linux/drivers/input/input.c
<<
>>
Prefs
   1/*
   2 * The input core
   3 *
   4 * Copyright (c) 1999-2002 Vojtech Pavlik
   5 */
   6
   7/*
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License version 2 as published by
  10 * the Free Software Foundation.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  14
  15#include <linux/init.h>
  16#include <linux/types.h>
  17#include <linux/idr.h>
  18#include <linux/input/mt.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/random.h>
  22#include <linux/major.h>
  23#include <linux/proc_fs.h>
  24#include <linux/sched.h>
  25#include <linux/seq_file.h>
  26#include <linux/poll.h>
  27#include <linux/device.h>
  28#include <linux/mutex.h>
  29#include <linux/rcupdate.h>
  30#include "input-compat.h"
  31
  32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  33MODULE_DESCRIPTION("Input core");
  34MODULE_LICENSE("GPL");
  35
  36#define INPUT_MAX_CHAR_DEVICES          1024
  37#define INPUT_FIRST_DYNAMIC_DEV         256
  38static DEFINE_IDA(input_ida);
  39
  40static LIST_HEAD(input_dev_list);
  41static LIST_HEAD(input_handler_list);
  42
  43/*
  44 * input_mutex protects access to both input_dev_list and input_handler_list.
  45 * This also causes input_[un]register_device and input_[un]register_handler
  46 * be mutually exclusive which simplifies locking in drivers implementing
  47 * input handlers.
  48 */
  49static DEFINE_MUTEX(input_mutex);
  50
  51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  52
  53static inline int is_event_supported(unsigned int code,
  54                                     unsigned long *bm, unsigned int max)
  55{
  56        return code <= max && test_bit(code, bm);
  57}
  58
  59static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  60{
  61        if (fuzz) {
  62                if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  63                        return old_val;
  64
  65                if (value > old_val - fuzz && value < old_val + fuzz)
  66                        return (old_val * 3 + value) / 4;
  67
  68                if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  69                        return (old_val + value) / 2;
  70        }
  71
  72        return value;
  73}
  74
  75static void input_start_autorepeat(struct input_dev *dev, int code)
  76{
  77        if (test_bit(EV_REP, dev->evbit) &&
  78            dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  79            dev->timer.data) {
  80                dev->repeat_key = code;
  81                mod_timer(&dev->timer,
  82                          jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  83        }
  84}
  85
  86static void input_stop_autorepeat(struct input_dev *dev)
  87{
  88        del_timer(&dev->timer);
  89}
  90
  91/*
  92 * Pass event first through all filters and then, if event has not been
  93 * filtered out, through all open handles. This function is called with
  94 * dev->event_lock held and interrupts disabled.
  95 */
  96static unsigned int input_to_handler(struct input_handle *handle,
  97                        struct input_value *vals, unsigned int count)
  98{
  99        struct input_handler *handler = handle->handler;
 100        struct input_value *end = vals;
 101        struct input_value *v;
 102
 103        if (handler->filter) {
 104                for (v = vals; v != vals + count; v++) {
 105                        if (handler->filter(handle, v->type, v->code, v->value))
 106                                continue;
 107                        if (end != v)
 108                                *end = *v;
 109                        end++;
 110                }
 111                count = end - vals;
 112        }
 113
 114        if (!count)
 115                return 0;
 116
 117        if (handler->events)
 118                handler->events(handle, vals, count);
 119        else if (handler->event)
 120                for (v = vals; v != vals + count; v++)
 121                        handler->event(handle, v->type, v->code, v->value);
 122
 123        return count;
 124}
 125
 126/*
 127 * Pass values first through all filters and then, if event has not been
 128 * filtered out, through all open handles. This function is called with
 129 * dev->event_lock held and interrupts disabled.
 130 */
 131static void input_pass_values(struct input_dev *dev,
 132                              struct input_value *vals, unsigned int count)
 133{
 134        struct input_handle *handle;
 135        struct input_value *v;
 136
 137        if (!count)
 138                return;
 139
 140        rcu_read_lock();
 141
 142        handle = rcu_dereference(dev->grab);
 143        if (handle) {
 144                count = input_to_handler(handle, vals, count);
 145        } else {
 146                list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 147                        if (handle->open) {
 148                                count = input_to_handler(handle, vals, count);
 149                                if (!count)
 150                                        break;
 151                        }
 152        }
 153
 154        rcu_read_unlock();
 155
 156        add_input_randomness(vals->type, vals->code, vals->value);
 157
 158        /* trigger auto repeat for key events */
 159        if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 160                for (v = vals; v != vals + count; v++) {
 161                        if (v->type == EV_KEY && v->value != 2) {
 162                                if (v->value)
 163                                        input_start_autorepeat(dev, v->code);
 164                                else
 165                                        input_stop_autorepeat(dev);
 166                        }
 167                }
 168        }
 169}
 170
 171static void input_pass_event(struct input_dev *dev,
 172                             unsigned int type, unsigned int code, int value)
 173{
 174        struct input_value vals[] = { { type, code, value } };
 175
 176        input_pass_values(dev, vals, ARRAY_SIZE(vals));
 177}
 178
 179/*
 180 * Generate software autorepeat event. Note that we take
 181 * dev->event_lock here to avoid racing with input_event
 182 * which may cause keys get "stuck".
 183 */
 184static void input_repeat_key(unsigned long data)
 185{
 186        struct input_dev *dev = (void *) data;
 187        unsigned long flags;
 188
 189        spin_lock_irqsave(&dev->event_lock, flags);
 190
 191        if (test_bit(dev->repeat_key, dev->key) &&
 192            is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 193                struct input_value vals[] =  {
 194                        { EV_KEY, dev->repeat_key, 2 },
 195                        input_value_sync
 196                };
 197
 198                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 199
 200                if (dev->rep[REP_PERIOD])
 201                        mod_timer(&dev->timer, jiffies +
 202                                        msecs_to_jiffies(dev->rep[REP_PERIOD]));
 203        }
 204
 205        spin_unlock_irqrestore(&dev->event_lock, flags);
 206}
 207
 208#define INPUT_IGNORE_EVENT      0
 209#define INPUT_PASS_TO_HANDLERS  1
 210#define INPUT_PASS_TO_DEVICE    2
 211#define INPUT_SLOT              4
 212#define INPUT_FLUSH             8
 213#define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 214
 215static int input_handle_abs_event(struct input_dev *dev,
 216                                  unsigned int code, int *pval)
 217{
 218        struct input_mt *mt = dev->mt;
 219        bool is_mt_event;
 220        int *pold;
 221
 222        if (code == ABS_MT_SLOT) {
 223                /*
 224                 * "Stage" the event; we'll flush it later, when we
 225                 * get actual touch data.
 226                 */
 227                if (mt && *pval >= 0 && *pval < mt->num_slots)
 228                        mt->slot = *pval;
 229
 230                return INPUT_IGNORE_EVENT;
 231        }
 232
 233        is_mt_event = input_is_mt_value(code);
 234
 235        if (!is_mt_event) {
 236                pold = &dev->absinfo[code].value;
 237        } else if (mt) {
 238                pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 239        } else {
 240                /*
 241                 * Bypass filtering for multi-touch events when
 242                 * not employing slots.
 243                 */
 244                pold = NULL;
 245        }
 246
 247        if (pold) {
 248                *pval = input_defuzz_abs_event(*pval, *pold,
 249                                                dev->absinfo[code].fuzz);
 250                if (*pold == *pval)
 251                        return INPUT_IGNORE_EVENT;
 252
 253                *pold = *pval;
 254        }
 255
 256        /* Flush pending "slot" event */
 257        if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 258                input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 259                return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 260        }
 261
 262        return INPUT_PASS_TO_HANDLERS;
 263}
 264
 265static int input_get_disposition(struct input_dev *dev,
 266                          unsigned int type, unsigned int code, int *pval)
 267{
 268        int disposition = INPUT_IGNORE_EVENT;
 269        int value = *pval;
 270
 271        switch (type) {
 272
 273        case EV_SYN:
 274                switch (code) {
 275                case SYN_CONFIG:
 276                        disposition = INPUT_PASS_TO_ALL;
 277                        break;
 278
 279                case SYN_REPORT:
 280                        disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 281                        break;
 282                case SYN_MT_REPORT:
 283                        disposition = INPUT_PASS_TO_HANDLERS;
 284                        break;
 285                }
 286                break;
 287
 288        case EV_KEY:
 289                if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 290
 291                        /* auto-repeat bypasses state updates */
 292                        if (value == 2) {
 293                                disposition = INPUT_PASS_TO_HANDLERS;
 294                                break;
 295                        }
 296
 297                        if (!!test_bit(code, dev->key) != !!value) {
 298
 299                                __change_bit(code, dev->key);
 300                                disposition = INPUT_PASS_TO_HANDLERS;
 301                        }
 302                }
 303                break;
 304
 305        case EV_SW:
 306                if (is_event_supported(code, dev->swbit, SW_MAX) &&
 307                    !!test_bit(code, dev->sw) != !!value) {
 308
 309                        __change_bit(code, dev->sw);
 310                        disposition = INPUT_PASS_TO_HANDLERS;
 311                }
 312                break;
 313
 314        case EV_ABS:
 315                if (is_event_supported(code, dev->absbit, ABS_MAX))
 316                        disposition = input_handle_abs_event(dev, code, &value);
 317
 318                break;
 319
 320        case EV_REL:
 321                if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 322                        disposition = INPUT_PASS_TO_HANDLERS;
 323
 324                break;
 325
 326        case EV_MSC:
 327                if (is_event_supported(code, dev->mscbit, MSC_MAX))
 328                        disposition = INPUT_PASS_TO_ALL;
 329
 330                break;
 331
 332        case EV_LED:
 333                if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 334                    !!test_bit(code, dev->led) != !!value) {
 335
 336                        __change_bit(code, dev->led);
 337                        disposition = INPUT_PASS_TO_ALL;
 338                }
 339                break;
 340
 341        case EV_SND:
 342                if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 343
 344                        if (!!test_bit(code, dev->snd) != !!value)
 345                                __change_bit(code, dev->snd);
 346                        disposition = INPUT_PASS_TO_ALL;
 347                }
 348                break;
 349
 350        case EV_REP:
 351                if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 352                        dev->rep[code] = value;
 353                        disposition = INPUT_PASS_TO_ALL;
 354                }
 355                break;
 356
 357        case EV_FF:
 358                if (value >= 0)
 359                        disposition = INPUT_PASS_TO_ALL;
 360                break;
 361
 362        case EV_PWR:
 363                disposition = INPUT_PASS_TO_ALL;
 364                break;
 365        }
 366
 367        *pval = value;
 368        return disposition;
 369}
 370
 371static void input_handle_event(struct input_dev *dev,
 372                               unsigned int type, unsigned int code, int value)
 373{
 374        int disposition;
 375
 376        disposition = input_get_disposition(dev, type, code, &value);
 377
 378        if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 379                dev->event(dev, type, code, value);
 380
 381        if (!dev->vals)
 382                return;
 383
 384        if (disposition & INPUT_PASS_TO_HANDLERS) {
 385                struct input_value *v;
 386
 387                if (disposition & INPUT_SLOT) {
 388                        v = &dev->vals[dev->num_vals++];
 389                        v->type = EV_ABS;
 390                        v->code = ABS_MT_SLOT;
 391                        v->value = dev->mt->slot;
 392                }
 393
 394                v = &dev->vals[dev->num_vals++];
 395                v->type = type;
 396                v->code = code;
 397                v->value = value;
 398        }
 399
 400        if (disposition & INPUT_FLUSH) {
 401                if (dev->num_vals >= 2)
 402                        input_pass_values(dev, dev->vals, dev->num_vals);
 403                dev->num_vals = 0;
 404        } else if (dev->num_vals >= dev->max_vals - 2) {
 405                dev->vals[dev->num_vals++] = input_value_sync;
 406                input_pass_values(dev, dev->vals, dev->num_vals);
 407                dev->num_vals = 0;
 408        }
 409
 410}
 411
 412/**
 413 * input_event() - report new input event
 414 * @dev: device that generated the event
 415 * @type: type of the event
 416 * @code: event code
 417 * @value: value of the event
 418 *
 419 * This function should be used by drivers implementing various input
 420 * devices to report input events. See also input_inject_event().
 421 *
 422 * NOTE: input_event() may be safely used right after input device was
 423 * allocated with input_allocate_device(), even before it is registered
 424 * with input_register_device(), but the event will not reach any of the
 425 * input handlers. Such early invocation of input_event() may be used
 426 * to 'seed' initial state of a switch or initial position of absolute
 427 * axis, etc.
 428 */
 429void input_event(struct input_dev *dev,
 430                 unsigned int type, unsigned int code, int value)
 431{
 432        unsigned long flags;
 433
 434        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 435
 436                spin_lock_irqsave(&dev->event_lock, flags);
 437                input_handle_event(dev, type, code, value);
 438                spin_unlock_irqrestore(&dev->event_lock, flags);
 439        }
 440}
 441EXPORT_SYMBOL(input_event);
 442
 443/**
 444 * input_inject_event() - send input event from input handler
 445 * @handle: input handle to send event through
 446 * @type: type of the event
 447 * @code: event code
 448 * @value: value of the event
 449 *
 450 * Similar to input_event() but will ignore event if device is
 451 * "grabbed" and handle injecting event is not the one that owns
 452 * the device.
 453 */
 454void input_inject_event(struct input_handle *handle,
 455                        unsigned int type, unsigned int code, int value)
 456{
 457        struct input_dev *dev = handle->dev;
 458        struct input_handle *grab;
 459        unsigned long flags;
 460
 461        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 462                spin_lock_irqsave(&dev->event_lock, flags);
 463
 464                rcu_read_lock();
 465                grab = rcu_dereference(dev->grab);
 466                if (!grab || grab == handle)
 467                        input_handle_event(dev, type, code, value);
 468                rcu_read_unlock();
 469
 470                spin_unlock_irqrestore(&dev->event_lock, flags);
 471        }
 472}
 473EXPORT_SYMBOL(input_inject_event);
 474
 475/**
 476 * input_alloc_absinfo - allocates array of input_absinfo structs
 477 * @dev: the input device emitting absolute events
 478 *
 479 * If the absinfo struct the caller asked for is already allocated, this
 480 * functions will not do anything.
 481 */
 482void input_alloc_absinfo(struct input_dev *dev)
 483{
 484        if (!dev->absinfo)
 485                dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
 486                                        GFP_KERNEL);
 487
 488        WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
 489}
 490EXPORT_SYMBOL(input_alloc_absinfo);
 491
 492void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 493                          int min, int max, int fuzz, int flat)
 494{
 495        struct input_absinfo *absinfo;
 496
 497        input_alloc_absinfo(dev);
 498        if (!dev->absinfo)
 499                return;
 500
 501        absinfo = &dev->absinfo[axis];
 502        absinfo->minimum = min;
 503        absinfo->maximum = max;
 504        absinfo->fuzz = fuzz;
 505        absinfo->flat = flat;
 506
 507        __set_bit(EV_ABS, dev->evbit);
 508        __set_bit(axis, dev->absbit);
 509}
 510EXPORT_SYMBOL(input_set_abs_params);
 511
 512
 513/**
 514 * input_grab_device - grabs device for exclusive use
 515 * @handle: input handle that wants to own the device
 516 *
 517 * When a device is grabbed by an input handle all events generated by
 518 * the device are delivered only to this handle. Also events injected
 519 * by other input handles are ignored while device is grabbed.
 520 */
 521int input_grab_device(struct input_handle *handle)
 522{
 523        struct input_dev *dev = handle->dev;
 524        int retval;
 525
 526        retval = mutex_lock_interruptible(&dev->mutex);
 527        if (retval)
 528                return retval;
 529
 530        if (dev->grab) {
 531                retval = -EBUSY;
 532                goto out;
 533        }
 534
 535        rcu_assign_pointer(dev->grab, handle);
 536
 537 out:
 538        mutex_unlock(&dev->mutex);
 539        return retval;
 540}
 541EXPORT_SYMBOL(input_grab_device);
 542
 543static void __input_release_device(struct input_handle *handle)
 544{
 545        struct input_dev *dev = handle->dev;
 546        struct input_handle *grabber;
 547
 548        grabber = rcu_dereference_protected(dev->grab,
 549                                            lockdep_is_held(&dev->mutex));
 550        if (grabber == handle) {
 551                rcu_assign_pointer(dev->grab, NULL);
 552                /* Make sure input_pass_event() notices that grab is gone */
 553                synchronize_rcu();
 554
 555                list_for_each_entry(handle, &dev->h_list, d_node)
 556                        if (handle->open && handle->handler->start)
 557                                handle->handler->start(handle);
 558        }
 559}
 560
 561/**
 562 * input_release_device - release previously grabbed device
 563 * @handle: input handle that owns the device
 564 *
 565 * Releases previously grabbed device so that other input handles can
 566 * start receiving input events. Upon release all handlers attached
 567 * to the device have their start() method called so they have a change
 568 * to synchronize device state with the rest of the system.
 569 */
 570void input_release_device(struct input_handle *handle)
 571{
 572        struct input_dev *dev = handle->dev;
 573
 574        mutex_lock(&dev->mutex);
 575        __input_release_device(handle);
 576        mutex_unlock(&dev->mutex);
 577}
 578EXPORT_SYMBOL(input_release_device);
 579
 580/**
 581 * input_open_device - open input device
 582 * @handle: handle through which device is being accessed
 583 *
 584 * This function should be called by input handlers when they
 585 * want to start receive events from given input device.
 586 */
 587int input_open_device(struct input_handle *handle)
 588{
 589        struct input_dev *dev = handle->dev;
 590        int retval;
 591
 592        retval = mutex_lock_interruptible(&dev->mutex);
 593        if (retval)
 594                return retval;
 595
 596        if (dev->going_away) {
 597                retval = -ENODEV;
 598                goto out;
 599        }
 600
 601        handle->open++;
 602
 603        if (!dev->users++ && dev->open)
 604                retval = dev->open(dev);
 605
 606        if (retval) {
 607                dev->users--;
 608                if (!--handle->open) {
 609                        /*
 610                         * Make sure we are not delivering any more events
 611                         * through this handle
 612                         */
 613                        synchronize_rcu();
 614                }
 615        }
 616
 617 out:
 618        mutex_unlock(&dev->mutex);
 619        return retval;
 620}
 621EXPORT_SYMBOL(input_open_device);
 622
 623int input_flush_device(struct input_handle *handle, struct file *file)
 624{
 625        struct input_dev *dev = handle->dev;
 626        int retval;
 627
 628        retval = mutex_lock_interruptible(&dev->mutex);
 629        if (retval)
 630                return retval;
 631
 632        if (dev->flush)
 633                retval = dev->flush(dev, file);
 634
 635        mutex_unlock(&dev->mutex);
 636        return retval;
 637}
 638EXPORT_SYMBOL(input_flush_device);
 639
 640/**
 641 * input_close_device - close input device
 642 * @handle: handle through which device is being accessed
 643 *
 644 * This function should be called by input handlers when they
 645 * want to stop receive events from given input device.
 646 */
 647void input_close_device(struct input_handle *handle)
 648{
 649        struct input_dev *dev = handle->dev;
 650
 651        mutex_lock(&dev->mutex);
 652
 653        __input_release_device(handle);
 654
 655        if (!--dev->users && dev->close)
 656                dev->close(dev);
 657
 658        if (!--handle->open) {
 659                /*
 660                 * synchronize_rcu() makes sure that input_pass_event()
 661                 * completed and that no more input events are delivered
 662                 * through this handle
 663                 */
 664                synchronize_rcu();
 665        }
 666
 667        mutex_unlock(&dev->mutex);
 668}
 669EXPORT_SYMBOL(input_close_device);
 670
 671/*
 672 * Simulate keyup events for all keys that are marked as pressed.
 673 * The function must be called with dev->event_lock held.
 674 */
 675static void input_dev_release_keys(struct input_dev *dev)
 676{
 677        bool need_sync = false;
 678        int code;
 679
 680        if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 681                for_each_set_bit(code, dev->key, KEY_CNT) {
 682                        input_pass_event(dev, EV_KEY, code, 0);
 683                        need_sync = true;
 684                }
 685
 686                if (need_sync)
 687                        input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 688
 689                memset(dev->key, 0, sizeof(dev->key));
 690        }
 691}
 692
 693/*
 694 * Prepare device for unregistering
 695 */
 696static void input_disconnect_device(struct input_dev *dev)
 697{
 698        struct input_handle *handle;
 699
 700        /*
 701         * Mark device as going away. Note that we take dev->mutex here
 702         * not to protect access to dev->going_away but rather to ensure
 703         * that there are no threads in the middle of input_open_device()
 704         */
 705        mutex_lock(&dev->mutex);
 706        dev->going_away = true;
 707        mutex_unlock(&dev->mutex);
 708
 709        spin_lock_irq(&dev->event_lock);
 710
 711        /*
 712         * Simulate keyup events for all pressed keys so that handlers
 713         * are not left with "stuck" keys. The driver may continue
 714         * generate events even after we done here but they will not
 715         * reach any handlers.
 716         */
 717        input_dev_release_keys(dev);
 718
 719        list_for_each_entry(handle, &dev->h_list, d_node)
 720                handle->open = 0;
 721
 722        spin_unlock_irq(&dev->event_lock);
 723}
 724
 725/**
 726 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 727 * @ke: keymap entry containing scancode to be converted.
 728 * @scancode: pointer to the location where converted scancode should
 729 *      be stored.
 730 *
 731 * This function is used to convert scancode stored in &struct keymap_entry
 732 * into scalar form understood by legacy keymap handling methods. These
 733 * methods expect scancodes to be represented as 'unsigned int'.
 734 */
 735int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 736                             unsigned int *scancode)
 737{
 738        switch (ke->len) {
 739        case 1:
 740                *scancode = *((u8 *)ke->scancode);
 741                break;
 742
 743        case 2:
 744                *scancode = *((u16 *)ke->scancode);
 745                break;
 746
 747        case 4:
 748                *scancode = *((u32 *)ke->scancode);
 749                break;
 750
 751        default:
 752                return -EINVAL;
 753        }
 754
 755        return 0;
 756}
 757EXPORT_SYMBOL(input_scancode_to_scalar);
 758
 759/*
 760 * Those routines handle the default case where no [gs]etkeycode() is
 761 * defined. In this case, an array indexed by the scancode is used.
 762 */
 763
 764static unsigned int input_fetch_keycode(struct input_dev *dev,
 765                                        unsigned int index)
 766{
 767        switch (dev->keycodesize) {
 768        case 1:
 769                return ((u8 *)dev->keycode)[index];
 770
 771        case 2:
 772                return ((u16 *)dev->keycode)[index];
 773
 774        default:
 775                return ((u32 *)dev->keycode)[index];
 776        }
 777}
 778
 779static int input_default_getkeycode(struct input_dev *dev,
 780                                    struct input_keymap_entry *ke)
 781{
 782        unsigned int index;
 783        int error;
 784
 785        if (!dev->keycodesize)
 786                return -EINVAL;
 787
 788        if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 789                index = ke->index;
 790        else {
 791                error = input_scancode_to_scalar(ke, &index);
 792                if (error)
 793                        return error;
 794        }
 795
 796        if (index >= dev->keycodemax)
 797                return -EINVAL;
 798
 799        ke->keycode = input_fetch_keycode(dev, index);
 800        ke->index = index;
 801        ke->len = sizeof(index);
 802        memcpy(ke->scancode, &index, sizeof(index));
 803
 804        return 0;
 805}
 806
 807static int input_default_setkeycode(struct input_dev *dev,
 808                                    const struct input_keymap_entry *ke,
 809                                    unsigned int *old_keycode)
 810{
 811        unsigned int index;
 812        int error;
 813        int i;
 814
 815        if (!dev->keycodesize)
 816                return -EINVAL;
 817
 818        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 819                index = ke->index;
 820        } else {
 821                error = input_scancode_to_scalar(ke, &index);
 822                if (error)
 823                        return error;
 824        }
 825
 826        if (index >= dev->keycodemax)
 827                return -EINVAL;
 828
 829        if (dev->keycodesize < sizeof(ke->keycode) &&
 830                        (ke->keycode >> (dev->keycodesize * 8)))
 831                return -EINVAL;
 832
 833        switch (dev->keycodesize) {
 834                case 1: {
 835                        u8 *k = (u8 *)dev->keycode;
 836                        *old_keycode = k[index];
 837                        k[index] = ke->keycode;
 838                        break;
 839                }
 840                case 2: {
 841                        u16 *k = (u16 *)dev->keycode;
 842                        *old_keycode = k[index];
 843                        k[index] = ke->keycode;
 844                        break;
 845                }
 846                default: {
 847                        u32 *k = (u32 *)dev->keycode;
 848                        *old_keycode = k[index];
 849                        k[index] = ke->keycode;
 850                        break;
 851                }
 852        }
 853
 854        __clear_bit(*old_keycode, dev->keybit);
 855        __set_bit(ke->keycode, dev->keybit);
 856
 857        for (i = 0; i < dev->keycodemax; i++) {
 858                if (input_fetch_keycode(dev, i) == *old_keycode) {
 859                        __set_bit(*old_keycode, dev->keybit);
 860                        break; /* Setting the bit twice is useless, so break */
 861                }
 862        }
 863
 864        return 0;
 865}
 866
 867/**
 868 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 869 * @dev: input device which keymap is being queried
 870 * @ke: keymap entry
 871 *
 872 * This function should be called by anyone interested in retrieving current
 873 * keymap. Presently evdev handlers use it.
 874 */
 875int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 876{
 877        unsigned long flags;
 878        int retval;
 879
 880        spin_lock_irqsave(&dev->event_lock, flags);
 881        retval = dev->getkeycode(dev, ke);
 882        spin_unlock_irqrestore(&dev->event_lock, flags);
 883
 884        return retval;
 885}
 886EXPORT_SYMBOL(input_get_keycode);
 887
 888/**
 889 * input_set_keycode - attribute a keycode to a given scancode
 890 * @dev: input device which keymap is being updated
 891 * @ke: new keymap entry
 892 *
 893 * This function should be called by anyone needing to update current
 894 * keymap. Presently keyboard and evdev handlers use it.
 895 */
 896int input_set_keycode(struct input_dev *dev,
 897                      const struct input_keymap_entry *ke)
 898{
 899        unsigned long flags;
 900        unsigned int old_keycode;
 901        int retval;
 902
 903        if (ke->keycode > KEY_MAX)
 904                return -EINVAL;
 905
 906        spin_lock_irqsave(&dev->event_lock, flags);
 907
 908        retval = dev->setkeycode(dev, ke, &old_keycode);
 909        if (retval)
 910                goto out;
 911
 912        /* Make sure KEY_RESERVED did not get enabled. */
 913        __clear_bit(KEY_RESERVED, dev->keybit);
 914
 915        /*
 916         * Simulate keyup event if keycode is not present
 917         * in the keymap anymore
 918         */
 919        if (test_bit(EV_KEY, dev->evbit) &&
 920            !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 921            __test_and_clear_bit(old_keycode, dev->key)) {
 922                struct input_value vals[] =  {
 923                        { EV_KEY, old_keycode, 0 },
 924                        input_value_sync
 925                };
 926
 927                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 928        }
 929
 930 out:
 931        spin_unlock_irqrestore(&dev->event_lock, flags);
 932
 933        return retval;
 934}
 935EXPORT_SYMBOL(input_set_keycode);
 936
 937static const struct input_device_id *input_match_device(struct input_handler *handler,
 938                                                        struct input_dev *dev)
 939{
 940        const struct input_device_id *id;
 941
 942        for (id = handler->id_table; id->flags || id->driver_info; id++) {
 943
 944                if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 945                        if (id->bustype != dev->id.bustype)
 946                                continue;
 947
 948                if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 949                        if (id->vendor != dev->id.vendor)
 950                                continue;
 951
 952                if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 953                        if (id->product != dev->id.product)
 954                                continue;
 955
 956                if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 957                        if (id->version != dev->id.version)
 958                                continue;
 959
 960                if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
 961                        continue;
 962
 963                if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
 964                        continue;
 965
 966                if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
 967                        continue;
 968
 969                if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
 970                        continue;
 971
 972                if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
 973                        continue;
 974
 975                if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
 976                        continue;
 977
 978                if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
 979                        continue;
 980
 981                if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
 982                        continue;
 983
 984                if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
 985                        continue;
 986
 987                if (!handler->match || handler->match(handler, dev))
 988                        return id;
 989        }
 990
 991        return NULL;
 992}
 993
 994static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
 995{
 996        const struct input_device_id *id;
 997        int error;
 998
 999        id = input_match_device(handler, dev);
1000        if (!id)
1001                return -ENODEV;
1002
1003        error = handler->connect(handler, dev, id);
1004        if (error && error != -ENODEV)
1005                pr_err("failed to attach handler %s to device %s, error: %d\n",
1006                       handler->name, kobject_name(&dev->dev.kobj), error);
1007
1008        return error;
1009}
1010
1011#ifdef CONFIG_COMPAT
1012
1013static int input_bits_to_string(char *buf, int buf_size,
1014                                unsigned long bits, bool skip_empty)
1015{
1016        int len = 0;
1017
1018        if (in_compat_syscall()) {
1019                u32 dword = bits >> 32;
1020                if (dword || !skip_empty)
1021                        len += snprintf(buf, buf_size, "%x ", dword);
1022
1023                dword = bits & 0xffffffffUL;
1024                if (dword || !skip_empty || len)
1025                        len += snprintf(buf + len, max(buf_size - len, 0),
1026                                        "%x", dword);
1027        } else {
1028                if (bits || !skip_empty)
1029                        len += snprintf(buf, buf_size, "%lx", bits);
1030        }
1031
1032        return len;
1033}
1034
1035#else /* !CONFIG_COMPAT */
1036
1037static int input_bits_to_string(char *buf, int buf_size,
1038                                unsigned long bits, bool skip_empty)
1039{
1040        return bits || !skip_empty ?
1041                snprintf(buf, buf_size, "%lx", bits) : 0;
1042}
1043
1044#endif
1045
1046#ifdef CONFIG_PROC_FS
1047
1048static struct proc_dir_entry *proc_bus_input_dir;
1049static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1050static int input_devices_state;
1051
1052static inline void input_wakeup_procfs_readers(void)
1053{
1054        input_devices_state++;
1055        wake_up(&input_devices_poll_wait);
1056}
1057
1058static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1059{
1060        poll_wait(file, &input_devices_poll_wait, wait);
1061        if (file->f_version != input_devices_state) {
1062                file->f_version = input_devices_state;
1063                return POLLIN | POLLRDNORM;
1064        }
1065
1066        return 0;
1067}
1068
1069union input_seq_state {
1070        struct {
1071                unsigned short pos;
1072                bool mutex_acquired;
1073        };
1074        void *p;
1075};
1076
1077static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1078{
1079        union input_seq_state *state = (union input_seq_state *)&seq->private;
1080        int error;
1081
1082        /* We need to fit into seq->private pointer */
1083        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1084
1085        error = mutex_lock_interruptible(&input_mutex);
1086        if (error) {
1087                state->mutex_acquired = false;
1088                return ERR_PTR(error);
1089        }
1090
1091        state->mutex_acquired = true;
1092
1093        return seq_list_start(&input_dev_list, *pos);
1094}
1095
1096static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1097{
1098        return seq_list_next(v, &input_dev_list, pos);
1099}
1100
1101static void input_seq_stop(struct seq_file *seq, void *v)
1102{
1103        union input_seq_state *state = (union input_seq_state *)&seq->private;
1104
1105        if (state->mutex_acquired)
1106                mutex_unlock(&input_mutex);
1107}
1108
1109static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1110                                   unsigned long *bitmap, int max)
1111{
1112        int i;
1113        bool skip_empty = true;
1114        char buf[18];
1115
1116        seq_printf(seq, "B: %s=", name);
1117
1118        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1119                if (input_bits_to_string(buf, sizeof(buf),
1120                                         bitmap[i], skip_empty)) {
1121                        skip_empty = false;
1122                        seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1123                }
1124        }
1125
1126        /*
1127         * If no output was produced print a single 0.
1128         */
1129        if (skip_empty)
1130                seq_puts(seq, "0");
1131
1132        seq_putc(seq, '\n');
1133}
1134
1135static int input_devices_seq_show(struct seq_file *seq, void *v)
1136{
1137        struct input_dev *dev = container_of(v, struct input_dev, node);
1138        const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1139        struct input_handle *handle;
1140
1141        seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1142                   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1143
1144        seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1145        seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1146        seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1147        seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1148        seq_printf(seq, "H: Handlers=");
1149
1150        list_for_each_entry(handle, &dev->h_list, d_node)
1151                seq_printf(seq, "%s ", handle->name);
1152        seq_putc(seq, '\n');
1153
1154        input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1155
1156        input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1157        if (test_bit(EV_KEY, dev->evbit))
1158                input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1159        if (test_bit(EV_REL, dev->evbit))
1160                input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1161        if (test_bit(EV_ABS, dev->evbit))
1162                input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1163        if (test_bit(EV_MSC, dev->evbit))
1164                input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1165        if (test_bit(EV_LED, dev->evbit))
1166                input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1167        if (test_bit(EV_SND, dev->evbit))
1168                input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1169        if (test_bit(EV_FF, dev->evbit))
1170                input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1171        if (test_bit(EV_SW, dev->evbit))
1172                input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1173
1174        seq_putc(seq, '\n');
1175
1176        kfree(path);
1177        return 0;
1178}
1179
1180static const struct seq_operations input_devices_seq_ops = {
1181        .start  = input_devices_seq_start,
1182        .next   = input_devices_seq_next,
1183        .stop   = input_seq_stop,
1184        .show   = input_devices_seq_show,
1185};
1186
1187static int input_proc_devices_open(struct inode *inode, struct file *file)
1188{
1189        return seq_open(file, &input_devices_seq_ops);
1190}
1191
1192static const struct file_operations input_devices_fileops = {
1193        .owner          = THIS_MODULE,
1194        .open           = input_proc_devices_open,
1195        .poll           = input_proc_devices_poll,
1196        .read           = seq_read,
1197        .llseek         = seq_lseek,
1198        .release        = seq_release,
1199};
1200
1201static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1202{
1203        union input_seq_state *state = (union input_seq_state *)&seq->private;
1204        int error;
1205
1206        /* We need to fit into seq->private pointer */
1207        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1208
1209        error = mutex_lock_interruptible(&input_mutex);
1210        if (error) {
1211                state->mutex_acquired = false;
1212                return ERR_PTR(error);
1213        }
1214
1215        state->mutex_acquired = true;
1216        state->pos = *pos;
1217
1218        return seq_list_start(&input_handler_list, *pos);
1219}
1220
1221static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1222{
1223        union input_seq_state *state = (union input_seq_state *)&seq->private;
1224
1225        state->pos = *pos + 1;
1226        return seq_list_next(v, &input_handler_list, pos);
1227}
1228
1229static int input_handlers_seq_show(struct seq_file *seq, void *v)
1230{
1231        struct input_handler *handler = container_of(v, struct input_handler, node);
1232        union input_seq_state *state = (union input_seq_state *)&seq->private;
1233
1234        seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1235        if (handler->filter)
1236                seq_puts(seq, " (filter)");
1237        if (handler->legacy_minors)
1238                seq_printf(seq, " Minor=%d", handler->minor);
1239        seq_putc(seq, '\n');
1240
1241        return 0;
1242}
1243
1244static const struct seq_operations input_handlers_seq_ops = {
1245        .start  = input_handlers_seq_start,
1246        .next   = input_handlers_seq_next,
1247        .stop   = input_seq_stop,
1248        .show   = input_handlers_seq_show,
1249};
1250
1251static int input_proc_handlers_open(struct inode *inode, struct file *file)
1252{
1253        return seq_open(file, &input_handlers_seq_ops);
1254}
1255
1256static const struct file_operations input_handlers_fileops = {
1257        .owner          = THIS_MODULE,
1258        .open           = input_proc_handlers_open,
1259        .read           = seq_read,
1260        .llseek         = seq_lseek,
1261        .release        = seq_release,
1262};
1263
1264static int __init input_proc_init(void)
1265{
1266        struct proc_dir_entry *entry;
1267
1268        proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1269        if (!proc_bus_input_dir)
1270                return -ENOMEM;
1271
1272        entry = proc_create("devices", 0, proc_bus_input_dir,
1273                            &input_devices_fileops);
1274        if (!entry)
1275                goto fail1;
1276
1277        entry = proc_create("handlers", 0, proc_bus_input_dir,
1278                            &input_handlers_fileops);
1279        if (!entry)
1280                goto fail2;
1281
1282        return 0;
1283
1284 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1285 fail1: remove_proc_entry("bus/input", NULL);
1286        return -ENOMEM;
1287}
1288
1289static void input_proc_exit(void)
1290{
1291        remove_proc_entry("devices", proc_bus_input_dir);
1292        remove_proc_entry("handlers", proc_bus_input_dir);
1293        remove_proc_entry("bus/input", NULL);
1294}
1295
1296#else /* !CONFIG_PROC_FS */
1297static inline void input_wakeup_procfs_readers(void) { }
1298static inline int input_proc_init(void) { return 0; }
1299static inline void input_proc_exit(void) { }
1300#endif
1301
1302#define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
1303static ssize_t input_dev_show_##name(struct device *dev,                \
1304                                     struct device_attribute *attr,     \
1305                                     char *buf)                         \
1306{                                                                       \
1307        struct input_dev *input_dev = to_input_dev(dev);                \
1308                                                                        \
1309        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1310                         input_dev->name ? input_dev->name : "");       \
1311}                                                                       \
1312static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1313
1314INPUT_DEV_STRING_ATTR_SHOW(name);
1315INPUT_DEV_STRING_ATTR_SHOW(phys);
1316INPUT_DEV_STRING_ATTR_SHOW(uniq);
1317
1318static int input_print_modalias_bits(char *buf, int size,
1319                                     char name, unsigned long *bm,
1320                                     unsigned int min_bit, unsigned int max_bit)
1321{
1322        int len = 0, i;
1323
1324        len += snprintf(buf, max(size, 0), "%c", name);
1325        for (i = min_bit; i < max_bit; i++)
1326                if (bm[BIT_WORD(i)] & BIT_MASK(i))
1327                        len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1328        return len;
1329}
1330
1331static int input_print_modalias(char *buf, int size, struct input_dev *id,
1332                                int add_cr)
1333{
1334        int len;
1335
1336        len = snprintf(buf, max(size, 0),
1337                       "input:b%04Xv%04Xp%04Xe%04X-",
1338                       id->id.bustype, id->id.vendor,
1339                       id->id.product, id->id.version);
1340
1341        len += input_print_modalias_bits(buf + len, size - len,
1342                                'e', id->evbit, 0, EV_MAX);
1343        len += input_print_modalias_bits(buf + len, size - len,
1344                                'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1345        len += input_print_modalias_bits(buf + len, size - len,
1346                                'r', id->relbit, 0, REL_MAX);
1347        len += input_print_modalias_bits(buf + len, size - len,
1348                                'a', id->absbit, 0, ABS_MAX);
1349        len += input_print_modalias_bits(buf + len, size - len,
1350                                'm', id->mscbit, 0, MSC_MAX);
1351        len += input_print_modalias_bits(buf + len, size - len,
1352                                'l', id->ledbit, 0, LED_MAX);
1353        len += input_print_modalias_bits(buf + len, size - len,
1354                                's', id->sndbit, 0, SND_MAX);
1355        len += input_print_modalias_bits(buf + len, size - len,
1356                                'f', id->ffbit, 0, FF_MAX);
1357        len += input_print_modalias_bits(buf + len, size - len,
1358                                'w', id->swbit, 0, SW_MAX);
1359
1360        if (add_cr)
1361                len += snprintf(buf + len, max(size - len, 0), "\n");
1362
1363        return len;
1364}
1365
1366static ssize_t input_dev_show_modalias(struct device *dev,
1367                                       struct device_attribute *attr,
1368                                       char *buf)
1369{
1370        struct input_dev *id = to_input_dev(dev);
1371        ssize_t len;
1372
1373        len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1374
1375        return min_t(int, len, PAGE_SIZE);
1376}
1377static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1378
1379static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1380                              int max, int add_cr);
1381
1382static ssize_t input_dev_show_properties(struct device *dev,
1383                                         struct device_attribute *attr,
1384                                         char *buf)
1385{
1386        struct input_dev *input_dev = to_input_dev(dev);
1387        int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1388                                     INPUT_PROP_MAX, true);
1389        return min_t(int, len, PAGE_SIZE);
1390}
1391static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1392
1393static struct attribute *input_dev_attrs[] = {
1394        &dev_attr_name.attr,
1395        &dev_attr_phys.attr,
1396        &dev_attr_uniq.attr,
1397        &dev_attr_modalias.attr,
1398        &dev_attr_properties.attr,
1399        NULL
1400};
1401
1402static struct attribute_group input_dev_attr_group = {
1403        .attrs  = input_dev_attrs,
1404};
1405
1406#define INPUT_DEV_ID_ATTR(name)                                         \
1407static ssize_t input_dev_show_id_##name(struct device *dev,             \
1408                                        struct device_attribute *attr,  \
1409                                        char *buf)                      \
1410{                                                                       \
1411        struct input_dev *input_dev = to_input_dev(dev);                \
1412        return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1413}                                                                       \
1414static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1415
1416INPUT_DEV_ID_ATTR(bustype);
1417INPUT_DEV_ID_ATTR(vendor);
1418INPUT_DEV_ID_ATTR(product);
1419INPUT_DEV_ID_ATTR(version);
1420
1421static struct attribute *input_dev_id_attrs[] = {
1422        &dev_attr_bustype.attr,
1423        &dev_attr_vendor.attr,
1424        &dev_attr_product.attr,
1425        &dev_attr_version.attr,
1426        NULL
1427};
1428
1429static struct attribute_group input_dev_id_attr_group = {
1430        .name   = "id",
1431        .attrs  = input_dev_id_attrs,
1432};
1433
1434static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1435                              int max, int add_cr)
1436{
1437        int i;
1438        int len = 0;
1439        bool skip_empty = true;
1440
1441        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1442                len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1443                                            bitmap[i], skip_empty);
1444                if (len) {
1445                        skip_empty = false;
1446                        if (i > 0)
1447                                len += snprintf(buf + len, max(buf_size - len, 0), " ");
1448                }
1449        }
1450
1451        /*
1452         * If no output was produced print a single 0.
1453         */
1454        if (len == 0)
1455                len = snprintf(buf, buf_size, "%d", 0);
1456
1457        if (add_cr)
1458                len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1459
1460        return len;
1461}
1462
1463#define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
1464static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
1465                                       struct device_attribute *attr,   \
1466                                       char *buf)                       \
1467{                                                                       \
1468        struct input_dev *input_dev = to_input_dev(dev);                \
1469        int len = input_print_bitmap(buf, PAGE_SIZE,                    \
1470                                     input_dev->bm##bit, ev##_MAX,      \
1471                                     true);                             \
1472        return min_t(int, len, PAGE_SIZE);                              \
1473}                                                                       \
1474static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1475
1476INPUT_DEV_CAP_ATTR(EV, ev);
1477INPUT_DEV_CAP_ATTR(KEY, key);
1478INPUT_DEV_CAP_ATTR(REL, rel);
1479INPUT_DEV_CAP_ATTR(ABS, abs);
1480INPUT_DEV_CAP_ATTR(MSC, msc);
1481INPUT_DEV_CAP_ATTR(LED, led);
1482INPUT_DEV_CAP_ATTR(SND, snd);
1483INPUT_DEV_CAP_ATTR(FF, ff);
1484INPUT_DEV_CAP_ATTR(SW, sw);
1485
1486static struct attribute *input_dev_caps_attrs[] = {
1487        &dev_attr_ev.attr,
1488        &dev_attr_key.attr,
1489        &dev_attr_rel.attr,
1490        &dev_attr_abs.attr,
1491        &dev_attr_msc.attr,
1492        &dev_attr_led.attr,
1493        &dev_attr_snd.attr,
1494        &dev_attr_ff.attr,
1495        &dev_attr_sw.attr,
1496        NULL
1497};
1498
1499static struct attribute_group input_dev_caps_attr_group = {
1500        .name   = "capabilities",
1501        .attrs  = input_dev_caps_attrs,
1502};
1503
1504static const struct attribute_group *input_dev_attr_groups[] = {
1505        &input_dev_attr_group,
1506        &input_dev_id_attr_group,
1507        &input_dev_caps_attr_group,
1508        NULL
1509};
1510
1511static void input_dev_release(struct device *device)
1512{
1513        struct input_dev *dev = to_input_dev(device);
1514
1515        input_ff_destroy(dev);
1516        input_mt_destroy_slots(dev);
1517        kfree(dev->absinfo);
1518        kfree(dev->vals);
1519        kfree(dev);
1520
1521        module_put(THIS_MODULE);
1522}
1523
1524/*
1525 * Input uevent interface - loading event handlers based on
1526 * device bitfields.
1527 */
1528static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1529                                   const char *name, unsigned long *bitmap, int max)
1530{
1531        int len;
1532
1533        if (add_uevent_var(env, "%s", name))
1534                return -ENOMEM;
1535
1536        len = input_print_bitmap(&env->buf[env->buflen - 1],
1537                                 sizeof(env->buf) - env->buflen,
1538                                 bitmap, max, false);
1539        if (len >= (sizeof(env->buf) - env->buflen))
1540                return -ENOMEM;
1541
1542        env->buflen += len;
1543        return 0;
1544}
1545
1546static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1547                                         struct input_dev *dev)
1548{
1549        int len;
1550
1551        if (add_uevent_var(env, "MODALIAS="))
1552                return -ENOMEM;
1553
1554        len = input_print_modalias(&env->buf[env->buflen - 1],
1555                                   sizeof(env->buf) - env->buflen,
1556                                   dev, 0);
1557        if (len >= (sizeof(env->buf) - env->buflen))
1558                return -ENOMEM;
1559
1560        env->buflen += len;
1561        return 0;
1562}
1563
1564#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
1565        do {                                                            \
1566                int err = add_uevent_var(env, fmt, val);                \
1567                if (err)                                                \
1568                        return err;                                     \
1569        } while (0)
1570
1571#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
1572        do {                                                            \
1573                int err = input_add_uevent_bm_var(env, name, bm, max);  \
1574                if (err)                                                \
1575                        return err;                                     \
1576        } while (0)
1577
1578#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
1579        do {                                                            \
1580                int err = input_add_uevent_modalias_var(env, dev);      \
1581                if (err)                                                \
1582                        return err;                                     \
1583        } while (0)
1584
1585static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1586{
1587        struct input_dev *dev = to_input_dev(device);
1588
1589        INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1590                                dev->id.bustype, dev->id.vendor,
1591                                dev->id.product, dev->id.version);
1592        if (dev->name)
1593                INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1594        if (dev->phys)
1595                INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1596        if (dev->uniq)
1597                INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1598
1599        INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1600
1601        INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1602        if (test_bit(EV_KEY, dev->evbit))
1603                INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1604        if (test_bit(EV_REL, dev->evbit))
1605                INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1606        if (test_bit(EV_ABS, dev->evbit))
1607                INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1608        if (test_bit(EV_MSC, dev->evbit))
1609                INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1610        if (test_bit(EV_LED, dev->evbit))
1611                INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1612        if (test_bit(EV_SND, dev->evbit))
1613                INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1614        if (test_bit(EV_FF, dev->evbit))
1615                INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1616        if (test_bit(EV_SW, dev->evbit))
1617                INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1618
1619        INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1620
1621        return 0;
1622}
1623
1624#define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
1625        do {                                                            \
1626                int i;                                                  \
1627                bool active;                                            \
1628                                                                        \
1629                if (!test_bit(EV_##type, dev->evbit))                   \
1630                        break;                                          \
1631                                                                        \
1632                for_each_set_bit(i, dev->bits##bit, type##_CNT) {       \
1633                        active = test_bit(i, dev->bits);                \
1634                        if (!active && !on)                             \
1635                                continue;                               \
1636                                                                        \
1637                        dev->event(dev, EV_##type, i, on ? active : 0); \
1638                }                                                       \
1639        } while (0)
1640
1641static void input_dev_toggle(struct input_dev *dev, bool activate)
1642{
1643        if (!dev->event)
1644                return;
1645
1646        INPUT_DO_TOGGLE(dev, LED, led, activate);
1647        INPUT_DO_TOGGLE(dev, SND, snd, activate);
1648
1649        if (activate && test_bit(EV_REP, dev->evbit)) {
1650                dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1651                dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1652        }
1653}
1654
1655/**
1656 * input_reset_device() - reset/restore the state of input device
1657 * @dev: input device whose state needs to be reset
1658 *
1659 * This function tries to reset the state of an opened input device and
1660 * bring internal state and state if the hardware in sync with each other.
1661 * We mark all keys as released, restore LED state, repeat rate, etc.
1662 */
1663void input_reset_device(struct input_dev *dev)
1664{
1665        unsigned long flags;
1666
1667        mutex_lock(&dev->mutex);
1668        spin_lock_irqsave(&dev->event_lock, flags);
1669
1670        input_dev_toggle(dev, true);
1671        input_dev_release_keys(dev);
1672
1673        spin_unlock_irqrestore(&dev->event_lock, flags);
1674        mutex_unlock(&dev->mutex);
1675}
1676EXPORT_SYMBOL(input_reset_device);
1677
1678#ifdef CONFIG_PM_SLEEP
1679static int input_dev_suspend(struct device *dev)
1680{
1681        struct input_dev *input_dev = to_input_dev(dev);
1682
1683        spin_lock_irq(&input_dev->event_lock);
1684
1685        /*
1686         * Keys that are pressed now are unlikely to be
1687         * still pressed when we resume.
1688         */
1689        input_dev_release_keys(input_dev);
1690
1691        /* Turn off LEDs and sounds, if any are active. */
1692        input_dev_toggle(input_dev, false);
1693
1694        spin_unlock_irq(&input_dev->event_lock);
1695
1696        return 0;
1697}
1698
1699static int input_dev_resume(struct device *dev)
1700{
1701        struct input_dev *input_dev = to_input_dev(dev);
1702
1703        spin_lock_irq(&input_dev->event_lock);
1704
1705        /* Restore state of LEDs and sounds, if any were active. */
1706        input_dev_toggle(input_dev, true);
1707
1708        spin_unlock_irq(&input_dev->event_lock);
1709
1710        return 0;
1711}
1712
1713static int input_dev_freeze(struct device *dev)
1714{
1715        struct input_dev *input_dev = to_input_dev(dev);
1716
1717        spin_lock_irq(&input_dev->event_lock);
1718
1719        /*
1720         * Keys that are pressed now are unlikely to be
1721         * still pressed when we resume.
1722         */
1723        input_dev_release_keys(input_dev);
1724
1725        spin_unlock_irq(&input_dev->event_lock);
1726
1727        return 0;
1728}
1729
1730static int input_dev_poweroff(struct device *dev)
1731{
1732        struct input_dev *input_dev = to_input_dev(dev);
1733
1734        spin_lock_irq(&input_dev->event_lock);
1735
1736        /* Turn off LEDs and sounds, if any are active. */
1737        input_dev_toggle(input_dev, false);
1738
1739        spin_unlock_irq(&input_dev->event_lock);
1740
1741        return 0;
1742}
1743
1744static const struct dev_pm_ops input_dev_pm_ops = {
1745        .suspend        = input_dev_suspend,
1746        .resume         = input_dev_resume,
1747        .freeze         = input_dev_freeze,
1748        .poweroff       = input_dev_poweroff,
1749        .restore        = input_dev_resume,
1750};
1751#endif /* CONFIG_PM */
1752
1753static struct device_type input_dev_type = {
1754        .groups         = input_dev_attr_groups,
1755        .release        = input_dev_release,
1756        .uevent         = input_dev_uevent,
1757#ifdef CONFIG_PM_SLEEP
1758        .pm             = &input_dev_pm_ops,
1759#endif
1760};
1761
1762static char *input_devnode(struct device *dev, umode_t *mode)
1763{
1764        return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1765}
1766
1767struct class input_class = {
1768        .name           = "input",
1769        .devnode        = input_devnode,
1770};
1771EXPORT_SYMBOL_GPL(input_class);
1772
1773/**
1774 * input_allocate_device - allocate memory for new input device
1775 *
1776 * Returns prepared struct input_dev or %NULL.
1777 *
1778 * NOTE: Use input_free_device() to free devices that have not been
1779 * registered; input_unregister_device() should be used for already
1780 * registered devices.
1781 */
1782struct input_dev *input_allocate_device(void)
1783{
1784        static atomic_t input_no = ATOMIC_INIT(-1);
1785        struct input_dev *dev;
1786
1787        dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1788        if (dev) {
1789                dev->dev.type = &input_dev_type;
1790                dev->dev.class = &input_class;
1791                device_initialize(&dev->dev);
1792                mutex_init(&dev->mutex);
1793                spin_lock_init(&dev->event_lock);
1794                init_timer(&dev->timer);
1795                INIT_LIST_HEAD(&dev->h_list);
1796                INIT_LIST_HEAD(&dev->node);
1797
1798                dev_set_name(&dev->dev, "input%lu",
1799                             (unsigned long)atomic_inc_return(&input_no));
1800
1801                __module_get(THIS_MODULE);
1802        }
1803
1804        return dev;
1805}
1806EXPORT_SYMBOL(input_allocate_device);
1807
1808struct input_devres {
1809        struct input_dev *input;
1810};
1811
1812static int devm_input_device_match(struct device *dev, void *res, void *data)
1813{
1814        struct input_devres *devres = res;
1815
1816        return devres->input == data;
1817}
1818
1819static void devm_input_device_release(struct device *dev, void *res)
1820{
1821        struct input_devres *devres = res;
1822        struct input_dev *input = devres->input;
1823
1824        dev_dbg(dev, "%s: dropping reference to %s\n",
1825                __func__, dev_name(&input->dev));
1826        input_put_device(input);
1827}
1828
1829/**
1830 * devm_input_allocate_device - allocate managed input device
1831 * @dev: device owning the input device being created
1832 *
1833 * Returns prepared struct input_dev or %NULL.
1834 *
1835 * Managed input devices do not need to be explicitly unregistered or
1836 * freed as it will be done automatically when owner device unbinds from
1837 * its driver (or binding fails). Once managed input device is allocated,
1838 * it is ready to be set up and registered in the same fashion as regular
1839 * input device. There are no special devm_input_device_[un]register()
1840 * variants, regular ones work with both managed and unmanaged devices,
1841 * should you need them. In most cases however, managed input device need
1842 * not be explicitly unregistered or freed.
1843 *
1844 * NOTE: the owner device is set up as parent of input device and users
1845 * should not override it.
1846 */
1847struct input_dev *devm_input_allocate_device(struct device *dev)
1848{
1849        struct input_dev *input;
1850        struct input_devres *devres;
1851
1852        devres = devres_alloc(devm_input_device_release,
1853                              sizeof(struct input_devres), GFP_KERNEL);
1854        if (!devres)
1855                return NULL;
1856
1857        input = input_allocate_device();
1858        if (!input) {
1859                devres_free(devres);
1860                return NULL;
1861        }
1862
1863        input->dev.parent = dev;
1864        input->devres_managed = true;
1865
1866        devres->input = input;
1867        devres_add(dev, devres);
1868
1869        return input;
1870}
1871EXPORT_SYMBOL(devm_input_allocate_device);
1872
1873/**
1874 * input_free_device - free memory occupied by input_dev structure
1875 * @dev: input device to free
1876 *
1877 * This function should only be used if input_register_device()
1878 * was not called yet or if it failed. Once device was registered
1879 * use input_unregister_device() and memory will be freed once last
1880 * reference to the device is dropped.
1881 *
1882 * Device should be allocated by input_allocate_device().
1883 *
1884 * NOTE: If there are references to the input device then memory
1885 * will not be freed until last reference is dropped.
1886 */
1887void input_free_device(struct input_dev *dev)
1888{
1889        if (dev) {
1890                if (dev->devres_managed)
1891                        WARN_ON(devres_destroy(dev->dev.parent,
1892                                                devm_input_device_release,
1893                                                devm_input_device_match,
1894                                                dev));
1895                input_put_device(dev);
1896        }
1897}
1898EXPORT_SYMBOL(input_free_device);
1899
1900/**
1901 * input_set_capability - mark device as capable of a certain event
1902 * @dev: device that is capable of emitting or accepting event
1903 * @type: type of the event (EV_KEY, EV_REL, etc...)
1904 * @code: event code
1905 *
1906 * In addition to setting up corresponding bit in appropriate capability
1907 * bitmap the function also adjusts dev->evbit.
1908 */
1909void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1910{
1911        switch (type) {
1912        case EV_KEY:
1913                __set_bit(code, dev->keybit);
1914                break;
1915
1916        case EV_REL:
1917                __set_bit(code, dev->relbit);
1918                break;
1919
1920        case EV_ABS:
1921                input_alloc_absinfo(dev);
1922                if (!dev->absinfo)
1923                        return;
1924
1925                __set_bit(code, dev->absbit);
1926                break;
1927
1928        case EV_MSC:
1929                __set_bit(code, dev->mscbit);
1930                break;
1931
1932        case EV_SW:
1933                __set_bit(code, dev->swbit);
1934                break;
1935
1936        case EV_LED:
1937                __set_bit(code, dev->ledbit);
1938                break;
1939
1940        case EV_SND:
1941                __set_bit(code, dev->sndbit);
1942                break;
1943
1944        case EV_FF:
1945                __set_bit(code, dev->ffbit);
1946                break;
1947
1948        case EV_PWR:
1949                /* do nothing */
1950                break;
1951
1952        default:
1953                pr_err("input_set_capability: unknown type %u (code %u)\n",
1954                       type, code);
1955                dump_stack();
1956                return;
1957        }
1958
1959        __set_bit(type, dev->evbit);
1960}
1961EXPORT_SYMBOL(input_set_capability);
1962
1963static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1964{
1965        int mt_slots;
1966        int i;
1967        unsigned int events;
1968
1969        if (dev->mt) {
1970                mt_slots = dev->mt->num_slots;
1971        } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1972                mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1973                           dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1974                mt_slots = clamp(mt_slots, 2, 32);
1975        } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1976                mt_slots = 2;
1977        } else {
1978                mt_slots = 0;
1979        }
1980
1981        events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1982
1983        if (test_bit(EV_ABS, dev->evbit))
1984                for_each_set_bit(i, dev->absbit, ABS_CNT)
1985                        events += input_is_mt_axis(i) ? mt_slots : 1;
1986
1987        if (test_bit(EV_REL, dev->evbit))
1988                events += bitmap_weight(dev->relbit, REL_CNT);
1989
1990        /* Make room for KEY and MSC events */
1991        events += 7;
1992
1993        return events;
1994}
1995
1996#define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
1997        do {                                                            \
1998                if (!test_bit(EV_##type, dev->evbit))                   \
1999                        memset(dev->bits##bit, 0,                       \
2000                                sizeof(dev->bits##bit));                \
2001        } while (0)
2002
2003static void input_cleanse_bitmasks(struct input_dev *dev)
2004{
2005        INPUT_CLEANSE_BITMASK(dev, KEY, key);
2006        INPUT_CLEANSE_BITMASK(dev, REL, rel);
2007        INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2008        INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2009        INPUT_CLEANSE_BITMASK(dev, LED, led);
2010        INPUT_CLEANSE_BITMASK(dev, SND, snd);
2011        INPUT_CLEANSE_BITMASK(dev, FF, ff);
2012        INPUT_CLEANSE_BITMASK(dev, SW, sw);
2013}
2014
2015static void __input_unregister_device(struct input_dev *dev)
2016{
2017        struct input_handle *handle, *next;
2018
2019        input_disconnect_device(dev);
2020
2021        mutex_lock(&input_mutex);
2022
2023        list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2024                handle->handler->disconnect(handle);
2025        WARN_ON(!list_empty(&dev->h_list));
2026
2027        del_timer_sync(&dev->timer);
2028        list_del_init(&dev->node);
2029
2030        input_wakeup_procfs_readers();
2031
2032        mutex_unlock(&input_mutex);
2033
2034        device_del(&dev->dev);
2035}
2036
2037static void devm_input_device_unregister(struct device *dev, void *res)
2038{
2039        struct input_devres *devres = res;
2040        struct input_dev *input = devres->input;
2041
2042        dev_dbg(dev, "%s: unregistering device %s\n",
2043                __func__, dev_name(&input->dev));
2044        __input_unregister_device(input);
2045}
2046
2047/**
2048 * input_enable_softrepeat - enable software autorepeat
2049 * @dev: input device
2050 * @delay: repeat delay
2051 * @period: repeat period
2052 *
2053 * Enable software autorepeat on the input device.
2054 */
2055void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2056{
2057        dev->timer.data = (unsigned long) dev;
2058        dev->timer.function = input_repeat_key;
2059        dev->rep[REP_DELAY] = delay;
2060        dev->rep[REP_PERIOD] = period;
2061}
2062EXPORT_SYMBOL(input_enable_softrepeat);
2063
2064/**
2065 * input_register_device - register device with input core
2066 * @dev: device to be registered
2067 *
2068 * This function registers device with input core. The device must be
2069 * allocated with input_allocate_device() and all it's capabilities
2070 * set up before registering.
2071 * If function fails the device must be freed with input_free_device().
2072 * Once device has been successfully registered it can be unregistered
2073 * with input_unregister_device(); input_free_device() should not be
2074 * called in this case.
2075 *
2076 * Note that this function is also used to register managed input devices
2077 * (ones allocated with devm_input_allocate_device()). Such managed input
2078 * devices need not be explicitly unregistered or freed, their tear down
2079 * is controlled by the devres infrastructure. It is also worth noting
2080 * that tear down of managed input devices is internally a 2-step process:
2081 * registered managed input device is first unregistered, but stays in
2082 * memory and can still handle input_event() calls (although events will
2083 * not be delivered anywhere). The freeing of managed input device will
2084 * happen later, when devres stack is unwound to the point where device
2085 * allocation was made.
2086 */
2087int input_register_device(struct input_dev *dev)
2088{
2089        struct input_devres *devres = NULL;
2090        struct input_handler *handler;
2091        unsigned int packet_size;
2092        const char *path;
2093        int error;
2094
2095        if (dev->devres_managed) {
2096                devres = devres_alloc(devm_input_device_unregister,
2097                                      sizeof(struct input_devres), GFP_KERNEL);
2098                if (!devres)
2099                        return -ENOMEM;
2100
2101                devres->input = dev;
2102        }
2103
2104        /* Every input device generates EV_SYN/SYN_REPORT events. */
2105        __set_bit(EV_SYN, dev->evbit);
2106
2107        /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2108        __clear_bit(KEY_RESERVED, dev->keybit);
2109
2110        /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2111        input_cleanse_bitmasks(dev);
2112
2113        packet_size = input_estimate_events_per_packet(dev);
2114        if (dev->hint_events_per_packet < packet_size)
2115                dev->hint_events_per_packet = packet_size;
2116
2117        dev->max_vals = dev->hint_events_per_packet + 2;
2118        dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2119        if (!dev->vals) {
2120                error = -ENOMEM;
2121                goto err_devres_free;
2122        }
2123
2124        /*
2125         * If delay and period are pre-set by the driver, then autorepeating
2126         * is handled by the driver itself and we don't do it in input.c.
2127         */
2128        if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2129                input_enable_softrepeat(dev, 250, 33);
2130
2131        if (!dev->getkeycode)
2132                dev->getkeycode = input_default_getkeycode;
2133
2134        if (!dev->setkeycode)
2135                dev->setkeycode = input_default_setkeycode;
2136
2137        error = device_add(&dev->dev);
2138        if (error)
2139                goto err_free_vals;
2140
2141        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2142        pr_info("%s as %s\n",
2143                dev->name ? dev->name : "Unspecified device",
2144                path ? path : "N/A");
2145        kfree(path);
2146
2147        error = mutex_lock_interruptible(&input_mutex);
2148        if (error)
2149                goto err_device_del;
2150
2151        list_add_tail(&dev->node, &input_dev_list);
2152
2153        list_for_each_entry(handler, &input_handler_list, node)
2154                input_attach_handler(dev, handler);
2155
2156        input_wakeup_procfs_readers();
2157
2158        mutex_unlock(&input_mutex);
2159
2160        if (dev->devres_managed) {
2161                dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2162                        __func__, dev_name(&dev->dev));
2163                devres_add(dev->dev.parent, devres);
2164        }
2165        return 0;
2166
2167err_device_del:
2168        device_del(&dev->dev);
2169err_free_vals:
2170        kfree(dev->vals);
2171        dev->vals = NULL;
2172err_devres_free:
2173        devres_free(devres);
2174        return error;
2175}
2176EXPORT_SYMBOL(input_register_device);
2177
2178/**
2179 * input_unregister_device - unregister previously registered device
2180 * @dev: device to be unregistered
2181 *
2182 * This function unregisters an input device. Once device is unregistered
2183 * the caller should not try to access it as it may get freed at any moment.
2184 */
2185void input_unregister_device(struct input_dev *dev)
2186{
2187        if (dev->devres_managed) {
2188                WARN_ON(devres_destroy(dev->dev.parent,
2189                                        devm_input_device_unregister,
2190                                        devm_input_device_match,
2191                                        dev));
2192                __input_unregister_device(dev);
2193                /*
2194                 * We do not do input_put_device() here because it will be done
2195                 * when 2nd devres fires up.
2196                 */
2197        } else {
2198                __input_unregister_device(dev);
2199                input_put_device(dev);
2200        }
2201}
2202EXPORT_SYMBOL(input_unregister_device);
2203
2204/**
2205 * input_register_handler - register a new input handler
2206 * @handler: handler to be registered
2207 *
2208 * This function registers a new input handler (interface) for input
2209 * devices in the system and attaches it to all input devices that
2210 * are compatible with the handler.
2211 */
2212int input_register_handler(struct input_handler *handler)
2213{
2214        struct input_dev *dev;
2215        int error;
2216
2217        error = mutex_lock_interruptible(&input_mutex);
2218        if (error)
2219                return error;
2220
2221        INIT_LIST_HEAD(&handler->h_list);
2222
2223        list_add_tail(&handler->node, &input_handler_list);
2224
2225        list_for_each_entry(dev, &input_dev_list, node)
2226                input_attach_handler(dev, handler);
2227
2228        input_wakeup_procfs_readers();
2229
2230        mutex_unlock(&input_mutex);
2231        return 0;
2232}
2233EXPORT_SYMBOL(input_register_handler);
2234
2235/**
2236 * input_unregister_handler - unregisters an input handler
2237 * @handler: handler to be unregistered
2238 *
2239 * This function disconnects a handler from its input devices and
2240 * removes it from lists of known handlers.
2241 */
2242void input_unregister_handler(struct input_handler *handler)
2243{
2244        struct input_handle *handle, *next;
2245
2246        mutex_lock(&input_mutex);
2247
2248        list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2249                handler->disconnect(handle);
2250        WARN_ON(!list_empty(&handler->h_list));
2251
2252        list_del_init(&handler->node);
2253
2254        input_wakeup_procfs_readers();
2255
2256        mutex_unlock(&input_mutex);
2257}
2258EXPORT_SYMBOL(input_unregister_handler);
2259
2260/**
2261 * input_handler_for_each_handle - handle iterator
2262 * @handler: input handler to iterate
2263 * @data: data for the callback
2264 * @fn: function to be called for each handle
2265 *
2266 * Iterate over @bus's list of devices, and call @fn for each, passing
2267 * it @data and stop when @fn returns a non-zero value. The function is
2268 * using RCU to traverse the list and therefore may be using in atomic
2269 * contexts. The @fn callback is invoked from RCU critical section and
2270 * thus must not sleep.
2271 */
2272int input_handler_for_each_handle(struct input_handler *handler, void *data,
2273                                  int (*fn)(struct input_handle *, void *))
2274{
2275        struct input_handle *handle;
2276        int retval = 0;
2277
2278        rcu_read_lock();
2279
2280        list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2281                retval = fn(handle, data);
2282                if (retval)
2283                        break;
2284        }
2285
2286        rcu_read_unlock();
2287
2288        return retval;
2289}
2290EXPORT_SYMBOL(input_handler_for_each_handle);
2291
2292/**
2293 * input_register_handle - register a new input handle
2294 * @handle: handle to register
2295 *
2296 * This function puts a new input handle onto device's
2297 * and handler's lists so that events can flow through
2298 * it once it is opened using input_open_device().
2299 *
2300 * This function is supposed to be called from handler's
2301 * connect() method.
2302 */
2303int input_register_handle(struct input_handle *handle)
2304{
2305        struct input_handler *handler = handle->handler;
2306        struct input_dev *dev = handle->dev;
2307        int error;
2308
2309        /*
2310         * We take dev->mutex here to prevent race with
2311         * input_release_device().
2312         */
2313        error = mutex_lock_interruptible(&dev->mutex);
2314        if (error)
2315                return error;
2316
2317        /*
2318         * Filters go to the head of the list, normal handlers
2319         * to the tail.
2320         */
2321        if (handler->filter)
2322                list_add_rcu(&handle->d_node, &dev->h_list);
2323        else
2324                list_add_tail_rcu(&handle->d_node, &dev->h_list);
2325
2326        mutex_unlock(&dev->mutex);
2327
2328        /*
2329         * Since we are supposed to be called from ->connect()
2330         * which is mutually exclusive with ->disconnect()
2331         * we can't be racing with input_unregister_handle()
2332         * and so separate lock is not needed here.
2333         */
2334        list_add_tail_rcu(&handle->h_node, &handler->h_list);
2335
2336        if (handler->start)
2337                handler->start(handle);
2338
2339        return 0;
2340}
2341EXPORT_SYMBOL(input_register_handle);
2342
2343/**
2344 * input_unregister_handle - unregister an input handle
2345 * @handle: handle to unregister
2346 *
2347 * This function removes input handle from device's
2348 * and handler's lists.
2349 *
2350 * This function is supposed to be called from handler's
2351 * disconnect() method.
2352 */
2353void input_unregister_handle(struct input_handle *handle)
2354{
2355        struct input_dev *dev = handle->dev;
2356
2357        list_del_rcu(&handle->h_node);
2358
2359        /*
2360         * Take dev->mutex to prevent race with input_release_device().
2361         */
2362        mutex_lock(&dev->mutex);
2363        list_del_rcu(&handle->d_node);
2364        mutex_unlock(&dev->mutex);
2365
2366        synchronize_rcu();
2367}
2368EXPORT_SYMBOL(input_unregister_handle);
2369
2370/**
2371 * input_get_new_minor - allocates a new input minor number
2372 * @legacy_base: beginning or the legacy range to be searched
2373 * @legacy_num: size of legacy range
2374 * @allow_dynamic: whether we can also take ID from the dynamic range
2375 *
2376 * This function allocates a new device minor for from input major namespace.
2377 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2378 * parameters and whether ID can be allocated from dynamic range if there are
2379 * no free IDs in legacy range.
2380 */
2381int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2382                        bool allow_dynamic)
2383{
2384        /*
2385         * This function should be called from input handler's ->connect()
2386         * methods, which are serialized with input_mutex, so no additional
2387         * locking is needed here.
2388         */
2389        if (legacy_base >= 0) {
2390                int minor = ida_simple_get(&input_ida,
2391                                           legacy_base,
2392                                           legacy_base + legacy_num,
2393                                           GFP_KERNEL);
2394                if (minor >= 0 || !allow_dynamic)
2395                        return minor;
2396        }
2397
2398        return ida_simple_get(&input_ida,
2399                              INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2400                              GFP_KERNEL);
2401}
2402EXPORT_SYMBOL(input_get_new_minor);
2403
2404/**
2405 * input_free_minor - release previously allocated minor
2406 * @minor: minor to be released
2407 *
2408 * This function releases previously allocated input minor so that it can be
2409 * reused later.
2410 */
2411void input_free_minor(unsigned int minor)
2412{
2413        ida_simple_remove(&input_ida, minor);
2414}
2415EXPORT_SYMBOL(input_free_minor);
2416
2417static int __init input_init(void)
2418{
2419        int err;
2420
2421        err = class_register(&input_class);
2422        if (err) {
2423                pr_err("unable to register input_dev class\n");
2424                return err;
2425        }
2426
2427        err = input_proc_init();
2428        if (err)
2429                goto fail1;
2430
2431        err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2432                                     INPUT_MAX_CHAR_DEVICES, "input");
2433        if (err) {
2434                pr_err("unable to register char major %d", INPUT_MAJOR);
2435                goto fail2;
2436        }
2437
2438        return 0;
2439
2440 fail2: input_proc_exit();
2441 fail1: class_unregister(&input_class);
2442        return err;
2443}
2444
2445static void __exit input_exit(void)
2446{
2447        input_proc_exit();
2448        unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2449                                 INPUT_MAX_CHAR_DEVICES);
2450        class_unregister(&input_class);
2451}
2452
2453subsys_initcall(input_init);
2454module_exit(input_exit);
2455