another bit got
4500                 * set while we were handling the existing iir bits, then
4501                 * we would never get another interrupt.
4502                 *
4503                 * This is fine on non-MSI as well, as if we hit this path
4504                 * we avoid exiting the interrupt handler only to generate
4505                 * another one.
4506                 *
4507                 * Note that for MSI this could cause a stray interrupt report
4508                 * if an interrupt landed in the time between writing IIR and
4509                 * the posting read.  This should be rare enough to never
4510                 * trigger the 99% of 100,000 interrupts test for disabling
4511                 * stray interrupts.
4512                 */
4513                iir = new_iir;
4514        }
4515
4516        enable_rpm_wakeref_asserts(dev_priv);
4517
4518        return ret;
4519}
4520
4521static void i965_irq_uninstall(struct drm_device * dev)
4522{
4523        struct drm_i915_private *dev_priv = dev->dev_private;
4524        int pipe;
4525
4526        if (!dev_priv)
4527                return;
4528
4529        i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4530        I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4531
4532        I915_WRITE(HWSTAM, 0xffffffff);
4533        for_each_pipe(dev_priv, pipe)
4534                I915_WRITE(PIPESTAT(pipe), 0);
4535        I915_WRITE(IMR, 0xffffffff);
4536        I915_WRITE(IER, 0x0);
4537
4538        for_each_pipe(dev_priv, pipe)
4539                I915_WRITE(PIPESTAT(pipe),
4540                           I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4541        I915_WRITE(IIR, I915_READ(IIR));
4542}
4543
4544/**
4545 * intel_irq_init - initializes irq support
4546 * @dev_priv: i915 device instance
4547 *
4548 * This function initializes all the irq support including work items, timers
4549 * and all the vtables. It does not setup the interrupt itself though.
4550 */
4551void intel_irq_init(struct drm_i915_private *dev_priv)
4552{
4553        struct drm_device *dev = dev_priv->dev;
4554
4555        intel_hpd_init_work(dev_priv);
4556
4557        INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4558        INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4559
4560        /* Let's track the enabled rps events */
4561        if (IS_VALLEYVIEW(dev_priv))
4562                /* WaGsvRC0ResidencyMethod:vlv */
4563                dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4564        else
4565                dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4566
4567        INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4568                          i915_hangcheck_elapsed);
4569
4570        pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4571
4572        if (IS_GEN2(dev_priv)) {
4573                dev->max_vblank_count = 0;
4574                dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4575        } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4576                dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4577                dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4578        } else {
4579                dev->driver->get_vblank_counter = i915_get_vblank_counter;
4580                dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4581        }
4582
4583        /*
4584         * Opt out of the vblank disable timer on everything except gen2.
4585         * Gen2 doesn't have a hardware frame counter and so depends on
4586         * vblank interrupts to produce sane vblank seuquence numbers.
4587         */
4588        if (!IS_GEN2(dev_priv))
4589                dev->vblank_disable_immediate = true;
4590
4591        dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4592        dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4593
4594        if (IS_CHERRYVIEW(dev_priv)) {
4595                dev->driver->irq_handler = cherryview_irq_handler;
4596                dev->driver->irq_preinstall = cherryview_irq_preinstall;
4597                dev->driver->irq_postinstall = cherryview_irq_postinstall;
4598                dev->driver->irq_uninstall = cherryview_irq_uninstall;
4599                dev->driver->enable_vblank = valleyview_enable_vblank;
4600                dev->driver->disable_vblank = valleyview_disable_vblank;
4601                dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4602        } else if (IS_VALLEYVIEW(dev_priv)) {
4603                dev->driver->irq_handler = valleyview_irq_handler;
4604                dev->driver->irq_preinstall = valleyview_irq_preinstall;
4605                dev->driver->irq_postinstall = valleyview_irq_postinstall;
4606                dev->driver->irq_uninstall = valleyview_irq_uninstall;
4607                dev->driver->enable_vblank = valleyview_enable_vblank;
4608                dev->driver->disable_vblank = valleyview_disable_vblank;
4609                dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4610        } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4611                dev->driver->irq_handler = gen8_irq_handler;
4612                dev->driver->irq_preinstall = gen8_irq_reset;
4613                dev->driver->irq_postinstall = gen8_irq_postinstall;
4614                dev->driver->irq_uninstall = gen8_irq_uninstall;
4615                dev->driver->enable_vblank = gen8_enable_vblank;
4616                dev->driver->disable_vblank = gen8_disable_vblank;
4617                if (IS_BROXTON(dev))
4618                        dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4619                else if (HAS_PCH_SPT(dev))
4620                        dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4621                else
4622                        dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4623        } else if (HAS_PCH_SPLIT(dev)) {
4624                dev->driver->irq_handler = ironlake_irq_handler;
4625                dev->driver->irq_preinstall = ironlake_irq_reset;
4626                dev->driver->irq_postinstall = ironlake_irq_postinstall;
4627                dev->driver->irq_uninstall = ironlake_irq_uninstall;
4628                dev->driver->enable_vblank = ironlake_enable_vblank;
4629                dev->driver->disable_vblank = ironlake_disable_vblank;
4630                dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4631        } else {
4632                if (INTEL_INFO(dev_priv)->gen == 2) {
4633                        dev->driver->irq_preinstall = i8xx_irq_preinstall;
4634                        dev->driver->irq_postinstall = i8xx_irq_postinstall;
4635                        dev->driver->irq_handler = i8xx_irq_handler;
4636                        dev->driver->irq_uninstall = i8xx_irq_uninstall;
4637                } else if (INTEL_INFO(dev_priv)->gen == 3) {
4638                        dev->driver->irq_preinstall = i915_irq_preinstall;
4639                        dev->driver->irq_postinstall = i915_irq_postinstall;
4640                        dev->driver->irq_uninstall = i915_irq_uninstall;
4641                        dev->driver->irq_handler = i915_irq_handler;
4642                } else {
4643                        dev->driver->irq_preinstall = i965_irq_preinstall;
4644                        dev->driver->irq_postinstall = i965_irq_postinstall;
4645                        dev->driver->irq_uninstall = i965_irq_uninstall;
4646                        dev->driver->irq_handler = i965_irq_handler;
4647                }
4648                if (I915_HAS_HOTPLUG(dev_priv))
4649                        dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4650                dev->driver->enable_vblank = i915_enable_vblank;
4651                dev->driver->disable_vblank = i915_disable_vblank;
4652        }
4653}
4654
4655/**
4656 * intel_irq_install - enables the hardware interrupt
4657 * @dev_priv: i915 device instance
4658 *
4659 * This function enables the hardware interrupt handling, but leaves the hotplug
4660 * handling still disabled. It is called after intel_irq_init().
4661 *
4662 * In the driver load and resume code we need working interrupts in a few places
4663 * but don't want to deal with the hassle of concurrent probe and hotplug
4664 * workers. Hence the split into this two-stage approach.
4665 */
4666int intel_irq_install(struct drm_i915_private *dev_priv)
4667{
4668        /*
4669         * We enable some interrupt sources in our postinstall hooks, so mark
4670         * interrupts as enabled _before_ actually enabling them to avoid
4671         * special cases in our ordering checks.
4672         */
4673        dev_priv->pm.irqs_enabled = true;
4674
4675        return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4676}
4677
4678/**
4679 * intel_irq_uninstall - finilizes all irq handling
4680 * @dev_priv: i915 device instance
4681 *
4682 * This stops interrupt and hotplug handling and unregisters and frees all
4683 * resources acquired in the init functions.
4684 */
4685void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4686{
4687        drm_irq_uninstall(dev_priv->dev);
4688        intel_hpd_cancel_work(dev_priv);
4689        dev_priv->pm.irqs_enabled = false;
4690}
4691
4692/**
4693 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4694 * @dev_priv: i915 device instance
4695 *
4696 * This function is used to disable interrupts at runtime, both in the runtime
4697 * pm and the system suspend/resume code.
4698 */
4699void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4700{
4701        dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4702        dev_priv->pm.irqs_enabled = false;
4703        synchronize_irq(dev_priv->dev->irq);
4704}
4705
4706/**
4707 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4708 * @dev_priv: i915 device instance
4709 *
4710 * This function is used to enable interrupts at runtime, both in the runtime
4711 * pm and the system suspend/resume code.
4712 */
4713void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4714{
4715        dev_priv->pm.irqs_enabled = true;
4716        dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4717        dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4718}
4719