1
2
3
4
5
6
7
8
9
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/i2c.h>
13#include <linux/mutex.h>
14#include <asm/div64.h>
15
16#include "dvb_math.h"
17#include "dvb_frontend.h"
18
19#include "dib7000p.h"
20
21static int debug;
22module_param(debug, int, 0644);
23MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
24
25static int buggy_sfn_workaround;
26module_param(buggy_sfn_workaround, int, 0644);
27MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
28
29#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
30
31struct i2c_device {
32 struct i2c_adapter *i2c_adap;
33 u8 i2c_addr;
34};
35
36struct dib7000p_state {
37 struct dvb_frontend demod;
38 struct dib7000p_config cfg;
39
40 u8 i2c_addr;
41 struct i2c_adapter *i2c_adap;
42
43 struct dibx000_i2c_master i2c_master;
44
45 u16 wbd_ref;
46
47 u8 current_band;
48 u32 current_bandwidth;
49 struct dibx000_agc_config *current_agc;
50 u32 timf;
51
52 u8 div_force_off:1;
53 u8 div_state:1;
54 u16 div_sync_wait;
55
56 u8 agc_state;
57
58 u16 gpio_dir;
59 u16 gpio_val;
60
61 u8 sfn_workaround_active:1;
62
63#define SOC7090 0x7090
64 u16 version;
65
66 u16 tuner_enable;
67 struct i2c_adapter dib7090_tuner_adap;
68
69
70 struct i2c_msg msg[2];
71 u8 i2c_write_buffer[4];
72 u8 i2c_read_buffer[2];
73 struct mutex i2c_buffer_lock;
74
75 u8 input_mode_mpeg;
76
77
78 s64 old_ucb;
79 unsigned long per_jiffies_stats;
80 unsigned long ber_jiffies_stats;
81 unsigned long get_stats_time;
82};
83
84enum dib7000p_power_mode {
85 DIB7000P_POWER_ALL = 0,
86 DIB7000P_POWER_ANALOG_ADC,
87 DIB7000P_POWER_INTERFACE_ONLY,
88};
89
90
91static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
92static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);
93static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode);
94static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode);
95
96static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
97{
98 u16 ret;
99
100 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
101 dprintk("could not acquire lock");
102 return 0;
103 }
104
105 state->i2c_write_buffer[0] = reg >> 8;
106 state->i2c_write_buffer[1] = reg & 0xff;
107
108 memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
109 state->msg[0].addr = state->i2c_addr >> 1;
110 state->msg[0].flags = 0;
111 state->msg[0].buf = state->i2c_write_buffer;
112 state->msg[0].len = 2;
113 state->msg[1].addr = state->i2c_addr >> 1;
114 state->msg[1].flags = I2C_M_RD;
115 state->msg[1].buf = state->i2c_read_buffer;
116 state->msg[1].len = 2;
117
118 if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2)
119 dprintk("i2c read error on %d", reg);
120
121 ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
122 mutex_unlock(&state->i2c_buffer_lock);
123 return ret;
124}
125
126static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
127{
128 int ret;
129
130 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
131 dprintk("could not acquire lock");
132 return -EINVAL;
133 }
134
135 state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
136 state->i2c_write_buffer[1] = reg & 0xff;
137 state->i2c_write_buffer[2] = (val >> 8) & 0xff;
138 state->i2c_write_buffer[3] = val & 0xff;
139
140 memset(&state->msg[0], 0, sizeof(struct i2c_msg));
141 state->msg[0].addr = state->i2c_addr >> 1;
142 state->msg[0].flags = 0;
143 state->msg[0].buf = state->i2c_write_buffer;
144 state->msg[0].len = 4;
145
146 ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ?
147 -EREMOTEIO : 0);
148 mutex_unlock(&state->i2c_buffer_lock);
149 return ret;
150}
151
152static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
153{
154 u16 l = 0, r, *n;
155 n = buf;
156 l = *n++;
157 while (l) {
158 r = *n++;
159
160 do {
161 dib7000p_write_word(state, r, *n++);
162 r++;
163 } while (--l);
164 l = *n++;
165 }
166}
167
168static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
169{
170 int ret = 0;
171 u16 outreg, fifo_threshold, smo_mode;
172
173 outreg = 0;
174 fifo_threshold = 1792;
175 smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
176
177 dprintk("setting output mode for demod %p to %d", &state->demod, mode);
178
179 switch (mode) {
180 case OUTMODE_MPEG2_PAR_GATED_CLK:
181 outreg = (1 << 10);
182 break;
183 case OUTMODE_MPEG2_PAR_CONT_CLK:
184 outreg = (1 << 10) | (1 << 6);
185 break;
186 case OUTMODE_MPEG2_SERIAL:
187 outreg = (1 << 10) | (2 << 6) | (0 << 1);
188 break;
189 case OUTMODE_DIVERSITY:
190 if (state->cfg.hostbus_diversity)
191 outreg = (1 << 10) | (4 << 6);
192 else
193 outreg = (1 << 11);
194 break;
195 case OUTMODE_MPEG2_FIFO:
196 smo_mode |= (3 << 1);
197 fifo_threshold = 512;
198 outreg = (1 << 10) | (5 << 6);
199 break;
200 case OUTMODE_ANALOG_ADC:
201 outreg = (1 << 10) | (3 << 6);
202 break;
203 case OUTMODE_HIGH_Z:
204 outreg = 0;
205 break;
206 default:
207 dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod);
208 break;
209 }
210
211 if (state->cfg.output_mpeg2_in_188_bytes)
212 smo_mode |= (1 << 5);
213
214 ret |= dib7000p_write_word(state, 235, smo_mode);
215 ret |= dib7000p_write_word(state, 236, fifo_threshold);
216 if (state->version != SOC7090)
217 ret |= dib7000p_write_word(state, 1286, outreg);
218
219 return ret;
220}
221
222static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
223{
224 struct dib7000p_state *state = demod->demodulator_priv;
225
226 if (state->div_force_off) {
227 dprintk("diversity combination deactivated - forced by COFDM parameters");
228 onoff = 0;
229 dib7000p_write_word(state, 207, 0);
230 } else
231 dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
232
233 state->div_state = (u8) onoff;
234
235 if (onoff) {
236 dib7000p_write_word(state, 204, 6);
237 dib7000p_write_word(state, 205, 16);
238
239 } else {
240 dib7000p_write_word(state, 204, 1);
241 dib7000p_write_word(state, 205, 0);
242 }
243
244 return 0;
245}
246
247static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
248{
249
250 u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
251
252
253 switch (mode) {
254
255 case DIB7000P_POWER_ALL:
256 reg_774 = 0x0000;
257 reg_775 = 0x0000;
258 reg_776 = 0x0;
259 reg_899 = 0x0;
260 if (state->version == SOC7090)
261 reg_1280 &= 0x001f;
262 else
263 reg_1280 &= 0x01ff;
264 break;
265
266 case DIB7000P_POWER_ANALOG_ADC:
267
268 reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
269
270 reg_776 &= ~((1 << 0));
271
272 if (state->version != SOC7090)
273 reg_1280 &= ~((1 << 11));
274 reg_1280 &= ~(1 << 6);
275
276
277
278 case DIB7000P_POWER_INTERFACE_ONLY:
279 if (state->version == SOC7090)
280 reg_1280 &= ~((1 << 7) | (1 << 5));
281 else
282 reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
283 break;
284
285
286 }
287
288 dib7000p_write_word(state, 774, reg_774);
289 dib7000p_write_word(state, 775, reg_775);
290 dib7000p_write_word(state, 776, reg_776);
291 dib7000p_write_word(state, 1280, reg_1280);
292 if (state->version != SOC7090)
293 dib7000p_write_word(state, 899, reg_899);
294
295 return 0;
296}
297
298static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
299{
300 u16 reg_908 = 0, reg_909 = 0;
301 u16 reg;
302
303 if (state->version != SOC7090) {
304 reg_908 = dib7000p_read_word(state, 908);
305 reg_909 = dib7000p_read_word(state, 909);
306 }
307
308 switch (no) {
309 case DIBX000_SLOW_ADC_ON:
310 if (state->version == SOC7090) {
311 reg = dib7000p_read_word(state, 1925);
312
313 dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2));
314
315 reg = dib7000p_read_word(state, 1925);
316 msleep(200);
317 dib7000p_write_word(state, 1925, reg & ~(1 << 4));
318
319 reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
320 dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524);
321 } else {
322 reg_909 |= (1 << 1) | (1 << 0);
323 dib7000p_write_word(state, 909, reg_909);
324 reg_909 &= ~(1 << 1);
325 }
326 break;
327
328 case DIBX000_SLOW_ADC_OFF:
329 if (state->version == SOC7090) {
330 reg = dib7000p_read_word(state, 1925);
331 dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4));
332 } else
333 reg_909 |= (1 << 1) | (1 << 0);
334 break;
335
336 case DIBX000_ADC_ON:
337 reg_908 &= 0x0fff;
338 reg_909 &= 0x0003;
339 break;
340
341 case DIBX000_ADC_OFF:
342 reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
343 reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
344 break;
345
346 case DIBX000_VBG_ENABLE:
347 reg_908 &= ~(1 << 15);
348 break;
349
350 case DIBX000_VBG_DISABLE:
351 reg_908 |= (1 << 15);
352 break;
353
354 default:
355 break;
356 }
357
358
359
360 reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4;
361 reg_908 |= (state->cfg.enable_current_mirror & 1) << 7;
362
363 if (state->version != SOC7090) {
364 dib7000p_write_word(state, 908, reg_908);
365 dib7000p_write_word(state, 909, reg_909);
366 }
367}
368
369static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
370{
371 u32 timf;
372
373
374 state->current_bandwidth = bw;
375
376 if (state->timf == 0) {
377 dprintk("using default timf");
378 timf = state->cfg.bw->timf;
379 } else {
380 dprintk("using updated timf");
381 timf = state->timf;
382 }
383
384 timf = timf * (bw / 50) / 160;
385
386 dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
387 dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
388
389 return 0;
390}
391
392static int dib7000p_sad_calib(struct dib7000p_state *state)
393{
394
395 dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
396
397 if (state->version == SOC7090)
398 dib7000p_write_word(state, 74, 2048);
399 else
400 dib7000p_write_word(state, 74, 776);
401
402
403 dib7000p_write_word(state, 73, (1 << 0));
404 dib7000p_write_word(state, 73, (0 << 0));
405
406 msleep(1);
407
408 return 0;
409}
410
411static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
412{
413 struct dib7000p_state *state = demod->demodulator_priv;
414 if (value > 4095)
415 value = 4095;
416 state->wbd_ref = value;
417 return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
418}
419
420static int dib7000p_get_agc_values(struct dvb_frontend *fe,
421 u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd)
422{
423 struct dib7000p_state *state = fe->demodulator_priv;
424
425 if (agc_global != NULL)
426 *agc_global = dib7000p_read_word(state, 394);
427 if (agc1 != NULL)
428 *agc1 = dib7000p_read_word(state, 392);
429 if (agc2 != NULL)
430 *agc2 = dib7000p_read_word(state, 393);
431 if (wbd != NULL)
432 *wbd = dib7000p_read_word(state, 397);
433
434 return 0;
435}
436
437static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v)
438{
439 struct dib7000p_state *state = fe->demodulator_priv;
440 return dib7000p_write_word(state, 108, v);
441}
442
443static void dib7000p_reset_pll(struct dib7000p_state *state)
444{
445 struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
446 u16 clk_cfg0;
447
448 if (state->version == SOC7090) {
449 dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
450
451 while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
452 ;
453
454 dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
455 } else {
456
457 clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
458 (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
459
460 dib7000p_write_word(state, 900, clk_cfg0);
461
462
463 dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
464 clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
465 dib7000p_write_word(state, 900, clk_cfg0);
466 }
467
468 dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
469 dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
470 dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
471 dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
472
473 dib7000p_write_word(state, 72, bw->sad_cfg);
474}
475
476static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
477{
478 u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
479 internal |= (u32) dib7000p_read_word(state, 19);
480 internal /= 1000;
481
482 return internal;
483}
484
485static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
486{
487 struct dib7000p_state *state = fe->demodulator_priv;
488 u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
489 u8 loopdiv, prediv;
490 u32 internal, xtal;
491
492
493 prediv = reg_1856 & 0x3f;
494 loopdiv = (reg_1856 >> 6) & 0x3f;
495
496 if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
497 dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
498 reg_1856 &= 0xf000;
499 reg_1857 = dib7000p_read_word(state, 1857);
500 dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
501
502 dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));
503
504
505 internal = dib7000p_get_internal_freq(state);
506 xtal = (internal / loopdiv) * prediv;
507 internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio;
508 dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
509 dib7000p_write_word(state, 19, (u16) (internal & 0xffff));
510
511 dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
512
513 while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
514 dprintk("Waiting for PLL to lock");
515
516 return 0;
517 }
518 return -EIO;
519}
520
521static int dib7000p_reset_gpio(struct dib7000p_state *st)
522{
523
524 dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
525
526 dib7000p_write_word(st, 1029, st->gpio_dir);
527 dib7000p_write_word(st, 1030, st->gpio_val);
528
529
530
531 dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);
532
533 dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
534 return 0;
535}
536
537static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
538{
539 st->gpio_dir = dib7000p_read_word(st, 1029);
540 st->gpio_dir &= ~(1 << num);
541 st->gpio_dir |= (dir & 0x1) << num;
542 dib7000p_write_word(st, 1029, st->gpio_dir);
543
544 st->gpio_val = dib7000p_read_word(st, 1030);
545 st->gpio_val &= ~(1 << num);
546 st->gpio_val |= (val & 0x01) << num;
547 dib7000p_write_word(st, 1030, st->gpio_val);
548
549 return 0;
550}
551
552static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
553{
554 struct dib7000p_state *state = demod->demodulator_priv;
555 return dib7000p_cfg_gpio(state, num, dir, val);
556}
557
558static u16 dib7000p_defaults[] = {
559
560 3, 2,
561 0x0004,
562 (1<<3)|(1<<11)|(1<<12)|(1<<13),
563 0x0814,
564
565 12, 6,
566 0x001b,
567 0x7740,
568 0x005b,
569 0x8d80,
570 0x01c9,
571 0xc380,
572 0x0000,
573 0x0080,
574 0x0000,
575 0x0090,
576 0x0001,
577 0xd4c0,
578
579 1, 26,
580 0x6680,
581
582
583 11, 79,
584 (1 << 13) - 825 - 117,
585 (1 << 13) - 837 - 117,
586 (1 << 13) - 811 - 117,
587 (1 << 13) - 766 - 117,
588 (1 << 13) - 737 - 117,
589 (1 << 13) - 693 - 117,
590 (1 << 13) - 648 - 117,
591 (1 << 13) - 619 - 117,
592 (1 << 13) - 575 - 117,
593 (1 << 13) - 531 - 117,
594 (1 << 13) - 501 - 117,
595
596 1, 142,
597 0x0410,
598
599
600 8, 145,
601 0,
602 0,
603 0,
604 0,
605 0,
606 0,
607 0,
608 0,
609
610 1, 154,
611 1 << 13,
612
613 1, 168,
614 0x0ccd,
615
616 1, 183,
617 0x200f,
618
619 1, 212,
620 0x169,
621
622 5, 187,
623 0x023d,
624 0x00a4,
625 0x00a4,
626 0x7ff0,
627 0x3ccc,
628
629 1, 198,
630 0x800,
631
632 1, 222,
633 0x0010,
634
635 1, 235,
636 0x0062,
637
638 0,
639};
640
641static void dib7000p_reset_stats(struct dvb_frontend *fe);
642
643static int dib7000p_demod_reset(struct dib7000p_state *state)
644{
645 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
646
647 if (state->version == SOC7090)
648 dibx000_reset_i2c_master(&state->i2c_master);
649
650 dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
651
652
653 dib7000p_write_word(state, 770, 0xffff);
654 dib7000p_write_word(state, 771, 0xffff);
655 dib7000p_write_word(state, 772, 0x001f);
656 dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));
657
658 dib7000p_write_word(state, 770, 0);
659 dib7000p_write_word(state, 771, 0);
660 dib7000p_write_word(state, 772, 0);
661 dib7000p_write_word(state, 1280, 0);
662
663 if (state->version != SOC7090) {
664 dib7000p_write_word(state, 898, 0x0003);
665 dib7000p_write_word(state, 898, 0);
666 }
667
668
669 dib7000p_reset_pll(state);
670
671 if (dib7000p_reset_gpio(state) != 0)
672 dprintk("GPIO reset was not successful.");
673
674 if (state->version == SOC7090) {
675 dib7000p_write_word(state, 899, 0);
676
677
678 dib7000p_write_word(state, 42, (1<<5) | 3);
679 dib7000p_write_word(state, 43, 0x2d4);
680 dib7000p_write_word(state, 44, 300);
681 dib7000p_write_word(state, 273, (0<<6) | 30);
682 }
683 if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
684 dprintk("OUTPUT_MODE could not be reset.");
685
686 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
687 dib7000p_sad_calib(state);
688 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
689
690
691 dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));
692
693 dib7000p_set_bandwidth(state, 8000);
694
695 if (state->version == SOC7090) {
696 dib7000p_write_word(state, 36, 0x0755);
697 } else {
698 if (state->cfg.tuner_is_baseband)
699 dib7000p_write_word(state, 36, 0x0755);
700 else
701 dib7000p_write_word(state, 36, 0x1f55);
702 }
703
704 dib7000p_write_tab(state, dib7000p_defaults);
705 if (state->version != SOC7090) {
706 dib7000p_write_word(state, 901, 0x0006);
707 dib7000p_write_word(state, 902, (3 << 10) | (1 << 6));
708 dib7000p_write_word(state, 905, 0x2c8e);
709 }
710
711 dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
712
713 return 0;
714}
715
716static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
717{
718 u16 tmp = 0;
719 tmp = dib7000p_read_word(state, 903);
720 dib7000p_write_word(state, 903, (tmp | 0x1));
721 tmp = dib7000p_read_word(state, 900);
722 dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
723}
724
725static void dib7000p_restart_agc(struct dib7000p_state *state)
726{
727
728 dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
729 dib7000p_write_word(state, 770, 0x0000);
730}
731
732static int dib7000p_update_lna(struct dib7000p_state *state)
733{
734 u16 dyn_gain;
735
736 if (state->cfg.update_lna) {
737 dyn_gain = dib7000p_read_word(state, 394);
738 if (state->cfg.update_lna(&state->demod, dyn_gain)) {
739 dib7000p_restart_agc(state);
740 return 1;
741 }
742 }
743
744 return 0;
745}
746
747static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
748{
749 struct dibx000_agc_config *agc = NULL;
750 int i;
751 if (state->current_band == band && state->current_agc != NULL)
752 return 0;
753 state->current_band = band;
754
755 for (i = 0; i < state->cfg.agc_config_count; i++)
756 if (state->cfg.agc[i].band_caps & band) {
757 agc = &state->cfg.agc[i];
758 break;
759 }
760
761 if (agc == NULL) {
762 dprintk("no valid AGC configuration found for band 0x%02x", band);
763 return -EINVAL;
764 }
765
766 state->current_agc = agc;
767
768
769 dib7000p_write_word(state, 75, agc->setup);
770 dib7000p_write_word(state, 76, agc->inv_gain);
771 dib7000p_write_word(state, 77, agc->time_stabiliz);
772 dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
773
774
775 dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
776 dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
777
778
779 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
780 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
781
782 if (state->wbd_ref != 0)
783 dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
784 else
785 dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
786
787 dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
788
789 dib7000p_write_word(state, 107, agc->agc1_max);
790 dib7000p_write_word(state, 108, agc->agc1_min);
791 dib7000p_write_word(state, 109, agc->agc2_max);
792 dib7000p_write_word(state, 110, agc->agc2_min);
793 dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
794 dib7000p_write_word(state, 112, agc->agc1_pt3);
795 dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
796 dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
797 dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
798 return 0;
799}
800
801static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
802{
803 u32 internal = dib7000p_get_internal_freq(state);
804 s32 unit_khz_dds_val = 67108864 / (internal);
805 u32 abs_offset_khz = ABS(offset_khz);
806 u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
807 u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));
808
809 dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert);
810
811 if (offset_khz < 0)
812 unit_khz_dds_val *= -1;
813
814
815 if (invert)
816 dds -= (abs_offset_khz * unit_khz_dds_val);
817 else
818 dds += (abs_offset_khz * unit_khz_dds_val);
819
820 if (abs_offset_khz <= (internal / 2)) {
821 dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
822 dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
823 }
824}
825
826static int dib7000p_agc_startup(struct dvb_frontend *demod)
827{
828 struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
829 struct dib7000p_state *state = demod->demodulator_priv;
830 int ret = -1;
831 u8 *agc_state = &state->agc_state;
832 u8 agc_split;
833 u16 reg;
834 u32 upd_demod_gain_period = 0x1000;
835 s32 frequency_offset = 0;
836
837 switch (state->agc_state) {
838 case 0:
839 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
840 if (state->version == SOC7090) {
841 reg = dib7000p_read_word(state, 0x79b) & 0xff00;
842 dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF);
843 dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
844
845
846 reg = dib7000p_read_word(state, 0x780);
847 dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
848 } else {
849 dib7000p_set_adc_state(state, DIBX000_ADC_ON);
850 dib7000p_pll_clk_cfg(state);
851 }
852
853 if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
854 return -1;
855
856 if (demod->ops.tuner_ops.get_frequency) {
857 u32 frequency_tuner;
858
859 demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner);
860 frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000;
861 }
862
863 dib7000p_set_dds(state, frequency_offset);
864 ret = 7;
865 (*agc_state)++;
866 break;
867
868 case 1:
869 if (state->cfg.agc_control)
870 state->cfg.agc_control(&state->demod, 1);
871
872 dib7000p_write_word(state, 78, 32768);
873 if (!state->current_agc->perform_agc_softsplit) {
874
875
876 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
877 (*agc_state)++;
878 ret = 5;
879 } else {
880
881 (*agc_state) = 4;
882
883 ret = 7;
884 }
885
886 dib7000p_restart_agc(state);
887 break;
888
889 case 2:
890 dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4));
891 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8));
892 (*agc_state)++;
893 ret = 14;
894 break;
895
896 case 3:
897 agc_split = (u8) dib7000p_read_word(state, 396);
898 dib7000p_write_word(state, 78, dib7000p_read_word(state, 394));
899
900 dib7000p_write_word(state, 75, state->current_agc->setup);
901 dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split);
902
903 dib7000p_restart_agc(state);
904
905 dprintk("SPLIT %p: %hd", demod, agc_split);
906
907 (*agc_state)++;
908 ret = 5;
909 break;
910
911 case 4:
912 ret = 7;
913
914 if (dib7000p_update_lna(state))
915 ret = 5;
916 else
917 (*agc_state)++;
918 break;
919
920 case 5:
921 if (state->cfg.agc_control)
922 state->cfg.agc_control(&state->demod, 0);
923 (*agc_state)++;
924 break;
925 default:
926 break;
927 }
928 return ret;
929}
930
931static void dib7000p_update_timf(struct dib7000p_state *state)
932{
933 u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
934 state->timf = timf * 160 / (state->current_bandwidth / 50);
935 dib7000p_write_word(state, 23, (u16) (timf >> 16));
936 dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
937 dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf);
938
939}
940
941static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
942{
943 struct dib7000p_state *state = fe->demodulator_priv;
944 switch (op) {
945 case DEMOD_TIMF_SET:
946 state->timf = timf;
947 break;
948 case DEMOD_TIMF_UPDATE:
949 dib7000p_update_timf(state);
950 break;
951 case DEMOD_TIMF_GET:
952 break;
953 }
954 dib7000p_set_bandwidth(state, state->current_bandwidth);
955 return state->timf;
956}
957
958static void dib7000p_set_channel(struct dib7000p_state *state,
959 struct dtv_frontend_properties *ch, u8 seq)
960{
961 u16 value, est[4];
962
963 dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
964
965
966 value = 0;
967 switch (ch->transmission_mode) {
968 case TRANSMISSION_MODE_2K:
969 value |= (0 << 7);
970 break;
971 case TRANSMISSION_MODE_4K:
972 value |= (2 << 7);
973 break;
974 default:
975 case TRANSMISSION_MODE_8K:
976 value |= (1 << 7);
977 break;
978 }
979 switch (ch->guard_interval) {
980 case GUARD_INTERVAL_1_32:
981 value |= (0 << 5);
982 break;
983 case GUARD_INTERVAL_1_16:
984 value |= (1 << 5);
985 break;
986 case GUARD_INTERVAL_1_4:
987 value |= (3 << 5);
988 break;
989 default:
990 case GUARD_INTERVAL_1_8:
991 value |= (2 << 5);
992 break;
993 }
994 switch (ch->modulation) {
995 case QPSK:
996 value |= (0 << 3);
997 break;
998 case QAM_16:
999 value |= (1 << 3);
1000 break;
1001 default:
1002 case QAM_64:
1003 value |= (2 << 3);
1004 break;
1005 }
1006 switch (HIERARCHY_1) {
1007 case HIERARCHY_2:
1008 value |= 2;
1009 break;
1010 case HIERARCHY_4:
1011 value |= 4;
1012 break;
1013 default:
1014 case HIERARCHY_1:
1015 value |= 1;
1016 break;
1017 }
1018 dib7000p_write_word(state, 0, value);
1019 dib7000p_write_word(state, 5, (seq << 4) | 1);
1020
1021
1022 value = 0;
1023 if (1 != 0)
1024 value |= (1 << 6);
1025 if (ch->hierarchy == 1)
1026 value |= (1 << 4);
1027 if (1 == 1)
1028 value |= 1;
1029 switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
1030 case FEC_2_3:
1031 value |= (2 << 1);
1032 break;
1033 case FEC_3_4:
1034 value |= (3 << 1);
1035 break;
1036 case FEC_5_6:
1037 value |= (5 << 1);
1038 break;
1039 case FEC_7_8:
1040 value |= (7 << 1);
1041 break;
1042 default:
1043 case FEC_1_2:
1044 value |= (1 << 1);
1045 break;
1046 }
1047 dib7000p_write_word(state, 208, value);
1048
1049
1050 dib7000p_write_word(state, 26, 0x6680);
1051 dib7000p_write_word(state, 32, 0x0003);
1052 dib7000p_write_word(state, 29, 0x1273);
1053 dib7000p_write_word(state, 33, 0x0005);
1054
1055
1056 switch (ch->transmission_mode) {
1057 case TRANSMISSION_MODE_8K:
1058 value = 256;
1059 break;
1060 case TRANSMISSION_MODE_4K:
1061 value = 128;
1062 break;
1063 case TRANSMISSION_MODE_2K:
1064 default:
1065 value = 64;
1066 break;
1067 }
1068 switch (ch->guard_interval) {
1069 case GUARD_INTERVAL_1_16:
1070 value *= 2;
1071 break;
1072 case GUARD_INTERVAL_1_8:
1073 value *= 4;
1074 break;
1075 case GUARD_INTERVAL_1_4:
1076 value *= 8;
1077 break;
1078 default:
1079 case GUARD_INTERVAL_1_32:
1080 value *= 1;
1081 break;
1082 }
1083 if (state->cfg.diversity_delay == 0)
1084 state->div_sync_wait = (value * 3) / 2 + 48;
1085 else
1086 state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
1087
1088
1089 state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K;
1090 dib7000p_set_diversity_in(&state->demod, state->div_state);
1091
1092
1093 switch (ch->modulation) {
1094 case QAM_64:
1095 est[0] = 0x0148;
1096 est[1] = 0xfff0;
1097 est[2] = 0x00a4;
1098 est[3] = 0xfff8;
1099 break;
1100 case QAM_16:
1101 est[0] = 0x023d;
1102 est[1] = 0xffdf;
1103 est[2] = 0x00a4;
1104 est[3] = 0xfff0;
1105 break;
1106 default:
1107 est[0] = 0x099a;
1108 est[1] = 0xffae;
1109 est[2] = 0x0333;
1110 est[3] = 0xfff8;
1111 break;
1112 }
1113 for (value = 0; value < 4; value++)
1114 dib7000p_write_word(state, 187 + value, est[value]);
1115}
1116
1117static int dib7000p_autosearch_start(struct dvb_frontend *demod)
1118{
1119 struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
1120 struct dib7000p_state *state = demod->demodulator_priv;
1121 struct dtv_frontend_properties schan;
1122 u32 value, factor;
1123 u32 internal = dib7000p_get_internal_freq(state);
1124
1125 schan = *ch;
1126 schan.modulation = QAM_64;
1127 schan.guard_interval = GUARD_INTERVAL_1_32;
1128 schan.transmission_mode = TRANSMISSION_MODE_8K;
1129 schan.code_rate_HP = FEC_2_3;
1130 schan.code_rate_LP = FEC_3_4;
1131 schan.hierarchy = 0;
1132
1133 dib7000p_set_channel(state, &schan, 7);
1134
1135 factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
1136 if (factor >= 5000) {
1137 if (state->version == SOC7090)
1138 factor = 2;
1139 else
1140 factor = 1;
1141 } else
1142 factor = 6;
1143
1144 value = 30 * internal * factor;
1145 dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
1146 dib7000p_write_word(state, 7, (u16) (value & 0xffff));
1147 value = 100 * internal * factor;
1148 dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
1149 dib7000p_write_word(state, 9, (u16) (value & 0xffff));
1150 value = 500 * internal * factor;
1151 dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
1152 dib7000p_write_word(state, 11, (u16) (value & 0xffff));
1153
1154 value = dib7000p_read_word(state, 0);
1155 dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
1156 dib7000p_read_word(state, 1284);
1157 dib7000p_write_word(state, 0, (u16) value);
1158
1159 return 0;
1160}
1161
1162static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
1163{
1164 struct dib7000p_state *state = demod->demodulator_priv;
1165 u16 irq_pending = dib7000p_read_word(state, 1284);
1166
1167 if (irq_pending & 0x1)
1168 return 1;
1169
1170 if (irq_pending & 0x2)
1171 return 2;
1172
1173 return 0;
1174}
1175
1176static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
1177{
1178 static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
1179 static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
1180 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
1181 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
1182 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
1183 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
1184 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
1185 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
1186 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
1187 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
1188 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
1189 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
1190 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
1191 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
1192 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
1193 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
1194 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
1195 255, 255, 255, 255, 255, 255
1196 };
1197
1198 u32 xtal = state->cfg.bw->xtal_hz / 1000;
1199 int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
1200 int k;
1201 int coef_re[8], coef_im[8];
1202 int bw_khz = bw;
1203 u32 pha;
1204
1205 dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
1206
1207 if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
1208 return;
1209
1210 bw_khz /= 100;
1211
1212 dib7000p_write_word(state, 142, 0x0610);
1213
1214 for (k = 0; k < 8; k++) {
1215 pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
1216
1217 if (pha == 0) {
1218 coef_re[k] = 256;
1219 coef_im[k] = 0;
1220 } else if (pha < 256) {
1221 coef_re[k] = sine[256 - (pha & 0xff)];
1222 coef_im[k] = sine[pha & 0xff];
1223 } else if (pha == 256) {
1224 coef_re[k] = 0;
1225 coef_im[k] = 256;
1226 } else if (pha < 512) {
1227 coef_re[k] = -sine[pha & 0xff];
1228 coef_im[k] = sine[256 - (pha & 0xff)];
1229 } else if (pha == 512) {
1230 coef_re[k] = -256;
1231 coef_im[k] = 0;
1232 } else if (pha < 768) {
1233 coef_re[k] = -sine[256 - (pha & 0xff)];
1234 coef_im[k] = -sine[pha & 0xff];
1235 } else if (pha == 768) {
1236 coef_re[k] = 0;
1237 coef_im[k] = -256;
1238 } else {
1239 coef_re[k] = sine[pha & 0xff];
1240 coef_im[k] = -sine[256 - (pha & 0xff)];
1241 }
1242
1243 coef_re[k] *= notch[k];
1244 coef_re[k] += (1 << 14);
1245 if (coef_re[k] >= (1 << 24))
1246 coef_re[k] = (1 << 24) - 1;
1247 coef_re[k] /= (1 << 15);
1248
1249 coef_im[k] *= notch[k];
1250 coef_im[k] += (1 << 14);
1251 if (coef_im[k] >= (1 << 24))
1252 coef_im[k] = (1 << 24) - 1;
1253 coef_im[k] /= (1 << 15);
1254
1255 dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
1256
1257 dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
1258 dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
1259 dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
1260 }
1261 dib7000p_write_word(state, 143, 0);
1262}
1263
1264static int dib7000p_tune(struct dvb_frontend *demod)
1265{
1266 struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
1267 struct dib7000p_state *state = demod->demodulator_priv;
1268 u16 tmp = 0;
1269
1270 if (ch != NULL)
1271 dib7000p_set_channel(state, ch, 0);
1272 else
1273 return -EINVAL;
1274
1275
1276 dib7000p_write_word(state, 770, 0x4000);
1277 dib7000p_write_word(state, 770, 0x0000);
1278 msleep(45);
1279
1280
1281 tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
1282 if (state->sfn_workaround_active) {
1283 dprintk("SFN workaround is active");
1284 tmp |= (1 << 9);
1285 dib7000p_write_word(state, 166, 0x4000);
1286 } else {
1287 dib7000p_write_word(state, 166, 0x0000);
1288 }
1289 dib7000p_write_word(state, 29, tmp);
1290
1291
1292 if (state->timf == 0)
1293 msleep(200);
1294
1295
1296
1297
1298 tmp = (6 << 8) | 0x80;
1299 switch (ch->transmission_mode) {
1300 case TRANSMISSION_MODE_2K:
1301 tmp |= (2 << 12);
1302 break;
1303 case TRANSMISSION_MODE_4K:
1304 tmp |= (3 << 12);
1305 break;
1306 default:
1307 case TRANSMISSION_MODE_8K:
1308 tmp |= (4 << 12);
1309 break;
1310 }
1311 dib7000p_write_word(state, 26, tmp);
1312
1313
1314 tmp = (0 << 4);
1315 switch (ch->transmission_mode) {
1316 case TRANSMISSION_MODE_2K:
1317 tmp |= 0x6;
1318 break;
1319 case TRANSMISSION_MODE_4K:
1320 tmp |= 0x7;
1321 break;
1322 default:
1323 case TRANSMISSION_MODE_8K:
1324 tmp |= 0x8;
1325 break;
1326 }
1327 dib7000p_write_word(state, 32, tmp);
1328
1329
1330 tmp = (0 << 4);
1331 switch (ch->transmission_mode) {
1332 case TRANSMISSION_MODE_2K:
1333 tmp |= 0x6;
1334 break;
1335 case TRANSMISSION_MODE_4K:
1336 tmp |= 0x7;
1337 break;
1338 default:
1339 case TRANSMISSION_MODE_8K:
1340 tmp |= 0x8;
1341 break;
1342 }
1343 dib7000p_write_word(state, 33, tmp);
1344
1345 tmp = dib7000p_read_word(state, 509);
1346 if (!((tmp >> 6) & 0x1)) {
1347
1348 tmp = dib7000p_read_word(state, 771);
1349 dib7000p_write_word(state, 771, tmp | (1 << 1));
1350 dib7000p_write_word(state, 771, tmp);
1351 msleep(40);
1352 tmp = dib7000p_read_word(state, 509);
1353 }
1354
1355 if ((tmp >> 6) & 0x1) {
1356 dib7000p_update_timf(state);
1357
1358 tmp = dib7000p_read_word(state, 26);
1359 dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
1360 }
1361
1362 if (state->cfg.spur_protect)
1363 dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
1364
1365 dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
1366
1367 dib7000p_reset_stats(demod);
1368
1369 return 0;
1370}
1371
1372static int dib7000p_wakeup(struct dvb_frontend *demod)
1373{
1374 struct dib7000p_state *state = demod->demodulator_priv;
1375 dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
1376 dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
1377 if (state->version == SOC7090)
1378 dib7000p_sad_calib(state);
1379 return 0;
1380}
1381
1382static int dib7000p_sleep(struct dvb_frontend *demod)
1383{
1384 struct dib7000p_state *state = demod->demodulator_priv;
1385 if (state->version == SOC7090)
1386 return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
1387 return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
1388}
1389
1390static int dib7000p_identify(struct dib7000p_state *st)
1391{
1392 u16 value;
1393 dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr);
1394
1395 if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
1396 dprintk("wrong Vendor ID (read=0x%x)", value);
1397 return -EREMOTEIO;
1398 }
1399
1400 if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
1401 dprintk("wrong Device ID (%x)", value);
1402 return -EREMOTEIO;
1403 }
1404
1405 return 0;
1406}
1407
1408static int dib7000p_get_frontend(struct dvb_frontend *fe,
1409 struct dtv_frontend_properties *fep)
1410{
1411 struct dib7000p_state *state = fe->demodulator_priv;
1412 u16 tps = dib7000p_read_word(state, 463);
1413
1414 fep->inversion = INVERSION_AUTO;
1415
1416 fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth);
1417
1418 switch ((tps >> 8) & 0x3) {
1419 case 0:
1420 fep->transmission_mode = TRANSMISSION_MODE_2K;
1421 break;
1422 case 1:
1423 fep->transmission_mode = TRANSMISSION_MODE_8K;
1424 break;
1425
1426 }
1427
1428 switch (tps & 0x3) {
1429 case 0:
1430 fep->guard_interval = GUARD_INTERVAL_1_32;
1431 break;
1432 case 1:
1433 fep->guard_interval = GUARD_INTERVAL_1_16;
1434 break;
1435 case 2:
1436 fep->guard_interval = GUARD_INTERVAL_1_8;
1437 break;
1438 case 3:
1439 fep->guard_interval = GUARD_INTERVAL_1_4;
1440 break;
1441 }
1442
1443 switch ((tps >> 14) & 0x3) {
1444 case 0:
1445 fep->modulation = QPSK;
1446 break;
1447 case 1:
1448 fep->modulation = QAM_16;
1449 break;
1450 case 2:
1451 default:
1452 fep->modulation = QAM_64;
1453 break;
1454 }
1455
1456
1457
1458
1459 fep->hierarchy = HIERARCHY_NONE;
1460 switch ((tps >> 5) & 0x7) {
1461 case 1:
1462 fep->code_rate_HP = FEC_1_2;
1463 break;
1464 case 2:
1465 fep->code_rate_HP = FEC_2_3;
1466 break;
1467 case 3:
1468 fep->code_rate_HP = FEC_3_4;
1469 break;
1470 case 5:
1471 fep->code_rate_HP = FEC_5_6;
1472 break;
1473 case 7:
1474 default:
1475 fep->code_rate_HP = FEC_7_8;
1476 break;
1477
1478 }
1479
1480 switch ((tps >> 2) & 0x7) {
1481 case 1:
1482 fep->code_rate_LP = FEC_1_2;
1483 break;
1484 case 2:
1485 fep->code_rate_LP = FEC_2_3;
1486 break;
1487 case 3:
1488 fep->code_rate_LP = FEC_3_4;
1489 break;
1490 case 5:
1491 fep->code_rate_LP = FEC_5_6;
1492 break;
1493 case 7:
1494 default:
1495 fep->code_rate_LP = FEC_7_8;
1496 break;
1497 }
1498
1499
1500
1501 return 0;
1502}
1503
1504static int dib7000p_set_frontend(struct dvb_frontend *fe)
1505{
1506 struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
1507 struct dib7000p_state *state = fe->demodulator_priv;
1508 int time, ret;
1509
1510 if (state->version == SOC7090)
1511 dib7090_set_diversity_in(fe, 0);
1512 else
1513 dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
1514
1515
1516 state->sfn_workaround_active = buggy_sfn_workaround;
1517
1518 if (fe->ops.tuner_ops.set_params)
1519 fe->ops.tuner_ops.set_params(fe);
1520
1521
1522 state->agc_state = 0;
1523 do {
1524 time = dib7000p_agc_startup(fe);
1525 if (time != -1)
1526 msleep(time);
1527 } while (time != -1);
1528
1529 if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
1530 fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) {
1531 int i = 800, found;
1532
1533 dib7000p_autosearch_start(fe);
1534 do {
1535 msleep(1);
1536 found = dib7000p_autosearch_is_irq(fe);
1537 } while (found == 0 && i--);
1538
1539 dprintk("autosearch returns: %d", found);
1540 if (found == 0 || found == 1)
1541 return 0;
1542
1543 dib7000p_get_frontend(fe, fep);
1544 }
1545
1546 ret = dib7000p_tune(fe);
1547
1548
1549 if (state->version == SOC7090) {
1550 dib7090_set_output_mode(fe, state->cfg.output_mode);
1551 if (state->cfg.enMpegOutput == 0) {
1552 dib7090_setDibTxMux(state, MPEG_ON_DIBTX);
1553 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
1554 }
1555 } else
1556 dib7000p_set_output_mode(state, state->cfg.output_mode);
1557
1558 return ret;
1559}
1560
1561static int dib7000p_get_stats(struct dvb_frontend *fe, enum fe_status stat);
1562
1563static int dib7000p_read_status(struct dvb_frontend *fe, enum fe_status *stat)
1564{
1565 struct dib7000p_state *state = fe->demodulator_priv;
1566 u16 lock = dib7000p_read_word(state, 509);
1567
1568 *stat = 0;
1569
1570 if (lock & 0x8000)
1571 *stat |= FE_HAS_SIGNAL;
1572 if (lock & 0x3000)
1573 *stat |= FE_HAS_CARRIER;
1574 if (lock & 0x0100)
1575 *stat |= FE_HAS_VITERBI;
1576 if (lock & 0x0010)
1577 *stat |= FE_HAS_SYNC;
1578 if ((lock & 0x0038) == 0x38)
1579 *stat |= FE_HAS_LOCK;
1580
1581 dib7000p_get_stats(fe, *stat);
1582
1583 return 0;
1584}
1585
1586static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
1587{
1588 struct dib7000p_state *state = fe->demodulator_priv;
1589 *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
1590 return 0;
1591}
1592
1593static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
1594{
1595 struct dib7000p_state *state = fe->demodulator_priv;
1596 *unc = dib7000p_read_word(state, 506);
1597 return 0;
1598}
1599
1600static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
1601{
1602 struct dib7000p_state *state = fe->demodulator_priv;
1603 u16 val = dib7000p_read_word(state, 394);
1604 *strength = 65535 - val;
1605 return 0;
1606}
1607
1608static u32 dib7000p_get_snr(struct dvb_frontend *fe)
1609{
1610 struct dib7000p_state *state = fe->demodulator_priv;
1611 u16 val;
1612 s32 signal_mant, signal_exp, noise_mant, noise_exp;
1613 u32 result = 0;
1614
1615 val = dib7000p_read_word(state, 479);
1616 noise_mant = (val >> 4) & 0xff;
1617 noise_exp = ((val & 0xf) << 2);
1618 val = dib7000p_read_word(state, 480);
1619 noise_exp += ((val >> 14) & 0x3);
1620 if ((noise_exp & 0x20) != 0)
1621 noise_exp -= 0x40;
1622
1623 signal_mant = (val >> 6) & 0xFF;
1624 signal_exp = (val & 0x3F);
1625 if ((signal_exp & 0x20) != 0)
1626 signal_exp -= 0x40;
1627
1628 if (signal_mant != 0)
1629 result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
1630 else
1631 result = intlog10(2) * 10 * signal_exp - 100;
1632
1633 if (noise_mant != 0)
1634 result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
1635 else
1636 result -= intlog10(2) * 10 * noise_exp - 100;
1637
1638 return result;
1639}
1640
1641static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr)
1642{
1643 u32 result;
1644
1645 result = dib7000p_get_snr(fe);
1646
1647 *snr = result / ((1 << 24) / 10);
1648 return 0;
1649}
1650
1651static void dib7000p_reset_stats(struct dvb_frontend *demod)
1652{
1653 struct dib7000p_state *state = demod->demodulator_priv;
1654 struct dtv_frontend_properties *c = &demod->dtv_property_cache;
1655 u32 ucb;
1656
1657 memset(&c->strength, 0, sizeof(c->strength));
1658 memset(&c->cnr, 0, sizeof(c->cnr));
1659 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
1660 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
1661 memset(&c->block_error, 0, sizeof(c->block_error));
1662
1663 c->strength.len = 1;
1664 c->cnr.len = 1;
1665 c->block_error.len = 1;
1666 c->block_count.len = 1;
1667 c->post_bit_error.len = 1;
1668 c->post_bit_count.len = 1;
1669
1670 c->strength.stat[0].scale = FE_SCALE_DECIBEL;
1671 c->strength.stat[0].uvalue = 0;
1672
1673 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1674 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1675 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1676 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1677 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1678
1679 dib7000p_read_unc_blocks(demod, &ucb);
1680
1681 state->old_ucb = ucb;
1682 state->ber_jiffies_stats = 0;
1683 state->per_jiffies_stats = 0;
1684}
1685
1686struct linear_segments {
1687 unsigned x;
1688 signed y;
1689};
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710#define DB_OFFSET 131000
1711
1712static struct linear_segments strength_to_db_table[] = {
1713 { 63630, DB_OFFSET - 20500},
1714 { 62273, DB_OFFSET - 21000},
1715 { 60162, DB_OFFSET - 22000},
1716 { 58730, DB_OFFSET - 23000},
1717 { 58294, DB_OFFSET - 24000},
1718 { 57778, DB_OFFSET - 25000},
1719 { 57320, DB_OFFSET - 26000},
1720 { 56779, DB_OFFSET - 27000},
1721 { 56293, DB_OFFSET - 28000},
1722 { 55724, DB_OFFSET - 29000},
1723 { 55145, DB_OFFSET - 30000},
1724 { 54680, DB_OFFSET - 31000},
1725 { 54293, DB_OFFSET - 32000},
1726 { 53813, DB_OFFSET - 33000},
1727 { 53427, DB_OFFSET - 34000},
1728 { 52981, DB_OFFSET - 35000},
1729
1730 { 52636, DB_OFFSET - 36000},
1731 { 52014, DB_OFFSET - 37000},
1732 { 51674, DB_OFFSET - 38000},
1733 { 50692, DB_OFFSET - 39000},
1734 { 49824, DB_OFFSET - 40000},
1735 { 49052, DB_OFFSET - 41000},
1736 { 48436, DB_OFFSET - 42000},
1737 { 47836, DB_OFFSET - 43000},
1738 { 47368, DB_OFFSET - 44000},
1739 { 46468, DB_OFFSET - 45000},
1740 { 45597, DB_OFFSET - 46000},
1741 { 44586, DB_OFFSET - 47000},
1742 { 43667, DB_OFFSET - 48000},
1743 { 42673, DB_OFFSET - 49000},
1744 { 41816, DB_OFFSET - 50000},
1745 { 40876, DB_OFFSET - 51000},
1746 { 0, 0},
1747};
1748
1749static u32 interpolate_value(u32 value, struct linear_segments *segments,
1750 unsigned len)
1751{
1752 u64 tmp64;
1753 u32 dx;
1754 s32 dy;
1755 int i, ret;
1756
1757 if (value >= segments[0].x)
1758 return segments[0].y;
1759 if (value < segments[len-1].x)
1760 return segments[len-1].y;
1761
1762 for (i = 1; i < len - 1; i++) {
1763
1764 if (value == segments[i].x)
1765 return segments[i].y;
1766 if (value > segments[i].x)
1767 break;
1768 }
1769
1770
1771 dy = segments[i - 1].y - segments[i].y;
1772 dx = segments[i - 1].x - segments[i].x;
1773
1774 tmp64 = value - segments[i].x;
1775 tmp64 *= dy;
1776 do_div(tmp64, dx);
1777 ret = segments[i].y + tmp64;
1778
1779 return ret;
1780}
1781
1782
1783static u32 dib7000p_get_time_us(struct dvb_frontend *demod)
1784{
1785 struct dtv_frontend_properties *c = &demod->dtv_property_cache;
1786 u64 time_us, tmp64;
1787 u32 tmp, denom;
1788 int guard, rate_num, rate_denum = 1, bits_per_symbol;
1789 int interleaving = 0, fft_div;
1790
1791 switch (c->guard_interval) {
1792 case GUARD_INTERVAL_1_4:
1793 guard = 4;
1794 break;
1795 case GUARD_INTERVAL_1_8:
1796 guard = 8;
1797 break;
1798 case GUARD_INTERVAL_1_16:
1799 guard = 16;
1800 break;
1801 default:
1802 case GUARD_INTERVAL_1_32:
1803 guard = 32;
1804 break;
1805 }
1806
1807 switch (c->transmission_mode) {
1808 case TRANSMISSION_MODE_2K:
1809 fft_div = 4;
1810 break;
1811 case TRANSMISSION_MODE_4K:
1812 fft_div = 2;
1813 break;
1814 default:
1815 case TRANSMISSION_MODE_8K:
1816 fft_div = 1;
1817 break;
1818 }
1819
1820 switch (c->modulation) {
1821 case DQPSK:
1822 case QPSK:
1823 bits_per_symbol = 2;
1824 break;
1825 case QAM_16:
1826 bits_per_symbol = 4;
1827 break;
1828 default:
1829 case QAM_64:
1830 bits_per_symbol = 6;
1831 break;
1832 }
1833
1834 switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) {
1835 case FEC_1_2:
1836 rate_num = 1;
1837 rate_denum = 2;
1838 break;
1839 case FEC_2_3:
1840 rate_num = 2;
1841 rate_denum = 3;
1842 break;
1843 case FEC_3_4:
1844 rate_num = 3;
1845 rate_denum = 4;
1846 break;
1847 case FEC_5_6:
1848 rate_num = 5;
1849 rate_denum = 6;
1850 break;
1851 default:
1852 case FEC_7_8:
1853 rate_num = 7;
1854 rate_denum = 8;
1855 break;
1856 }
1857
1858 interleaving = interleaving;
1859
1860 denom = bits_per_symbol * rate_num * fft_div * 384;
1861
1862
1863 if (!denom)
1864 return 0;
1865
1866
1867 time_us = rate_denum * (1008 * 1562500L);
1868 tmp64 = time_us;
1869 do_div(tmp64, guard);
1870 time_us = time_us + tmp64;
1871 time_us += denom / 2;
1872 do_div(time_us, denom);
1873
1874 tmp = 1008 * 96 * interleaving;
1875 time_us += tmp + tmp / guard;
1876
1877 return time_us;
1878}
1879
1880static int dib7000p_get_stats(struct dvb_frontend *demod, enum fe_status stat)
1881{
1882 struct dib7000p_state *state = demod->demodulator_priv;
1883 struct dtv_frontend_properties *c = &demod->dtv_property_cache;
1884 int show_per_stats = 0;
1885 u32 time_us = 0, val, snr;
1886 u64 blocks, ucb;
1887 s32 db;
1888 u16 strength;
1889
1890
1891 dib7000p_read_signal_strength(demod, &strength);
1892 val = strength;
1893 db = interpolate_value(val,
1894 strength_to_db_table,
1895 ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET;
1896 c->strength.stat[0].svalue = db;
1897
1898
1899 if (!(stat & FE_HAS_LOCK)) {
1900 c->cnr.len = 1;
1901 c->block_count.len = 1;
1902 c->block_error.len = 1;
1903 c->post_bit_error.len = 1;
1904 c->post_bit_count.len = 1;
1905 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1906 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1907 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1908 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1909 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1910 return 0;
1911 }
1912
1913
1914 if (time_after(jiffies, state->per_jiffies_stats)) {
1915 state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);
1916
1917
1918 snr = dib7000p_get_snr(demod);
1919 if (snr)
1920 snr = (1000L * snr) >> 24;
1921 else
1922 snr = 0;
1923 c->cnr.stat[0].svalue = snr;
1924 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1925
1926
1927 dib7000p_read_unc_blocks(demod, &val);
1928 ucb = val - state->old_ucb;
1929 if (val < state->old_ucb)
1930 ucb += 0x100000000LL;
1931
1932 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1933 c->block_error.stat[0].uvalue = ucb;
1934
1935
1936 if (!time_us)
1937 time_us = dib7000p_get_time_us(demod);
1938
1939 if (time_us) {
1940 blocks = 1250000ULL * 1000000ULL;
1941 do_div(blocks, time_us * 8 * 204);
1942 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1943 c->block_count.stat[0].uvalue += blocks;
1944 }
1945
1946 show_per_stats = 1;
1947 }
1948
1949
1950 if (time_after(jiffies, state->ber_jiffies_stats)) {
1951 time_us = dib7000p_get_time_us(demod);
1952 state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
1953
1954 dprintk("Next all layers stats available in %u us.", time_us);
1955
1956 dib7000p_read_ber(demod, &val);
1957 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1958 c->post_bit_error.stat[0].uvalue += val;
1959
1960 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1961 c->post_bit_count.stat[0].uvalue += 100000000;
1962 }
1963
1964
1965 if (show_per_stats) {
1966 dib7000p_read_unc_blocks(demod, &val);
1967
1968 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1969 c->block_error.stat[0].uvalue += val;
1970
1971 time_us = dib7000p_get_time_us(demod);
1972 if (time_us) {
1973 blocks = 1250000ULL * 1000000ULL;
1974 do_div(blocks, time_us * 8 * 204);
1975 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1976 c->block_count.stat[0].uvalue += blocks;
1977 }
1978 }
1979 return 0;
1980}
1981
1982static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
1983{
1984 tune->min_delay_ms = 1000;
1985 return 0;
1986}
1987
1988static void dib7000p_release(struct dvb_frontend *demod)
1989{
1990 struct dib7000p_state *st = demod->demodulator_priv;
1991 dibx000_exit_i2c_master(&st->i2c_master);
1992 i2c_del_adapter(&st->dib7090_tuner_adap);
1993 kfree(st);
1994}
1995
1996static int dib7000pc_detection(struct i2c_adapter *i2c_adap)
1997{
1998 u8 *tx, *rx;
1999 struct i2c_msg msg[2] = {
2000 {.addr = 18 >> 1, .flags = 0, .len = 2},
2001 {.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2},
2002 };
2003 int ret = 0;
2004
2005 tx = kzalloc(2*sizeof(u8), GFP_KERNEL);
2006 if (!tx)
2007 return -ENOMEM;
2008 rx = kzalloc(2*sizeof(u8), GFP_KERNEL);
2009 if (!rx) {
2010 ret = -ENOMEM;
2011 goto rx_memory_error;
2012 }
2013
2014 msg[0].buf = tx;
2015 msg[1].buf = rx;
2016
2017 tx[0] = 0x03;
2018 tx[1] = 0x00;
2019
2020 if (i2c_transfer(i2c_adap, msg, 2) == 2)
2021 if (rx[0] == 0x01 && rx[1] == 0xb3) {
2022 dprintk("-D- DiB7000PC detected");
2023 return 1;
2024 }
2025
2026 msg[0].addr = msg[1].addr = 0x40;
2027
2028 if (i2c_transfer(i2c_adap, msg, 2) == 2)
2029 if (rx[0] == 0x01 && rx[1] == 0xb3) {
2030 dprintk("-D- DiB7000PC detected");
2031 return 1;
2032 }
2033
2034 dprintk("-D- DiB7000PC not detected");
2035
2036 kfree(rx);
2037rx_memory_error:
2038 kfree(tx);
2039 return ret;
2040}
2041
2042static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
2043{
2044 struct dib7000p_state *st = demod->demodulator_priv;
2045 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
2046}
2047
2048static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
2049{
2050 struct dib7000p_state *state = fe->demodulator_priv;
2051 u16 val = dib7000p_read_word(state, 235) & 0xffef;
2052 val |= (onoff & 0x1) << 4;
2053 dprintk("PID filter enabled %d", onoff);
2054 return dib7000p_write_word(state, 235, val);
2055}
2056
2057static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
2058{
2059 struct dib7000p_state *state = fe->demodulator_priv;
2060 dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff);
2061 return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
2062}
2063
2064static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
2065{
2066 struct dib7000p_state *dpst;
2067 int k = 0;
2068 u8 new_addr = 0;
2069
2070 dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
2071 if (!dpst)
2072 return -ENOMEM;
2073
2074 dpst->i2c_adap = i2c;
2075 mutex_init(&dpst->i2c_buffer_lock);
2076
2077 for (k = no_of_demods - 1; k >= 0; k--) {
2078 dpst->cfg = cfg[k];
2079
2080
2081 if (cfg[k].default_i2c_addr != 0)
2082 new_addr = cfg[k].default_i2c_addr + (k << 1);
2083 else
2084 new_addr = (0x40 + k) << 1;
2085 dpst->i2c_addr = new_addr;
2086 dib7000p_write_word(dpst, 1287, 0x0003);
2087 if (dib7000p_identify(dpst) != 0) {
2088 dpst->i2c_addr = default_addr;
2089 dib7000p_write_word(dpst, 1287, 0x0003);
2090 if (dib7000p_identify(dpst) != 0) {
2091 dprintk("DiB7000P #%d: not identified\n", k);
2092 kfree(dpst);
2093 return -EIO;
2094 }
2095 }
2096
2097
2098 dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY);
2099
2100
2101 dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2);
2102
2103 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
2104 }
2105
2106 for (k = 0; k < no_of_demods; k++) {
2107 dpst->cfg = cfg[k];
2108 if (cfg[k].default_i2c_addr != 0)
2109 dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
2110 else
2111 dpst->i2c_addr = (0x40 + k) << 1;
2112
2113
2114 dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
2115
2116
2117 dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z);
2118 }
2119
2120 kfree(dpst);
2121 return 0;
2122}
2123
2124static const s32 lut_1000ln_mant[] = {
2125 6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
2126};
2127
2128static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
2129{
2130 struct dib7000p_state *state = fe->demodulator_priv;
2131 u32 tmp_val = 0, exp = 0, mant = 0;
2132 s32 pow_i;
2133 u16 buf[2];
2134 u8 ix = 0;
2135
2136 buf[0] = dib7000p_read_word(state, 0x184);
2137 buf[1] = dib7000p_read_word(state, 0x185);
2138 pow_i = (buf[0] << 16) | buf[1];
2139 dprintk("raw pow_i = %d", pow_i);
2140
2141 tmp_val = pow_i;
2142 while (tmp_val >>= 1)
2143 exp++;
2144
2145 mant = (pow_i * 1000 / (1 << exp));
2146 dprintk(" mant = %d exp = %d", mant / 1000, exp);
2147
2148 ix = (u8) ((mant - 1000) / 100);
2149 dprintk(" ix = %d", ix);
2150
2151 pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
2152 pow_i = (pow_i << 8) / 1000;
2153 dprintk(" pow_i = %d", pow_i);
2154
2155 return pow_i;
2156}
2157
2158static int map_addr_to_serpar_number(struct i2c_msg *msg)
2159{
2160 if ((msg->buf[0] <= 15))
2161 msg->buf[0] -= 1;
2162 else if (msg->buf[0] == 17)
2163 msg->buf[0] = 15;
2164 else if (msg->buf[0] == 16)
2165 msg->buf[0] = 17;
2166 else if (msg->buf[0] == 19)
2167 msg->buf[0] = 16;
2168 else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
2169 msg->buf[0] -= 3;
2170 else if (msg->buf[0] == 28)
2171 msg->buf[0] = 23;
2172 else
2173 return -EINVAL;
2174 return 0;
2175}
2176
2177static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
2178{
2179 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
2180 u8 n_overflow = 1;
2181 u16 i = 1000;
2182 u16 serpar_num = msg[0].buf[0];
2183
2184 while (n_overflow == 1 && i) {
2185 n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
2186 i--;
2187 if (i == 0)
2188 dprintk("Tuner ITF: write busy (overflow)");
2189 }
2190 dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
2191 dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
2192
2193 return num;
2194}
2195
2196static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
2197{
2198 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
2199 u8 n_overflow = 1, n_empty = 1;
2200 u16 i = 1000;
2201 u16 serpar_num = msg[0].buf[0];
2202 u16 read_word;
2203
2204 while (n_overflow == 1 && i) {
2205 n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
2206 i--;
2207 if (i == 0)
2208 dprintk("TunerITF: read busy (overflow)");
2209 }
2210 dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));
2211
2212 i = 1000;
2213 while (n_empty == 1 && i) {
2214 n_empty = dib7000p_read_word(state, 1984) & 0x1;
2215 i--;
2216 if (i == 0)
2217 dprintk("TunerITF: read busy (empty)");
2218 }
2219 read_word = dib7000p_read_word(state, 1987);
2220 msg[1].buf[0] = (read_word >> 8) & 0xff;
2221 msg[1].buf[1] = (read_word) & 0xff;
2222
2223 return num;
2224}
2225
2226static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
2227{
2228 if (map_addr_to_serpar_number(&msg[0]) == 0) {
2229 if (num == 1) {
2230 return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
2231 } else {
2232 return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
2233 }
2234 }
2235 return num;
2236}
2237
2238static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap,
2239 struct i2c_msg msg[], int num, u16 apb_address)
2240{
2241 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
2242 u16 word;
2243
2244 if (num == 1) {
2245 dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
2246 } else {
2247 word = dib7000p_read_word(state, apb_address);
2248 msg[1].buf[0] = (word >> 8) & 0xff;
2249 msg[1].buf[1] = (word) & 0xff;
2250 }
2251
2252 return num;
2253}
2254
2255static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
2256{
2257 struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
2258
2259 u16 apb_address = 0, word;
2260 int i = 0;
2261 switch (msg[0].buf[0]) {
2262 case 0x12:
2263 apb_address = 1920;
2264 break;
2265 case 0x14:
2266 apb_address = 1921;
2267 break;
2268 case 0x24:
2269 apb_address = 1922;
2270 break;
2271 case 0x1a:
2272 apb_address = 1923;
2273 break;
2274 case 0x22:
2275 apb_address = 1924;
2276 break;
2277 case 0x33:
2278 apb_address = 1926;
2279 break;
2280 case 0x34:
2281 apb_address = 1927;
2282 break;
2283 case 0x35:
2284 apb_address = 1928;
2285 break;
2286 case 0x36:
2287 apb_address = 1929;
2288 break;
2289 case 0x37:
2290 apb_address = 1930;
2291 break;
2292 case 0x38:
2293 apb_address = 1931;
2294 break;
2295 case 0x39:
2296 apb_address = 1932;
2297 break;
2298 case 0x2a:
2299 apb_address = 1935;
2300 break;
2301 case 0x2b:
2302 apb_address = 1936;
2303 break;
2304 case 0x2c:
2305 apb_address = 1937;
2306 break;
2307 case 0x2d:
2308 apb_address = 1938;
2309 break;
2310 case 0x2e:
2311 apb_address = 1939;
2312 break;
2313 case 0x2f:
2314 apb_address = 1940;
2315 break;
2316 case 0x30:
2317 apb_address = 1941;
2318 break;
2319 case 0x31:
2320 apb_address = 1942;
2321 break;
2322 case 0x32:
2323 apb_address = 1943;
2324 break;
2325 case 0x3e:
2326 apb_address = 1944;
2327 break;
2328 case 0x3f:
2329 apb_address = 1945;
2330 break;
2331 case 0x40:
2332 apb_address = 1948;
2333 break;
2334 case 0x25:
2335 apb_address = 914;
2336 break;
2337 case 0x26:
2338 apb_address = 915;
2339 break;
2340 case 0x27:
2341 apb_address = 917;
2342 break;
2343 case 0x28:
2344 apb_address = 916;
2345 break;
2346 case 0x1d:
2347 i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
2348 word = dib7000p_read_word(state, 384 + i);
2349 msg[1].buf[0] = (word >> 8) & 0xff;
2350 msg[1].buf[1] = (word) & 0xff;
2351 return num;
2352 case 0x1f:
2353 if (num == 1) {
2354 word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
2355 word &= 0x3;
2356 word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
2357 dib7000p_write_word(state, 72, word);
2358 return num;
2359 }
2360 }
2361
2362 if (apb_address != 0)
2363 return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
2364 else
2365 return w7090p_tuner_rw_serpar(i2c_adap, msg, num);
2366
2367 return 0;
2368}
2369
2370static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
2371{
2372 return I2C_FUNC_I2C;
2373}
2374
2375static struct i2c_algorithm dib7090_tuner_xfer_algo = {
2376 .master_xfer = dib7090_tuner_xfer,
2377 .functionality = dib7000p_i2c_func,
2378};
2379
2380static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
2381{
2382 struct dib7000p_state *st = fe->demodulator_priv;
2383 return &st->dib7090_tuner_adap;
2384}
2385
2386static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
2387{
2388 u16 reg;
2389
2390
2391 reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
2392 reg |= (drive << 12) | (drive << 6) | drive;
2393 dib7000p_write_word(state, 1798, reg);
2394
2395
2396 reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
2397 reg |= (drive << 8) | (drive << 2);
2398 dib7000p_write_word(state, 1799, reg);
2399
2400
2401 reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
2402 reg |= (drive << 12) | (drive << 6) | drive;
2403 dib7000p_write_word(state, 1800, reg);
2404
2405
2406 reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
2407 reg |= (drive << 8) | (drive << 2);
2408 dib7000p_write_word(state, 1801, reg);
2409
2410
2411 reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
2412 reg |= (drive << 12) | (drive << 6) | drive;
2413 dib7000p_write_word(state, 1802, reg);
2414
2415 return 0;
2416}
2417
2418static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
2419{
2420 u32 quantif = 3;
2421 u32 nom = (insertExtSynchro * P_Kin + syncSize);
2422 u32 denom = P_Kout;
2423 u32 syncFreq = ((nom << quantif) / denom);
2424
2425 if ((syncFreq & ((1 << quantif) - 1)) != 0)
2426 syncFreq = (syncFreq >> quantif) + 1;
2427 else
2428 syncFreq = (syncFreq >> quantif);
2429
2430 if (syncFreq != 0)
2431 syncFreq = syncFreq - 1;
2432
2433 return syncFreq;
2434}
2435
2436static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
2437{
2438 dprintk("Configure DibStream Tx");
2439
2440 dib7000p_write_word(state, 1615, 1);
2441 dib7000p_write_word(state, 1603, P_Kin);
2442 dib7000p_write_word(state, 1605, P_Kout);
2443 dib7000p_write_word(state, 1606, insertExtSynchro);
2444 dib7000p_write_word(state, 1608, synchroMode);
2445 dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
2446 dib7000p_write_word(state, 1610, syncWord & 0xffff);
2447 dib7000p_write_word(state, 1612, syncSize);
2448 dib7000p_write_word(state, 1615, 0);
2449
2450 return 0;
2451}
2452
2453static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
2454 u32 dataOutRate)
2455{
2456 u32 syncFreq;
2457
2458 dprintk("Configure DibStream Rx");
2459 if ((P_Kin != 0) && (P_Kout != 0)) {
2460 syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
2461 dib7000p_write_word(state, 1542, syncFreq);
2462 }
2463 dib7000p_write_word(state, 1554, 1);
2464 dib7000p_write_word(state, 1536, P_Kin);
2465 dib7000p_write_word(state, 1537, P_Kout);
2466 dib7000p_write_word(state, 1539, synchroMode);
2467 dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
2468 dib7000p_write_word(state, 1541, syncWord & 0xffff);
2469 dib7000p_write_word(state, 1543, syncSize);
2470 dib7000p_write_word(state, 1544, dataOutRate);
2471 dib7000p_write_word(state, 1554, 0);
2472
2473 return 0;
2474}
2475
2476static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff)
2477{
2478 u16 reg_1287 = dib7000p_read_word(state, 1287);
2479
2480 switch (onoff) {
2481 case 1:
2482 reg_1287 &= ~(1<<7);
2483 break;
2484 case 0:
2485 reg_1287 |= (1<<7);
2486 break;
2487 }
2488
2489 dib7000p_write_word(state, 1287, reg_1287);
2490}
2491
2492static void dib7090_configMpegMux(struct dib7000p_state *state,
2493 u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
2494{
2495 dprintk("Enable Mpeg mux");
2496
2497 dib7090_enMpegMux(state, 0);
2498
2499
2500 if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
2501 enSerialClkDiv2 = 0;
2502
2503 dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2)
2504 | ((enSerialMode & 0x1) << 1)
2505 | (enSerialClkDiv2 & 0x1));
2506
2507 dib7090_enMpegMux(state, 1);
2508}
2509
2510static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode)
2511{
2512 u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7);
2513
2514 switch (mode) {
2515 case MPEG_ON_DIBTX:
2516 dprintk("SET MPEG ON DIBSTREAM TX");
2517 dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
2518 reg_1288 |= (1<<9);
2519 break;
2520 case DIV_ON_DIBTX:
2521 dprintk("SET DIV_OUT ON DIBSTREAM TX");
2522 dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
2523 reg_1288 |= (1<<8);
2524 break;
2525 case ADC_ON_DIBTX:
2526 dprintk("SET ADC_OUT ON DIBSTREAM TX");
2527 dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
2528 reg_1288 |= (1<<7);
2529 break;
2530 default:
2531 break;
2532 }
2533 dib7000p_write_word(state, 1288, reg_1288);
2534}
2535
2536static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode)
2537{
2538 u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4);
2539
2540 switch (mode) {
2541 case DEMOUT_ON_HOSTBUS:
2542 dprintk("SET DEM OUT OLD INTERF ON HOST BUS");
2543 dib7090_enMpegMux(state, 0);
2544 reg_1288 |= (1<<6);
2545 break;
2546 case DIBTX_ON_HOSTBUS:
2547 dprintk("SET DIBSTREAM TX ON HOST BUS");
2548 dib7090_enMpegMux(state, 0);
2549 reg_1288 |= (1<<5);
2550 break;
2551 case MPEG_ON_HOSTBUS:
2552 dprintk("SET MPEG MUX ON HOST BUS");
2553 reg_1288 |= (1<<4);
2554 break;
2555 default:
2556 break;
2557 }
2558 dib7000p_write_word(state, 1288, reg_1288);
2559}
2560
2561static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
2562{
2563 struct dib7000p_state *state = fe->demodulator_priv;
2564 u16 reg_1287;
2565
2566 switch (onoff) {
2567 case 0:
2568 dprintk("%s mode OFF : by default Enable Mpeg INPUT", __func__);
2569 dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);
2570
2571
2572
2573 reg_1287 = dib7000p_read_word(state, 1287);
2574
2575 if ((reg_1287 & 0x1) == 1) {
2576
2577 reg_1287 &= ~0x1;
2578 dib7000p_write_word(state, 1287, reg_1287);
2579 }
2580 state->input_mode_mpeg = 1;
2581 break;
2582 case 1:
2583 case 2:
2584 dprintk("%s ON : Enable diversity INPUT", __func__);
2585 dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
2586 state->input_mode_mpeg = 0;
2587 break;
2588 }
2589
2590 dib7000p_set_diversity_in(&state->demod, onoff);
2591 return 0;
2592}
2593
2594static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
2595{
2596 struct dib7000p_state *state = fe->demodulator_priv;
2597
2598 u16 outreg, smo_mode, fifo_threshold;
2599 u8 prefer_mpeg_mux_use = 1;
2600 int ret = 0;
2601
2602 dib7090_host_bus_drive(state, 1);
2603
2604 fifo_threshold = 1792;
2605 smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
2606 outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));
2607
2608 switch (mode) {
2609 case OUTMODE_HIGH_Z:
2610 outreg = 0;
2611 break;
2612
2613 case OUTMODE_MPEG2_SERIAL:
2614 if (prefer_mpeg_mux_use) {
2615 dprintk("setting output mode TS_SERIAL using Mpeg Mux");
2616 dib7090_configMpegMux(state, 3, 1, 1);
2617 dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
2618 } else {
2619 dprintk("setting output mode TS_SERIAL using Smooth bloc");
2620 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
2621 outreg |= (2<<6) | (0 << 1);
2622 }
2623 break;
2624
2625 case OUTMODE_MPEG2_PAR_GATED_CLK:
2626 if (prefer_mpeg_mux_use) {
2627 dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux");
2628 dib7090_configMpegMux(state, 2, 0, 0);
2629 dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
2630 } else {
2631 dprintk("setting output mode TS_PARALLEL_GATED using Smooth block");
2632 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
2633 outreg |= (0<<6);
2634 }
2635 break;
2636
2637 case OUTMODE_MPEG2_PAR_CONT_CLK:
2638 dprintk("setting output mode TS_PARALLEL_CONT using Smooth block");
2639 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
2640 outreg |= (1<<6);
2641 break;
2642
2643 case OUTMODE_MPEG2_FIFO:
2644 dprintk("setting output mode TS_FIFO using Smooth block");
2645 dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
2646 outreg |= (5<<6);
2647 smo_mode |= (3 << 1);
2648 fifo_threshold = 512;
2649 break;
2650
2651 case OUTMODE_DIVERSITY:
2652 dprintk("setting output mode MODE_DIVERSITY");
2653 dib7090_setDibTxMux(state, DIV_ON_DIBTX);
2654 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
2655 break;
2656
2657 case OUTMODE_ANALOG_ADC:
2658 dprintk("setting output mode MODE_ANALOG_ADC");
2659 dib7090_setDibTxMux(state, ADC_ON_DIBTX);
2660 dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
2661 break;
2662 }
2663 if (mode != OUTMODE_HIGH_Z)
2664 outreg |= (1 << 10);
2665
2666 if (state->cfg.output_mpeg2_in_188_bytes)
2667 smo_mode |= (1 << 5);
2668
2669 ret |= dib7000p_write_word(state, 235, smo_mode);
2670 ret |= dib7000p_write_word(state, 236, fifo_threshold);
2671 ret |= dib7000p_write_word(state, 1286, outreg);
2672
2673 return ret;
2674}
2675
2676static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
2677{
2678 struct dib7000p_state *state = fe->demodulator_priv;
2679 u16 en_cur_state;
2680
2681 dprintk("sleep dib7090: %d", onoff);
2682
2683 en_cur_state = dib7000p_read_word(state, 1922);
2684
2685 if (en_cur_state > 0xff)
2686 state->tuner_enable = en_cur_state;
2687
2688 if (onoff)
2689 en_cur_state &= 0x00ff;
2690 else {
2691 if (state->tuner_enable != 0)
2692 en_cur_state = state->tuner_enable;
2693 }
2694
2695 dib7000p_write_word(state, 1922, en_cur_state);
2696
2697 return 0;
2698}
2699
2700static int dib7090_get_adc_power(struct dvb_frontend *fe)
2701{
2702 return dib7000p_get_adc_power(fe);
2703}
2704
2705static int dib7090_slave_reset(struct dvb_frontend *fe)
2706{
2707 struct dib7000p_state *state = fe->demodulator_priv;
2708 u16 reg;
2709
2710 reg = dib7000p_read_word(state, 1794);
2711 dib7000p_write_word(state, 1794, reg | (4 << 12));
2712
2713 dib7000p_write_word(state, 1032, 0xffff);
2714 return 0;
2715}
2716
2717static struct dvb_frontend_ops dib7000p_ops;
2718static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
2719{
2720 struct dvb_frontend *demod;
2721 struct dib7000p_state *st;
2722 st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
2723 if (st == NULL)
2724 return NULL;
2725
2726 memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
2727 st->i2c_adap = i2c_adap;
2728 st->i2c_addr = i2c_addr;
2729 st->gpio_val = cfg->gpio_val;
2730 st->gpio_dir = cfg->gpio_dir;
2731
2732
2733
2734
2735 if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
2736 st->cfg.output_mode = OUTMODE_MPEG2_FIFO;
2737
2738 demod = &st->demod;
2739 demod->demodulator_priv = st;
2740 memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
2741 mutex_init(&st->i2c_buffer_lock);
2742
2743 dib7000p_write_word(st, 1287, 0x0003);
2744
2745 if (dib7000p_identify(st) != 0)
2746 goto error;
2747
2748 st->version = dib7000p_read_word(st, 897);
2749
2750
2751
2752
2753 st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent;
2754
2755 dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
2756
2757
2758 strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
2759 st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
2760 st->dib7090_tuner_adap.algo_data = NULL;
2761 st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
2762 i2c_set_adapdata(&st->dib7090_tuner_adap, st);
2763 i2c_add_adapter(&st->dib7090_tuner_adap);
2764
2765 dib7000p_demod_reset(st);
2766
2767 dib7000p_reset_stats(demod);
2768
2769 if (st->version == SOC7090) {
2770 dib7090_set_output_mode(demod, st->cfg.output_mode);
2771 dib7090_set_diversity_in(demod, 0);
2772 }
2773
2774 return demod;
2775
2776error:
2777 kfree(st);
2778 return NULL;
2779}
2780
2781void *dib7000p_attach(struct dib7000p_ops *ops)
2782{
2783 if (!ops)
2784 return NULL;
2785
2786 ops->slave_reset = dib7090_slave_reset;
2787 ops->get_adc_power = dib7090_get_adc_power;
2788 ops->dib7000pc_detection = dib7000pc_detection;
2789 ops->get_i2c_tuner = dib7090_get_i2c_tuner;
2790 ops->tuner_sleep = dib7090_tuner_sleep;
2791 ops->init = dib7000p_init;
2792 ops->set_agc1_min = dib7000p_set_agc1_min;
2793 ops->set_gpio = dib7000p_set_gpio;
2794 ops->i2c_enumeration = dib7000p_i2c_enumeration;
2795 ops->pid_filter = dib7000p_pid_filter;
2796 ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl;
2797 ops->get_i2c_master = dib7000p_get_i2c_master;
2798 ops->update_pll = dib7000p_update_pll;
2799 ops->ctrl_timf = dib7000p_ctrl_timf;
2800 ops->get_agc_values = dib7000p_get_agc_values;
2801 ops->set_wbd_ref = dib7000p_set_wbd_ref;
2802
2803 return ops;
2804}
2805EXPORT_SYMBOL(dib7000p_attach);
2806
2807static struct dvb_frontend_ops dib7000p_ops = {
2808 .delsys = { SYS_DVBT },
2809 .info = {
2810 .name = "DiBcom 7000PC",
2811 .frequency_min = 44250000,
2812 .frequency_max = 867250000,
2813 .frequency_stepsize = 62500,
2814 .caps = FE_CAN_INVERSION_AUTO |
2815 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2816 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2817 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
2818 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
2819 },
2820
2821 .release = dib7000p_release,
2822
2823 .init = dib7000p_wakeup,
2824 .sleep = dib7000p_sleep,
2825
2826 .set_frontend = dib7000p_set_frontend,
2827 .get_tune_settings = dib7000p_fe_get_tune_settings,
2828 .get_frontend = dib7000p_get_frontend,
2829
2830 .read_status = dib7000p_read_status,
2831 .read_ber = dib7000p_read_ber,
2832 .read_signal_strength = dib7000p_read_signal_strength,
2833 .read_snr = dib7000p_read_snr,
2834 .read_ucblocks = dib7000p_read_unc_blocks,
2835};
2836
2837MODULE_AUTHOR("Olivier Grenie <olivie.grenie@parrot.com>");
2838MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
2839MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
2840MODULE_LICENSE("GPL");
2841