linux/drivers/media/tuners/mt2063.c
<<
>>
Prefs
   1/*
   2 * Driver for mt2063 Micronas tuner
   3 *
   4 * Copyright (c) 2011 Mauro Carvalho Chehab
   5 *
   6 * This driver came from a driver originally written by:
   7 *              Henry Wang <Henry.wang@AzureWave.com>
   8 * Made publicly available by Terratec, at:
   9 *      http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
  10 * The original driver's license is GPL, as declared with MODULE_LICENSE()
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation under version 2 of the License.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/string.h>
  26#include <linux/videodev2.h>
  27
  28#include "mt2063.h"
  29
  30static unsigned int debug;
  31module_param(debug, int, 0644);
  32MODULE_PARM_DESC(debug, "Set Verbosity level");
  33
  34#define dprintk(level, fmt, arg...) do {                                \
  35if (debug >= level)                                                     \
  36        printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
  37} while (0)
  38
  39
  40/* positive error codes used internally */
  41
  42/*  Info: Unavoidable LO-related spur may be present in the output  */
  43#define MT2063_SPUR_PRESENT_ERR             (0x00800000)
  44
  45/*  Info: Mask of bits used for # of LO-related spurs that were avoided during tuning  */
  46#define MT2063_SPUR_CNT_MASK                (0x001f0000)
  47#define MT2063_SPUR_SHIFT                   (16)
  48
  49/*  Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
  50#define MT2063_UPC_RANGE                    (0x04000000)
  51
  52/*  Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
  53#define MT2063_DNC_RANGE                    (0x08000000)
  54
  55/*
  56 *  Constant defining the version of the following structure
  57 *  and therefore the API for this code.
  58 *
  59 *  When compiling the tuner driver, the preprocessor will
  60 *  check against this version number to make sure that
  61 *  it matches the version that the tuner driver knows about.
  62 */
  63
  64/* DECT Frequency Avoidance */
  65#define MT2063_DECT_AVOID_US_FREQS      0x00000001
  66
  67#define MT2063_DECT_AVOID_EURO_FREQS    0x00000002
  68
  69#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
  70
  71#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
  72
  73enum MT2063_DECT_Avoid_Type {
  74        MT2063_NO_DECT_AVOIDANCE = 0,                           /* Do not create DECT exclusion zones.     */
  75        MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS,      /* Avoid US DECT frequencies.              */
  76        MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS,  /* Avoid European DECT frequencies.        */
  77        MT2063_AVOID_BOTH                                       /* Avoid both regions. Not typically used. */
  78};
  79
  80#define MT2063_MAX_ZONES 48
  81
  82struct MT2063_ExclZone_t {
  83        u32 min_;
  84        u32 max_;
  85        struct MT2063_ExclZone_t *next_;
  86};
  87
  88/*
  89 *  Structure of data needed for Spur Avoidance
  90 */
  91struct MT2063_AvoidSpursData_t {
  92        u32 f_ref;
  93        u32 f_in;
  94        u32 f_LO1;
  95        u32 f_if1_Center;
  96        u32 f_if1_Request;
  97        u32 f_if1_bw;
  98        u32 f_LO2;
  99        u32 f_out;
 100        u32 f_out_bw;
 101        u32 f_LO1_Step;
 102        u32 f_LO2_Step;
 103        u32 f_LO1_FracN_Avoid;
 104        u32 f_LO2_FracN_Avoid;
 105        u32 f_zif_bw;
 106        u32 f_min_LO_Separation;
 107        u32 maxH1;
 108        u32 maxH2;
 109        enum MT2063_DECT_Avoid_Type avoidDECT;
 110        u32 bSpurPresent;
 111        u32 bSpurAvoided;
 112        u32 nSpursFound;
 113        u32 nZones;
 114        struct MT2063_ExclZone_t *freeZones;
 115        struct MT2063_ExclZone_t *usedZones;
 116        struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
 117};
 118
 119/*
 120 * Parameter for function MT2063_SetPowerMask that specifies the power down
 121 * of various sections of the MT2063.
 122 */
 123enum MT2063_Mask_Bits {
 124        MT2063_REG_SD = 0x0040,         /* Shutdown regulator                 */
 125        MT2063_SRO_SD = 0x0020,         /* Shutdown SRO                       */
 126        MT2063_AFC_SD = 0x0010,         /* Shutdown AFC A/D                   */
 127        MT2063_PD_SD = 0x0002,          /* Enable power detector shutdown     */
 128        MT2063_PDADC_SD = 0x0001,       /* Enable power detector A/D shutdown */
 129        MT2063_VCO_SD = 0x8000,         /* Enable VCO shutdown                */
 130        MT2063_LTX_SD = 0x4000,         /* Enable LTX shutdown                */
 131        MT2063_LT1_SD = 0x2000,         /* Enable LT1 shutdown                */
 132        MT2063_LNA_SD = 0x1000,         /* Enable LNA shutdown                */
 133        MT2063_UPC_SD = 0x0800,         /* Enable upconverter shutdown        */
 134        MT2063_DNC_SD = 0x0400,         /* Enable downconverter shutdown      */
 135        MT2063_VGA_SD = 0x0200,         /* Enable VGA shutdown                */
 136        MT2063_AMP_SD = 0x0100,         /* Enable AMP shutdown                */
 137        MT2063_ALL_SD = 0xFF73,         /* All shutdown bits for this tuner   */
 138        MT2063_NONE_SD = 0x0000         /* No shutdown bits                   */
 139};
 140
 141/*
 142 *  Possible values for MT2063_DNC_OUTPUT
 143 */
 144enum MT2063_DNC_Output_Enable {
 145        MT2063_DNC_NONE = 0,
 146        MT2063_DNC_1,
 147        MT2063_DNC_2,
 148        MT2063_DNC_BOTH
 149};
 150
 151/*
 152 *  Two-wire serial bus subaddresses of the tuner registers.
 153 *  Also known as the tuner's register addresses.
 154 */
 155enum MT2063_Register_Offsets {
 156        MT2063_REG_PART_REV = 0,        /*  0x00: Part/Rev Code         */
 157        MT2063_REG_LO1CQ_1,             /*  0x01: LO1C Queued Byte 1    */
 158        MT2063_REG_LO1CQ_2,             /*  0x02: LO1C Queued Byte 2    */
 159        MT2063_REG_LO2CQ_1,             /*  0x03: LO2C Queued Byte 1    */
 160        MT2063_REG_LO2CQ_2,             /*  0x04: LO2C Queued Byte 2    */
 161        MT2063_REG_LO2CQ_3,             /*  0x05: LO2C Queued Byte 3    */
 162        MT2063_REG_RSVD_06,             /*  0x06: Reserved              */
 163        MT2063_REG_LO_STATUS,           /*  0x07: LO Status             */
 164        MT2063_REG_FIFFC,               /*  0x08: FIFF Center           */
 165        MT2063_REG_CLEARTUNE,           /*  0x09: ClearTune Filter      */
 166        MT2063_REG_ADC_OUT,             /*  0x0A: ADC_OUT               */
 167        MT2063_REG_LO1C_1,              /*  0x0B: LO1C Byte 1           */
 168        MT2063_REG_LO1C_2,              /*  0x0C: LO1C Byte 2           */
 169        MT2063_REG_LO2C_1,              /*  0x0D: LO2C Byte 1           */
 170        MT2063_REG_LO2C_2,              /*  0x0E: LO2C Byte 2           */
 171        MT2063_REG_LO2C_3,              /*  0x0F: LO2C Byte 3           */
 172        MT2063_REG_RSVD_10,             /*  0x10: Reserved              */
 173        MT2063_REG_PWR_1,               /*  0x11: PWR Byte 1            */
 174        MT2063_REG_PWR_2,               /*  0x12: PWR Byte 2            */
 175        MT2063_REG_TEMP_STATUS,         /*  0x13: Temp Status           */
 176        MT2063_REG_XO_STATUS,           /*  0x14: Crystal Status        */
 177        MT2063_REG_RF_STATUS,           /*  0x15: RF Attn Status        */
 178        MT2063_REG_FIF_STATUS,          /*  0x16: FIF Attn Status       */
 179        MT2063_REG_LNA_OV,              /*  0x17: LNA Attn Override     */
 180        MT2063_REG_RF_OV,               /*  0x18: RF Attn Override      */
 181        MT2063_REG_FIF_OV,              /*  0x19: FIF Attn Override     */
 182        MT2063_REG_LNA_TGT,             /*  0x1A: Reserved              */
 183        MT2063_REG_PD1_TGT,             /*  0x1B: Pwr Det 1 Target      */
 184        MT2063_REG_PD2_TGT,             /*  0x1C: Pwr Det 2 Target      */
 185        MT2063_REG_RSVD_1D,             /*  0x1D: Reserved              */
 186        MT2063_REG_RSVD_1E,             /*  0x1E: Reserved              */
 187        MT2063_REG_RSVD_1F,             /*  0x1F: Reserved              */
 188        MT2063_REG_RSVD_20,             /*  0x20: Reserved              */
 189        MT2063_REG_BYP_CTRL,            /*  0x21: Bypass Control        */
 190        MT2063_REG_RSVD_22,             /*  0x22: Reserved              */
 191        MT2063_REG_RSVD_23,             /*  0x23: Reserved              */
 192        MT2063_REG_RSVD_24,             /*  0x24: Reserved              */
 193        MT2063_REG_RSVD_25,             /*  0x25: Reserved              */
 194        MT2063_REG_RSVD_26,             /*  0x26: Reserved              */
 195        MT2063_REG_RSVD_27,             /*  0x27: Reserved              */
 196        MT2063_REG_FIFF_CTRL,           /*  0x28: FIFF Control          */
 197        MT2063_REG_FIFF_OFFSET,         /*  0x29: FIFF Offset           */
 198        MT2063_REG_CTUNE_CTRL,          /*  0x2A: Reserved              */
 199        MT2063_REG_CTUNE_OV,            /*  0x2B: Reserved              */
 200        MT2063_REG_CTRL_2C,             /*  0x2C: Reserved              */
 201        MT2063_REG_FIFF_CTRL2,          /*  0x2D: Fiff Control          */
 202        MT2063_REG_RSVD_2E,             /*  0x2E: Reserved              */
 203        MT2063_REG_DNC_GAIN,            /*  0x2F: DNC Control           */
 204        MT2063_REG_VGA_GAIN,            /*  0x30: VGA Gain Ctrl         */
 205        MT2063_REG_RSVD_31,             /*  0x31: Reserved              */
 206        MT2063_REG_TEMP_SEL,            /*  0x32: Temperature Selection */
 207        MT2063_REG_RSVD_33,             /*  0x33: Reserved              */
 208        MT2063_REG_RSVD_34,             /*  0x34: Reserved              */
 209        MT2063_REG_RSVD_35,             /*  0x35: Reserved              */
 210        MT2063_REG_RSVD_36,             /*  0x36: Reserved              */
 211        MT2063_REG_RSVD_37,             /*  0x37: Reserved              */
 212        MT2063_REG_RSVD_38,             /*  0x38: Reserved              */
 213        MT2063_REG_RSVD_39,             /*  0x39: Reserved              */
 214        MT2063_REG_RSVD_3A,             /*  0x3A: Reserved              */
 215        MT2063_REG_RSVD_3B,             /*  0x3B: Reserved              */
 216        MT2063_REG_RSVD_3C,             /*  0x3C: Reserved              */
 217        MT2063_REG_END_REGS
 218};
 219
 220struct mt2063_state {
 221        struct i2c_adapter *i2c;
 222
 223        bool init;
 224
 225        const struct mt2063_config *config;
 226        struct dvb_tuner_ops ops;
 227        struct dvb_frontend *frontend;
 228
 229        u32 frequency;
 230        u32 srate;
 231        u32 bandwidth;
 232        u32 reference;
 233
 234        u32 tuner_id;
 235        struct MT2063_AvoidSpursData_t AS_Data;
 236        u32 f_IF1_actual;
 237        u32 rcvr_mode;
 238        u32 ctfilt_sw;
 239        u32 CTFiltMax[31];
 240        u32 num_regs;
 241        u8 reg[MT2063_REG_END_REGS];
 242};
 243
 244/*
 245 * mt2063_write - Write data into the I2C bus
 246 */
 247static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
 248{
 249        struct dvb_frontend *fe = state->frontend;
 250        int ret;
 251        u8 buf[60];
 252        struct i2c_msg msg = {
 253                .addr = state->config->tuner_address,
 254                .flags = 0,
 255                .buf = buf,
 256                .len = len + 1
 257        };
 258
 259        dprintk(2, "\n");
 260
 261        msg.buf[0] = reg;
 262        memcpy(msg.buf + 1, data, len);
 263
 264        if (fe->ops.i2c_gate_ctrl)
 265                fe->ops.i2c_gate_ctrl(fe, 1);
 266        ret = i2c_transfer(state->i2c, &msg, 1);
 267        if (fe->ops.i2c_gate_ctrl)
 268                fe->ops.i2c_gate_ctrl(fe, 0);
 269
 270        if (ret < 0)
 271                printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
 272
 273        return ret;
 274}
 275
 276/*
 277 * mt2063_write - Write register data into the I2C bus, caching the value
 278 */
 279static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
 280{
 281        int status;
 282
 283        dprintk(2, "\n");
 284
 285        if (reg >= MT2063_REG_END_REGS)
 286                return -ERANGE;
 287
 288        status = mt2063_write(state, reg, &val, 1);
 289        if (status < 0)
 290                return status;
 291
 292        state->reg[reg] = val;
 293
 294        return 0;
 295}
 296
 297/*
 298 * mt2063_read - Read data from the I2C bus
 299 */
 300static int mt2063_read(struct mt2063_state *state,
 301                           u8 subAddress, u8 *pData, u32 cnt)
 302{
 303        int status = 0; /* Status to be returned        */
 304        struct dvb_frontend *fe = state->frontend;
 305        u32 i = 0;
 306
 307        dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
 308
 309        if (fe->ops.i2c_gate_ctrl)
 310                fe->ops.i2c_gate_ctrl(fe, 1);
 311
 312        for (i = 0; i < cnt; i++) {
 313                u8 b0[] = { subAddress + i };
 314                struct i2c_msg msg[] = {
 315                        {
 316                                .addr = state->config->tuner_address,
 317                                .flags = 0,
 318                                .buf = b0,
 319                                .len = 1
 320                        }, {
 321                                .addr = state->config->tuner_address,
 322                                .flags = I2C_M_RD,
 323                                .buf = pData + i,
 324                                .len = 1
 325                        }
 326                };
 327
 328                status = i2c_transfer(state->i2c, msg, 2);
 329                dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
 330                           subAddress + i, status, *(pData + i));
 331                if (status < 0)
 332                        break;
 333        }
 334        if (fe->ops.i2c_gate_ctrl)
 335                fe->ops.i2c_gate_ctrl(fe, 0);
 336
 337        if (status < 0)
 338                printk(KERN_ERR "Can't read from address 0x%02x,\n",
 339                       subAddress + i);
 340
 341        return status;
 342}
 343
 344/*
 345 * FIXME: Is this really needed?
 346 */
 347static int MT2063_Sleep(struct dvb_frontend *fe)
 348{
 349        /*
 350         *  ToDo:  Add code here to implement a OS blocking
 351         */
 352        msleep(100);
 353
 354        return 0;
 355}
 356
 357/*
 358 * Microtune spur avoidance
 359 */
 360
 361/*  Implement ceiling, floor functions.  */
 362#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
 363#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
 364
 365struct MT2063_FIFZone_t {
 366        s32 min_;
 367        s32 max_;
 368};
 369
 370static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
 371                                            *pAS_Info,
 372                                            struct MT2063_ExclZone_t *pPrevNode)
 373{
 374        struct MT2063_ExclZone_t *pNode;
 375
 376        dprintk(2, "\n");
 377
 378        /*  Check for a node in the free list  */
 379        if (pAS_Info->freeZones != NULL) {
 380                /*  Use one from the free list  */
 381                pNode = pAS_Info->freeZones;
 382                pAS_Info->freeZones = pNode->next_;
 383        } else {
 384                /*  Grab a node from the array  */
 385                pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
 386        }
 387
 388        if (pPrevNode != NULL) {
 389                pNode->next_ = pPrevNode->next_;
 390                pPrevNode->next_ = pNode;
 391        } else {                /*  insert at the beginning of the list  */
 392
 393                pNode->next_ = pAS_Info->usedZones;
 394                pAS_Info->usedZones = pNode;
 395        }
 396
 397        pAS_Info->nZones++;
 398        return pNode;
 399}
 400
 401static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
 402                                            *pAS_Info,
 403                                            struct MT2063_ExclZone_t *pPrevNode,
 404                                            struct MT2063_ExclZone_t
 405                                            *pNodeToRemove)
 406{
 407        struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
 408
 409        dprintk(2, "\n");
 410
 411        /*  Make previous node point to the subsequent node  */
 412        if (pPrevNode != NULL)
 413                pPrevNode->next_ = pNext;
 414
 415        /*  Add pNodeToRemove to the beginning of the freeZones  */
 416        pNodeToRemove->next_ = pAS_Info->freeZones;
 417        pAS_Info->freeZones = pNodeToRemove;
 418
 419        /*  Decrement node count  */
 420        pAS_Info->nZones--;
 421
 422        return pNext;
 423}
 424
 425/*
 426 * MT_AddExclZone()
 427 *
 428 * Add (and merge) an exclusion zone into the list.
 429 * If the range (f_min, f_max) is totally outside the
 430 * 1st IF BW, ignore the entry.
 431 * If the range (f_min, f_max) is negative, ignore the entry.
 432 */
 433static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
 434                               u32 f_min, u32 f_max)
 435{
 436        struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
 437        struct MT2063_ExclZone_t *pPrev = NULL;
 438        struct MT2063_ExclZone_t *pNext = NULL;
 439
 440        dprintk(2, "\n");
 441
 442        /*  Check to see if this overlaps the 1st IF filter  */
 443        if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
 444            && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
 445            && (f_min < f_max)) {
 446                /*
 447                 *                1        2         3      4       5        6
 448                 *
 449                 *   New entry:  |---|    |--|      |--|    |-|    |---|    |--|
 450                 *                or       or        or     or      or
 451                 *   Existing:  |--|      |--|      |--|    |---|  |-|      |--|
 452                 */
 453
 454                /*  Check for our place in the list  */
 455                while ((pNode != NULL) && (pNode->max_ < f_min)) {
 456                        pPrev = pNode;
 457                        pNode = pNode->next_;
 458                }
 459
 460                if ((pNode != NULL) && (pNode->min_ < f_max)) {
 461                        /*  Combine me with pNode  */
 462                        if (f_min < pNode->min_)
 463                                pNode->min_ = f_min;
 464                        if (f_max > pNode->max_)
 465                                pNode->max_ = f_max;
 466                } else {
 467                        pNode = InsertNode(pAS_Info, pPrev);
 468                        pNode->min_ = f_min;
 469                        pNode->max_ = f_max;
 470                }
 471
 472                /*  Look for merging possibilities  */
 473                pNext = pNode->next_;
 474                while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
 475                        if (pNext->max_ > pNode->max_)
 476                                pNode->max_ = pNext->max_;
 477                        /*  Remove pNext, return ptr to pNext->next  */
 478                        pNext = RemoveNode(pAS_Info, pNode, pNext);
 479                }
 480        }
 481}
 482
 483/*
 484 *  Reset all exclusion zones.
 485 *  Add zones to protect the PLL FracN regions near zero
 486 */
 487static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
 488{
 489        u32 center;
 490
 491        dprintk(2, "\n");
 492
 493        pAS_Info->nZones = 0;   /*  this clears the used list  */
 494        pAS_Info->usedZones = NULL;     /*  reset ptr                  */
 495        pAS_Info->freeZones = NULL;     /*  reset ptr                  */
 496
 497        center =
 498            pAS_Info->f_ref *
 499            ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
 500              pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
 501        while (center <
 502               pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
 503               pAS_Info->f_LO1_FracN_Avoid) {
 504                /*  Exclude LO1 FracN  */
 505                MT2063_AddExclZone(pAS_Info,
 506                                   center - pAS_Info->f_LO1_FracN_Avoid,
 507                                   center - 1);
 508                MT2063_AddExclZone(pAS_Info, center + 1,
 509                                   center + pAS_Info->f_LO1_FracN_Avoid);
 510                center += pAS_Info->f_ref;
 511        }
 512
 513        center =
 514            pAS_Info->f_ref *
 515            ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
 516              pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
 517        while (center <
 518               pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
 519               pAS_Info->f_LO2_FracN_Avoid) {
 520                /*  Exclude LO2 FracN  */
 521                MT2063_AddExclZone(pAS_Info,
 522                                   center - pAS_Info->f_LO2_FracN_Avoid,
 523                                   center - 1);
 524                MT2063_AddExclZone(pAS_Info, center + 1,
 525                                   center + pAS_Info->f_LO2_FracN_Avoid);
 526                center += pAS_Info->f_ref;
 527        }
 528
 529        if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
 530                /*  Exclude LO1 values that conflict with DECT channels */
 531                MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
 532                MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
 533                MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
 534                MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
 535                MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
 536        }
 537
 538        if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
 539                MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
 540                MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
 541                MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
 542                MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16  */
 543                MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
 544                MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
 545                MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
 546                MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
 547                MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52  */
 548                MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
 549        }
 550}
 551
 552/*
 553 * MT_ChooseFirstIF - Choose the best available 1st IF
 554 *                    If f_Desired is not excluded, choose that first.
 555 *                    Otherwise, return the value closest to f_Center that is
 556 *                    not excluded
 557 */
 558static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
 559{
 560        /*
 561         * Update "f_Desired" to be the nearest "combinational-multiple" of
 562         * "f_LO1_Step".
 563         * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
 564         * And F_LO1 is the arithmetic sum of f_in + f_Center.
 565         * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
 566         * However, the sum must be.
 567         */
 568        const u32 f_Desired =
 569            pAS_Info->f_LO1_Step *
 570            ((pAS_Info->f_if1_Request + pAS_Info->f_in +
 571              pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
 572            pAS_Info->f_in;
 573        const u32 f_Step =
 574            (pAS_Info->f_LO1_Step >
 575             pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
 576            f_LO2_Step;
 577        u32 f_Center;
 578        s32 i;
 579        s32 j = 0;
 580        u32 bDesiredExcluded = 0;
 581        u32 bZeroExcluded = 0;
 582        s32 tmpMin, tmpMax;
 583        s32 bestDiff;
 584        struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
 585        struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
 586
 587        dprintk(2, "\n");
 588
 589        if (pAS_Info->nZones == 0)
 590                return f_Desired;
 591
 592        /*
 593         *  f_Center needs to be an integer multiple of f_Step away
 594         *  from f_Desired
 595         */
 596        if (pAS_Info->f_if1_Center > f_Desired)
 597                f_Center =
 598                    f_Desired +
 599                    f_Step *
 600                    ((pAS_Info->f_if1_Center - f_Desired +
 601                      f_Step / 2) / f_Step);
 602        else
 603                f_Center =
 604                    f_Desired -
 605                    f_Step *
 606                    ((f_Desired - pAS_Info->f_if1_Center +
 607                      f_Step / 2) / f_Step);
 608
 609        /*
 610         * Take MT_ExclZones, center around f_Center and change the
 611         * resolution to f_Step
 612         */
 613        while (pNode != NULL) {
 614                /*  floor function  */
 615                tmpMin =
 616                    floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
 617
 618                /*  ceil function  */
 619                tmpMax =
 620                    ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
 621
 622                if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
 623                        bDesiredExcluded = 1;
 624
 625                if ((tmpMin < 0) && (tmpMax > 0))
 626                        bZeroExcluded = 1;
 627
 628                /*  See if this zone overlaps the previous  */
 629                if ((j > 0) && (tmpMin < zones[j - 1].max_))
 630                        zones[j - 1].max_ = tmpMax;
 631                else {
 632                        /*  Add new zone  */
 633                        zones[j].min_ = tmpMin;
 634                        zones[j].max_ = tmpMax;
 635                        j++;
 636                }
 637                pNode = pNode->next_;
 638        }
 639
 640        /*
 641         *  If the desired is okay, return with it
 642         */
 643        if (bDesiredExcluded == 0)
 644                return f_Desired;
 645
 646        /*
 647         *  If the desired is excluded and the center is okay, return with it
 648         */
 649        if (bZeroExcluded == 0)
 650                return f_Center;
 651
 652        /*  Find the value closest to 0 (f_Center)  */
 653        bestDiff = zones[0].min_;
 654        for (i = 0; i < j; i++) {
 655                if (abs(zones[i].min_) < abs(bestDiff))
 656                        bestDiff = zones[i].min_;
 657                if (abs(zones[i].max_) < abs(bestDiff))
 658                        bestDiff = zones[i].max_;
 659        }
 660
 661        if (bestDiff < 0)
 662                return f_Center - ((u32) (-bestDiff) * f_Step);
 663
 664        return f_Center + (bestDiff * f_Step);
 665}
 666
 667/**
 668 * gcd() - Uses Euclid's algorithm
 669 *
 670 * @u, @v:      Unsigned values whose GCD is desired.
 671 *
 672 * Returns THE greatest common divisor of u and v, if either value is 0,
 673 * the other value is returned as the result.
 674 */
 675static u32 MT2063_gcd(u32 u, u32 v)
 676{
 677        u32 r;
 678
 679        while (v != 0) {
 680                r = u % v;
 681                u = v;
 682                v = r;
 683        }
 684
 685        return u;
 686}
 687
 688/**
 689 * IsSpurInBand() - Checks to see if a spur will be present within the IF's
 690 *                  bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
 691 *
 692 *                    ma   mb                                     mc   md
 693 *                  <--+-+-+-------------------+-------------------+-+-+-->
 694 *                     |   ^                   0                   ^   |
 695 *                     ^   b=-fIFOut+fIFBW/2      -b=+fIFOut-fIFBW/2   ^
 696 *                     a=-fIFOut-fIFBW/2              -a=+fIFOut+fIFBW/2
 697 *
 698 *                  Note that some equations are doubled to prevent round-off
 699 *                  problems when calculating fIFBW/2
 700 *
 701 * @pAS_Info:   Avoid Spurs information block
 702 * @fm:         If spur, amount f_IF1 has to move negative
 703 * @fp:         If spur, amount f_IF1 has to move positive
 704 *
 705 *  Returns 1 if an LO spur would be present, otherwise 0.
 706 */
 707static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
 708                        u32 *fm, u32 * fp)
 709{
 710        /*
 711         **  Calculate LO frequency settings.
 712         */
 713        u32 n, n0;
 714        const u32 f_LO1 = pAS_Info->f_LO1;
 715        const u32 f_LO2 = pAS_Info->f_LO2;
 716        const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
 717        const u32 c = d - pAS_Info->f_out_bw;
 718        const u32 f = pAS_Info->f_zif_bw / 2;
 719        const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
 720        s32 f_nsLO1, f_nsLO2;
 721        s32 f_Spur;
 722        u32 ma, mb, mc, md, me, mf;
 723        u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
 724
 725        dprintk(2, "\n");
 726
 727        *fm = 0;
 728
 729        /*
 730         ** For each edge (d, c & f), calculate a scale, based on the gcd
 731         ** of f_LO1, f_LO2 and the edge value.  Use the larger of this
 732         ** gcd-based scale factor or f_Scale.
 733         */
 734        lo_gcd = MT2063_gcd(f_LO1, f_LO2);
 735        gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
 736        hgds = gd_Scale / 2;
 737        gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
 738        hgcs = gc_Scale / 2;
 739        gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
 740        hgfs = gf_Scale / 2;
 741
 742        n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
 743
 744        /*  Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic  */
 745        for (n = n0; n <= pAS_Info->maxH1; ++n) {
 746                md = (n * ((f_LO1 + hgds) / gd_Scale) -
 747                      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
 748
 749                /*  If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present  */
 750                if (md >= pAS_Info->maxH1)
 751                        break;
 752
 753                ma = (n * ((f_LO1 + hgds) / gd_Scale) +
 754                      ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
 755
 756                /*  If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic  */
 757                if (md == ma)
 758                        continue;
 759
 760                mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
 761                      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
 762                if (mc != md) {
 763                        f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
 764                        f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
 765                        f_Spur =
 766                            (gc_Scale * (f_nsLO1 - f_nsLO2)) +
 767                            n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
 768
 769                        *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
 770                        *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
 771                        return 1;
 772                }
 773
 774                /*  Location of Zero-IF-spur to be checked  */
 775                me = (n * ((f_LO1 + hgfs) / gf_Scale) +
 776                      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
 777                mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
 778                      ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
 779                if (me != mf) {
 780                        f_nsLO1 = n * (f_LO1 / gf_Scale);
 781                        f_nsLO2 = me * (f_LO2 / gf_Scale);
 782                        f_Spur =
 783                            (gf_Scale * (f_nsLO1 - f_nsLO2)) +
 784                            n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
 785
 786                        *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
 787                        *fm = (((s32) f - f_Spur) / (me - n)) + 1;
 788                        return 1;
 789                }
 790
 791                mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
 792                      ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
 793                if (ma != mb) {
 794                        f_nsLO1 = n * (f_LO1 / gc_Scale);
 795                        f_nsLO2 = ma * (f_LO2 / gc_Scale);
 796                        f_Spur =
 797                            (gc_Scale * (f_nsLO1 - f_nsLO2)) +
 798                            n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
 799
 800                        *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
 801                        *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
 802                        return 1;
 803                }
 804        }
 805
 806        /*  No spurs found  */
 807        return 0;
 808}
 809
 810/*
 811 * MT_AvoidSpurs() - Main entry point to avoid spurs.
 812 *                   Checks for existing spurs in present LO1, LO2 freqs
 813 *                   and if present, chooses spur-free LO1, LO2 combination
 814 *                   that tunes the same input/output frequencies.
 815 */
 816static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
 817{
 818        int status = 0;
 819        u32 fm, fp;             /*  restricted range on LO's        */
 820        pAS_Info->bSpurAvoided = 0;
 821        pAS_Info->nSpursFound = 0;
 822
 823        dprintk(2, "\n");
 824
 825        if (pAS_Info->maxH1 == 0)
 826                return 0;
 827
 828        /*
 829         * Avoid LO Generated Spurs
 830         *
 831         * Make sure that have no LO-related spurs within the IF output
 832         * bandwidth.
 833         *
 834         * If there is an LO spur in this band, start at the current IF1 frequency
 835         * and work out until we find a spur-free frequency or run up against the
 836         * 1st IF SAW band edge.  Use temporary copies of fLO1 and fLO2 so that they
 837         * will be unchanged if a spur-free setting is not found.
 838         */
 839        pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
 840        if (pAS_Info->bSpurPresent) {
 841                u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in;   /*  current attempt at a 1st IF  */
 842                u32 zfLO1 = pAS_Info->f_LO1;    /*  current attempt at an LO1 freq  */
 843                u32 zfLO2 = pAS_Info->f_LO2;    /*  current attempt at an LO2 freq  */
 844                u32 delta_IF1;
 845                u32 new_IF1;
 846
 847                /*
 848                 **  Spur was found, attempt to find a spur-free 1st IF
 849                 */
 850                do {
 851                        pAS_Info->nSpursFound++;
 852
 853                        /*  Raise f_IF1_upper, if needed  */
 854                        MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
 855
 856                        /*  Choose next IF1 that is closest to f_IF1_CENTER              */
 857                        new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
 858
 859                        if (new_IF1 > zfIF1) {
 860                                pAS_Info->f_LO1 += (new_IF1 - zfIF1);
 861                                pAS_Info->f_LO2 += (new_IF1 - zfIF1);
 862                        } else {
 863                                pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
 864                                pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
 865                        }
 866                        zfIF1 = new_IF1;
 867
 868                        if (zfIF1 > pAS_Info->f_if1_Center)
 869                                delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
 870                        else
 871                                delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
 872
 873                        pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
 874                /*
 875                 *  Continue while the new 1st IF is still within the 1st IF bandwidth
 876                 *  and there is a spur in the band (again)
 877                 */
 878                } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
 879
 880                /*
 881                 * Use the LO-spur free values found.  If the search went all
 882                 * the way to the 1st IF band edge and always found spurs, just
 883                 * leave the original choice.  It's as "good" as any other.
 884                 */
 885                if (pAS_Info->bSpurPresent == 1) {
 886                        status |= MT2063_SPUR_PRESENT_ERR;
 887                        pAS_Info->f_LO1 = zfLO1;
 888                        pAS_Info->f_LO2 = zfLO2;
 889                } else
 890                        pAS_Info->bSpurAvoided = 1;
 891        }
 892
 893        status |=
 894            ((pAS_Info->
 895              nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
 896
 897        return status;
 898}
 899
 900/*
 901 * Constants used by the tuning algorithm
 902 */
 903#define MT2063_REF_FREQ          (16000000UL)   /* Reference oscillator Frequency (in Hz) */
 904#define MT2063_IF1_BW            (22000000UL)   /* The IF1 filter bandwidth (in Hz) */
 905#define MT2063_TUNE_STEP_SIZE       (50000UL)   /* Tune in steps of 50 kHz */
 906#define MT2063_SPUR_STEP_HZ        (250000UL)   /* Step size (in Hz) to move IF1 when avoiding spurs */
 907#define MT2063_ZIF_BW             (2000000UL)   /* Zero-IF spur-free bandwidth (in Hz) */
 908#define MT2063_MAX_HARMONICS_1         (15UL)   /* Highest intra-tuner LO Spur Harmonic to be avoided */
 909#define MT2063_MAX_HARMONICS_2          (5UL)   /* Highest inter-tuner LO Spur Harmonic to be avoided */
 910#define MT2063_MIN_LO_SEP         (1000000UL)   /* Minimum inter-tuner LO frequency separation */
 911#define MT2063_LO1_FRACN_AVOID          (0UL)   /* LO1 FracN numerator avoid region (in Hz) */
 912#define MT2063_LO2_FRACN_AVOID     (199999UL)   /* LO2 FracN numerator avoid region (in Hz) */
 913#define MT2063_MIN_FIN_FREQ      (44000000UL)   /* Minimum input frequency (in Hz) */
 914#define MT2063_MAX_FIN_FREQ    (1100000000UL)   /* Maximum input frequency (in Hz) */
 915#define MT2063_MIN_FOUT_FREQ     (36000000UL)   /* Minimum output frequency (in Hz) */
 916#define MT2063_MAX_FOUT_FREQ     (57000000UL)   /* Maximum output frequency (in Hz) */
 917#define MT2063_MIN_DNC_FREQ    (1293000000UL)   /* Minimum LO2 frequency (in Hz) */
 918#define MT2063_MAX_DNC_FREQ    (1614000000UL)   /* Maximum LO2 frequency (in Hz) */
 919#define MT2063_MIN_UPC_FREQ    (1396000000UL)   /* Minimum LO1 frequency (in Hz) */
 920#define MT2063_MAX_UPC_FREQ    (2750000000UL)   /* Maximum LO1 frequency (in Hz) */
 921
 922/*
 923 *  Define the supported Part/Rev codes for the MT2063
 924 */
 925#define MT2063_B0       (0x9B)
 926#define MT2063_B1       (0x9C)
 927#define MT2063_B2       (0x9D)
 928#define MT2063_B3       (0x9E)
 929
 930/**
 931 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
 932 *
 933 * @state:      struct mt2063_state pointer
 934 *
 935 * This function returns 0, if no lock, 1 if locked and a value < 1 if error
 936 */
 937static int mt2063_lockStatus(struct mt2063_state *state)
 938{
 939        const u32 nMaxWait = 100;       /*  wait a maximum of 100 msec   */
 940        const u32 nPollRate = 2;        /*  poll status bits every 2 ms */
 941        const u32 nMaxLoops = nMaxWait / nPollRate;
 942        const u8 LO1LK = 0x80;
 943        u8 LO2LK = 0x08;
 944        int status;
 945        u32 nDelays = 0;
 946
 947        dprintk(2, "\n");
 948
 949        /*  LO2 Lock bit was in a different place for B0 version  */
 950        if (state->tuner_id == MT2063_B0)
 951                LO2LK = 0x40;
 952
 953        do {
 954                status = mt2063_read(state, MT2063_REG_LO_STATUS,
 955                                     &state->reg[MT2063_REG_LO_STATUS], 1);
 956
 957                if (status < 0)
 958                        return status;
 959
 960                if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
 961                    (LO1LK | LO2LK)) {
 962                        return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
 963                }
 964                msleep(nPollRate);      /*  Wait between retries  */
 965        } while (++nDelays < nMaxLoops);
 966
 967        /*
 968         * Got no lock or partial lock
 969         */
 970        return 0;
 971}
 972
 973/*
 974 *  Constants for setting receiver modes.
 975 *  (6 modes defined at this time, enumerated by mt2063_delivery_sys)
 976 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
 977 *   DNC Output is selected, the other is always off)
 978 *
 979 *                enum mt2063_delivery_sys
 980 * -------------+----------------------------------------------
 981 * Mode 0 :     | MT2063_CABLE_QAM
 982 * Mode 1 :     | MT2063_CABLE_ANALOG
 983 * Mode 2 :     | MT2063_OFFAIR_COFDM
 984 * Mode 3 :     | MT2063_OFFAIR_COFDM_SAWLESS
 985 * Mode 4 :     | MT2063_OFFAIR_ANALOG
 986 * Mode 5 :     | MT2063_OFFAIR_8VSB
 987 * --------------+----------------------------------------------
 988 *
 989 *                |<----------   Mode  -------------->|
 990 *    Reg Field   |  0  |  1  |  2  |  3  |  4  |  5  |
 991 *    ------------+-----+-----+-----+-----+-----+-----+
 992 *    RFAGCen     | OFF | OFF | OFF | OFF | OFF | OFF
 993 *    LNARin      |   0 |   0 |   3 |   3 |  3  |  3
 994 *    FIFFQen     |   1 |   1 |   1 |   1 |  1  |  1
 995 *    FIFFq       |   0 |   0 |   0 |   0 |  0  |  0
 996 *    DNC1gc      |   0 |   0 |   0 |   0 |  0  |  0
 997 *    DNC2gc      |   0 |   0 |   0 |   0 |  0  |  0
 998 *    GCU Auto    |   1 |   1 |   1 |   1 |  1  |  1
 999 *    LNA max Atn |  31 |  31 |  31 |  31 | 31  | 31
1000 *    LNA Target  |  44 |  43 |  43 |  43 | 43  | 43
1001 *    ign  RF Ovl |   0 |   0 |   0 |   0 |  0  |  0
1002 *    RF  max Atn |  31 |  31 |  31 |  31 | 31  | 31
1003 *    PD1 Target  |  36 |  36 |  38 |  38 | 36  | 38
1004 *    ign FIF Ovl |   0 |   0 |   0 |   0 |  0  |  0
1005 *    FIF max Atn |   5 |   5 |   5 |   5 |  5  |  5
1006 *    PD2 Target  |  40 |  33 |  42 |  42 | 33  | 42
1007 */
1008
1009enum mt2063_delivery_sys {
1010        MT2063_CABLE_QAM = 0,
1011        MT2063_CABLE_ANALOG,
1012        MT2063_OFFAIR_COFDM,
1013        MT2063_OFFAIR_COFDM_SAWLESS,
1014        MT2063_OFFAIR_ANALOG,
1015        MT2063_OFFAIR_8VSB,
1016        MT2063_NUM_RCVR_MODES
1017};
1018
1019static const char *mt2063_mode_name[] = {
1020        [MT2063_CABLE_QAM]              = "digital cable",
1021        [MT2063_CABLE_ANALOG]           = "analog cable",
1022        [MT2063_OFFAIR_COFDM]           = "digital offair",
1023        [MT2063_OFFAIR_COFDM_SAWLESS]   = "digital offair without SAW",
1024        [MT2063_OFFAIR_ANALOG]          = "analog offair",
1025        [MT2063_OFFAIR_8VSB]            = "analog offair 8vsb",
1026};
1027
1028static const u8 RFAGCEN[]       = {  0,  0,  0,  0,  0,  0 };
1029static const u8 LNARIN[]        = {  0,  0,  3,  3,  3,  3 };
1030static const u8 FIFFQEN[]       = {  1,  1,  1,  1,  1,  1 };
1031static const u8 FIFFQ[]         = {  0,  0,  0,  0,  0,  0 };
1032static const u8 DNC1GC[]        = {  0,  0,  0,  0,  0,  0 };
1033static const u8 DNC2GC[]        = {  0,  0,  0,  0,  0,  0 };
1034static const u8 ACLNAMAX[]      = { 31, 31, 31, 31, 31, 31 };
1035static const u8 LNATGT[]        = { 44, 43, 43, 43, 43, 43 };
1036static const u8 RFOVDIS[]       = {  0,  0,  0,  0,  0,  0 };
1037static const u8 ACRFMAX[]       = { 31, 31, 31, 31, 31, 31 };
1038static const u8 PD1TGT[]        = { 36, 36, 38, 38, 36, 38 };
1039static const u8 FIFOVDIS[]      = {  0,  0,  0,  0,  0,  0 };
1040static const u8 ACFIFMAX[]      = { 29, 29, 29, 29, 29, 29 };
1041static const u8 PD2TGT[]        = { 40, 33, 38, 42, 30, 38 };
1042
1043/*
1044 * mt2063_set_dnc_output_enable()
1045 */
1046static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
1047                                        enum MT2063_DNC_Output_Enable *pValue)
1048{
1049        dprintk(2, "\n");
1050
1051        if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
1052                if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)   /* if DNC2 is off */
1053                        *pValue = MT2063_DNC_NONE;
1054                else
1055                        *pValue = MT2063_DNC_2;
1056        } else {        /* DNC1 is on */
1057                if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03)   /* if DNC2 is off */
1058                        *pValue = MT2063_DNC_1;
1059                else
1060                        *pValue = MT2063_DNC_BOTH;
1061        }
1062        return 0;
1063}
1064
1065/*
1066 * mt2063_set_dnc_output_enable()
1067 */
1068static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
1069                                        enum MT2063_DNC_Output_Enable nValue)
1070{
1071        int status = 0; /* Status to be returned        */
1072        u8 val = 0;
1073
1074        dprintk(2, "\n");
1075
1076        /* selects, which DNC output is used */
1077        switch (nValue) {
1078        case MT2063_DNC_NONE:
1079                val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;  /* Set DNC1GC=3 */
1080                if (state->reg[MT2063_REG_DNC_GAIN] !=
1081                    val)
1082                        status |=
1083                            mt2063_setreg(state,
1084                                          MT2063_REG_DNC_GAIN,
1085                                          val);
1086
1087                val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;  /* Set DNC2GC=3 */
1088                if (state->reg[MT2063_REG_VGA_GAIN] !=
1089                    val)
1090                        status |=
1091                            mt2063_setreg(state,
1092                                          MT2063_REG_VGA_GAIN,
1093                                          val);
1094
1095                val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1096                if (state->reg[MT2063_REG_RSVD_20] !=
1097                    val)
1098                        status |=
1099                            mt2063_setreg(state,
1100                                          MT2063_REG_RSVD_20,
1101                                          val);
1102
1103                break;
1104        case MT2063_DNC_1:
1105                val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);     /* Set DNC1GC=x */
1106                if (state->reg[MT2063_REG_DNC_GAIN] !=
1107                    val)
1108                        status |=
1109                            mt2063_setreg(state,
1110                                          MT2063_REG_DNC_GAIN,
1111                                          val);
1112
1113                val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03;  /* Set DNC2GC=3 */
1114                if (state->reg[MT2063_REG_VGA_GAIN] !=
1115                    val)
1116                        status |=
1117                            mt2063_setreg(state,
1118                                          MT2063_REG_VGA_GAIN,
1119                                          val);
1120
1121                val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
1122                if (state->reg[MT2063_REG_RSVD_20] !=
1123                    val)
1124                        status |=
1125                            mt2063_setreg(state,
1126                                          MT2063_REG_RSVD_20,
1127                                          val);
1128
1129                break;
1130        case MT2063_DNC_2:
1131                val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03;  /* Set DNC1GC=3 */
1132                if (state->reg[MT2063_REG_DNC_GAIN] !=
1133                    val)
1134                        status |=
1135                            mt2063_setreg(state,
1136                                          MT2063_REG_DNC_GAIN,
1137                                          val);
1138
1139                val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);     /* Set DNC2GC=x */
1140                if (state->reg[MT2063_REG_VGA_GAIN] !=
1141                    val)
1142                        status |=
1143                            mt2063_setreg(state,
1144                                          MT2063_REG_VGA_GAIN,
1145                                          val);
1146
1147                val = (state->reg[MT2063_REG_RSVD_20] | 0x40);  /* Set PD2MUX=1 */
1148                if (state->reg[MT2063_REG_RSVD_20] !=
1149                    val)
1150                        status |=
1151                            mt2063_setreg(state,
1152                                          MT2063_REG_RSVD_20,
1153                                          val);
1154
1155                break;
1156        case MT2063_DNC_BOTH:
1157                val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03);     /* Set DNC1GC=x */
1158                if (state->reg[MT2063_REG_DNC_GAIN] !=
1159                    val)
1160                        status |=
1161                            mt2063_setreg(state,
1162                                          MT2063_REG_DNC_GAIN,
1163                                          val);
1164
1165                val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03);     /* Set DNC2GC=x */
1166                if (state->reg[MT2063_REG_VGA_GAIN] !=
1167                    val)
1168                        status |=
1169                            mt2063_setreg(state,
1170                                          MT2063_REG_VGA_GAIN,
1171                                          val);
1172
1173                val = (state->reg[MT2063_REG_RSVD_20] | 0x40);  /* Set PD2MUX=1 */
1174                if (state->reg[MT2063_REG_RSVD_20] !=
1175                    val)
1176                        status |=
1177                            mt2063_setreg(state,
1178                                          MT2063_REG_RSVD_20,
1179                                          val);
1180
1181                break;
1182        default:
1183                break;
1184        }
1185
1186        return status;
1187}
1188
1189/*
1190 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
1191 *                            the selected enum mt2063_delivery_sys type.
1192 *
1193 *  (DNC1GC & DNC2GC are the values, which are used, when the specific
1194 *   DNC Output is selected, the other is always off)
1195 *
1196 * @state:      ptr to mt2063_state structure
1197 * @Mode:       desired receiver delivery system
1198 *
1199 * Note: Register cache must be valid for it to work
1200 */
1201
1202static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
1203                                  enum mt2063_delivery_sys Mode)
1204{
1205        int status = 0; /* Status to be returned        */
1206        u8 val;
1207        u32 longval;
1208
1209        dprintk(2, "\n");
1210
1211        if (Mode >= MT2063_NUM_RCVR_MODES)
1212                status = -ERANGE;
1213
1214        /* RFAGCen */
1215        if (status >= 0) {
1216                val =
1217                    (state->
1218                     reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode]
1219                                                                   ? 0x40 :
1220                                                                   0x00);
1221                if (state->reg[MT2063_REG_PD1_TGT] != val)
1222                        status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1223        }
1224
1225        /* LNARin */
1226        if (status >= 0) {
1227                u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) |
1228                         (LNARIN[Mode] & 0x03);
1229                if (state->reg[MT2063_REG_CTRL_2C] != val)
1230                        status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
1231        }
1232
1233        /* FIFFQEN and FIFFQ */
1234        if (status >= 0) {
1235                val =
1236                    (state->
1237                     reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) |
1238                    (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
1239                if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
1240                        status |=
1241                            mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
1242                        /* trigger FIFF calibration, needed after changing FIFFQ */
1243                        val =
1244                            (state->reg[MT2063_REG_FIFF_CTRL] | 0x01);
1245                        status |=
1246                            mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1247                        val =
1248                            (state->
1249                             reg[MT2063_REG_FIFF_CTRL] & ~0x01);
1250                        status |=
1251                            mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
1252                }
1253        }
1254
1255        /* DNC1GC & DNC2GC */
1256        status |= mt2063_get_dnc_output_enable(state, &longval);
1257        status |= mt2063_set_dnc_output_enable(state, longval);
1258
1259        /* acLNAmax */
1260        if (status >= 0) {
1261                u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) |
1262                         (ACLNAMAX[Mode] & 0x1F);
1263                if (state->reg[MT2063_REG_LNA_OV] != val)
1264                        status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
1265        }
1266
1267        /* LNATGT */
1268        if (status >= 0) {
1269                u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) |
1270                         (LNATGT[Mode] & 0x3F);
1271                if (state->reg[MT2063_REG_LNA_TGT] != val)
1272                        status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1273        }
1274
1275        /* ACRF */
1276        if (status >= 0) {
1277                u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) |
1278                         (ACRFMAX[Mode] & 0x1F);
1279                if (state->reg[MT2063_REG_RF_OV] != val)
1280                        status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
1281        }
1282
1283        /* PD1TGT */
1284        if (status >= 0) {
1285                u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) |
1286                         (PD1TGT[Mode] & 0x3F);
1287                if (state->reg[MT2063_REG_PD1_TGT] != val)
1288                        status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1289        }
1290
1291        /* FIFATN */
1292        if (status >= 0) {
1293                u8 val = ACFIFMAX[Mode];
1294                if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
1295                        val = 5;
1296                val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) |
1297                      (val & 0x1F);
1298                if (state->reg[MT2063_REG_FIF_OV] != val)
1299                        status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
1300        }
1301
1302        /* PD2TGT */
1303        if (status >= 0) {
1304                u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) |
1305                    (PD2TGT[Mode] & 0x3F);
1306                if (state->reg[MT2063_REG_PD2_TGT] != val)
1307                        status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
1308        }
1309
1310        /* Ignore ATN Overload */
1311        if (status >= 0) {
1312                val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) |
1313                      (RFOVDIS[Mode] ? 0x80 : 0x00);
1314                if (state->reg[MT2063_REG_LNA_TGT] != val)
1315                        status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
1316        }
1317
1318        /* Ignore FIF Overload */
1319        if (status >= 0) {
1320                val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) |
1321                      (FIFOVDIS[Mode] ? 0x80 : 0x00);
1322                if (state->reg[MT2063_REG_PD1_TGT] != val)
1323                        status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
1324        }
1325
1326        if (status >= 0) {
1327                state->rcvr_mode = Mode;
1328                dprintk(1, "mt2063 mode changed to %s\n",
1329                        mt2063_mode_name[state->rcvr_mode]);
1330        }
1331
1332        return status;
1333}
1334
1335/*
1336 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
1337 *                                sections of the MT2063
1338 *
1339 * @Bits:               Mask bits to be cleared.
1340 *
1341 * See definition of MT2063_Mask_Bits type for description
1342 * of each of the power bits.
1343 */
1344static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
1345                                     enum MT2063_Mask_Bits Bits)
1346{
1347        int status = 0;
1348
1349        dprintk(2, "\n");
1350        Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD);   /* Only valid bits for this tuner */
1351        if ((Bits & 0xFF00) != 0) {
1352                state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
1353                status |=
1354                    mt2063_write(state,
1355                                    MT2063_REG_PWR_2,
1356                                    &state->reg[MT2063_REG_PWR_2], 1);
1357        }
1358        if ((Bits & 0xFF) != 0) {
1359                state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
1360                status |=
1361                    mt2063_write(state,
1362                                    MT2063_REG_PWR_1,
1363                                    &state->reg[MT2063_REG_PWR_1], 1);
1364        }
1365
1366        return status;
1367}
1368
1369/*
1370 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
1371 *                             When Shutdown is 1, any section whose power
1372 *                             mask is set will be shutdown.
1373 */
1374static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
1375{
1376        int status;
1377
1378        dprintk(2, "\n");
1379        if (Shutdown == 1)
1380                state->reg[MT2063_REG_PWR_1] |= 0x04;
1381        else
1382                state->reg[MT2063_REG_PWR_1] &= ~0x04;
1383
1384        status = mt2063_write(state,
1385                            MT2063_REG_PWR_1,
1386                            &state->reg[MT2063_REG_PWR_1], 1);
1387
1388        if (Shutdown != 1) {
1389                state->reg[MT2063_REG_BYP_CTRL] =
1390                    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
1391                status |=
1392                    mt2063_write(state,
1393                                    MT2063_REG_BYP_CTRL,
1394                                    &state->reg[MT2063_REG_BYP_CTRL],
1395                                    1);
1396                state->reg[MT2063_REG_BYP_CTRL] =
1397                    (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
1398                status |=
1399                    mt2063_write(state,
1400                                    MT2063_REG_BYP_CTRL,
1401                                    &state->reg[MT2063_REG_BYP_CTRL],
1402                                    1);
1403        }
1404
1405        return status;
1406}
1407
1408static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
1409{
1410        return f_ref * (f_LO / f_ref)
1411            + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
1412}
1413
1414/**
1415 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
1416 *                        This function preserves maximum precision without
1417 *                        risk of overflow.  It accurately calculates
1418 *                        f_ref * num / denom to within 1 HZ with fixed math.
1419 *
1420 * @num :       Fractional portion of the multiplier
1421 * @denom:      denominator portion of the ratio
1422 * @f_Ref:      SRO frequency.
1423 *
1424 * This calculation handles f_ref as two separate 14-bit fields.
1425 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
1426 * This is the genesis of the magic number "14" and the magic mask value of
1427 * 0x03FFF.
1428 *
1429 * This routine successfully handles denom values up to and including 2^18.
1430 *  Returns:        f_ref * num / denom
1431 */
1432static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
1433{
1434        u32 t1 = (f_ref >> 14) * num;
1435        u32 term1 = t1 / denom;
1436        u32 loss = t1 % denom;
1437        u32 term2 =
1438            (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
1439        return (term1 << 14) + term2;
1440}
1441
1442/*
1443 * CalcLO1Mult()- Calculates Integer divider value and the numerator
1444 *                value for a FracN PLL.
1445 *
1446 *                This function assumes that the f_LO and f_Ref are
1447 *                evenly divisible by f_LO_Step.
1448 *
1449 * @Div:        OUTPUT: Whole number portion of the multiplier
1450 * @FracN:      OUTPUT: Fractional portion of the multiplier
1451 * @f_LO:       desired LO frequency.
1452 * @f_LO_Step:  Minimum step size for the LO (in Hz).
1453 * @f_Ref:      SRO frequency.
1454 * @f_Avoid:    Range of PLL frequencies to avoid near integer multiples
1455 *              of f_Ref (in Hz).
1456 *
1457 * Returns:        Recalculated LO frequency.
1458 */
1459static u32 MT2063_CalcLO1Mult(u32 *Div,
1460                              u32 *FracN,
1461                              u32 f_LO,
1462                              u32 f_LO_Step, u32 f_Ref)
1463{
1464        /*  Calculate the whole number portion of the divider */
1465        *Div = f_LO / f_Ref;
1466
1467        /*  Calculate the numerator value (round to nearest f_LO_Step) */
1468        *FracN =
1469            (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1470             (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1471
1472        return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
1473}
1474
1475/**
1476 * CalcLO2Mult() - Calculates Integer divider value and the numerator
1477 *                 value for a FracN PLL.
1478 *
1479 *                  This function assumes that the f_LO and f_Ref are
1480 *                  evenly divisible by f_LO_Step.
1481 *
1482 * @Div:        OUTPUT: Whole number portion of the multiplier
1483 * @FracN:      OUTPUT: Fractional portion of the multiplier
1484 * @f_LO:       desired LO frequency.
1485 * @f_LO_Step:  Minimum step size for the LO (in Hz).
1486 * @f_Ref:      SRO frequency.
1487 * @f_Avoid:    Range of PLL frequencies to avoid near
1488 *              integer multiples of f_Ref (in Hz).
1489 *
1490 * Returns: Recalculated LO frequency.
1491 */
1492static u32 MT2063_CalcLO2Mult(u32 *Div,
1493                              u32 *FracN,
1494                              u32 f_LO,
1495                              u32 f_LO_Step, u32 f_Ref)
1496{
1497        /*  Calculate the whole number portion of the divider */
1498        *Div = f_LO / f_Ref;
1499
1500        /*  Calculate the numerator value (round to nearest f_LO_Step) */
1501        *FracN =
1502            (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
1503             (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
1504
1505        return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
1506                                                            8191);
1507}
1508
1509/*
1510 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
1511 *                         used for a given input frequency.
1512 *
1513 * @state:      ptr to tuner data structure
1514 * @f_in:       RF input center frequency (in Hz).
1515 *
1516 * Returns: ClearTune filter number (0-31)
1517 */
1518static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
1519{
1520        u32 RFBand;
1521        u32 idx;                /*  index loop                      */
1522
1523        /*
1524         **  Find RF Band setting
1525         */
1526        RFBand = 31;            /*  def when f_in > all    */
1527        for (idx = 0; idx < 31; ++idx) {
1528                if (state->CTFiltMax[idx] >= f_in) {
1529                        RFBand = idx;
1530                        break;
1531                }
1532        }
1533        return RFBand;
1534}
1535
1536/*
1537 * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
1538 */
1539static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
1540{                               /* RF input center frequency   */
1541
1542        int status = 0;
1543        u32 LO1;                /*  1st LO register value           */
1544        u32 Num1;               /*  Numerator for LO1 reg. value    */
1545        u32 f_IF1;              /*  1st IF requested                */
1546        u32 LO2;                /*  2nd LO register value           */
1547        u32 Num2;               /*  Numerator for LO2 reg. value    */
1548        u32 ofLO1, ofLO2;       /*  last time's LO frequencies      */
1549        u8 fiffc = 0x80;        /*  FIFF center freq from tuner     */
1550        u32 fiffof;             /*  Offset from FIFF center freq    */
1551        const u8 LO1LK = 0x80;  /*  Mask for LO1 Lock bit           */
1552        u8 LO2LK = 0x08;        /*  Mask for LO2 Lock bit           */
1553        u8 val;
1554        u32 RFBand;
1555
1556        dprintk(2, "\n");
1557        /*  Check the input and output frequency ranges                   */
1558        if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
1559                return -EINVAL;
1560
1561        if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
1562            || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
1563                return -EINVAL;
1564
1565        /*
1566         * Save original LO1 and LO2 register values
1567         */
1568        ofLO1 = state->AS_Data.f_LO1;
1569        ofLO2 = state->AS_Data.f_LO2; 
1570
1571        /*
1572         * Find and set RF Band setting
1573         */
1574        if (state->ctfilt_sw == 1) {
1575                val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
1576                if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
1577                        status |=
1578                            mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
1579                }
1580                val = state->reg[MT2063_REG_CTUNE_OV];
1581                RFBand = FindClearTuneFilter(state, f_in);
1582                state->reg[MT2063_REG_CTUNE_OV] =
1583                    (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
1584                              | RFBand);
1585                if (state->reg[MT2063_REG_CTUNE_OV] != val) {
1586                        status |=
1587                            mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
1588                }
1589        }
1590
1591        /*
1592         * Read the FIFF Center Frequency from the tuner
1593         */
1594        if (status >= 0) {
1595                status |=
1596                    mt2063_read(state,
1597                                   MT2063_REG_FIFFC,
1598                                   &state->reg[MT2063_REG_FIFFC], 1);
1599                fiffc = state->reg[MT2063_REG_FIFFC];
1600        }
1601        /*
1602         * Assign in the requested values
1603         */
1604        state->AS_Data.f_in = f_in;
1605        /*  Request a 1st IF such that LO1 is on a step size */
1606        state->AS_Data.f_if1_Request =
1607            MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
1608                             state->AS_Data.f_LO1_Step,
1609                             state->AS_Data.f_ref) - f_in;
1610
1611        /*
1612         * Calculate frequency settings.  f_IF1_FREQ + f_in is the
1613         * desired LO1 frequency
1614         */
1615        MT2063_ResetExclZones(&state->AS_Data);
1616
1617        f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
1618
1619        state->AS_Data.f_LO1 =
1620            MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
1621                             state->AS_Data.f_ref);
1622
1623        state->AS_Data.f_LO2 =
1624            MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1625                             state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1626
1627        /*
1628         * Check for any LO spurs in the output bandwidth and adjust
1629         * the LO settings to avoid them if needed
1630         */
1631        status |= MT2063_AvoidSpurs(&state->AS_Data);
1632        /*
1633         * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
1634         * Recalculate the LO frequencies and the values to be placed
1635         * in the tuning registers.
1636         */
1637        state->AS_Data.f_LO1 =
1638            MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
1639                               state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
1640        state->AS_Data.f_LO2 =
1641            MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
1642                             state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1643        state->AS_Data.f_LO2 =
1644            MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
1645                               state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
1646
1647        /*
1648         *  Check the upconverter and downconverter frequency ranges
1649         */
1650        if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
1651            || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
1652                status |= MT2063_UPC_RANGE;
1653        if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
1654            || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
1655                status |= MT2063_DNC_RANGE;
1656        /*  LO2 Lock bit was in a different place for B0 version  */
1657        if (state->tuner_id == MT2063_B0)
1658                LO2LK = 0x40;
1659
1660        /*
1661         *  If we have the same LO frequencies and we're already locked,
1662         *  then skip re-programming the LO registers.
1663         */
1664        if ((ofLO1 != state->AS_Data.f_LO1)
1665            || (ofLO2 != state->AS_Data.f_LO2)
1666            || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
1667                (LO1LK | LO2LK))) {
1668                /*
1669                 * Calculate the FIFFOF register value
1670                 *
1671                 *           IF1_Actual
1672                 * FIFFOF = ------------ - 8 * FIFFC - 4992
1673                 *            f_ref/64
1674                 */
1675                fiffof =
1676                    (state->AS_Data.f_LO1 -
1677                     f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
1678                    4992;
1679                if (fiffof > 0xFF)
1680                        fiffof = 0xFF;
1681
1682                /*
1683                 * Place all of the calculated values into the local tuner
1684                 * register fields.
1685                 */
1686                if (status >= 0) {
1687                        state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF);     /* DIV1q */
1688                        state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F);    /* NUM1q */
1689                        state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1)      /* DIV2q */
1690                                                                   |(Num2 >> 12));      /* NUM2q (hi) */
1691                        state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4);   /* NUM2q (mid) */
1692                        state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
1693
1694                        /*
1695                         * Now write out the computed register values
1696                         * IMPORTANT: There is a required order for writing
1697                         *            (0x05 must follow all the others).
1698                         */
1699                        status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5);  /* 0x01 - 0x05 */
1700                        if (state->tuner_id == MT2063_B0) {
1701                                /* Re-write the one-shot bits to trigger the tune operation */
1702                                status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1);  /* 0x05 */
1703                        }
1704                        /* Write out the FIFF offset only if it's changing */
1705                        if (state->reg[MT2063_REG_FIFF_OFFSET] !=
1706                            (u8) fiffof) {
1707                                state->reg[MT2063_REG_FIFF_OFFSET] =
1708                                    (u8) fiffof;
1709                                status |=
1710                                    mt2063_write(state,
1711                                                    MT2063_REG_FIFF_OFFSET,
1712                                                    &state->
1713                                                    reg[MT2063_REG_FIFF_OFFSET],
1714                                                    1);
1715                        }
1716                }
1717
1718                /*
1719                 * Check for LO's locking
1720                 */
1721
1722                if (status < 0)
1723                        return status;
1724
1725                status = mt2063_lockStatus(state);
1726                if (status < 0)
1727                        return status;
1728                if (!status)
1729                        return -EINVAL;         /* Couldn't lock */
1730
1731                /*
1732                 * If we locked OK, assign calculated data to mt2063_state structure
1733                 */
1734                state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
1735        }
1736
1737        return status;
1738}
1739
1740static const u8 MT2063B0_defaults[] = {
1741        /* Reg,  Value */
1742        0x19, 0x05,
1743        0x1B, 0x1D,
1744        0x1C, 0x1F,
1745        0x1D, 0x0F,
1746        0x1E, 0x3F,
1747        0x1F, 0x0F,
1748        0x20, 0x3F,
1749        0x22, 0x21,
1750        0x23, 0x3F,
1751        0x24, 0x20,
1752        0x25, 0x3F,
1753        0x27, 0xEE,
1754        0x2C, 0x27,     /*  bit at 0x20 is cleared below  */
1755        0x30, 0x03,
1756        0x2C, 0x07,     /*  bit at 0x20 is cleared here   */
1757        0x2D, 0x87,
1758        0x2E, 0xAA,
1759        0x28, 0xE1,     /*  Set the FIFCrst bit here      */
1760        0x28, 0xE0,     /*  Clear the FIFCrst bit here    */
1761        0x00
1762};
1763
1764/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1765static const u8 MT2063B1_defaults[] = {
1766        /* Reg,  Value */
1767        0x05, 0xF0,
1768        0x11, 0x10,     /* New Enable AFCsd */
1769        0x19, 0x05,
1770        0x1A, 0x6C,
1771        0x1B, 0x24,
1772        0x1C, 0x28,
1773        0x1D, 0x8F,
1774        0x1E, 0x14,
1775        0x1F, 0x8F,
1776        0x20, 0x57,
1777        0x22, 0x21,     /* New - ver 1.03 */
1778        0x23, 0x3C,     /* New - ver 1.10 */
1779        0x24, 0x20,     /* New - ver 1.03 */
1780        0x2C, 0x24,     /*  bit at 0x20 is cleared below  */
1781        0x2D, 0x87,     /*  FIFFQ=0  */
1782        0x2F, 0xF3,
1783        0x30, 0x0C,     /* New - ver 1.11 */
1784        0x31, 0x1B,     /* New - ver 1.11 */
1785        0x2C, 0x04,     /*  bit at 0x20 is cleared here  */
1786        0x28, 0xE1,     /*  Set the FIFCrst bit here      */
1787        0x28, 0xE0,     /*  Clear the FIFCrst bit here    */
1788        0x00
1789};
1790
1791/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
1792static const u8 MT2063B3_defaults[] = {
1793        /* Reg,  Value */
1794        0x05, 0xF0,
1795        0x19, 0x3D,
1796        0x2C, 0x24,     /*  bit at 0x20 is cleared below  */
1797        0x2C, 0x04,     /*  bit at 0x20 is cleared here  */
1798        0x28, 0xE1,     /*  Set the FIFCrst bit here      */
1799        0x28, 0xE0,     /*  Clear the FIFCrst bit here    */
1800        0x00
1801};
1802
1803static int mt2063_init(struct dvb_frontend *fe)
1804{
1805        int status;
1806        struct mt2063_state *state = fe->tuner_priv;
1807        u8 all_resets = 0xF0;   /* reset/load bits */
1808        const u8 *def = NULL;
1809        char *step;
1810        u32 FCRUN;
1811        s32 maxReads;
1812        u32 fcu_osc;
1813        u32 i;
1814
1815        dprintk(2, "\n");
1816
1817        state->rcvr_mode = MT2063_CABLE_QAM;
1818
1819        /*  Read the Part/Rev code from the tuner */
1820        status = mt2063_read(state, MT2063_REG_PART_REV,
1821                             &state->reg[MT2063_REG_PART_REV], 1);
1822        if (status < 0) {
1823                printk(KERN_ERR "Can't read mt2063 part ID\n");
1824                return status;
1825        }
1826
1827        /* Check the part/rev code */
1828        switch (state->reg[MT2063_REG_PART_REV]) {
1829        case MT2063_B0:
1830                step = "B0";
1831                break;
1832        case MT2063_B1:
1833                step = "B1";
1834                break;
1835        case MT2063_B2:
1836                step = "B2";
1837                break;
1838        case MT2063_B3:
1839                step = "B3";
1840                break;
1841        default:
1842                printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
1843                       state->reg[MT2063_REG_PART_REV]);
1844                return -ENODEV; /*  Wrong tuner Part/Rev code */
1845        }
1846
1847        /*  Check the 2nd byte of the Part/Rev code from the tuner */
1848        status = mt2063_read(state, MT2063_REG_RSVD_3B,
1849                             &state->reg[MT2063_REG_RSVD_3B], 1);
1850
1851        /* b7 != 0 ==> NOT MT2063 */
1852        if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
1853                printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
1854                       state->reg[MT2063_REG_PART_REV],
1855                       state->reg[MT2063_REG_RSVD_3B]);
1856                return -ENODEV; /*  Wrong tuner Part/Rev code */
1857        }
1858
1859        printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
1860
1861        /*  Reset the tuner  */
1862        status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
1863        if (status < 0)
1864                return status;
1865
1866        /* change all of the default values that vary from the HW reset values */
1867        /*  def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
1868        switch (state->reg[MT2063_REG_PART_REV]) {
1869        case MT2063_B3:
1870                def = MT2063B3_defaults;
1871                break;
1872
1873        case MT2063_B1:
1874                def = MT2063B1_defaults;
1875                break;
1876
1877        case MT2063_B0:
1878                def = MT2063B0_defaults;
1879                break;
1880
1881        default:
1882                return -ENODEV;
1883                break;
1884        }
1885
1886        while (status >= 0 && *def) {
1887                u8 reg = *def++;
1888                u8 val = *def++;
1889                status = mt2063_write(state, reg, &val, 1);
1890        }
1891        if (status < 0)
1892                return status;
1893
1894        /*  Wait for FIFF location to complete.  */
1895        FCRUN = 1;
1896        maxReads = 10;
1897        while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
1898                msleep(2);
1899                status = mt2063_read(state,
1900                                         MT2063_REG_XO_STATUS,
1901                                         &state->
1902                                         reg[MT2063_REG_XO_STATUS], 1);
1903                FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
1904        }
1905
1906        if (FCRUN != 0 || status < 0)
1907                return -ENODEV;
1908
1909        status = mt2063_read(state,
1910                           MT2063_REG_FIFFC,
1911                           &state->reg[MT2063_REG_FIFFC], 1);
1912        if (status < 0)
1913                return status;
1914
1915        /* Read back all the registers from the tuner */
1916        status = mt2063_read(state,
1917                                MT2063_REG_PART_REV,
1918                                state->reg, MT2063_REG_END_REGS);
1919        if (status < 0)
1920                return status;
1921
1922        /*  Initialize the tuner state.  */
1923        state->tuner_id = state->reg[MT2063_REG_PART_REV];
1924        state->AS_Data.f_ref = MT2063_REF_FREQ;
1925        state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
1926                                      ((u32) state->reg[MT2063_REG_FIFFC] + 640);
1927        state->AS_Data.f_if1_bw = MT2063_IF1_BW;
1928        state->AS_Data.f_out = 43750000UL;
1929        state->AS_Data.f_out_bw = 6750000UL;
1930        state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
1931        state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
1932        state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
1933        state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
1934        state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
1935        state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
1936        state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
1937        state->AS_Data.f_LO1 = 2181000000UL;
1938        state->AS_Data.f_LO2 = 1486249786UL;
1939        state->f_IF1_actual = state->AS_Data.f_if1_Center;
1940        state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
1941        state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
1942        state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
1943        state->num_regs = MT2063_REG_END_REGS;
1944        state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
1945        state->ctfilt_sw = 0;
1946
1947        state->CTFiltMax[0] = 69230000;
1948        state->CTFiltMax[1] = 105770000;
1949        state->CTFiltMax[2] = 140350000;
1950        state->CTFiltMax[3] = 177110000;
1951        state->CTFiltMax[4] = 212860000;
1952        state->CTFiltMax[5] = 241130000;
1953        state->CTFiltMax[6] = 274370000;
1954        state->CTFiltMax[7] = 309820000;
1955        state->CTFiltMax[8] = 342450000;
1956        state->CTFiltMax[9] = 378870000;
1957        state->CTFiltMax[10] = 416210000;
1958        state->CTFiltMax[11] = 456500000;
1959        state->CTFiltMax[12] = 495790000;
1960        state->CTFiltMax[13] = 534530000;
1961        state->CTFiltMax[14] = 572610000;
1962        state->CTFiltMax[15] = 598970000;
1963        state->CTFiltMax[16] = 635910000;
1964        state->CTFiltMax[17] = 672130000;
1965        state->CTFiltMax[18] = 714840000;
1966        state->CTFiltMax[19] = 739660000;
1967        state->CTFiltMax[20] = 770410000;
1968        state->CTFiltMax[21] = 814660000;
1969        state->CTFiltMax[22] = 846950000;
1970        state->CTFiltMax[23] = 867820000;
1971        state->CTFiltMax[24] = 915980000;
1972        state->CTFiltMax[25] = 947450000;
1973        state->CTFiltMax[26] = 983110000;
1974        state->CTFiltMax[27] = 1021630000;
1975        state->CTFiltMax[28] = 1061870000;
1976        state->CTFiltMax[29] = 1098330000;
1977        state->CTFiltMax[30] = 1138990000;
1978
1979        /*
1980         **   Fetch the FCU osc value and use it and the fRef value to
1981         **   scale all of the Band Max values
1982         */
1983
1984        state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
1985        status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
1986                              &state->reg[MT2063_REG_CTUNE_CTRL], 1);
1987        if (status < 0)
1988                return status;
1989
1990        /*  Read the ClearTune filter calibration value  */
1991        status = mt2063_read(state, MT2063_REG_FIFFC,
1992                             &state->reg[MT2063_REG_FIFFC], 1);
1993        if (status < 0)
1994                return status;
1995
1996        fcu_osc = state->reg[MT2063_REG_FIFFC];
1997
1998        state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
1999        status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
2000                              &state->reg[MT2063_REG_CTUNE_CTRL], 1);
2001        if (status < 0)
2002                return status;
2003
2004        /*  Adjust each of the values in the ClearTune filter cross-over table  */
2005        for (i = 0; i < 31; i++)
2006                state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
2007
2008        status = MT2063_SoftwareShutdown(state, 1);
2009        if (status < 0)
2010                return status;
2011        status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
2012        if (status < 0)
2013                return status;
2014
2015        state->init = true;
2016
2017        return 0;
2018}
2019
2020static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
2021{
2022        struct mt2063_state *state = fe->tuner_priv;
2023        int status;
2024
2025        dprintk(2, "\n");
2026
2027        if (!state->init)
2028                return -ENODEV;
2029
2030        *tuner_status = 0;
2031        status = mt2063_lockStatus(state);
2032        if (status < 0)
2033                return status;
2034        if (status)
2035                *tuner_status = TUNER_STATUS_LOCKED;
2036
2037        dprintk(1, "Tuner status: %d", *tuner_status);
2038
2039        return 0;
2040}
2041
2042static int mt2063_release(struct dvb_frontend *fe)
2043{
2044        struct mt2063_state *state = fe->tuner_priv;
2045
2046        dprintk(2, "\n");
2047
2048        fe->tuner_priv = NULL;
2049        kfree(state);
2050
2051        return 0;
2052}
2053
2054static int mt2063_set_analog_params(struct dvb_frontend *fe,
2055                                    struct analog_parameters *params)
2056{
2057        struct mt2063_state *state = fe->tuner_priv;
2058        s32 pict_car;
2059        s32 pict2chanb_vsb;
2060        s32 ch_bw;
2061        s32 if_mid;
2062        s32 rcvr_mode;
2063        int status;
2064
2065        dprintk(2, "\n");
2066
2067        if (!state->init) {
2068                status = mt2063_init(fe);
2069                if (status < 0)
2070                        return status;
2071        }
2072
2073        switch (params->mode) {
2074        case V4L2_TUNER_RADIO:
2075                pict_car = 38900000;
2076                ch_bw = 8000000;
2077                pict2chanb_vsb = -(ch_bw / 2);
2078                rcvr_mode = MT2063_OFFAIR_ANALOG;
2079                break;
2080        case V4L2_TUNER_ANALOG_TV:
2081                rcvr_mode = MT2063_CABLE_ANALOG;
2082                if (params->std & ~V4L2_STD_MN) {
2083                        pict_car = 38900000;
2084                        ch_bw = 6000000;
2085                        pict2chanb_vsb = -1250000;
2086                } else if (params->std & V4L2_STD_PAL_G) {
2087                        pict_car = 38900000;
2088                        ch_bw = 7000000;
2089                        pict2chanb_vsb = -1250000;
2090                } else {                /* PAL/SECAM standards */
2091                        pict_car = 38900000;
2092                        ch_bw = 8000000;
2093                        pict2chanb_vsb = -1250000;
2094                }
2095                break;
2096        default:
2097                return -EINVAL;
2098        }
2099        if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2100
2101        state->AS_Data.f_LO2_Step = 125000;     /* FIXME: probably 5000 for FM */
2102        state->AS_Data.f_out = if_mid;
2103        state->AS_Data.f_out_bw = ch_bw + 750000;
2104        status = MT2063_SetReceiverMode(state, rcvr_mode);
2105        if (status < 0)
2106                return status;
2107
2108        dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2109                params->frequency, ch_bw, pict2chanb_vsb);
2110
2111        status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2112        if (status < 0)
2113                return status;
2114
2115        state->frequency = params->frequency;
2116        return 0;
2117}
2118
2119/*
2120 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
2121 * So, the amount of the needed bandwidth is given by:
2122 *      Bw = Symbol_rate * (1 + 0.15)
2123 * As such, the maximum symbol rate supported by 6 MHz is given by:
2124 *      max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
2125 */
2126#define MAX_SYMBOL_RATE_6MHz    5217391
2127
2128static int mt2063_set_params(struct dvb_frontend *fe)
2129{
2130        struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2131        struct mt2063_state *state = fe->tuner_priv;
2132        int status;
2133        s32 pict_car;
2134        s32 pict2chanb_vsb;
2135        s32 ch_bw;
2136        s32 if_mid;
2137        s32 rcvr_mode;
2138
2139        if (!state->init) {
2140                status = mt2063_init(fe);
2141                if (status < 0)
2142                        return status;
2143        }
2144
2145        dprintk(2, "\n");
2146
2147        if (c->bandwidth_hz == 0)
2148                return -EINVAL;
2149        if (c->bandwidth_hz <= 6000000)
2150                ch_bw = 6000000;
2151        else if (c->bandwidth_hz <= 7000000)
2152                ch_bw = 7000000;
2153        else
2154                ch_bw = 8000000;
2155
2156        switch (c->delivery_system) {
2157        case SYS_DVBT:
2158                rcvr_mode = MT2063_OFFAIR_COFDM;
2159                pict_car = 36125000;
2160                pict2chanb_vsb = -(ch_bw / 2);
2161                break;
2162        case SYS_DVBC_ANNEX_A:
2163        case SYS_DVBC_ANNEX_C:
2164                rcvr_mode = MT2063_CABLE_QAM;
2165                pict_car = 36125000;
2166                pict2chanb_vsb = -(ch_bw / 2);
2167                break;
2168        default:
2169                return -EINVAL;
2170        }
2171        if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
2172
2173        state->AS_Data.f_LO2_Step = 125000;     /* FIXME: probably 5000 for FM */
2174        state->AS_Data.f_out = if_mid;
2175        state->AS_Data.f_out_bw = ch_bw + 750000;
2176        status = MT2063_SetReceiverMode(state, rcvr_mode);
2177        if (status < 0)
2178                return status;
2179
2180        dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
2181                c->frequency, ch_bw, pict2chanb_vsb);
2182
2183        status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
2184
2185        if (status < 0)
2186                return status;
2187
2188        state->frequency = c->frequency;
2189        return 0;
2190}
2191
2192static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
2193{
2194        struct mt2063_state *state = fe->tuner_priv;
2195
2196        dprintk(2, "\n");
2197
2198        if (!state->init)
2199                return -ENODEV;
2200
2201        *freq = state->AS_Data.f_out;
2202
2203        dprintk(1, "IF frequency: %d\n", *freq);
2204
2205        return 0;
2206}
2207
2208static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
2209{
2210        struct mt2063_state *state = fe->tuner_priv;
2211
2212        dprintk(2, "\n");
2213
2214        if (!state->init)
2215                return -ENODEV;
2216
2217        *bw = state->AS_Data.f_out_bw - 750000;
2218
2219        dprintk(1, "bandwidth: %d\n", *bw);
2220
2221        return 0;
2222}
2223
2224static struct dvb_tuner_ops mt2063_ops = {
2225        .info = {
2226                 .name = "MT2063 Silicon Tuner",
2227                 .frequency_min = 45000000,
2228                 .frequency_max = 865000000,
2229                 .frequency_step = 0,
2230                 },
2231
2232        .init = mt2063_init,
2233        .sleep = MT2063_Sleep,
2234        .get_status = mt2063_get_status,
2235        .set_analog_params = mt2063_set_analog_params,
2236        .set_params    = mt2063_set_params,
2237        .get_if_frequency = mt2063_get_if_frequency,
2238        .get_bandwidth = mt2063_get_bandwidth,
2239        .release = mt2063_release,
2240};
2241
2242struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
2243                                   struct mt2063_config *config,
2244                                   struct i2c_adapter *i2c)
2245{
2246        struct mt2063_state *state = NULL;
2247
2248        dprintk(2, "\n");
2249
2250        state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
2251        if (!state)
2252                return NULL;
2253
2254        state->config = config;
2255        state->i2c = i2c;
2256        state->frontend = fe;
2257        state->reference = config->refclock / 1000;     /* kHz */
2258        fe->tuner_priv = state;
2259        fe->ops.tuner_ops = mt2063_ops;
2260
2261        printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
2262        return fe;
2263}
2264EXPORT_SYMBOL_GPL(mt2063_attach);
2265
2266#if 0
2267/*
2268 * Ancillary routines visible outside mt2063
2269 * FIXME: Remove them in favor of using standard tuner callbacks
2270 */
2271static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
2272{
2273        struct mt2063_state *state = fe->tuner_priv;
2274        int err = 0;
2275
2276        dprintk(2, "\n");
2277
2278        err = MT2063_SoftwareShutdown(state, 1);
2279        if (err < 0)
2280                printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
2281
2282        return err;
2283}
2284
2285static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
2286{
2287        struct mt2063_state *state = fe->tuner_priv;
2288        int err = 0;
2289
2290        dprintk(2, "\n");
2291
2292        err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
2293        if (err < 0)
2294                printk(KERN_ERR "%s: Invalid parameter\n", __func__);
2295
2296        return err;
2297}
2298#endif
2299
2300MODULE_AUTHOR("Mauro Carvalho Chehab");
2301MODULE_DESCRIPTION("MT2063 Silicon tuner");
2302MODULE_LICENSE("GPL");
2303