linux/drivers/mtd/nand/docg4.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
   3 *
   4 * mtd nand driver for M-Systems DiskOnChip G4
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
  12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
  13 * Should work on these as well.  Let me know!
  14 *
  15 * TODO:
  16 *
  17 *  Mechanism for management of password-protected areas
  18 *
  19 *  Hamming ecc when reading oob only
  20 *
  21 *  According to the M-Sys documentation, this device is also available in a
  22 *  "dual-die" configuration having a 256MB capacity, but no mechanism for
  23 *  detecting this variant is documented.  Currently this driver assumes 128MB
  24 *  capacity.
  25 *
  26 *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
  27 *  contain multiple G4s in a cascaded configuration, if any.
  28 *
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/init.h>
  34#include <linux/string.h>
  35#include <linux/sched.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/export.h>
  39#include <linux/platform_device.h>
  40#include <linux/io.h>
  41#include <linux/bitops.h>
  42#include <linux/mtd/partitions.h>
  43#include <linux/mtd/mtd.h>
  44#include <linux/mtd/nand.h>
  45#include <linux/bch.h>
  46#include <linux/bitrev.h>
  47#include <linux/jiffies.h>
  48
  49/*
  50 * In "reliable mode" consecutive 2k pages are used in parallel (in some
  51 * fashion) to store the same data.  The data can be read back from the
  52 * even-numbered pages in the normal manner; odd-numbered pages will appear to
  53 * contain junk.  Systems that boot from the docg4 typically write the secondary
  54 * program loader (SPL) code in this mode.  The SPL is loaded by the initial
  55 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
  56 * to the reset vector address).  This module parameter enables you to use this
  57 * driver to write the SPL.  When in this mode, no more than 2k of data can be
  58 * written at a time, because the addresses do not increment in the normal
  59 * manner, and the starting offset must be within an even-numbered 2k region;
  60 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
  61 * 0x1a00, ...  Reliable mode is a special case and should not be used unless
  62 * you know what you're doing.
  63 */
  64static bool reliable_mode;
  65module_param(reliable_mode, bool, 0);
  66MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
  67
  68/*
  69 * You'll want to ignore badblocks if you're reading a partition that contains
  70 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
  71 * it does not use mtd nand's method for marking bad blocks (using oob area).
  72 * This will also skip the check of the "page written" flag.
  73 */
  74static bool ignore_badblocks;
  75module_param(ignore_badblocks, bool, 0);
  76MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
  77
  78struct docg4_priv {
  79        struct mtd_info *mtd;
  80        struct device *dev;
  81        void __iomem *virtadr;
  82        int status;
  83        struct {
  84                unsigned int command;
  85                int column;
  86                int page;
  87        } last_command;
  88        uint8_t oob_buf[16];
  89        uint8_t ecc_buf[7];
  90        int oob_page;
  91        struct bch_control *bch;
  92};
  93
  94/*
  95 * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
  96 * shared with other diskonchip devices (P3, G3 at least).
  97 *
  98 * Functions with names prefixed with docg4_ are mtd / nand interface functions
  99 * (though they may also be called internally).  All others are internal.
 100 */
 101
 102#define DOC_IOSPACE_DATA                0x0800
 103
 104/* register offsets */
 105#define DOC_CHIPID                      0x1000
 106#define DOC_DEVICESELECT                0x100a
 107#define DOC_ASICMODE                    0x100c
 108#define DOC_DATAEND                     0x101e
 109#define DOC_NOP                         0x103e
 110
 111#define DOC_FLASHSEQUENCE               0x1032
 112#define DOC_FLASHCOMMAND                0x1034
 113#define DOC_FLASHADDRESS                0x1036
 114#define DOC_FLASHCONTROL                0x1038
 115#define DOC_ECCCONF0                    0x1040
 116#define DOC_ECCCONF1                    0x1042
 117#define DOC_HAMMINGPARITY               0x1046
 118#define DOC_BCH_SYNDROM(idx)            (0x1048 + idx)
 119
 120#define DOC_ASICMODECONFIRM             0x1072
 121#define DOC_CHIPID_INV                  0x1074
 122#define DOC_POWERMODE                   0x107c
 123
 124#define DOCG4_MYSTERY_REG               0x1050
 125
 126/* apparently used only to write oob bytes 6 and 7 */
 127#define DOCG4_OOB_6_7                   0x1052
 128
 129/* DOC_FLASHSEQUENCE register commands */
 130#define DOC_SEQ_RESET                   0x00
 131#define DOCG4_SEQ_PAGE_READ             0x03
 132#define DOCG4_SEQ_FLUSH                 0x29
 133#define DOCG4_SEQ_PAGEWRITE             0x16
 134#define DOCG4_SEQ_PAGEPROG              0x1e
 135#define DOCG4_SEQ_BLOCKERASE            0x24
 136#define DOCG4_SEQ_SETMODE               0x45
 137
 138/* DOC_FLASHCOMMAND register commands */
 139#define DOCG4_CMD_PAGE_READ             0x00
 140#define DOC_CMD_ERASECYCLE2             0xd0
 141#define DOCG4_CMD_FLUSH                 0x70
 142#define DOCG4_CMD_READ2                 0x30
 143#define DOC_CMD_PROG_BLOCK_ADDR         0x60
 144#define DOCG4_CMD_PAGEWRITE             0x80
 145#define DOC_CMD_PROG_CYCLE2             0x10
 146#define DOCG4_CMD_FAST_MODE             0xa3 /* functionality guessed */
 147#define DOC_CMD_RELIABLE_MODE           0x22
 148#define DOC_CMD_RESET                   0xff
 149
 150/* DOC_POWERMODE register bits */
 151#define DOC_POWERDOWN_READY             0x80
 152
 153/* DOC_FLASHCONTROL register bits */
 154#define DOC_CTRL_CE                     0x10
 155#define DOC_CTRL_UNKNOWN                0x40
 156#define DOC_CTRL_FLASHREADY             0x01
 157
 158/* DOC_ECCCONF0 register bits */
 159#define DOC_ECCCONF0_READ_MODE          0x8000
 160#define DOC_ECCCONF0_UNKNOWN            0x2000
 161#define DOC_ECCCONF0_ECC_ENABLE         0x1000
 162#define DOC_ECCCONF0_DATA_BYTES_MASK    0x07ff
 163
 164/* DOC_ECCCONF1 register bits */
 165#define DOC_ECCCONF1_BCH_SYNDROM_ERR    0x80
 166#define DOC_ECCCONF1_ECC_ENABLE         0x07
 167#define DOC_ECCCONF1_PAGE_IS_WRITTEN    0x20
 168
 169/* DOC_ASICMODE register bits */
 170#define DOC_ASICMODE_RESET              0x00
 171#define DOC_ASICMODE_NORMAL             0x01
 172#define DOC_ASICMODE_POWERDOWN          0x02
 173#define DOC_ASICMODE_MDWREN             0x04
 174#define DOC_ASICMODE_BDETCT_RESET       0x08
 175#define DOC_ASICMODE_RSTIN_RESET        0x10
 176#define DOC_ASICMODE_RAM_WE             0x20
 177
 178/* good status values read after read/write/erase operations */
 179#define DOCG4_PROGSTATUS_GOOD          0x51
 180#define DOCG4_PROGSTATUS_GOOD_2        0xe0
 181
 182/*
 183 * On read operations (page and oob-only), the first byte read from I/O reg is a
 184 * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
 185 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
 186 */
 187#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
 188
 189/* anatomy of the device */
 190#define DOCG4_CHIP_SIZE        0x8000000
 191#define DOCG4_PAGE_SIZE        0x200
 192#define DOCG4_PAGES_PER_BLOCK  0x200
 193#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
 194#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
 195#define DOCG4_OOB_SIZE         0x10
 196#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
 197#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
 198#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
 199
 200/* all but the last byte is included in ecc calculation */
 201#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
 202
 203#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
 204
 205/* expected values from the ID registers */
 206#define DOCG4_IDREG1_VALUE     0x0400
 207#define DOCG4_IDREG2_VALUE     0xfbff
 208
 209/* primitive polynomial used to build the Galois field used by hw ecc gen */
 210#define DOCG4_PRIMITIVE_POLY   0x4443
 211
 212#define DOCG4_M                14  /* Galois field is of order 2^14 */
 213#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
 214
 215#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
 216#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
 217
 218/*
 219 * Bytes 0, 1 are used as badblock marker.
 220 * Bytes 2 - 6 are available to the user.
 221 * Byte 7 is hamming ecc for first 7 oob bytes only.
 222 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
 223 * Byte 15 (the last) is used by the driver as a "page written" flag.
 224 */
 225static struct nand_ecclayout docg4_oobinfo = {
 226        .eccbytes = 9,
 227        .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
 228        .oobfree = { {.offset = 2, .length = 5} }
 229};
 230
 231/*
 232 * The device has a nop register which M-Sys claims is for the purpose of
 233 * inserting precise delays.  But beware; at least some operations fail if the
 234 * nop writes are replaced with a generic delay!
 235 */
 236static inline void write_nop(void __iomem *docptr)
 237{
 238        writew(0, docptr + DOC_NOP);
 239}
 240
 241static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 242{
 243        int i;
 244        struct nand_chip *nand = mtd_to_nand(mtd);
 245        uint16_t *p = (uint16_t *) buf;
 246        len >>= 1;
 247
 248        for (i = 0; i < len; i++)
 249                p[i] = readw(nand->IO_ADDR_R);
 250}
 251
 252static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 253{
 254        int i;
 255        struct nand_chip *nand = mtd_to_nand(mtd);
 256        uint16_t *p = (uint16_t *) buf;
 257        len >>= 1;
 258
 259        for (i = 0; i < len; i++)
 260                writew(p[i], nand->IO_ADDR_W);
 261}
 262
 263static int poll_status(struct docg4_priv *doc)
 264{
 265        /*
 266         * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
 267         * register.  Operations known to take a long time (e.g., block erase)
 268         * should sleep for a while before calling this.
 269         */
 270
 271        uint16_t flash_status;
 272        unsigned long timeo;
 273        void __iomem *docptr = doc->virtadr;
 274
 275        dev_dbg(doc->dev, "%s...\n", __func__);
 276
 277        /* hardware quirk requires reading twice initially */
 278        flash_status = readw(docptr + DOC_FLASHCONTROL);
 279
 280        timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
 281        do {
 282                cpu_relax();
 283                flash_status = readb(docptr + DOC_FLASHCONTROL);
 284        } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
 285                 time_before(jiffies, timeo));
 286
 287        if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
 288                dev_err(doc->dev, "%s: timed out!\n", __func__);
 289                return NAND_STATUS_FAIL;
 290        }
 291
 292        return 0;
 293}
 294
 295
 296static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
 297{
 298
 299        struct docg4_priv *doc = nand_get_controller_data(nand);
 300        int status = NAND_STATUS_WP;       /* inverse logic?? */
 301        dev_dbg(doc->dev, "%s...\n", __func__);
 302
 303        /* report any previously unreported error */
 304        if (doc->status) {
 305                status |= doc->status;
 306                doc->status = 0;
 307                return status;
 308        }
 309
 310        status |= poll_status(doc);
 311        return status;
 312}
 313
 314static void docg4_select_chip(struct mtd_info *mtd, int chip)
 315{
 316        /*
 317         * Select among multiple cascaded chips ("floors").  Multiple floors are
 318         * not yet supported, so the only valid non-negative value is 0.
 319         */
 320        struct nand_chip *nand = mtd_to_nand(mtd);
 321        struct docg4_priv *doc = nand_get_controller_data(nand);
 322        void __iomem *docptr = doc->virtadr;
 323
 324        dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
 325
 326        if (chip < 0)
 327                return;         /* deselected */
 328
 329        if (chip > 0)
 330                dev_warn(doc->dev, "multiple floors currently unsupported\n");
 331
 332        writew(0, docptr + DOC_DEVICESELECT);
 333}
 334
 335static void reset(struct mtd_info *mtd)
 336{
 337        /* full device reset */
 338
 339        struct nand_chip *nand = mtd_to_nand(mtd);
 340        struct docg4_priv *doc = nand_get_controller_data(nand);
 341        void __iomem *docptr = doc->virtadr;
 342
 343        writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
 344               docptr + DOC_ASICMODE);
 345        writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
 346               docptr + DOC_ASICMODECONFIRM);
 347        write_nop(docptr);
 348
 349        writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
 350               docptr + DOC_ASICMODE);
 351        writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
 352               docptr + DOC_ASICMODECONFIRM);
 353
 354        writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
 355
 356        poll_status(doc);
 357}
 358
 359static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
 360{
 361        /* read the 7 hw-generated ecc bytes */
 362
 363        int i;
 364        for (i = 0; i < 7; i++) { /* hw quirk; read twice */
 365                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 366                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 367        }
 368}
 369
 370static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
 371{
 372        /*
 373         * Called after a page read when hardware reports bitflips.
 374         * Up to four bitflips can be corrected.
 375         */
 376
 377        struct nand_chip *nand = mtd_to_nand(mtd);
 378        struct docg4_priv *doc = nand_get_controller_data(nand);
 379        void __iomem *docptr = doc->virtadr;
 380        int i, numerrs, errpos[4];
 381        const uint8_t blank_read_hwecc[8] = {
 382                0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
 383
 384        read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
 385
 386        /* check if read error is due to a blank page */
 387        if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
 388                return 0;       /* yes */
 389
 390        /* skip additional check of "written flag" if ignore_badblocks */
 391        if (ignore_badblocks == false) {
 392
 393                /*
 394                 * If the hw ecc bytes are not those of a blank page, there's
 395                 * still a chance that the page is blank, but was read with
 396                 * errors.  Check the "written flag" in last oob byte, which
 397                 * is set to zero when a page is written.  If more than half
 398                 * the bits are set, assume a blank page.  Unfortunately, the
 399                 * bit flips(s) are not reported in stats.
 400                 */
 401
 402                if (nand->oob_poi[15]) {
 403                        int bit, numsetbits = 0;
 404                        unsigned long written_flag = nand->oob_poi[15];
 405                        for_each_set_bit(bit, &written_flag, 8)
 406                                numsetbits++;
 407                        if (numsetbits > 4) { /* assume blank */
 408                                dev_warn(doc->dev,
 409                                         "error(s) in blank page "
 410                                         "at offset %08x\n",
 411                                         page * DOCG4_PAGE_SIZE);
 412                                return 0;
 413                        }
 414                }
 415        }
 416
 417        /*
 418         * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 419         * algorithm is used to decode this.  However the hw operates on page
 420         * data in a bit order that is the reverse of that of the bch alg,
 421         * requiring that the bits be reversed on the result.  Thanks to Ivan
 422         * Djelic for his analysis!
 423         */
 424        for (i = 0; i < 7; i++)
 425                doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
 426
 427        numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
 428                             doc->ecc_buf, NULL, errpos);
 429
 430        if (numerrs == -EBADMSG) {
 431                dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
 432                         page * DOCG4_PAGE_SIZE);
 433                return -EBADMSG;
 434        }
 435
 436        BUG_ON(numerrs < 0);    /* -EINVAL, or anything other than -EBADMSG */
 437
 438        /* undo last step in BCH alg (modulo mirroring not needed) */
 439        for (i = 0; i < numerrs; i++)
 440                errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
 441
 442        /* fix the errors */
 443        for (i = 0; i < numerrs; i++) {
 444
 445                /* ignore if error within oob ecc bytes */
 446                if (errpos[i] > DOCG4_USERDATA_LEN * 8)
 447                        continue;
 448
 449                /* if error within oob area preceeding ecc bytes... */
 450                if (errpos[i] > DOCG4_PAGE_SIZE * 8)
 451                        change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
 452                                   (unsigned long *)nand->oob_poi);
 453
 454                else    /* error in page data */
 455                        change_bit(errpos[i], (unsigned long *)buf);
 456        }
 457
 458        dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
 459                   numerrs, page * DOCG4_PAGE_SIZE);
 460
 461        return numerrs;
 462}
 463
 464static uint8_t docg4_read_byte(struct mtd_info *mtd)
 465{
 466        struct nand_chip *nand = mtd_to_nand(mtd);
 467        struct docg4_priv *doc = nand_get_controller_data(nand);
 468
 469        dev_dbg(doc->dev, "%s\n", __func__);
 470
 471        if (doc->last_command.command == NAND_CMD_STATUS) {
 472                int status;
 473
 474                /*
 475                 * Previous nand command was status request, so nand
 476                 * infrastructure code expects to read the status here.  If an
 477                 * error occurred in a previous operation, report it.
 478                 */
 479                doc->last_command.command = 0;
 480
 481                if (doc->status) {
 482                        status = doc->status;
 483                        doc->status = 0;
 484                }
 485
 486                /* why is NAND_STATUS_WP inverse logic?? */
 487                else
 488                        status = NAND_STATUS_WP | NAND_STATUS_READY;
 489
 490                return status;
 491        }
 492
 493        dev_warn(doc->dev, "unexpected call to read_byte()\n");
 494
 495        return 0;
 496}
 497
 498static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
 499{
 500        /* write the four address bytes packed in docg4_addr to the device */
 501
 502        void __iomem *docptr = doc->virtadr;
 503        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 504        docg4_addr >>= 8;
 505        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 506        docg4_addr >>= 8;
 507        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 508        docg4_addr >>= 8;
 509        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 510}
 511
 512static int read_progstatus(struct docg4_priv *doc)
 513{
 514        /*
 515         * This apparently checks the status of programming.  Done after an
 516         * erasure, and after page data is written.  On error, the status is
 517         * saved, to be later retrieved by the nand infrastructure code.
 518         */
 519        void __iomem *docptr = doc->virtadr;
 520
 521        /* status is read from the I/O reg */
 522        uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
 523        uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
 524        uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
 525
 526        dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
 527              __func__, status1, status2, status3);
 528
 529        if (status1 != DOCG4_PROGSTATUS_GOOD
 530            || status2 != DOCG4_PROGSTATUS_GOOD_2
 531            || status3 != DOCG4_PROGSTATUS_GOOD_2) {
 532                doc->status = NAND_STATUS_FAIL;
 533                dev_warn(doc->dev, "read_progstatus failed: "
 534                         "%02x, %02x, %02x\n", status1, status2, status3);
 535                return -EIO;
 536        }
 537        return 0;
 538}
 539
 540static int pageprog(struct mtd_info *mtd)
 541{
 542        /*
 543         * Final step in writing a page.  Writes the contents of its
 544         * internal buffer out to the flash array, or some such.
 545         */
 546
 547        struct nand_chip *nand = mtd_to_nand(mtd);
 548        struct docg4_priv *doc = nand_get_controller_data(nand);
 549        void __iomem *docptr = doc->virtadr;
 550        int retval = 0;
 551
 552        dev_dbg(doc->dev, "docg4: %s\n", __func__);
 553
 554        writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
 555        writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
 556        write_nop(docptr);
 557        write_nop(docptr);
 558
 559        /* Just busy-wait; usleep_range() slows things down noticeably. */
 560        poll_status(doc);
 561
 562        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 563        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 564        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 565        write_nop(docptr);
 566        write_nop(docptr);
 567        write_nop(docptr);
 568        write_nop(docptr);
 569        write_nop(docptr);
 570
 571        retval = read_progstatus(doc);
 572        writew(0, docptr + DOC_DATAEND);
 573        write_nop(docptr);
 574        poll_status(doc);
 575        write_nop(docptr);
 576
 577        return retval;
 578}
 579
 580static void sequence_reset(struct mtd_info *mtd)
 581{
 582        /* common starting sequence for all operations */
 583
 584        struct nand_chip *nand = mtd_to_nand(mtd);
 585        struct docg4_priv *doc = nand_get_controller_data(nand);
 586        void __iomem *docptr = doc->virtadr;
 587
 588        writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
 589        writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
 590        writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
 591        write_nop(docptr);
 592        write_nop(docptr);
 593        poll_status(doc);
 594        write_nop(docptr);
 595}
 596
 597static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 598{
 599        /* first step in reading a page */
 600
 601        struct nand_chip *nand = mtd_to_nand(mtd);
 602        struct docg4_priv *doc = nand_get_controller_data(nand);
 603        void __iomem *docptr = doc->virtadr;
 604
 605        dev_dbg(doc->dev,
 606              "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
 607
 608        sequence_reset(mtd);
 609
 610        writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
 611        writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
 612        write_nop(docptr);
 613
 614        write_addr(doc, docg4_addr);
 615
 616        write_nop(docptr);
 617        writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
 618        write_nop(docptr);
 619        write_nop(docptr);
 620
 621        poll_status(doc);
 622}
 623
 624static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 625{
 626        /* first step in writing a page */
 627
 628        struct nand_chip *nand = mtd_to_nand(mtd);
 629        struct docg4_priv *doc = nand_get_controller_data(nand);
 630        void __iomem *docptr = doc->virtadr;
 631
 632        dev_dbg(doc->dev,
 633              "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
 634        sequence_reset(mtd);
 635
 636        if (unlikely(reliable_mode)) {
 637                writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
 638                writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
 639                writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
 640                write_nop(docptr);
 641        }
 642
 643        writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
 644        writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
 645        write_nop(docptr);
 646        write_addr(doc, docg4_addr);
 647        write_nop(docptr);
 648        write_nop(docptr);
 649        poll_status(doc);
 650}
 651
 652static uint32_t mtd_to_docg4_address(int page, int column)
 653{
 654        /*
 655         * Convert mtd address to format used by the device, 32 bit packed.
 656         *
 657         * Some notes on G4 addressing... The M-Sys documentation on this device
 658         * claims that pages are 2K in length, and indeed, the format of the
 659         * address used by the device reflects that.  But within each page are
 660         * four 512 byte "sub-pages", each with its own oob data that is
 661         * read/written immediately after the 512 bytes of page data.  This oob
 662         * data contains the ecc bytes for the preceeding 512 bytes.
 663         *
 664         * Rather than tell the mtd nand infrastructure that page size is 2k,
 665         * with four sub-pages each, we engage in a little subterfuge and tell
 666         * the infrastructure code that pages are 512 bytes in size.  This is
 667         * done because during the course of reverse-engineering the device, I
 668         * never observed an instance where an entire 2K "page" was read or
 669         * written as a unit.  Each "sub-page" is always addressed individually,
 670         * its data read/written, and ecc handled before the next "sub-page" is
 671         * addressed.
 672         *
 673         * This requires us to convert addresses passed by the mtd nand
 674         * infrastructure code to those used by the device.
 675         *
 676         * The address that is written to the device consists of four bytes: the
 677         * first two are the 2k page number, and the second is the index into
 678         * the page.  The index is in terms of 16-bit half-words and includes
 679         * the preceeding oob data, so e.g., the index into the second
 680         * "sub-page" is 0x108, and the full device address of the start of mtd
 681         * page 0x201 is 0x00800108.
 682         */
 683        int g4_page = page / 4;                       /* device's 2K page */
 684        int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
 685        return (g4_page << 16) | g4_index;            /* pack */
 686}
 687
 688static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
 689                          int page_addr)
 690{
 691        /* handle standard nand commands */
 692
 693        struct nand_chip *nand = mtd_to_nand(mtd);
 694        struct docg4_priv *doc = nand_get_controller_data(nand);
 695        uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
 696
 697        dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
 698              __func__, command, page_addr, column);
 699
 700        /*
 701         * Save the command and its arguments.  This enables emulation of
 702         * standard flash devices, and also some optimizations.
 703         */
 704        doc->last_command.command = command;
 705        doc->last_command.column = column;
 706        doc->last_command.page = page_addr;
 707
 708        switch (command) {
 709
 710        case NAND_CMD_RESET:
 711                reset(mtd);
 712                break;
 713
 714        case NAND_CMD_READ0:
 715                read_page_prologue(mtd, g4_addr);
 716                break;
 717
 718        case NAND_CMD_STATUS:
 719                /* next call to read_byte() will expect a status */
 720                break;
 721
 722        case NAND_CMD_SEQIN:
 723                if (unlikely(reliable_mode)) {
 724                        uint16_t g4_page = g4_addr >> 16;
 725
 726                        /* writes to odd-numbered 2k pages are invalid */
 727                        if (g4_page & 0x01)
 728                                dev_warn(doc->dev,
 729                                         "invalid reliable mode address\n");
 730                }
 731
 732                write_page_prologue(mtd, g4_addr);
 733
 734                /* hack for deferred write of oob bytes */
 735                if (doc->oob_page == page_addr)
 736                        memcpy(nand->oob_poi, doc->oob_buf, 16);
 737                break;
 738
 739        case NAND_CMD_PAGEPROG:
 740                pageprog(mtd);
 741                break;
 742
 743        /* we don't expect these, based on review of nand_base.c */
 744        case NAND_CMD_READOOB:
 745        case NAND_CMD_READID:
 746        case NAND_CMD_ERASE1:
 747        case NAND_CMD_ERASE2:
 748                dev_warn(doc->dev, "docg4_command: "
 749                         "unexpected nand command 0x%x\n", command);
 750                break;
 751
 752        }
 753}
 754
 755static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
 756                     uint8_t *buf, int page, bool use_ecc)
 757{
 758        struct docg4_priv *doc = nand_get_controller_data(nand);
 759        void __iomem *docptr = doc->virtadr;
 760        uint16_t status, edc_err, *buf16;
 761        int bits_corrected = 0;
 762
 763        dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
 764
 765        writew(DOC_ECCCONF0_READ_MODE |
 766               DOC_ECCCONF0_ECC_ENABLE |
 767               DOC_ECCCONF0_UNKNOWN |
 768               DOCG4_BCH_SIZE,
 769               docptr + DOC_ECCCONF0);
 770        write_nop(docptr);
 771        write_nop(docptr);
 772        write_nop(docptr);
 773        write_nop(docptr);
 774        write_nop(docptr);
 775
 776        /* the 1st byte from the I/O reg is a status; the rest is page data */
 777        status = readw(docptr + DOC_IOSPACE_DATA);
 778        if (status & DOCG4_READ_ERROR) {
 779                dev_err(doc->dev,
 780                        "docg4_read_page: bad status: 0x%02x\n", status);
 781                writew(0, docptr + DOC_DATAEND);
 782                return -EIO;
 783        }
 784
 785        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 786
 787        docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
 788
 789        /* this device always reads oob after page data */
 790        /* first 14 oob bytes read from I/O reg */
 791        docg4_read_buf(mtd, nand->oob_poi, 14);
 792
 793        /* last 2 read from another reg */
 794        buf16 = (uint16_t *)(nand->oob_poi + 14);
 795        *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
 796
 797        write_nop(docptr);
 798
 799        if (likely(use_ecc == true)) {
 800
 801                /* read the register that tells us if bitflip(s) detected  */
 802                edc_err = readw(docptr + DOC_ECCCONF1);
 803                edc_err = readw(docptr + DOC_ECCCONF1);
 804                dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
 805
 806                /* If bitflips are reported, attempt to correct with ecc */
 807                if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
 808                        bits_corrected = correct_data(mtd, buf, page);
 809                        if (bits_corrected == -EBADMSG)
 810                                mtd->ecc_stats.failed++;
 811                        else
 812                                mtd->ecc_stats.corrected += bits_corrected;
 813                }
 814        }
 815
 816        writew(0, docptr + DOC_DATAEND);
 817        if (bits_corrected == -EBADMSG)   /* uncorrectable errors */
 818                return 0;
 819        return bits_corrected;
 820}
 821
 822
 823static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 824                               uint8_t *buf, int oob_required, int page)
 825{
 826        return read_page(mtd, nand, buf, page, false);
 827}
 828
 829static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 830                           uint8_t *buf, int oob_required, int page)
 831{
 832        return read_page(mtd, nand, buf, page, true);
 833}
 834
 835static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 836                          int page)
 837{
 838        struct docg4_priv *doc = nand_get_controller_data(nand);
 839        void __iomem *docptr = doc->virtadr;
 840        uint16_t status;
 841
 842        dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
 843
 844        docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
 845
 846        writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
 847        write_nop(docptr);
 848        write_nop(docptr);
 849        write_nop(docptr);
 850        write_nop(docptr);
 851        write_nop(docptr);
 852
 853        /* the 1st byte from the I/O reg is a status; the rest is oob data */
 854        status = readw(docptr + DOC_IOSPACE_DATA);
 855        if (status & DOCG4_READ_ERROR) {
 856                dev_warn(doc->dev,
 857                         "docg4_read_oob failed: status = 0x%02x\n", status);
 858                return -EIO;
 859        }
 860
 861        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 862
 863        docg4_read_buf(mtd, nand->oob_poi, 16);
 864
 865        write_nop(docptr);
 866        write_nop(docptr);
 867        write_nop(docptr);
 868        writew(0, docptr + DOC_DATAEND);
 869        write_nop(docptr);
 870
 871        return 0;
 872}
 873
 874static int docg4_erase_block(struct mtd_info *mtd, int page)
 875{
 876        struct nand_chip *nand = mtd_to_nand(mtd);
 877        struct docg4_priv *doc = nand_get_controller_data(nand);
 878        void __iomem *docptr = doc->virtadr;
 879        uint16_t g4_page;
 880
 881        dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
 882
 883        sequence_reset(mtd);
 884
 885        writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
 886        writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
 887        write_nop(docptr);
 888
 889        /* only 2 bytes of address are written to specify erase block */
 890        g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
 891        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 892        g4_page >>= 8;
 893        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 894        write_nop(docptr);
 895
 896        /* start the erasure */
 897        writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
 898        write_nop(docptr);
 899        write_nop(docptr);
 900
 901        usleep_range(500, 1000); /* erasure is long; take a snooze */
 902        poll_status(doc);
 903        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 904        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 905        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 906        write_nop(docptr);
 907        write_nop(docptr);
 908        write_nop(docptr);
 909        write_nop(docptr);
 910        write_nop(docptr);
 911
 912        read_progstatus(doc);
 913
 914        writew(0, docptr + DOC_DATAEND);
 915        write_nop(docptr);
 916        poll_status(doc);
 917        write_nop(docptr);
 918
 919        return nand->waitfunc(mtd, nand);
 920}
 921
 922static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
 923                       const uint8_t *buf, bool use_ecc)
 924{
 925        struct docg4_priv *doc = nand_get_controller_data(nand);
 926        void __iomem *docptr = doc->virtadr;
 927        uint8_t ecc_buf[8];
 928
 929        dev_dbg(doc->dev, "%s...\n", __func__);
 930
 931        writew(DOC_ECCCONF0_ECC_ENABLE |
 932               DOC_ECCCONF0_UNKNOWN |
 933               DOCG4_BCH_SIZE,
 934               docptr + DOC_ECCCONF0);
 935        write_nop(docptr);
 936
 937        /* write the page data */
 938        docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
 939
 940        /* oob bytes 0 through 5 are written to I/O reg */
 941        docg4_write_buf16(mtd, nand->oob_poi, 6);
 942
 943        /* oob byte 6 written to a separate reg */
 944        writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
 945
 946        write_nop(docptr);
 947        write_nop(docptr);
 948
 949        /* write hw-generated ecc bytes to oob */
 950        if (likely(use_ecc == true)) {
 951                /* oob byte 7 is hamming code */
 952                uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
 953                hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
 954                writew(hamming, docptr + DOCG4_OOB_6_7);
 955                write_nop(docptr);
 956
 957                /* read the 7 bch bytes from ecc regs */
 958                read_hw_ecc(docptr, ecc_buf);
 959                ecc_buf[7] = 0;         /* clear the "page written" flag */
 960        }
 961
 962        /* write user-supplied bytes to oob */
 963        else {
 964                writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
 965                write_nop(docptr);
 966                memcpy(ecc_buf, &nand->oob_poi[8], 8);
 967        }
 968
 969        docg4_write_buf16(mtd, ecc_buf, 8);
 970        write_nop(docptr);
 971        write_nop(docptr);
 972        writew(0, docptr + DOC_DATAEND);
 973        write_nop(docptr);
 974
 975        return 0;
 976}
 977
 978static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 979                                const uint8_t *buf, int oob_required, int page)
 980{
 981        return write_page(mtd, nand, buf, false);
 982}
 983
 984static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
 985                             const uint8_t *buf, int oob_required, int page)
 986{
 987        return write_page(mtd, nand, buf, true);
 988}
 989
 990static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 991                           int page)
 992{
 993        /*
 994         * Writing oob-only is not really supported, because MLC nand must write
 995         * oob bytes at the same time as page data.  Nonetheless, we save the
 996         * oob buffer contents here, and then write it along with the page data
 997         * if the same page is subsequently written.  This allows user space
 998         * utilities that write the oob data prior to the page data to work
 999         * (e.g., nandwrite).  The disdvantage is that, if the intention was to
1000         * write oob only, the operation is quietly ignored.  Also, oob can get
1001         * corrupted if two concurrent processes are running nandwrite.
1002         */
1003
1004        /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1005        struct docg4_priv *doc = nand_get_controller_data(nand);
1006        doc->oob_page = page;
1007        memcpy(doc->oob_buf, nand->oob_poi, 16);
1008        return 0;
1009}
1010
1011static int __init read_factory_bbt(struct mtd_info *mtd)
1012{
1013        /*
1014         * The device contains a read-only factory bad block table.  Read it and
1015         * update the memory-based bbt accordingly.
1016         */
1017
1018        struct nand_chip *nand = mtd_to_nand(mtd);
1019        struct docg4_priv *doc = nand_get_controller_data(nand);
1020        uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1021        uint8_t *buf;
1022        int i, block;
1023        __u32 eccfailed_stats = mtd->ecc_stats.failed;
1024
1025        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1026        if (buf == NULL)
1027                return -ENOMEM;
1028
1029        read_page_prologue(mtd, g4_addr);
1030        docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1031
1032        /*
1033         * If no memory-based bbt was created, exit.  This will happen if module
1034         * parameter ignore_badblocks is set.  Then why even call this function?
1035         * For an unknown reason, block erase always fails if it's the first
1036         * operation after device power-up.  The above read ensures it never is.
1037         * Ugly, I know.
1038         */
1039        if (nand->bbt == NULL)  /* no memory-based bbt */
1040                goto exit;
1041
1042        if (mtd->ecc_stats.failed > eccfailed_stats) {
1043                /*
1044                 * Whoops, an ecc failure ocurred reading the factory bbt.
1045                 * It is stored redundantly, so we get another chance.
1046                 */
1047                eccfailed_stats = mtd->ecc_stats.failed;
1048                docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1049                if (mtd->ecc_stats.failed > eccfailed_stats) {
1050                        dev_warn(doc->dev,
1051                                 "The factory bbt could not be read!\n");
1052                        goto exit;
1053                }
1054        }
1055
1056        /*
1057         * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1058         * simple: one bit per block, block numbers increase left to right (msb
1059         * to lsb).  Bit clear means bad block.
1060         */
1061        for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1062                int bitnum;
1063                unsigned long bits = ~buf[i];
1064                for_each_set_bit(bitnum, &bits, 8) {
1065                        int badblock = block + 7 - bitnum;
1066                        nand->bbt[badblock / 4] |=
1067                                0x03 << ((badblock % 4) * 2);
1068                        mtd->ecc_stats.badblocks++;
1069                        dev_notice(doc->dev, "factory-marked bad block: %d\n",
1070                                   badblock);
1071                }
1072        }
1073 exit:
1074        kfree(buf);
1075        return 0;
1076}
1077
1078static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1079{
1080        /*
1081         * Mark a block as bad.  Bad blocks are marked in the oob area of the
1082         * first page of the block.  The default scan_bbt() in the nand
1083         * infrastructure code works fine for building the memory-based bbt
1084         * during initialization, as does the nand infrastructure function that
1085         * checks if a block is bad by reading the bbt.  This function replaces
1086         * the nand default because writes to oob-only are not supported.
1087         */
1088
1089        int ret, i;
1090        uint8_t *buf;
1091        struct nand_chip *nand = mtd_to_nand(mtd);
1092        struct docg4_priv *doc = nand_get_controller_data(nand);
1093        struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1094        int page = (int)(ofs >> nand->page_shift);
1095        uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1096
1097        dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1098
1099        if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1100                dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1101                         __func__, ofs);
1102
1103        /* allocate blank buffer for page data */
1104        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1105        if (buf == NULL)
1106                return -ENOMEM;
1107
1108        /* write bit-wise negation of pattern to oob buffer */
1109        memset(nand->oob_poi, 0xff, mtd->oobsize);
1110        for (i = 0; i < bbtd->len; i++)
1111                nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1112
1113        /* write first page of block */
1114        write_page_prologue(mtd, g4_addr);
1115        docg4_write_page(mtd, nand, buf, 1, page);
1116        ret = pageprog(mtd);
1117
1118        kfree(buf);
1119
1120        return ret;
1121}
1122
1123static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
1124{
1125        /* only called when module_param ignore_badblocks is set */
1126        return 0;
1127}
1128
1129static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1130{
1131        /*
1132         * Put the device into "deep power-down" mode.  Note that CE# must be
1133         * deasserted for this to take effect.  The xscale, e.g., can be
1134         * configured to float this signal when the processor enters power-down,
1135         * and a suitable pull-up ensures its deassertion.
1136         */
1137
1138        int i;
1139        uint8_t pwr_down;
1140        struct docg4_priv *doc = platform_get_drvdata(pdev);
1141        void __iomem *docptr = doc->virtadr;
1142
1143        dev_dbg(doc->dev, "%s...\n", __func__);
1144
1145        /* poll the register that tells us we're ready to go to sleep */
1146        for (i = 0; i < 10; i++) {
1147                pwr_down = readb(docptr + DOC_POWERMODE);
1148                if (pwr_down & DOC_POWERDOWN_READY)
1149                        break;
1150                usleep_range(1000, 4000);
1151        }
1152
1153        if (pwr_down & DOC_POWERDOWN_READY) {
1154                dev_err(doc->dev, "suspend failed; "
1155                        "timeout polling DOC_POWERDOWN_READY\n");
1156                return -EIO;
1157        }
1158
1159        writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1160               docptr + DOC_ASICMODE);
1161        writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1162               docptr + DOC_ASICMODECONFIRM);
1163
1164        write_nop(docptr);
1165
1166        return 0;
1167}
1168
1169static int docg4_resume(struct platform_device *pdev)
1170{
1171
1172        /*
1173         * Exit power-down.  Twelve consecutive reads of the address below
1174         * accomplishes this, assuming CE# has been asserted.
1175         */
1176
1177        struct docg4_priv *doc = platform_get_drvdata(pdev);
1178        void __iomem *docptr = doc->virtadr;
1179        int i;
1180
1181        dev_dbg(doc->dev, "%s...\n", __func__);
1182
1183        for (i = 0; i < 12; i++)
1184                readb(docptr + 0x1fff);
1185
1186        return 0;
1187}
1188
1189static void __init init_mtd_structs(struct mtd_info *mtd)
1190{
1191        /* initialize mtd and nand data structures */
1192
1193        /*
1194         * Note that some of the following initializations are not usually
1195         * required within a nand driver because they are performed by the nand
1196         * infrastructure code as part of nand_scan().  In this case they need
1197         * to be initialized here because we skip call to nand_scan_ident() (the
1198         * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1199         * because for this device the chip id is not read in the manner of a
1200         * standard nand device.  Unfortunately, nand_scan_ident() does other
1201         * things as well, such as call nand_set_defaults().
1202         */
1203
1204        struct nand_chip *nand = mtd_to_nand(mtd);
1205        struct docg4_priv *doc = nand_get_controller_data(nand);
1206
1207        mtd->size = DOCG4_CHIP_SIZE;
1208        mtd->name = "Msys_Diskonchip_G4";
1209        mtd->writesize = DOCG4_PAGE_SIZE;
1210        mtd->erasesize = DOCG4_BLOCK_SIZE;
1211        mtd->oobsize = DOCG4_OOB_SIZE;
1212        nand->chipsize = DOCG4_CHIP_SIZE;
1213        nand->chip_shift = DOCG4_CHIP_SHIFT;
1214        nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1215        nand->chip_delay = 20;
1216        nand->page_shift = DOCG4_PAGE_SHIFT;
1217        nand->pagemask = 0x3ffff;
1218        nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1219        nand->badblockbits = 8;
1220        nand->ecc.layout = &docg4_oobinfo;
1221        nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1222        nand->ecc.size = DOCG4_PAGE_SIZE;
1223        nand->ecc.prepad = 8;
1224        nand->ecc.bytes = 8;
1225        nand->ecc.strength = DOCG4_T;
1226        nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1227        nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1228        nand->controller = &nand->hwcontrol;
1229        spin_lock_init(&nand->controller->lock);
1230        init_waitqueue_head(&nand->controller->wq);
1231
1232        /* methods */
1233        nand->cmdfunc = docg4_command;
1234        nand->waitfunc = docg4_wait;
1235        nand->select_chip = docg4_select_chip;
1236        nand->read_byte = docg4_read_byte;
1237        nand->block_markbad = docg4_block_markbad;
1238        nand->read_buf = docg4_read_buf;
1239        nand->write_buf = docg4_write_buf16;
1240        nand->erase = docg4_erase_block;
1241        nand->ecc.read_page = docg4_read_page;
1242        nand->ecc.write_page = docg4_write_page;
1243        nand->ecc.read_page_raw = docg4_read_page_raw;
1244        nand->ecc.write_page_raw = docg4_write_page_raw;
1245        nand->ecc.read_oob = docg4_read_oob;
1246        nand->ecc.write_oob = docg4_write_oob;
1247
1248        /*
1249         * The way the nand infrastructure code is written, a memory-based bbt
1250         * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1251         * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1252         * scan and define a dummy block_bad() which always returns 0.
1253         */
1254        if (ignore_badblocks) {
1255                nand->options |= NAND_SKIP_BBTSCAN;
1256                nand->block_bad = docg4_block_neverbad;
1257        }
1258
1259}
1260
1261static int __init read_id_reg(struct mtd_info *mtd)
1262{
1263        struct nand_chip *nand = mtd_to_nand(mtd);
1264        struct docg4_priv *doc = nand_get_controller_data(nand);
1265        void __iomem *docptr = doc->virtadr;
1266        uint16_t id1, id2;
1267
1268        /* check for presence of g4 chip by reading id registers */
1269        id1 = readw(docptr + DOC_CHIPID);
1270        id1 = readw(docptr + DOCG4_MYSTERY_REG);
1271        id2 = readw(docptr + DOC_CHIPID_INV);
1272        id2 = readw(docptr + DOCG4_MYSTERY_REG);
1273
1274        if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1275                dev_info(doc->dev,
1276                         "NAND device: 128MiB Diskonchip G4 detected\n");
1277                return 0;
1278        }
1279
1280        return -ENODEV;
1281}
1282
1283static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1284
1285static int __init probe_docg4(struct platform_device *pdev)
1286{
1287        struct mtd_info *mtd;
1288        struct nand_chip *nand;
1289        void __iomem *virtadr;
1290        struct docg4_priv *doc;
1291        int len, retval;
1292        struct resource *r;
1293        struct device *dev = &pdev->dev;
1294
1295        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1296        if (r == NULL) {
1297                dev_err(dev, "no io memory resource defined!\n");
1298                return -ENODEV;
1299        }
1300
1301        virtadr = ioremap(r->start, resource_size(r));
1302        if (!virtadr) {
1303                dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1304                return -EIO;
1305        }
1306
1307        len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
1308        nand = kzalloc(len, GFP_KERNEL);
1309        if (nand == NULL) {
1310                retval = -ENOMEM;
1311                goto fail_unmap;
1312        }
1313
1314        mtd = nand_to_mtd(nand);
1315        doc = (struct docg4_priv *) (nand + 1);
1316        nand_set_controller_data(nand, doc);
1317        mtd->dev.parent = &pdev->dev;
1318        doc->virtadr = virtadr;
1319        doc->dev = dev;
1320
1321        init_mtd_structs(mtd);
1322
1323        /* initialize kernel bch algorithm */
1324        doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1325        if (doc->bch == NULL) {
1326                retval = -EINVAL;
1327                goto fail;
1328        }
1329
1330        platform_set_drvdata(pdev, doc);
1331
1332        reset(mtd);
1333        retval = read_id_reg(mtd);
1334        if (retval == -ENODEV) {
1335                dev_warn(dev, "No diskonchip G4 device found.\n");
1336                goto fail;
1337        }
1338
1339        retval = nand_scan_tail(mtd);
1340        if (retval)
1341                goto fail;
1342
1343        retval = read_factory_bbt(mtd);
1344        if (retval)
1345                goto fail;
1346
1347        retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1348        if (retval)
1349                goto fail;
1350
1351        doc->mtd = mtd;
1352        return 0;
1353
1354fail:
1355        nand_release(mtd); /* deletes partitions and mtd devices */
1356        free_bch(doc->bch);
1357        kfree(nand);
1358
1359fail_unmap:
1360        iounmap(virtadr);
1361
1362        return retval;
1363}
1364
1365static int __exit cleanup_docg4(struct platform_device *pdev)
1366{
1367        struct docg4_priv *doc = platform_get_drvdata(pdev);
1368        nand_release(doc->mtd);
1369        free_bch(doc->bch);
1370        kfree(mtd_to_nand(doc->mtd));
1371        iounmap(doc->virtadr);
1372        return 0;
1373}
1374
1375static struct platform_driver docg4_driver = {
1376        .driver         = {
1377                .name   = "docg4",
1378        },
1379        .suspend        = docg4_suspend,
1380        .resume         = docg4_resume,
1381        .remove         = __exit_p(cleanup_docg4),
1382};
1383
1384module_platform_driver_probe(docg4_driver, probe_docg4);
1385
1386MODULE_LICENSE("GPL");
1387MODULE_AUTHOR("Mike Dunn");
1388MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1389