linux/drivers/mtd/nand/omap2.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/delay.h>
  15#include <linux/module.h>
  16#include <linux/interrupt.h>
  17#include <linux/jiffies.h>
  18#include <linux/sched.h>
  19#include <linux/mtd/mtd.h>
  20#include <linux/mtd/nand.h>
  21#include <linux/mtd/partitions.h>
  22#include <linux/omap-dma.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of.h>
  26#include <linux/of_device.h>
  27
  28#include <linux/mtd/nand_bch.h>
  29#include <linux/platform_data/elm.h>
  30
  31#include <linux/platform_data/mtd-nand-omap2.h>
  32
  33#define DRIVER_NAME     "omap2-nand"
  34#define OMAP_NAND_TIMEOUT_MS    5000
  35
  36#define NAND_Ecc_P1e            (1 << 0)
  37#define NAND_Ecc_P2e            (1 << 1)
  38#define NAND_Ecc_P4e            (1 << 2)
  39#define NAND_Ecc_P8e            (1 << 3)
  40#define NAND_Ecc_P16e           (1 << 4)
  41#define NAND_Ecc_P32e           (1 << 5)
  42#define NAND_Ecc_P64e           (1 << 6)
  43#define NAND_Ecc_P128e          (1 << 7)
  44#define NAND_Ecc_P256e          (1 << 8)
  45#define NAND_Ecc_P512e          (1 << 9)
  46#define NAND_Ecc_P1024e         (1 << 10)
  47#define NAND_Ecc_P2048e         (1 << 11)
  48
  49#define NAND_Ecc_P1o            (1 << 16)
  50#define NAND_Ecc_P2o            (1 << 17)
  51#define NAND_Ecc_P4o            (1 << 18)
  52#define NAND_Ecc_P8o            (1 << 19)
  53#define NAND_Ecc_P16o           (1 << 20)
  54#define NAND_Ecc_P32o           (1 << 21)
  55#define NAND_Ecc_P64o           (1 << 22)
  56#define NAND_Ecc_P128o          (1 << 23)
  57#define NAND_Ecc_P256o          (1 << 24)
  58#define NAND_Ecc_P512o          (1 << 25)
  59#define NAND_Ecc_P1024o         (1 << 26)
  60#define NAND_Ecc_P2048o         (1 << 27)
  61
  62#define TF(value)       (value ? 1 : 0)
  63
  64#define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  65#define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  66#define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  67#define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  68#define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  69#define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  70#define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  71#define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  72
  73#define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  74#define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  75#define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  76#define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  77#define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  78#define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  79#define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  80#define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  81
  82#define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  83#define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  84#define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  85#define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  86#define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  87#define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  88#define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  89#define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  90
  91#define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  92#define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  93#define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  94#define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  95#define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  96#define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  97#define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
  98#define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
  99
 100#define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
 101#define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
 102
 103#define PREFETCH_CONFIG1_CS_SHIFT       24
 104#define ECC_CONFIG_CS_SHIFT             1
 105#define CS_MASK                         0x7
 106#define ENABLE_PREFETCH                 (0x1 << 7)
 107#define DMA_MPU_MODE_SHIFT              2
 108#define ECCSIZE0_SHIFT                  12
 109#define ECCSIZE1_SHIFT                  22
 110#define ECC1RESULTSIZE                  0x1
 111#define ECCCLEAR                        0x100
 112#define ECC1                            0x1
 113#define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 114#define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 115#define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 116#define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 117#define STATUS_BUFF_EMPTY               0x00000001
 118
 119#define OMAP24XX_DMA_GPMC               4
 120
 121#define SECTOR_BYTES            512
 122/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 123#define BCH4_BIT_PAD            4
 124
 125/* GPMC ecc engine settings for read */
 126#define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
 127#define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
 128#define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
 129#define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
 130#define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
 131
 132/* GPMC ecc engine settings for write */
 133#define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
 134#define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
 135#define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
 136
 137#define BADBLOCK_MARKER_LENGTH          2
 138
 139static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 140                                0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 141                                0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 142                                0x07, 0x0e};
 143static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 144        0xac, 0x6b, 0xff, 0x99, 0x7b};
 145static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 146
 147/* Shared among all NAND instances to synchronize access to the ECC Engine */
 148static struct nand_hw_control omap_gpmc_controller = {
 149        .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
 150        .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
 151};
 152
 153struct omap_nand_info {
 154        struct omap_nand_platform_data  *pdata;
 155        struct nand_chip                nand;
 156        struct platform_device          *pdev;
 157
 158        int                             gpmc_cs;
 159        unsigned long                   phys_base;
 160        enum omap_ecc                   ecc_opt;
 161        struct completion               comp;
 162        struct dma_chan                 *dma;
 163        int                             gpmc_irq_fifo;
 164        int                             gpmc_irq_count;
 165        enum {
 166                OMAP_NAND_IO_READ = 0,  /* read */
 167                OMAP_NAND_IO_WRITE,     /* write */
 168        } iomode;
 169        u_char                          *buf;
 170        int                                     buf_len;
 171        struct gpmc_nand_regs           reg;
 172        /* generated at runtime depending on ECC algorithm and layout selected */
 173        struct nand_ecclayout           oobinfo;
 174        /* fields specific for BCHx_HW ECC scheme */
 175        struct device                   *elm_dev;
 176        struct device_node              *of_node;
 177};
 178
 179static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 180{
 181        return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 182}
 183
 184/**
 185 * omap_prefetch_enable - configures and starts prefetch transfer
 186 * @cs: cs (chip select) number
 187 * @fifo_th: fifo threshold to be used for read/ write
 188 * @dma_mode: dma mode enable (1) or disable (0)
 189 * @u32_count: number of bytes to be transferred
 190 * @is_write: prefetch read(0) or write post(1) mode
 191 */
 192static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 193        unsigned int u32_count, int is_write, struct omap_nand_info *info)
 194{
 195        u32 val;
 196
 197        if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 198                return -1;
 199
 200        if (readl(info->reg.gpmc_prefetch_control))
 201                return -EBUSY;
 202
 203        /* Set the amount of bytes to be prefetched */
 204        writel(u32_count, info->reg.gpmc_prefetch_config2);
 205
 206        /* Set dma/mpu mode, the prefetch read / post write and
 207         * enable the engine. Set which cs is has requested for.
 208         */
 209        val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 210                PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 211                (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
 212        writel(val, info->reg.gpmc_prefetch_config1);
 213
 214        /*  Start the prefetch engine */
 215        writel(0x1, info->reg.gpmc_prefetch_control);
 216
 217        return 0;
 218}
 219
 220/**
 221 * omap_prefetch_reset - disables and stops the prefetch engine
 222 */
 223static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 224{
 225        u32 config1;
 226
 227        /* check if the same module/cs is trying to reset */
 228        config1 = readl(info->reg.gpmc_prefetch_config1);
 229        if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 230                return -EINVAL;
 231
 232        /* Stop the PFPW engine */
 233        writel(0x0, info->reg.gpmc_prefetch_control);
 234
 235        /* Reset/disable the PFPW engine */
 236        writel(0x0, info->reg.gpmc_prefetch_config1);
 237
 238        return 0;
 239}
 240
 241/**
 242 * omap_hwcontrol - hardware specific access to control-lines
 243 * @mtd: MTD device structure
 244 * @cmd: command to device
 245 * @ctrl:
 246 * NAND_NCE: bit 0 -> don't care
 247 * NAND_CLE: bit 1 -> Command Latch
 248 * NAND_ALE: bit 2 -> Address Latch
 249 *
 250 * NOTE: boards may use different bits for these!!
 251 */
 252static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 253{
 254        struct omap_nand_info *info = mtd_to_omap(mtd);
 255
 256        if (cmd != NAND_CMD_NONE) {
 257                if (ctrl & NAND_CLE)
 258                        writeb(cmd, info->reg.gpmc_nand_command);
 259
 260                else if (ctrl & NAND_ALE)
 261                        writeb(cmd, info->reg.gpmc_nand_address);
 262
 263                else /* NAND_NCE */
 264                        writeb(cmd, info->reg.gpmc_nand_data);
 265        }
 266}
 267
 268/**
 269 * omap_read_buf8 - read data from NAND controller into buffer
 270 * @mtd: MTD device structure
 271 * @buf: buffer to store date
 272 * @len: number of bytes to read
 273 */
 274static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 275{
 276        struct nand_chip *nand = mtd_to_nand(mtd);
 277
 278        ioread8_rep(nand->IO_ADDR_R, buf, len);
 279}
 280
 281/**
 282 * omap_write_buf8 - write buffer to NAND controller
 283 * @mtd: MTD device structure
 284 * @buf: data buffer
 285 * @len: number of bytes to write
 286 */
 287static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 288{
 289        struct omap_nand_info *info = mtd_to_omap(mtd);
 290        u_char *p = (u_char *)buf;
 291        u32     status = 0;
 292
 293        while (len--) {
 294                iowrite8(*p++, info->nand.IO_ADDR_W);
 295                /* wait until buffer is available for write */
 296                do {
 297                        status = readl(info->reg.gpmc_status) &
 298                                        STATUS_BUFF_EMPTY;
 299                } while (!status);
 300        }
 301}
 302
 303/**
 304 * omap_read_buf16 - read data from NAND controller into buffer
 305 * @mtd: MTD device structure
 306 * @buf: buffer to store date
 307 * @len: number of bytes to read
 308 */
 309static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 310{
 311        struct nand_chip *nand = mtd_to_nand(mtd);
 312
 313        ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 314}
 315
 316/**
 317 * omap_write_buf16 - write buffer to NAND controller
 318 * @mtd: MTD device structure
 319 * @buf: data buffer
 320 * @len: number of bytes to write
 321 */
 322static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 323{
 324        struct omap_nand_info *info = mtd_to_omap(mtd);
 325        u16 *p = (u16 *) buf;
 326        u32     status = 0;
 327        /* FIXME try bursts of writesw() or DMA ... */
 328        len >>= 1;
 329
 330        while (len--) {
 331                iowrite16(*p++, info->nand.IO_ADDR_W);
 332                /* wait until buffer is available for write */
 333                do {
 334                        status = readl(info->reg.gpmc_status) &
 335                                        STATUS_BUFF_EMPTY;
 336                } while (!status);
 337        }
 338}
 339
 340/**
 341 * omap_read_buf_pref - read data from NAND controller into buffer
 342 * @mtd: MTD device structure
 343 * @buf: buffer to store date
 344 * @len: number of bytes to read
 345 */
 346static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 347{
 348        struct omap_nand_info *info = mtd_to_omap(mtd);
 349        uint32_t r_count = 0;
 350        int ret = 0;
 351        u32 *p = (u32 *)buf;
 352
 353        /* take care of subpage reads */
 354        if (len % 4) {
 355                if (info->nand.options & NAND_BUSWIDTH_16)
 356                        omap_read_buf16(mtd, buf, len % 4);
 357                else
 358                        omap_read_buf8(mtd, buf, len % 4);
 359                p = (u32 *) (buf + len % 4);
 360                len -= len % 4;
 361        }
 362
 363        /* configure and start prefetch transfer */
 364        ret = omap_prefetch_enable(info->gpmc_cs,
 365                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
 366        if (ret) {
 367                /* PFPW engine is busy, use cpu copy method */
 368                if (info->nand.options & NAND_BUSWIDTH_16)
 369                        omap_read_buf16(mtd, (u_char *)p, len);
 370                else
 371                        omap_read_buf8(mtd, (u_char *)p, len);
 372        } else {
 373                do {
 374                        r_count = readl(info->reg.gpmc_prefetch_status);
 375                        r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 376                        r_count = r_count >> 2;
 377                        ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 378                        p += r_count;
 379                        len -= r_count << 2;
 380                } while (len);
 381                /* disable and stop the PFPW engine */
 382                omap_prefetch_reset(info->gpmc_cs, info);
 383        }
 384}
 385
 386/**
 387 * omap_write_buf_pref - write buffer to NAND controller
 388 * @mtd: MTD device structure
 389 * @buf: data buffer
 390 * @len: number of bytes to write
 391 */
 392static void omap_write_buf_pref(struct mtd_info *mtd,
 393                                        const u_char *buf, int len)
 394{
 395        struct omap_nand_info *info = mtd_to_omap(mtd);
 396        uint32_t w_count = 0;
 397        int i = 0, ret = 0;
 398        u16 *p = (u16 *)buf;
 399        unsigned long tim, limit;
 400        u32 val;
 401
 402        /* take care of subpage writes */
 403        if (len % 2 != 0) {
 404                writeb(*buf, info->nand.IO_ADDR_W);
 405                p = (u16 *)(buf + 1);
 406                len--;
 407        }
 408
 409        /*  configure and start prefetch transfer */
 410        ret = omap_prefetch_enable(info->gpmc_cs,
 411                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 412        if (ret) {
 413                /* PFPW engine is busy, use cpu copy method */
 414                if (info->nand.options & NAND_BUSWIDTH_16)
 415                        omap_write_buf16(mtd, (u_char *)p, len);
 416                else
 417                        omap_write_buf8(mtd, (u_char *)p, len);
 418        } else {
 419                while (len) {
 420                        w_count = readl(info->reg.gpmc_prefetch_status);
 421                        w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 422                        w_count = w_count >> 1;
 423                        for (i = 0; (i < w_count) && len; i++, len -= 2)
 424                                iowrite16(*p++, info->nand.IO_ADDR_W);
 425                }
 426                /* wait for data to flushed-out before reset the prefetch */
 427                tim = 0;
 428                limit = (loops_per_jiffy *
 429                                        msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 430                do {
 431                        cpu_relax();
 432                        val = readl(info->reg.gpmc_prefetch_status);
 433                        val = PREFETCH_STATUS_COUNT(val);
 434                } while (val && (tim++ < limit));
 435
 436                /* disable and stop the PFPW engine */
 437                omap_prefetch_reset(info->gpmc_cs, info);
 438        }
 439}
 440
 441/*
 442 * omap_nand_dma_callback: callback on the completion of dma transfer
 443 * @data: pointer to completion data structure
 444 */
 445static void omap_nand_dma_callback(void *data)
 446{
 447        complete((struct completion *) data);
 448}
 449
 450/*
 451 * omap_nand_dma_transfer: configure and start dma transfer
 452 * @mtd: MTD device structure
 453 * @addr: virtual address in RAM of source/destination
 454 * @len: number of data bytes to be transferred
 455 * @is_write: flag for read/write operation
 456 */
 457static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 458                                        unsigned int len, int is_write)
 459{
 460        struct omap_nand_info *info = mtd_to_omap(mtd);
 461        struct dma_async_tx_descriptor *tx;
 462        enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 463                                                        DMA_FROM_DEVICE;
 464        struct scatterlist sg;
 465        unsigned long tim, limit;
 466        unsigned n;
 467        int ret;
 468        u32 val;
 469
 470        if (addr >= high_memory) {
 471                struct page *p1;
 472
 473                if (((size_t)addr & PAGE_MASK) !=
 474                        ((size_t)(addr + len - 1) & PAGE_MASK))
 475                        goto out_copy;
 476                p1 = vmalloc_to_page(addr);
 477                if (!p1)
 478                        goto out_copy;
 479                addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 480        }
 481
 482        sg_init_one(&sg, addr, len);
 483        n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 484        if (n == 0) {
 485                dev_err(&info->pdev->dev,
 486                        "Couldn't DMA map a %d byte buffer\n", len);
 487                goto out_copy;
 488        }
 489
 490        tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 491                is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 492                DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 493        if (!tx)
 494                goto out_copy_unmap;
 495
 496        tx->callback = omap_nand_dma_callback;
 497        tx->callback_param = &info->comp;
 498        dmaengine_submit(tx);
 499
 500        /*  configure and start prefetch transfer */
 501        ret = omap_prefetch_enable(info->gpmc_cs,
 502                PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 503        if (ret)
 504                /* PFPW engine is busy, use cpu copy method */
 505                goto out_copy_unmap;
 506
 507        init_completion(&info->comp);
 508        dma_async_issue_pending(info->dma);
 509
 510        /* setup and start DMA using dma_addr */
 511        wait_for_completion(&info->comp);
 512        tim = 0;
 513        limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 514
 515        do {
 516                cpu_relax();
 517                val = readl(info->reg.gpmc_prefetch_status);
 518                val = PREFETCH_STATUS_COUNT(val);
 519        } while (val && (tim++ < limit));
 520
 521        /* disable and stop the PFPW engine */
 522        omap_prefetch_reset(info->gpmc_cs, info);
 523
 524        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 525        return 0;
 526
 527out_copy_unmap:
 528        dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 529out_copy:
 530        if (info->nand.options & NAND_BUSWIDTH_16)
 531                is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 532                        : omap_write_buf16(mtd, (u_char *) addr, len);
 533        else
 534                is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 535                        : omap_write_buf8(mtd, (u_char *) addr, len);
 536        return 0;
 537}
 538
 539/**
 540 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 541 * @mtd: MTD device structure
 542 * @buf: buffer to store date
 543 * @len: number of bytes to read
 544 */
 545static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 546{
 547        if (len <= mtd->oobsize)
 548                omap_read_buf_pref(mtd, buf, len);
 549        else
 550                /* start transfer in DMA mode */
 551                omap_nand_dma_transfer(mtd, buf, len, 0x0);
 552}
 553
 554/**
 555 * omap_write_buf_dma_pref - write buffer to NAND controller
 556 * @mtd: MTD device structure
 557 * @buf: data buffer
 558 * @len: number of bytes to write
 559 */
 560static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 561                                        const u_char *buf, int len)
 562{
 563        if (len <= mtd->oobsize)
 564                omap_write_buf_pref(mtd, buf, len);
 565        else
 566                /* start transfer in DMA mode */
 567                omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 568}
 569
 570/*
 571 * omap_nand_irq - GPMC irq handler
 572 * @this_irq: gpmc irq number
 573 * @dev: omap_nand_info structure pointer is passed here
 574 */
 575static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 576{
 577        struct omap_nand_info *info = (struct omap_nand_info *) dev;
 578        u32 bytes;
 579
 580        bytes = readl(info->reg.gpmc_prefetch_status);
 581        bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 582        bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 583        if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 584                if (this_irq == info->gpmc_irq_count)
 585                        goto done;
 586
 587                if (info->buf_len && (info->buf_len < bytes))
 588                        bytes = info->buf_len;
 589                else if (!info->buf_len)
 590                        bytes = 0;
 591                iowrite32_rep(info->nand.IO_ADDR_W,
 592                                                (u32 *)info->buf, bytes >> 2);
 593                info->buf = info->buf + bytes;
 594                info->buf_len -= bytes;
 595
 596        } else {
 597                ioread32_rep(info->nand.IO_ADDR_R,
 598                                                (u32 *)info->buf, bytes >> 2);
 599                info->buf = info->buf + bytes;
 600
 601                if (this_irq == info->gpmc_irq_count)
 602                        goto done;
 603        }
 604
 605        return IRQ_HANDLED;
 606
 607done:
 608        complete(&info->comp);
 609
 610        disable_irq_nosync(info->gpmc_irq_fifo);
 611        disable_irq_nosync(info->gpmc_irq_count);
 612
 613        return IRQ_HANDLED;
 614}
 615
 616/*
 617 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 618 * @mtd: MTD device structure
 619 * @buf: buffer to store date
 620 * @len: number of bytes to read
 621 */
 622static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 623{
 624        struct omap_nand_info *info = mtd_to_omap(mtd);
 625        int ret = 0;
 626
 627        if (len <= mtd->oobsize) {
 628                omap_read_buf_pref(mtd, buf, len);
 629                return;
 630        }
 631
 632        info->iomode = OMAP_NAND_IO_READ;
 633        info->buf = buf;
 634        init_completion(&info->comp);
 635
 636        /*  configure and start prefetch transfer */
 637        ret = omap_prefetch_enable(info->gpmc_cs,
 638                        PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 639        if (ret)
 640                /* PFPW engine is busy, use cpu copy method */
 641                goto out_copy;
 642
 643        info->buf_len = len;
 644
 645        enable_irq(info->gpmc_irq_count);
 646        enable_irq(info->gpmc_irq_fifo);
 647
 648        /* waiting for read to complete */
 649        wait_for_completion(&info->comp);
 650
 651        /* disable and stop the PFPW engine */
 652        omap_prefetch_reset(info->gpmc_cs, info);
 653        return;
 654
 655out_copy:
 656        if (info->nand.options & NAND_BUSWIDTH_16)
 657                omap_read_buf16(mtd, buf, len);
 658        else
 659                omap_read_buf8(mtd, buf, len);
 660}
 661
 662/*
 663 * omap_write_buf_irq_pref - write buffer to NAND controller
 664 * @mtd: MTD device structure
 665 * @buf: data buffer
 666 * @len: number of bytes to write
 667 */
 668static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 669                                        const u_char *buf, int len)
 670{
 671        struct omap_nand_info *info = mtd_to_omap(mtd);
 672        int ret = 0;
 673        unsigned long tim, limit;
 674        u32 val;
 675
 676        if (len <= mtd->oobsize) {
 677                omap_write_buf_pref(mtd, buf, len);
 678                return;
 679        }
 680
 681        info->iomode = OMAP_NAND_IO_WRITE;
 682        info->buf = (u_char *) buf;
 683        init_completion(&info->comp);
 684
 685        /* configure and start prefetch transfer : size=24 */
 686        ret = omap_prefetch_enable(info->gpmc_cs,
 687                (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 688        if (ret)
 689                /* PFPW engine is busy, use cpu copy method */
 690                goto out_copy;
 691
 692        info->buf_len = len;
 693
 694        enable_irq(info->gpmc_irq_count);
 695        enable_irq(info->gpmc_irq_fifo);
 696
 697        /* waiting for write to complete */
 698        wait_for_completion(&info->comp);
 699
 700        /* wait for data to flushed-out before reset the prefetch */
 701        tim = 0;
 702        limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 703        do {
 704                val = readl(info->reg.gpmc_prefetch_status);
 705                val = PREFETCH_STATUS_COUNT(val);
 706                cpu_relax();
 707        } while (val && (tim++ < limit));
 708
 709        /* disable and stop the PFPW engine */
 710        omap_prefetch_reset(info->gpmc_cs, info);
 711        return;
 712
 713out_copy:
 714        if (info->nand.options & NAND_BUSWIDTH_16)
 715                omap_write_buf16(mtd, buf, len);
 716        else
 717                omap_write_buf8(mtd, buf, len);
 718}
 719
 720/**
 721 * gen_true_ecc - This function will generate true ECC value
 722 * @ecc_buf: buffer to store ecc code
 723 *
 724 * This generated true ECC value can be used when correcting
 725 * data read from NAND flash memory core
 726 */
 727static void gen_true_ecc(u8 *ecc_buf)
 728{
 729        u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 730                ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 731
 732        ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 733                        P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 734        ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 735                        P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 736        ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 737                        P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 738}
 739
 740/**
 741 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 742 * @ecc_data1:  ecc code from nand spare area
 743 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 744 * @page_data:  page data
 745 *
 746 * This function compares two ECC's and indicates if there is an error.
 747 * If the error can be corrected it will be corrected to the buffer.
 748 * If there is no error, %0 is returned. If there is an error but it
 749 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 750 */
 751static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
 752                            u8 *ecc_data2,      /* read from register */
 753                            u8 *page_data)
 754{
 755        uint    i;
 756        u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 757        u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 758        u8      ecc_bit[24];
 759        u8      ecc_sum = 0;
 760        u8      find_bit = 0;
 761        uint    find_byte = 0;
 762        int     isEccFF;
 763
 764        isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 765
 766        gen_true_ecc(ecc_data1);
 767        gen_true_ecc(ecc_data2);
 768
 769        for (i = 0; i <= 2; i++) {
 770                *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 771                *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 772        }
 773
 774        for (i = 0; i < 8; i++) {
 775                tmp0_bit[i]     = *ecc_data1 % 2;
 776                *ecc_data1      = *ecc_data1 / 2;
 777        }
 778
 779        for (i = 0; i < 8; i++) {
 780                tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 781                *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 782        }
 783
 784        for (i = 0; i < 8; i++) {
 785                tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 786                *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 787        }
 788
 789        for (i = 0; i < 8; i++) {
 790                comp0_bit[i]     = *ecc_data2 % 2;
 791                *ecc_data2       = *ecc_data2 / 2;
 792        }
 793
 794        for (i = 0; i < 8; i++) {
 795                comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 796                *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 797        }
 798
 799        for (i = 0; i < 8; i++) {
 800                comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 801                *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 802        }
 803
 804        for (i = 0; i < 6; i++)
 805                ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 806
 807        for (i = 0; i < 8; i++)
 808                ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 809
 810        for (i = 0; i < 8; i++)
 811                ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 812
 813        ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 814        ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 815
 816        for (i = 0; i < 24; i++)
 817                ecc_sum += ecc_bit[i];
 818
 819        switch (ecc_sum) {
 820        case 0:
 821                /* Not reached because this function is not called if
 822                 *  ECC values are equal
 823                 */
 824                return 0;
 825
 826        case 1:
 827                /* Uncorrectable error */
 828                pr_debug("ECC UNCORRECTED_ERROR 1\n");
 829                return -EBADMSG;
 830
 831        case 11:
 832                /* UN-Correctable error */
 833                pr_debug("ECC UNCORRECTED_ERROR B\n");
 834                return -EBADMSG;
 835
 836        case 12:
 837                /* Correctable error */
 838                find_byte = (ecc_bit[23] << 8) +
 839                            (ecc_bit[21] << 7) +
 840                            (ecc_bit[19] << 6) +
 841                            (ecc_bit[17] << 5) +
 842                            (ecc_bit[15] << 4) +
 843                            (ecc_bit[13] << 3) +
 844                            (ecc_bit[11] << 2) +
 845                            (ecc_bit[9]  << 1) +
 846                            ecc_bit[7];
 847
 848                find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 849
 850                pr_debug("Correcting single bit ECC error at offset: "
 851                                "%d, bit: %d\n", find_byte, find_bit);
 852
 853                page_data[find_byte] ^= (1 << find_bit);
 854
 855                return 1;
 856        default:
 857                if (isEccFF) {
 858                        if (ecc_data2[0] == 0 &&
 859                            ecc_data2[1] == 0 &&
 860                            ecc_data2[2] == 0)
 861                                return 0;
 862                }
 863                pr_debug("UNCORRECTED_ERROR default\n");
 864                return -EBADMSG;
 865        }
 866}
 867
 868/**
 869 * omap_correct_data - Compares the ECC read with HW generated ECC
 870 * @mtd: MTD device structure
 871 * @dat: page data
 872 * @read_ecc: ecc read from nand flash
 873 * @calc_ecc: ecc read from HW ECC registers
 874 *
 875 * Compares the ecc read from nand spare area with ECC registers values
 876 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 877 * detection and correction. If there are no errors, %0 is returned. If
 878 * there were errors and all of the errors were corrected, the number of
 879 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 880 * returned.
 881 */
 882static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 883                                u_char *read_ecc, u_char *calc_ecc)
 884{
 885        struct omap_nand_info *info = mtd_to_omap(mtd);
 886        int blockCnt = 0, i = 0, ret = 0;
 887        int stat = 0;
 888
 889        /* Ex NAND_ECC_HW12_2048 */
 890        if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 891                        (info->nand.ecc.size  == 2048))
 892                blockCnt = 4;
 893        else
 894                blockCnt = 1;
 895
 896        for (i = 0; i < blockCnt; i++) {
 897                if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 898                        ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 899                        if (ret < 0)
 900                                return ret;
 901                        /* keep track of the number of corrected errors */
 902                        stat += ret;
 903                }
 904                read_ecc += 3;
 905                calc_ecc += 3;
 906                dat      += 512;
 907        }
 908        return stat;
 909}
 910
 911/**
 912 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 913 * @mtd: MTD device structure
 914 * @dat: The pointer to data on which ecc is computed
 915 * @ecc_code: The ecc_code buffer
 916 *
 917 * Using noninverted ECC can be considered ugly since writing a blank
 918 * page ie. padding will clear the ECC bytes. This is no problem as long
 919 * nobody is trying to write data on the seemingly unused page. Reading
 920 * an erased page will produce an ECC mismatch between generated and read
 921 * ECC bytes that has to be dealt with separately.
 922 */
 923static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 924                                u_char *ecc_code)
 925{
 926        struct omap_nand_info *info = mtd_to_omap(mtd);
 927        u32 val;
 928
 929        val = readl(info->reg.gpmc_ecc_config);
 930        if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 931                return -EINVAL;
 932
 933        /* read ecc result */
 934        val = readl(info->reg.gpmc_ecc1_result);
 935        *ecc_code++ = val;          /* P128e, ..., P1e */
 936        *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 937        /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 938        *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 939
 940        return 0;
 941}
 942
 943/**
 944 * omap_enable_hwecc - This function enables the hardware ecc functionality
 945 * @mtd: MTD device structure
 946 * @mode: Read/Write mode
 947 */
 948static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 949{
 950        struct omap_nand_info *info = mtd_to_omap(mtd);
 951        struct nand_chip *chip = mtd_to_nand(mtd);
 952        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 953        u32 val;
 954
 955        /* clear ecc and enable bits */
 956        val = ECCCLEAR | ECC1;
 957        writel(val, info->reg.gpmc_ecc_control);
 958
 959        /* program ecc and result sizes */
 960        val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 961                         ECC1RESULTSIZE);
 962        writel(val, info->reg.gpmc_ecc_size_config);
 963
 964        switch (mode) {
 965        case NAND_ECC_READ:
 966        case NAND_ECC_WRITE:
 967                writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 968                break;
 969        case NAND_ECC_READSYN:
 970                writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 971                break;
 972        default:
 973                dev_info(&info->pdev->dev,
 974                        "error: unrecognized Mode[%d]!\n", mode);
 975                break;
 976        }
 977
 978        /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 979        val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 980        writel(val, info->reg.gpmc_ecc_config);
 981}
 982
 983/**
 984 * omap_wait - wait until the command is done
 985 * @mtd: MTD device structure
 986 * @chip: NAND Chip structure
 987 *
 988 * Wait function is called during Program and erase operations and
 989 * the way it is called from MTD layer, we should wait till the NAND
 990 * chip is ready after the programming/erase operation has completed.
 991 *
 992 * Erase can take up to 400ms and program up to 20ms according to
 993 * general NAND and SmartMedia specs
 994 */
 995static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 996{
 997        struct nand_chip *this = mtd_to_nand(mtd);
 998        struct omap_nand_info *info = mtd_to_omap(mtd);
 999        unsigned long timeo = jiffies;
1000        int status, state = this->state;
1001
1002        if (state == FL_ERASING)
1003                timeo += msecs_to_jiffies(400);
1004        else
1005                timeo += msecs_to_jiffies(20);
1006
1007        writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1008        while (time_before(jiffies, timeo)) {
1009                status = readb(info->reg.gpmc_nand_data);
1010                if (status & NAND_STATUS_READY)
1011                        break;
1012                cond_resched();
1013        }
1014
1015        status = readb(info->reg.gpmc_nand_data);
1016        return status;
1017}
1018
1019/**
1020 * omap_dev_ready - calls the platform specific dev_ready function
1021 * @mtd: MTD device structure
1022 */
1023static int omap_dev_ready(struct mtd_info *mtd)
1024{
1025        unsigned int val = 0;
1026        struct omap_nand_info *info = mtd_to_omap(mtd);
1027
1028        val = readl(info->reg.gpmc_status);
1029
1030        if ((val & 0x100) == 0x100) {
1031                return 1;
1032        } else {
1033                return 0;
1034        }
1035}
1036
1037/**
1038 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1039 * @mtd: MTD device structure
1040 * @mode: Read/Write mode
1041 *
1042 * When using BCH with SW correction (i.e. no ELM), sector size is set
1043 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1044 * for both reading and writing with:
1045 * eccsize0 = 0  (no additional protected byte in spare area)
1046 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1047 */
1048static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1049{
1050        unsigned int bch_type;
1051        unsigned int dev_width, nsectors;
1052        struct omap_nand_info *info = mtd_to_omap(mtd);
1053        enum omap_ecc ecc_opt = info->ecc_opt;
1054        struct nand_chip *chip = mtd_to_nand(mtd);
1055        u32 val, wr_mode;
1056        unsigned int ecc_size1, ecc_size0;
1057
1058        /* GPMC configurations for calculating ECC */
1059        switch (ecc_opt) {
1060        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1061                bch_type = 0;
1062                nsectors = 1;
1063                wr_mode   = BCH_WRAPMODE_6;
1064                ecc_size0 = BCH_ECC_SIZE0;
1065                ecc_size1 = BCH_ECC_SIZE1;
1066                break;
1067        case OMAP_ECC_BCH4_CODE_HW:
1068                bch_type = 0;
1069                nsectors = chip->ecc.steps;
1070                if (mode == NAND_ECC_READ) {
1071                        wr_mode   = BCH_WRAPMODE_1;
1072                        ecc_size0 = BCH4R_ECC_SIZE0;
1073                        ecc_size1 = BCH4R_ECC_SIZE1;
1074                } else {
1075                        wr_mode   = BCH_WRAPMODE_6;
1076                        ecc_size0 = BCH_ECC_SIZE0;
1077                        ecc_size1 = BCH_ECC_SIZE1;
1078                }
1079                break;
1080        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1081                bch_type = 1;
1082                nsectors = 1;
1083                wr_mode   = BCH_WRAPMODE_6;
1084                ecc_size0 = BCH_ECC_SIZE0;
1085                ecc_size1 = BCH_ECC_SIZE1;
1086                break;
1087        case OMAP_ECC_BCH8_CODE_HW:
1088                bch_type = 1;
1089                nsectors = chip->ecc.steps;
1090                if (mode == NAND_ECC_READ) {
1091                        wr_mode   = BCH_WRAPMODE_1;
1092                        ecc_size0 = BCH8R_ECC_SIZE0;
1093                        ecc_size1 = BCH8R_ECC_SIZE1;
1094                } else {
1095                        wr_mode   = BCH_WRAPMODE_6;
1096                        ecc_size0 = BCH_ECC_SIZE0;
1097                        ecc_size1 = BCH_ECC_SIZE1;
1098                }
1099                break;
1100        case OMAP_ECC_BCH16_CODE_HW:
1101                bch_type = 0x2;
1102                nsectors = chip->ecc.steps;
1103                if (mode == NAND_ECC_READ) {
1104                        wr_mode   = 0x01;
1105                        ecc_size0 = 52; /* ECC bits in nibbles per sector */
1106                        ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1107                } else {
1108                        wr_mode   = 0x01;
1109                        ecc_size0 = 0;  /* extra bits in nibbles per sector */
1110                        ecc_size1 = 52; /* OOB bits in nibbles per sector */
1111                }
1112                break;
1113        default:
1114                return;
1115        }
1116
1117        writel(ECC1, info->reg.gpmc_ecc_control);
1118
1119        /* Configure ecc size for BCH */
1120        val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1121        writel(val, info->reg.gpmc_ecc_size_config);
1122
1123        dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1124
1125        /* BCH configuration */
1126        val = ((1                        << 16) | /* enable BCH */
1127               (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1128               (wr_mode                  <<  8) | /* wrap mode */
1129               (dev_width                <<  7) | /* bus width */
1130               (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1131               (info->gpmc_cs            <<  1) | /* ECC CS */
1132               (0x1));                            /* enable ECC */
1133
1134        writel(val, info->reg.gpmc_ecc_config);
1135
1136        /* Clear ecc and enable bits */
1137        writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1138}
1139
1140static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1141static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1142                                0x97, 0x79, 0xe5, 0x24, 0xb5};
1143
1144/**
1145 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1146 * @mtd:        MTD device structure
1147 * @dat:        The pointer to data on which ecc is computed
1148 * @ecc_code:   The ecc_code buffer
1149 *
1150 * Support calculating of BCH4/8 ecc vectors for the page
1151 */
1152static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1153                                        const u_char *dat, u_char *ecc_calc)
1154{
1155        struct omap_nand_info *info = mtd_to_omap(mtd);
1156        int eccbytes    = info->nand.ecc.bytes;
1157        struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1158        u8 *ecc_code;
1159        unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1160        u32 val;
1161        int i, j;
1162
1163        nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1164        for (i = 0; i < nsectors; i++) {
1165                ecc_code = ecc_calc;
1166                switch (info->ecc_opt) {
1167                case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1168                case OMAP_ECC_BCH8_CODE_HW:
1169                        bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1170                        bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1171                        bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1172                        bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1173                        *ecc_code++ = (bch_val4 & 0xFF);
1174                        *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1175                        *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1176                        *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1177                        *ecc_code++ = (bch_val3 & 0xFF);
1178                        *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1179                        *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1180                        *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1181                        *ecc_code++ = (bch_val2 & 0xFF);
1182                        *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1183                        *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1184                        *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1185                        *ecc_code++ = (bch_val1 & 0xFF);
1186                        break;
1187                case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1188                case OMAP_ECC_BCH4_CODE_HW:
1189                        bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1190                        bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1191                        *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1192                        *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1193                        *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1194                                ((bch_val1 >> 28) & 0xF);
1195                        *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1196                        *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1197                        *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1198                        *ecc_code++ = ((bch_val1 & 0xF) << 4);
1199                        break;
1200                case OMAP_ECC_BCH16_CODE_HW:
1201                        val = readl(gpmc_regs->gpmc_bch_result6[i]);
1202                        ecc_code[0]  = ((val >>  8) & 0xFF);
1203                        ecc_code[1]  = ((val >>  0) & 0xFF);
1204                        val = readl(gpmc_regs->gpmc_bch_result5[i]);
1205                        ecc_code[2]  = ((val >> 24) & 0xFF);
1206                        ecc_code[3]  = ((val >> 16) & 0xFF);
1207                        ecc_code[4]  = ((val >>  8) & 0xFF);
1208                        ecc_code[5]  = ((val >>  0) & 0xFF);
1209                        val = readl(gpmc_regs->gpmc_bch_result4[i]);
1210                        ecc_code[6]  = ((val >> 24) & 0xFF);
1211                        ecc_code[7]  = ((val >> 16) & 0xFF);
1212                        ecc_code[8]  = ((val >>  8) & 0xFF);
1213                        ecc_code[9]  = ((val >>  0) & 0xFF);
1214                        val = readl(gpmc_regs->gpmc_bch_result3[i]);
1215                        ecc_code[10] = ((val >> 24) & 0xFF);
1216                        ecc_code[11] = ((val >> 16) & 0xFF);
1217                        ecc_code[12] = ((val >>  8) & 0xFF);
1218                        ecc_code[13] = ((val >>  0) & 0xFF);
1219                        val = readl(gpmc_regs->gpmc_bch_result2[i]);
1220                        ecc_code[14] = ((val >> 24) & 0xFF);
1221                        ecc_code[15] = ((val >> 16) & 0xFF);
1222                        ecc_code[16] = ((val >>  8) & 0xFF);
1223                        ecc_code[17] = ((val >>  0) & 0xFF);
1224                        val = readl(gpmc_regs->gpmc_bch_result1[i]);
1225                        ecc_code[18] = ((val >> 24) & 0xFF);
1226                        ecc_code[19] = ((val >> 16) & 0xFF);
1227                        ecc_code[20] = ((val >>  8) & 0xFF);
1228                        ecc_code[21] = ((val >>  0) & 0xFF);
1229                        val = readl(gpmc_regs->gpmc_bch_result0[i]);
1230                        ecc_code[22] = ((val >> 24) & 0xFF);
1231                        ecc_code[23] = ((val >> 16) & 0xFF);
1232                        ecc_code[24] = ((val >>  8) & 0xFF);
1233                        ecc_code[25] = ((val >>  0) & 0xFF);
1234                        break;
1235                default:
1236                        return -EINVAL;
1237                }
1238
1239                /* ECC scheme specific syndrome customizations */
1240                switch (info->ecc_opt) {
1241                case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1242                        /* Add constant polynomial to remainder, so that
1243                         * ECC of blank pages results in 0x0 on reading back */
1244                        for (j = 0; j < eccbytes; j++)
1245                                ecc_calc[j] ^= bch4_polynomial[j];
1246                        break;
1247                case OMAP_ECC_BCH4_CODE_HW:
1248                        /* Set  8th ECC byte as 0x0 for ROM compatibility */
1249                        ecc_calc[eccbytes - 1] = 0x0;
1250                        break;
1251                case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1252                        /* Add constant polynomial to remainder, so that
1253                         * ECC of blank pages results in 0x0 on reading back */
1254                        for (j = 0; j < eccbytes; j++)
1255                                ecc_calc[j] ^= bch8_polynomial[j];
1256                        break;
1257                case OMAP_ECC_BCH8_CODE_HW:
1258                        /* Set 14th ECC byte as 0x0 for ROM compatibility */
1259                        ecc_calc[eccbytes - 1] = 0x0;
1260                        break;
1261                case OMAP_ECC_BCH16_CODE_HW:
1262                        break;
1263                default:
1264                        return -EINVAL;
1265                }
1266
1267        ecc_calc += eccbytes;
1268        }
1269
1270        return 0;
1271}
1272
1273/**
1274 * erased_sector_bitflips - count bit flips
1275 * @data:       data sector buffer
1276 * @oob:        oob buffer
1277 * @info:       omap_nand_info
1278 *
1279 * Check the bit flips in erased page falls below correctable level.
1280 * If falls below, report the page as erased with correctable bit
1281 * flip, else report as uncorrectable page.
1282 */
1283static int erased_sector_bitflips(u_char *data, u_char *oob,
1284                struct omap_nand_info *info)
1285{
1286        int flip_bits = 0, i;
1287
1288        for (i = 0; i < info->nand.ecc.size; i++) {
1289                flip_bits += hweight8(~data[i]);
1290                if (flip_bits > info->nand.ecc.strength)
1291                        return 0;
1292        }
1293
1294        for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1295                flip_bits += hweight8(~oob[i]);
1296                if (flip_bits > info->nand.ecc.strength)
1297                        return 0;
1298        }
1299
1300        /*
1301         * Bit flips falls in correctable level.
1302         * Fill data area with 0xFF
1303         */
1304        if (flip_bits) {
1305                memset(data, 0xFF, info->nand.ecc.size);
1306                memset(oob, 0xFF, info->nand.ecc.bytes);
1307        }
1308
1309        return flip_bits;
1310}
1311
1312/**
1313 * omap_elm_correct_data - corrects page data area in case error reported
1314 * @mtd:        MTD device structure
1315 * @data:       page data
1316 * @read_ecc:   ecc read from nand flash
1317 * @calc_ecc:   ecc read from HW ECC registers
1318 *
1319 * Calculated ecc vector reported as zero in case of non-error pages.
1320 * In case of non-zero ecc vector, first filter out erased-pages, and
1321 * then process data via ELM to detect bit-flips.
1322 */
1323static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1324                                u_char *read_ecc, u_char *calc_ecc)
1325{
1326        struct omap_nand_info *info = mtd_to_omap(mtd);
1327        struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1328        int eccsteps = info->nand.ecc.steps;
1329        int i , j, stat = 0;
1330        int eccflag, actual_eccbytes;
1331        struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1332        u_char *ecc_vec = calc_ecc;
1333        u_char *spare_ecc = read_ecc;
1334        u_char *erased_ecc_vec;
1335        u_char *buf;
1336        int bitflip_count;
1337        bool is_error_reported = false;
1338        u32 bit_pos, byte_pos, error_max, pos;
1339        int err;
1340
1341        switch (info->ecc_opt) {
1342        case OMAP_ECC_BCH4_CODE_HW:
1343                /* omit  7th ECC byte reserved for ROM code compatibility */
1344                actual_eccbytes = ecc->bytes - 1;
1345                erased_ecc_vec = bch4_vector;
1346                break;
1347        case OMAP_ECC_BCH8_CODE_HW:
1348                /* omit 14th ECC byte reserved for ROM code compatibility */
1349                actual_eccbytes = ecc->bytes - 1;
1350                erased_ecc_vec = bch8_vector;
1351                break;
1352        case OMAP_ECC_BCH16_CODE_HW:
1353                actual_eccbytes = ecc->bytes;
1354                erased_ecc_vec = bch16_vector;
1355                break;
1356        default:
1357                dev_err(&info->pdev->dev, "invalid driver configuration\n");
1358                return -EINVAL;
1359        }
1360
1361        /* Initialize elm error vector to zero */
1362        memset(err_vec, 0, sizeof(err_vec));
1363
1364        for (i = 0; i < eccsteps ; i++) {
1365                eccflag = 0;    /* initialize eccflag */
1366
1367                /*
1368                 * Check any error reported,
1369                 * In case of error, non zero ecc reported.
1370                 */
1371                for (j = 0; j < actual_eccbytes; j++) {
1372                        if (calc_ecc[j] != 0) {
1373                                eccflag = 1; /* non zero ecc, error present */
1374                                break;
1375                        }
1376                }
1377
1378                if (eccflag == 1) {
1379                        if (memcmp(calc_ecc, erased_ecc_vec,
1380                                                actual_eccbytes) == 0) {
1381                                /*
1382                                 * calc_ecc[] matches pattern for ECC(all 0xff)
1383                                 * so this is definitely an erased-page
1384                                 */
1385                        } else {
1386                                buf = &data[info->nand.ecc.size * i];
1387                                /*
1388                                 * count number of 0-bits in read_buf.
1389                                 * This check can be removed once a similar
1390                                 * check is introduced in generic NAND driver
1391                                 */
1392                                bitflip_count = erased_sector_bitflips(
1393                                                buf, read_ecc, info);
1394                                if (bitflip_count) {
1395                                        /*
1396                                         * number of 0-bits within ECC limits
1397                                         * So this may be an erased-page
1398                                         */
1399                                        stat += bitflip_count;
1400                                } else {
1401                                        /*
1402                                         * Too many 0-bits. It may be a
1403                                         * - programmed-page, OR
1404                                         * - erased-page with many bit-flips
1405                                         * So this page requires check by ELM
1406                                         */
1407                                        err_vec[i].error_reported = true;
1408                                        is_error_reported = true;
1409                                }
1410                        }
1411                }
1412
1413                /* Update the ecc vector */
1414                calc_ecc += ecc->bytes;
1415                read_ecc += ecc->bytes;
1416        }
1417
1418        /* Check if any error reported */
1419        if (!is_error_reported)
1420                return stat;
1421
1422        /* Decode BCH error using ELM module */
1423        elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1424
1425        err = 0;
1426        for (i = 0; i < eccsteps; i++) {
1427                if (err_vec[i].error_uncorrectable) {
1428                        dev_err(&info->pdev->dev,
1429                                "uncorrectable bit-flips found\n");
1430                        err = -EBADMSG;
1431                } else if (err_vec[i].error_reported) {
1432                        for (j = 0; j < err_vec[i].error_count; j++) {
1433                                switch (info->ecc_opt) {
1434                                case OMAP_ECC_BCH4_CODE_HW:
1435                                        /* Add 4 bits to take care of padding */
1436                                        pos = err_vec[i].error_loc[j] +
1437                                                BCH4_BIT_PAD;
1438                                        break;
1439                                case OMAP_ECC_BCH8_CODE_HW:
1440                                case OMAP_ECC_BCH16_CODE_HW:
1441                                        pos = err_vec[i].error_loc[j];
1442                                        break;
1443                                default:
1444                                        return -EINVAL;
1445                                }
1446                                error_max = (ecc->size + actual_eccbytes) * 8;
1447                                /* Calculate bit position of error */
1448                                bit_pos = pos % 8;
1449
1450                                /* Calculate byte position of error */
1451                                byte_pos = (error_max - pos - 1) / 8;
1452
1453                                if (pos < error_max) {
1454                                        if (byte_pos < 512) {
1455                                                pr_debug("bitflip@dat[%d]=%x\n",
1456                                                     byte_pos, data[byte_pos]);
1457                                                data[byte_pos] ^= 1 << bit_pos;
1458                                        } else {
1459                                                pr_debug("bitflip@oob[%d]=%x\n",
1460                                                        (byte_pos - 512),
1461                                                     spare_ecc[byte_pos - 512]);
1462                                                spare_ecc[byte_pos - 512] ^=
1463                                                        1 << bit_pos;
1464                                        }
1465                                } else {
1466                                        dev_err(&info->pdev->dev,
1467                                                "invalid bit-flip @ %d:%d\n",
1468                                                byte_pos, bit_pos);
1469                                        err = -EBADMSG;
1470                                }
1471                        }
1472                }
1473
1474                /* Update number of correctable errors */
1475                stat += err_vec[i].error_count;
1476
1477                /* Update page data with sector size */
1478                data += ecc->size;
1479                spare_ecc += ecc->bytes;
1480        }
1481
1482        return (err) ? err : stat;
1483}
1484
1485/**
1486 * omap_write_page_bch - BCH ecc based write page function for entire page
1487 * @mtd:                mtd info structure
1488 * @chip:               nand chip info structure
1489 * @buf:                data buffer
1490 * @oob_required:       must write chip->oob_poi to OOB
1491 * @page:               page
1492 *
1493 * Custom write page method evolved to support multi sector writing in one shot
1494 */
1495static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1496                               const uint8_t *buf, int oob_required, int page)
1497{
1498        int i;
1499        uint8_t *ecc_calc = chip->buffers->ecccalc;
1500        uint32_t *eccpos = chip->ecc.layout->eccpos;
1501
1502        /* Enable GPMC ecc engine */
1503        chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1504
1505        /* Write data */
1506        chip->write_buf(mtd, buf, mtd->writesize);
1507
1508        /* Update ecc vector from GPMC result registers */
1509        chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1510
1511        for (i = 0; i < chip->ecc.total; i++)
1512                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1513
1514        /* Write ecc vector to OOB area */
1515        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1516        return 0;
1517}
1518
1519/**
1520 * omap_read_page_bch - BCH ecc based page read function for entire page
1521 * @mtd:                mtd info structure
1522 * @chip:               nand chip info structure
1523 * @buf:                buffer to store read data
1524 * @oob_required:       caller requires OOB data read to chip->oob_poi
1525 * @page:               page number to read
1526 *
1527 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1528 * used for error correction.
1529 * Custom method evolved to support ELM error correction & multi sector
1530 * reading. On reading page data area is read along with OOB data with
1531 * ecc engine enabled. ecc vector updated after read of OOB data.
1532 * For non error pages ecc vector reported as zero.
1533 */
1534static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1535                                uint8_t *buf, int oob_required, int page)
1536{
1537        uint8_t *ecc_calc = chip->buffers->ecccalc;
1538        uint8_t *ecc_code = chip->buffers->ecccode;
1539        uint32_t *eccpos = chip->ecc.layout->eccpos;
1540        uint8_t *oob = &chip->oob_poi[eccpos[0]];
1541        uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1542        int stat;
1543        unsigned int max_bitflips = 0;
1544
1545        /* Enable GPMC ecc engine */
1546        chip->ecc.hwctl(mtd, NAND_ECC_READ);
1547
1548        /* Read data */
1549        chip->read_buf(mtd, buf, mtd->writesize);
1550
1551        /* Read oob bytes */
1552        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1553        chip->read_buf(mtd, oob, chip->ecc.total);
1554
1555        /* Calculate ecc bytes */
1556        chip->ecc.calculate(mtd, buf, ecc_calc);
1557
1558        memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1559
1560        stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1561
1562        if (stat < 0) {
1563                mtd->ecc_stats.failed++;
1564        } else {
1565                mtd->ecc_stats.corrected += stat;
1566                max_bitflips = max_t(unsigned int, max_bitflips, stat);
1567        }
1568
1569        return max_bitflips;
1570}
1571
1572/**
1573 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1574 * @omap_nand_info: NAND device structure containing platform data
1575 */
1576static bool is_elm_present(struct omap_nand_info *info,
1577                           struct device_node *elm_node)
1578{
1579        struct platform_device *pdev;
1580
1581        /* check whether elm-id is passed via DT */
1582        if (!elm_node) {
1583                dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1584                return false;
1585        }
1586        pdev = of_find_device_by_node(elm_node);
1587        /* check whether ELM device is registered */
1588        if (!pdev) {
1589                dev_err(&info->pdev->dev, "ELM device not found\n");
1590                return false;
1591        }
1592        /* ELM module available, now configure it */
1593        info->elm_dev = &pdev->dev;
1594        return true;
1595}
1596
1597static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1598                                 struct omap_nand_platform_data *pdata)
1599{
1600        bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1601
1602        switch (info->ecc_opt) {
1603        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1604        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1605                ecc_needs_omap_bch = false;
1606                ecc_needs_bch = true;
1607                ecc_needs_elm = false;
1608                break;
1609        case OMAP_ECC_BCH4_CODE_HW:
1610        case OMAP_ECC_BCH8_CODE_HW:
1611        case OMAP_ECC_BCH16_CODE_HW:
1612                ecc_needs_omap_bch = true;
1613                ecc_needs_bch = false;
1614                ecc_needs_elm = true;
1615                break;
1616        default:
1617                ecc_needs_omap_bch = false;
1618                ecc_needs_bch = false;
1619                ecc_needs_elm = false;
1620                break;
1621        }
1622
1623        if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1624                dev_err(&info->pdev->dev,
1625                        "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1626                return false;
1627        }
1628        if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1629                dev_err(&info->pdev->dev,
1630                        "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1631                return false;
1632        }
1633        if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
1634                dev_err(&info->pdev->dev, "ELM not available\n");
1635                return false;
1636        }
1637
1638        return true;
1639}
1640
1641static int omap_nand_probe(struct platform_device *pdev)
1642{
1643        struct omap_nand_info           *info;
1644        struct omap_nand_platform_data  *pdata;
1645        struct mtd_info                 *mtd;
1646        struct nand_chip                *nand_chip;
1647        struct nand_ecclayout           *ecclayout;
1648        int                             err;
1649        int                             i;
1650        dma_cap_mask_t                  mask;
1651        unsigned                        sig;
1652        unsigned                        oob_index;
1653        struct resource                 *res;
1654
1655        pdata = dev_get_platdata(&pdev->dev);
1656        if (pdata == NULL) {
1657                dev_err(&pdev->dev, "platform data missing\n");
1658                return -ENODEV;
1659        }
1660
1661        info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1662                                GFP_KERNEL);
1663        if (!info)
1664                return -ENOMEM;
1665
1666        platform_set_drvdata(pdev, info);
1667
1668        info->pdev              = pdev;
1669        info->gpmc_cs           = pdata->cs;
1670        info->reg               = pdata->reg;
1671        info->of_node           = pdata->of_node;
1672        info->ecc_opt           = pdata->ecc_opt;
1673        nand_chip               = &info->nand;
1674        mtd                     = nand_to_mtd(nand_chip);
1675        mtd->dev.parent         = &pdev->dev;
1676        nand_chip->ecc.priv     = NULL;
1677        nand_set_flash_node(nand_chip, pdata->of_node);
1678
1679        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680        nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1681        if (IS_ERR(nand_chip->IO_ADDR_R))
1682                return PTR_ERR(nand_chip->IO_ADDR_R);
1683
1684        info->phys_base = res->start;
1685
1686        nand_chip->controller = &omap_gpmc_controller;
1687
1688        nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1689        nand_chip->cmd_ctrl  = omap_hwcontrol;
1690
1691        /*
1692         * If RDY/BSY line is connected to OMAP then use the omap ready
1693         * function and the generic nand_wait function which reads the status
1694         * register after monitoring the RDY/BSY line. Otherwise use a standard
1695         * chip delay which is slightly more than tR (AC Timing) of the NAND
1696         * device and read status register until you get a failure or success
1697         */
1698        if (pdata->dev_ready) {
1699                nand_chip->dev_ready = omap_dev_ready;
1700                nand_chip->chip_delay = 0;
1701        } else {
1702                nand_chip->waitfunc = omap_wait;
1703                nand_chip->chip_delay = 50;
1704        }
1705
1706        if (pdata->flash_bbt)
1707                nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1708        else
1709                nand_chip->options |= NAND_SKIP_BBTSCAN;
1710
1711        /* scan NAND device connected to chip controller */
1712        nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1713        if (nand_scan_ident(mtd, 1, NULL)) {
1714                dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
1715                err = -ENXIO;
1716                goto return_error;
1717        }
1718
1719        /* re-populate low-level callbacks based on xfer modes */
1720        switch (pdata->xfer_type) {
1721        case NAND_OMAP_PREFETCH_POLLED:
1722                nand_chip->read_buf   = omap_read_buf_pref;
1723                nand_chip->write_buf  = omap_write_buf_pref;
1724                break;
1725
1726        case NAND_OMAP_POLLED:
1727                /* Use nand_base defaults for {read,write}_buf */
1728                break;
1729
1730        case NAND_OMAP_PREFETCH_DMA:
1731                dma_cap_zero(mask);
1732                dma_cap_set(DMA_SLAVE, mask);
1733                sig = OMAP24XX_DMA_GPMC;
1734                info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1735                if (!info->dma) {
1736                        dev_err(&pdev->dev, "DMA engine request failed\n");
1737                        err = -ENXIO;
1738                        goto return_error;
1739                } else {
1740                        struct dma_slave_config cfg;
1741
1742                        memset(&cfg, 0, sizeof(cfg));
1743                        cfg.src_addr = info->phys_base;
1744                        cfg.dst_addr = info->phys_base;
1745                        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1746                        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1747                        cfg.src_maxburst = 16;
1748                        cfg.dst_maxburst = 16;
1749                        err = dmaengine_slave_config(info->dma, &cfg);
1750                        if (err) {
1751                                dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1752                                        err);
1753                                goto return_error;
1754                        }
1755                        nand_chip->read_buf   = omap_read_buf_dma_pref;
1756                        nand_chip->write_buf  = omap_write_buf_dma_pref;
1757                }
1758                break;
1759
1760        case NAND_OMAP_PREFETCH_IRQ:
1761                info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1762                if (info->gpmc_irq_fifo <= 0) {
1763                        dev_err(&pdev->dev, "error getting fifo irq\n");
1764                        err = -ENODEV;
1765                        goto return_error;
1766                }
1767                err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1768                                        omap_nand_irq, IRQF_SHARED,
1769                                        "gpmc-nand-fifo", info);
1770                if (err) {
1771                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1772                                                info->gpmc_irq_fifo, err);
1773                        info->gpmc_irq_fifo = 0;
1774                        goto return_error;
1775                }
1776
1777                info->gpmc_irq_count = platform_get_irq(pdev, 1);
1778                if (info->gpmc_irq_count <= 0) {
1779                        dev_err(&pdev->dev, "error getting count irq\n");
1780                        err = -ENODEV;
1781                        goto return_error;
1782                }
1783                err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1784                                        omap_nand_irq, IRQF_SHARED,
1785                                        "gpmc-nand-count", info);
1786                if (err) {
1787                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1788                                                info->gpmc_irq_count, err);
1789                        info->gpmc_irq_count = 0;
1790                        goto return_error;
1791                }
1792
1793                nand_chip->read_buf  = omap_read_buf_irq_pref;
1794                nand_chip->write_buf = omap_write_buf_irq_pref;
1795
1796                break;
1797
1798        default:
1799                dev_err(&pdev->dev,
1800                        "xfer_type(%d) not supported!\n", pdata->xfer_type);
1801                err = -EINVAL;
1802                goto return_error;
1803        }
1804
1805        if (!omap2_nand_ecc_check(info, pdata)) {
1806                err = -EINVAL;
1807                goto return_error;
1808        }
1809
1810        /*
1811         * Bail out earlier to let NAND_ECC_SOFT code create its own
1812         * ecclayout instead of using ours.
1813         */
1814        if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1815                nand_chip->ecc.mode = NAND_ECC_SOFT;
1816                goto scan_tail;
1817        }
1818
1819        /* populate MTD interface based on ECC scheme */
1820        ecclayout               = &info->oobinfo;
1821        nand_chip->ecc.layout   = ecclayout;
1822        switch (info->ecc_opt) {
1823        case OMAP_ECC_HAM1_CODE_HW:
1824                pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1825                nand_chip->ecc.mode             = NAND_ECC_HW;
1826                nand_chip->ecc.bytes            = 3;
1827                nand_chip->ecc.size             = 512;
1828                nand_chip->ecc.strength         = 1;
1829                nand_chip->ecc.calculate        = omap_calculate_ecc;
1830                nand_chip->ecc.hwctl            = omap_enable_hwecc;
1831                nand_chip->ecc.correct          = omap_correct_data;
1832                /* define ECC layout */
1833                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1834                                                        (mtd->writesize /
1835                                                        nand_chip->ecc.size);
1836                if (nand_chip->options & NAND_BUSWIDTH_16)
1837                        oob_index               = BADBLOCK_MARKER_LENGTH;
1838                else
1839                        oob_index               = 1;
1840                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1841                        ecclayout->eccpos[i]    = oob_index;
1842                /* no reserved-marker in ecclayout for this ecc-scheme */
1843                ecclayout->oobfree->offset      =
1844                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1845                break;
1846
1847        case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1848                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1849                nand_chip->ecc.mode             = NAND_ECC_HW;
1850                nand_chip->ecc.size             = 512;
1851                nand_chip->ecc.bytes            = 7;
1852                nand_chip->ecc.strength         = 4;
1853                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1854                nand_chip->ecc.correct          = nand_bch_correct_data;
1855                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1856                /* define ECC layout */
1857                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1858                                                        (mtd->writesize /
1859                                                        nand_chip->ecc.size);
1860                oob_index                       = BADBLOCK_MARKER_LENGTH;
1861                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1862                        ecclayout->eccpos[i] = oob_index;
1863                        if (((i + 1) % nand_chip->ecc.bytes) == 0)
1864                                oob_index++;
1865                }
1866                /* include reserved-marker in ecclayout->oobfree calculation */
1867                ecclayout->oobfree->offset      = 1 +
1868                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1869                /* software bch library is used for locating errors */
1870                nand_chip->ecc.priv             = nand_bch_init(mtd);
1871                if (!nand_chip->ecc.priv) {
1872                        dev_err(&info->pdev->dev, "unable to use BCH library\n");
1873                        err = -EINVAL;
1874                        goto return_error;
1875                }
1876                break;
1877
1878        case OMAP_ECC_BCH4_CODE_HW:
1879                pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1880                nand_chip->ecc.mode             = NAND_ECC_HW;
1881                nand_chip->ecc.size             = 512;
1882                /* 14th bit is kept reserved for ROM-code compatibility */
1883                nand_chip->ecc.bytes            = 7 + 1;
1884                nand_chip->ecc.strength         = 4;
1885                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1886                nand_chip->ecc.correct          = omap_elm_correct_data;
1887                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1888                nand_chip->ecc.read_page        = omap_read_page_bch;
1889                nand_chip->ecc.write_page       = omap_write_page_bch;
1890                /* define ECC layout */
1891                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1892                                                        (mtd->writesize /
1893                                                        nand_chip->ecc.size);
1894                oob_index                       = BADBLOCK_MARKER_LENGTH;
1895                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1896                        ecclayout->eccpos[i]    = oob_index;
1897                /* reserved marker already included in ecclayout->eccbytes */
1898                ecclayout->oobfree->offset      =
1899                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1900
1901                err = elm_config(info->elm_dev, BCH4_ECC,
1902                                 mtd->writesize / nand_chip->ecc.size,
1903                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
1904                if (err < 0)
1905                        goto return_error;
1906                break;
1907
1908        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1909                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1910                nand_chip->ecc.mode             = NAND_ECC_HW;
1911                nand_chip->ecc.size             = 512;
1912                nand_chip->ecc.bytes            = 13;
1913                nand_chip->ecc.strength         = 8;
1914                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1915                nand_chip->ecc.correct          = nand_bch_correct_data;
1916                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1917                /* define ECC layout */
1918                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1919                                                        (mtd->writesize /
1920                                                        nand_chip->ecc.size);
1921                oob_index                       = BADBLOCK_MARKER_LENGTH;
1922                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1923                        ecclayout->eccpos[i] = oob_index;
1924                        if (((i + 1) % nand_chip->ecc.bytes) == 0)
1925                                oob_index++;
1926                }
1927                /* include reserved-marker in ecclayout->oobfree calculation */
1928                ecclayout->oobfree->offset      = 1 +
1929                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1930                /* software bch library is used for locating errors */
1931                nand_chip->ecc.priv             = nand_bch_init(mtd);
1932                if (!nand_chip->ecc.priv) {
1933                        dev_err(&info->pdev->dev, "unable to use BCH library\n");
1934                        err = -EINVAL;
1935                        goto return_error;
1936                }
1937                break;
1938
1939        case OMAP_ECC_BCH8_CODE_HW:
1940                pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1941                nand_chip->ecc.mode             = NAND_ECC_HW;
1942                nand_chip->ecc.size             = 512;
1943                /* 14th bit is kept reserved for ROM-code compatibility */
1944                nand_chip->ecc.bytes            = 13 + 1;
1945                nand_chip->ecc.strength         = 8;
1946                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1947                nand_chip->ecc.correct          = omap_elm_correct_data;
1948                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1949                nand_chip->ecc.read_page        = omap_read_page_bch;
1950                nand_chip->ecc.write_page       = omap_write_page_bch;
1951
1952                err = elm_config(info->elm_dev, BCH8_ECC,
1953                                 mtd->writesize / nand_chip->ecc.size,
1954                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
1955                if (err < 0)
1956                        goto return_error;
1957
1958                /* define ECC layout */
1959                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1960                                                        (mtd->writesize /
1961                                                        nand_chip->ecc.size);
1962                oob_index                       = BADBLOCK_MARKER_LENGTH;
1963                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1964                        ecclayout->eccpos[i]    = oob_index;
1965                /* reserved marker already included in ecclayout->eccbytes */
1966                ecclayout->oobfree->offset      =
1967                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1968                break;
1969
1970        case OMAP_ECC_BCH16_CODE_HW:
1971                pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1972                nand_chip->ecc.mode             = NAND_ECC_HW;
1973                nand_chip->ecc.size             = 512;
1974                nand_chip->ecc.bytes            = 26;
1975                nand_chip->ecc.strength         = 16;
1976                nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1977                nand_chip->ecc.correct          = omap_elm_correct_data;
1978                nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1979                nand_chip->ecc.read_page        = omap_read_page_bch;
1980                nand_chip->ecc.write_page       = omap_write_page_bch;
1981
1982                err = elm_config(info->elm_dev, BCH16_ECC,
1983                                 mtd->writesize / nand_chip->ecc.size,
1984                                 nand_chip->ecc.size, nand_chip->ecc.bytes);
1985                if (err < 0)
1986                        goto return_error;
1987
1988                /* define ECC layout */
1989                ecclayout->eccbytes             = nand_chip->ecc.bytes *
1990                                                        (mtd->writesize /
1991                                                        nand_chip->ecc.size);
1992                oob_index                       = BADBLOCK_MARKER_LENGTH;
1993                for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1994                        ecclayout->eccpos[i]    = oob_index;
1995                /* reserved marker already included in ecclayout->eccbytes */
1996                ecclayout->oobfree->offset      =
1997                                ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1998                break;
1999        default:
2000                dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2001                err = -EINVAL;
2002                goto return_error;
2003        }
2004
2005        /* all OOB bytes from oobfree->offset till end off OOB are free */
2006        ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2007        /* check if NAND device's OOB is enough to store ECC signatures */
2008        if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2009                dev_err(&info->pdev->dev,
2010                        "not enough OOB bytes required = %d, available=%d\n",
2011                        ecclayout->eccbytes, mtd->oobsize);
2012                err = -EINVAL;
2013                goto return_error;
2014        }
2015
2016scan_tail:
2017        /* second phase scan */
2018        if (nand_scan_tail(mtd)) {
2019                err = -ENXIO;
2020                goto return_error;
2021        }
2022
2023        mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2024
2025        platform_set_drvdata(pdev, mtd);
2026
2027        return 0;
2028
2029return_error:
2030        if (info->dma)
2031                dma_release_channel(info->dma);
2032        if (nand_chip->ecc.priv) {
2033                nand_bch_free(nand_chip->ecc.priv);
2034                nand_chip->ecc.priv = NULL;
2035        }
2036        return err;
2037}
2038
2039static int omap_nand_remove(struct platform_device *pdev)
2040{
2041        struct mtd_info *mtd = platform_get_drvdata(pdev);
2042        struct nand_chip *nand_chip = mtd_to_nand(mtd);
2043        struct omap_nand_info *info = mtd_to_omap(mtd);
2044        if (nand_chip->ecc.priv) {
2045                nand_bch_free(nand_chip->ecc.priv);
2046                nand_chip->ecc.priv = NULL;
2047        }
2048        if (info->dma)
2049                dma_release_channel(info->dma);
2050        nand_release(mtd);
2051        return 0;
2052}
2053
2054static struct platform_driver omap_nand_driver = {
2055        .probe          = omap_nand_probe,
2056        .remove         = omap_nand_remove,
2057        .driver         = {
2058                .name   = DRIVER_NAME,
2059        },
2060};
2061
2062module_platform_driver(omap_nand_driver);
2063
2064MODULE_ALIAS("platform:" DRIVER_NAME);
2065MODULE_LICENSE("GPL");
2066MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
2067