linux/drivers/net/can/dev.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/netdevice.h>
  23#include <linux/if_arp.h>
  24#include <linux/can.h>
  25#include <linux/can/dev.h>
  26#include <linux/can/skb.h>
  27#include <linux/can/netlink.h>
  28#include <linux/can/led.h>
  29#include <net/rtnetlink.h>
  30
  31#define MOD_DESC "CAN device driver interface"
  32
  33MODULE_DESCRIPTION(MOD_DESC);
  34MODULE_LICENSE("GPL v2");
  35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  36
  37/* CAN DLC to real data length conversion helpers */
  38
  39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  40                             8, 12, 16, 20, 24, 32, 48, 64};
  41
  42/* get data length from can_dlc with sanitized can_dlc */
  43u8 can_dlc2len(u8 can_dlc)
  44{
  45        return dlc2len[can_dlc & 0x0F];
  46}
  47EXPORT_SYMBOL_GPL(can_dlc2len);
  48
  49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
  50                             9, 9, 9, 9,                        /* 9 - 12 */
  51                             10, 10, 10, 10,                    /* 13 - 16 */
  52                             11, 11, 11, 11,                    /* 17 - 20 */
  53                             12, 12, 12, 12,                    /* 21 - 24 */
  54                             13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
  55                             14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
  56                             14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
  57                             15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
  58                             15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
  59
  60/* map the sanitized data length to an appropriate data length code */
  61u8 can_len2dlc(u8 len)
  62{
  63        if (unlikely(len > 64))
  64                return 0xF;
  65
  66        return len2dlc[len];
  67}
  68EXPORT_SYMBOL_GPL(can_len2dlc);
  69
  70#ifdef CONFIG_CAN_CALC_BITTIMING
  71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  72
  73/*
  74 * Bit-timing calculation derived from:
  75 *
  76 * Code based on LinCAN sources and H8S2638 project
  77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  78 * Copyright 2005      Stanislav Marek
  79 * email: pisa@cmp.felk.cvut.cz
  80 *
  81 * Calculates proper bit-timing parameters for a specified bit-rate
  82 * and sample-point, which can then be used to set the bit-timing
  83 * registers of the CAN controller. You can find more information
  84 * in the header file linux/can/netlink.h.
  85 */
  86static int can_update_spt(const struct can_bittiming_const *btc,
  87                          int sampl_pt, int tseg, int *tseg1, int *tseg2)
  88{
  89        *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  90        if (*tseg2 < btc->tseg2_min)
  91                *tseg2 = btc->tseg2_min;
  92        if (*tseg2 > btc->tseg2_max)
  93                *tseg2 = btc->tseg2_max;
  94        *tseg1 = tseg - *tseg2;
  95        if (*tseg1 > btc->tseg1_max) {
  96                *tseg1 = btc->tseg1_max;
  97                *tseg2 = tseg - *tseg1;
  98        }
  99        return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 100}
 101
 102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 103                              const struct can_bittiming_const *btc)
 104{
 105        struct can_priv *priv = netdev_priv(dev);
 106        long best_error = 1000000000, error = 0;
 107        int best_tseg = 0, best_brp = 0, brp = 0;
 108        int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 109        int spt_error = 1000, spt = 0, sampl_pt;
 110        long rate;
 111        u64 v64;
 112
 113        /* Use CiA recommended sample points */
 114        if (bt->sample_point) {
 115                sampl_pt = bt->sample_point;
 116        } else {
 117                if (bt->bitrate > 800000)
 118                        sampl_pt = 750;
 119                else if (bt->bitrate > 500000)
 120                        sampl_pt = 800;
 121                else
 122                        sampl_pt = 875;
 123        }
 124
 125        /* tseg even = round down, odd = round up */
 126        for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 127             tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 128                tsegall = 1 + tseg / 2;
 129                /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 130                brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 131                /* chose brp step which is possible in system */
 132                brp = (brp / btc->brp_inc) * btc->brp_inc;
 133                if ((brp < btc->brp_min) || (brp > btc->brp_max))
 134                        continue;
 135                rate = priv->clock.freq / (brp * tsegall);
 136                error = bt->bitrate - rate;
 137                /* tseg brp biterror */
 138                if (error < 0)
 139                        error = -error;
 140                if (error > best_error)
 141                        continue;
 142                best_error = error;
 143                if (error == 0) {
 144                        spt = can_update_spt(btc, sampl_pt, tseg / 2,
 145                                             &tseg1, &tseg2);
 146                        error = sampl_pt - spt;
 147                        if (error < 0)
 148                                error = -error;
 149                        if (error > spt_error)
 150                                continue;
 151                        spt_error = error;
 152                }
 153                best_tseg = tseg / 2;
 154                best_brp = brp;
 155                if (error == 0)
 156                        break;
 157        }
 158
 159        if (best_error) {
 160                /* Error in one-tenth of a percent */
 161                error = (best_error * 1000) / bt->bitrate;
 162                if (error > CAN_CALC_MAX_ERROR) {
 163                        netdev_err(dev,
 164                                   "bitrate error %ld.%ld%% too high\n",
 165                                   error / 10, error % 10);
 166                        return -EDOM;
 167                } else {
 168                        netdev_warn(dev, "bitrate error %ld.%ld%%\n",
 169                                    error / 10, error % 10);
 170                }
 171        }
 172
 173        /* real sample point */
 174        bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
 175                                          &tseg1, &tseg2);
 176
 177        v64 = (u64)best_brp * 1000000000UL;
 178        do_div(v64, priv->clock.freq);
 179        bt->tq = (u32)v64;
 180        bt->prop_seg = tseg1 / 2;
 181        bt->phase_seg1 = tseg1 - bt->prop_seg;
 182        bt->phase_seg2 = tseg2;
 183
 184        /* check for sjw user settings */
 185        if (!bt->sjw || !btc->sjw_max)
 186                bt->sjw = 1;
 187        else {
 188                /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 189                if (bt->sjw > btc->sjw_max)
 190                        bt->sjw = btc->sjw_max;
 191                /* bt->sjw must not be higher than tseg2 */
 192                if (tseg2 < bt->sjw)
 193                        bt->sjw = tseg2;
 194        }
 195
 196        bt->brp = best_brp;
 197        /* real bit-rate */
 198        bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
 199
 200        return 0;
 201}
 202#else /* !CONFIG_CAN_CALC_BITTIMING */
 203static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 204                              const struct can_bittiming_const *btc)
 205{
 206        netdev_err(dev, "bit-timing calculation not available\n");
 207        return -EINVAL;
 208}
 209#endif /* CONFIG_CAN_CALC_BITTIMING */
 210
 211/*
 212 * Checks the validity of the specified bit-timing parameters prop_seg,
 213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 214 * prescaler value brp. You can find more information in the header
 215 * file linux/can/netlink.h.
 216 */
 217static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 218                               const struct can_bittiming_const *btc)
 219{
 220        struct can_priv *priv = netdev_priv(dev);
 221        int tseg1, alltseg;
 222        u64 brp64;
 223
 224        tseg1 = bt->prop_seg + bt->phase_seg1;
 225        if (!bt->sjw)
 226                bt->sjw = 1;
 227        if (bt->sjw > btc->sjw_max ||
 228            tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 229            bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 230                return -ERANGE;
 231
 232        brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 233        if (btc->brp_inc > 1)
 234                do_div(brp64, btc->brp_inc);
 235        brp64 += 500000000UL - 1;
 236        do_div(brp64, 1000000000UL); /* the practicable BRP */
 237        if (btc->brp_inc > 1)
 238                brp64 *= btc->brp_inc;
 239        bt->brp = (u32)brp64;
 240
 241        if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 242                return -EINVAL;
 243
 244        alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 245        bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 246        bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 247
 248        return 0;
 249}
 250
 251static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 252                             const struct can_bittiming_const *btc)
 253{
 254        int err;
 255
 256        /* Check if the CAN device has bit-timing parameters */
 257        if (!btc)
 258                return -EOPNOTSUPP;
 259
 260        /*
 261         * Depending on the given can_bittiming parameter structure the CAN
 262         * timing parameters are calculated based on the provided bitrate OR
 263         * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 264         * provided directly which are then checked and fixed up.
 265         */
 266        if (!bt->tq && bt->bitrate)
 267                err = can_calc_bittiming(dev, bt, btc);
 268        else if (bt->tq && !bt->bitrate)
 269                err = can_fixup_bittiming(dev, bt, btc);
 270        else
 271                err = -EINVAL;
 272
 273        return err;
 274}
 275
 276static void can_update_state_error_stats(struct net_device *dev,
 277                                         enum can_state new_state)
 278{
 279        struct can_priv *priv = netdev_priv(dev);
 280
 281        if (new_state <= priv->state)
 282                return;
 283
 284        switch (new_state) {
 285        case CAN_STATE_ERROR_WARNING:
 286                priv->can_stats.error_warning++;
 287                break;
 288        case CAN_STATE_ERROR_PASSIVE:
 289                priv->can_stats.error_passive++;
 290                break;
 291        case CAN_STATE_BUS_OFF:
 292                priv->can_stats.bus_off++;
 293                break;
 294        default:
 295                break;
 296        }
 297}
 298
 299static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 300{
 301        switch (state) {
 302        case CAN_STATE_ERROR_ACTIVE:
 303                return CAN_ERR_CRTL_ACTIVE;
 304        case CAN_STATE_ERROR_WARNING:
 305                return CAN_ERR_CRTL_TX_WARNING;
 306        case CAN_STATE_ERROR_PASSIVE:
 307                return CAN_ERR_CRTL_TX_PASSIVE;
 308        default:
 309                return 0;
 310        }
 311}
 312
 313static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 314{
 315        switch (state) {
 316        case CAN_STATE_ERROR_ACTIVE:
 317                return CAN_ERR_CRTL_ACTIVE;
 318        case CAN_STATE_ERROR_WARNING:
 319                return CAN_ERR_CRTL_RX_WARNING;
 320        case CAN_STATE_ERROR_PASSIVE:
 321                return CAN_ERR_CRTL_RX_PASSIVE;
 322        default:
 323                return 0;
 324        }
 325}
 326
 327void can_change_state(struct net_device *dev, struct can_frame *cf,
 328                      enum can_state tx_state, enum can_state rx_state)
 329{
 330        struct can_priv *priv = netdev_priv(dev);
 331        enum can_state new_state = max(tx_state, rx_state);
 332
 333        if (unlikely(new_state == priv->state)) {
 334                netdev_warn(dev, "%s: oops, state did not change", __func__);
 335                return;
 336        }
 337
 338        netdev_dbg(dev, "New error state: %d\n", new_state);
 339
 340        can_update_state_error_stats(dev, new_state);
 341        priv->state = new_state;
 342
 343        if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 344                cf->can_id |= CAN_ERR_BUSOFF;
 345                return;
 346        }
 347
 348        cf->can_id |= CAN_ERR_CRTL;
 349        cf->data[1] |= tx_state >= rx_state ?
 350                       can_tx_state_to_frame(dev, tx_state) : 0;
 351        cf->data[1] |= tx_state <= rx_state ?
 352                       can_rx_state_to_frame(dev, rx_state) : 0;
 353}
 354EXPORT_SYMBOL_GPL(can_change_state);
 355
 356/*
 357 * Local echo of CAN messages
 358 *
 359 * CAN network devices *should* support a local echo functionality
 360 * (see Documentation/networking/can.txt). To test the handling of CAN
 361 * interfaces that do not support the local echo both driver types are
 362 * implemented. In the case that the driver does not support the echo
 363 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 364 * to perform the echo as a fallback solution.
 365 */
 366static void can_flush_echo_skb(struct net_device *dev)
 367{
 368        struct can_priv *priv = netdev_priv(dev);
 369        struct net_device_stats *stats = &dev->stats;
 370        int i;
 371
 372        for (i = 0; i < priv->echo_skb_max; i++) {
 373                if (priv->echo_skb[i]) {
 374                        kfree_skb(priv->echo_skb[i]);
 375                        priv->echo_skb[i] = NULL;
 376                        stats->tx_dropped++;
 377                        stats->tx_aborted_errors++;
 378                }
 379        }
 380}
 381
 382/*
 383 * Put the skb on the stack to be looped backed locally lateron
 384 *
 385 * The function is typically called in the start_xmit function
 386 * of the device driver. The driver must protect access to
 387 * priv->echo_skb, if necessary.
 388 */
 389void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 390                      unsigned int idx)
 391{
 392        struct can_priv *priv = netdev_priv(dev);
 393
 394        BUG_ON(idx >= priv->echo_skb_max);
 395
 396        /* check flag whether this packet has to be looped back */
 397        if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 398            (skb->protocol != htons(ETH_P_CAN) &&
 399             skb->protocol != htons(ETH_P_CANFD))) {
 400                kfree_skb(skb);
 401                return;
 402        }
 403
 404        if (!priv->echo_skb[idx]) {
 405
 406                skb = can_create_echo_skb(skb);
 407                if (!skb)
 408                        return;
 409
 410                /* make settings for echo to reduce code in irq context */
 411                skb->pkt_type = PACKET_BROADCAST;
 412                skb->ip_summed = CHECKSUM_UNNECESSARY;
 413                skb->dev = dev;
 414
 415                /* save this skb for tx interrupt echo handling */
 416                priv->echo_skb[idx] = skb;
 417        } else {
 418                /* locking problem with netif_stop_queue() ?? */
 419                netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 420                kfree_skb(skb);
 421        }
 422}
 423EXPORT_SYMBOL_GPL(can_put_echo_skb);
 424
 425/*
 426 * Get the skb from the stack and loop it back locally
 427 *
 428 * The function is typically called when the TX done interrupt
 429 * is handled in the device driver. The driver must protect
 430 * access to priv->echo_skb, if necessary.
 431 */
 432unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 433{
 434        struct can_priv *priv = netdev_priv(dev);
 435
 436        BUG_ON(idx >= priv->echo_skb_max);
 437
 438        if (priv->echo_skb[idx]) {
 439                struct sk_buff *skb = priv->echo_skb[idx];
 440                struct can_frame *cf = (struct can_frame *)skb->data;
 441                u8 dlc = cf->can_dlc;
 442
 443                netif_rx(priv->echo_skb[idx]);
 444                priv->echo_skb[idx] = NULL;
 445
 446                return dlc;
 447        }
 448
 449        return 0;
 450}
 451EXPORT_SYMBOL_GPL(can_get_echo_skb);
 452
 453/*
 454  * Remove the skb from the stack and free it.
 455  *
 456  * The function is typically called when TX failed.
 457  */
 458void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 459{
 460        struct can_priv *priv = netdev_priv(dev);
 461
 462        BUG_ON(idx >= priv->echo_skb_max);
 463
 464        if (priv->echo_skb[idx]) {
 465                dev_kfree_skb_any(priv->echo_skb[idx]);
 466                priv->echo_skb[idx] = NULL;
 467        }
 468}
 469EXPORT_SYMBOL_GPL(can_free_echo_skb);
 470
 471/*
 472 * CAN device restart for bus-off recovery
 473 */
 474static void can_restart(unsigned long data)
 475{
 476        struct net_device *dev = (struct net_device *)data;
 477        struct can_priv *priv = netdev_priv(dev);
 478        struct net_device_stats *stats = &dev->stats;
 479        struct sk_buff *skb;
 480        struct can_frame *cf;
 481        int err;
 482
 483        BUG_ON(netif_carrier_ok(dev));
 484
 485        /*
 486         * No synchronization needed because the device is bus-off and
 487         * no messages can come in or go out.
 488         */
 489        can_flush_echo_skb(dev);
 490
 491        /* send restart message upstream */
 492        skb = alloc_can_err_skb(dev, &cf);
 493        if (skb == NULL) {
 494                err = -ENOMEM;
 495                goto restart;
 496        }
 497        cf->can_id |= CAN_ERR_RESTARTED;
 498
 499        netif_rx(skb);
 500
 501        stats->rx_packets++;
 502        stats->rx_bytes += cf->can_dlc;
 503
 504restart:
 505        netdev_dbg(dev, "restarted\n");
 506        priv->can_stats.restarts++;
 507
 508        /* Now restart the device */
 509        err = priv->do_set_mode(dev, CAN_MODE_START);
 510
 511        netif_carrier_on(dev);
 512        if (err)
 513                netdev_err(dev, "Error %d during restart", err);
 514}
 515
 516int can_restart_now(struct net_device *dev)
 517{
 518        struct can_priv *priv = netdev_priv(dev);
 519
 520        /*
 521         * A manual restart is only permitted if automatic restart is
 522         * disabled and the device is in the bus-off state
 523         */
 524        if (priv->restart_ms)
 525                return -EINVAL;
 526        if (priv->state != CAN_STATE_BUS_OFF)
 527                return -EBUSY;
 528
 529        /* Runs as soon as possible in the timer context */
 530        mod_timer(&priv->restart_timer, jiffies);
 531
 532        return 0;
 533}
 534
 535/*
 536 * CAN bus-off
 537 *
 538 * This functions should be called when the device goes bus-off to
 539 * tell the netif layer that no more packets can be sent or received.
 540 * If enabled, a timer is started to trigger bus-off recovery.
 541 */
 542void can_bus_off(struct net_device *dev)
 543{
 544        struct can_priv *priv = netdev_priv(dev);
 545
 546        netdev_dbg(dev, "bus-off\n");
 547
 548        netif_carrier_off(dev);
 549
 550        if (priv->restart_ms)
 551                mod_timer(&priv->restart_timer,
 552                          jiffies + (priv->restart_ms * HZ) / 1000);
 553}
 554EXPORT_SYMBOL_GPL(can_bus_off);
 555
 556static void can_setup(struct net_device *dev)
 557{
 558        dev->type = ARPHRD_CAN;
 559        dev->mtu = CAN_MTU;
 560        dev->hard_header_len = 0;
 561        dev->addr_len = 0;
 562        dev->tx_queue_len = 10;
 563
 564        /* New-style flags. */
 565        dev->flags = IFF_NOARP;
 566        dev->features = NETIF_F_HW_CSUM;
 567}
 568
 569struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 570{
 571        struct sk_buff *skb;
 572
 573        skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 574                               sizeof(struct can_frame));
 575        if (unlikely(!skb))
 576                return NULL;
 577
 578        skb->protocol = htons(ETH_P_CAN);
 579        skb->pkt_type = PACKET_BROADCAST;
 580        skb->ip_summed = CHECKSUM_UNNECESSARY;
 581
 582        skb_reset_mac_header(skb);
 583        skb_reset_network_header(skb);
 584        skb_reset_transport_header(skb);
 585
 586        can_skb_reserve(skb);
 587        can_skb_prv(skb)->ifindex = dev->ifindex;
 588        can_skb_prv(skb)->skbcnt = 0;
 589
 590        *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
 591        memset(*cf, 0, sizeof(struct can_frame));
 592
 593        return skb;
 594}
 595EXPORT_SYMBOL_GPL(alloc_can_skb);
 596
 597struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 598                                struct canfd_frame **cfd)
 599{
 600        struct sk_buff *skb;
 601
 602        skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 603                               sizeof(struct canfd_frame));
 604        if (unlikely(!skb))
 605                return NULL;
 606
 607        skb->protocol = htons(ETH_P_CANFD);
 608        skb->pkt_type = PACKET_BROADCAST;
 609        skb->ip_summed = CHECKSUM_UNNECESSARY;
 610
 611        skb_reset_mac_header(skb);
 612        skb_reset_network_header(skb);
 613        skb_reset_transport_header(skb);
 614
 615        can_skb_reserve(skb);
 616        can_skb_prv(skb)->ifindex = dev->ifindex;
 617        can_skb_prv(skb)->skbcnt = 0;
 618
 619        *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
 620        memset(*cfd, 0, sizeof(struct canfd_frame));
 621
 622        return skb;
 623}
 624EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 625
 626struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 627{
 628        struct sk_buff *skb;
 629
 630        skb = alloc_can_skb(dev, cf);
 631        if (unlikely(!skb))
 632                return NULL;
 633
 634        (*cf)->can_id = CAN_ERR_FLAG;
 635        (*cf)->can_dlc = CAN_ERR_DLC;
 636
 637        return skb;
 638}
 639EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 640
 641/*
 642 * Allocate and setup space for the CAN network device
 643 */
 644struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 645{
 646        struct net_device *dev;
 647        struct can_priv *priv;
 648        int size;
 649
 650        if (echo_skb_max)
 651                size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 652                        echo_skb_max * sizeof(struct sk_buff *);
 653        else
 654                size = sizeof_priv;
 655
 656        dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 657        if (!dev)
 658                return NULL;
 659
 660        priv = netdev_priv(dev);
 661
 662        if (echo_skb_max) {
 663                priv->echo_skb_max = echo_skb_max;
 664                priv->echo_skb = (void *)priv +
 665                        ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 666        }
 667
 668        priv->state = CAN_STATE_STOPPED;
 669
 670        init_timer(&priv->restart_timer);
 671
 672        return dev;
 673}
 674EXPORT_SYMBOL_GPL(alloc_candev);
 675
 676/*
 677 * Free space of the CAN network device
 678 */
 679void free_candev(struct net_device *dev)
 680{
 681        free_netdev(dev);
 682}
 683EXPORT_SYMBOL_GPL(free_candev);
 684
 685/*
 686 * changing MTU and control mode for CAN/CANFD devices
 687 */
 688int can_change_mtu(struct net_device *dev, int new_mtu)
 689{
 690        struct can_priv *priv = netdev_priv(dev);
 691
 692        /* Do not allow changing the MTU while running */
 693        if (dev->flags & IFF_UP)
 694                return -EBUSY;
 695
 696        /* allow change of MTU according to the CANFD ability of the device */
 697        switch (new_mtu) {
 698        case CAN_MTU:
 699                priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 700                break;
 701
 702        case CANFD_MTU:
 703                if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
 704                        return -EINVAL;
 705
 706                priv->ctrlmode |= CAN_CTRLMODE_FD;
 707                break;
 708
 709        default:
 710                return -EINVAL;
 711        }
 712
 713        dev->mtu = new_mtu;
 714        return 0;
 715}
 716EXPORT_SYMBOL_GPL(can_change_mtu);
 717
 718/*
 719 * Common open function when the device gets opened.
 720 *
 721 * This function should be called in the open function of the device
 722 * driver.
 723 */
 724int open_candev(struct net_device *dev)
 725{
 726        struct can_priv *priv = netdev_priv(dev);
 727
 728        if (!priv->bittiming.bitrate) {
 729                netdev_err(dev, "bit-timing not yet defined\n");
 730                return -EINVAL;
 731        }
 732
 733        /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 734        if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 735            (!priv->data_bittiming.bitrate ||
 736             (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 737                netdev_err(dev, "incorrect/missing data bit-timing\n");
 738                return -EINVAL;
 739        }
 740
 741        /* Switch carrier on if device was stopped while in bus-off state */
 742        if (!netif_carrier_ok(dev))
 743                netif_carrier_on(dev);
 744
 745        setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
 746
 747        return 0;
 748}
 749EXPORT_SYMBOL_GPL(open_candev);
 750
 751/*
 752 * Common close function for cleanup before the device gets closed.
 753 *
 754 * This function should be called in the close function of the device
 755 * driver.
 756 */
 757void close_candev(struct net_device *dev)
 758{
 759        struct can_priv *priv = netdev_priv(dev);
 760
 761        del_timer_sync(&priv->restart_timer);
 762        can_flush_echo_skb(dev);
 763}
 764EXPORT_SYMBOL_GPL(close_candev);
 765
 766/*
 767 * CAN netlink interface
 768 */
 769static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 770        [IFLA_CAN_STATE]        = { .type = NLA_U32 },
 771        [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
 772        [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
 773        [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
 774        [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
 775        [IFLA_CAN_BITTIMING_CONST]
 776                                = { .len = sizeof(struct can_bittiming_const) },
 777        [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
 778        [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
 779        [IFLA_CAN_DATA_BITTIMING]
 780                                = { .len = sizeof(struct can_bittiming) },
 781        [IFLA_CAN_DATA_BITTIMING_CONST]
 782                                = { .len = sizeof(struct can_bittiming_const) },
 783};
 784
 785static int can_changelink(struct net_device *dev,
 786                          struct nlattr *tb[], struct nlattr *data[])
 787{
 788        struct can_priv *priv = netdev_priv(dev);
 789        int err;
 790
 791        /* We need synchronization with dev->stop() */
 792        ASSERT_RTNL();
 793
 794        if (data[IFLA_CAN_BITTIMING]) {
 795                struct can_bittiming bt;
 796
 797                /* Do not allow changing bittiming while running */
 798                if (dev->flags & IFF_UP)
 799                        return -EBUSY;
 800                memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 801                err = can_get_bittiming(dev, &bt, priv->bittiming_const);
 802                if (err)
 803                        return err;
 804                memcpy(&priv->bittiming, &bt, sizeof(bt));
 805
 806                if (priv->do_set_bittiming) {
 807                        /* Finally, set the bit-timing registers */
 808                        err = priv->do_set_bittiming(dev);
 809                        if (err)
 810                                return err;
 811                }
 812        }
 813
 814        if (data[IFLA_CAN_CTRLMODE]) {
 815                struct can_ctrlmode *cm;
 816
 817                /* Do not allow changing controller mode while running */
 818                if (dev->flags & IFF_UP)
 819                        return -EBUSY;
 820                cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 821
 822                /* check whether changed bits are allowed to be modified */
 823                if (cm->mask & ~priv->ctrlmode_supported)
 824                        return -EOPNOTSUPP;
 825
 826                /* clear bits to be modified and copy the flag values */
 827                priv->ctrlmode &= ~cm->mask;
 828                priv->ctrlmode |= (cm->flags & cm->mask);
 829
 830                /* CAN_CTRLMODE_FD can only be set when driver supports FD */
 831                if (priv->ctrlmode & CAN_CTRLMODE_FD)
 832                        dev->mtu = CANFD_MTU;
 833                else
 834                        dev->mtu = CAN_MTU;
 835        }
 836
 837        if (data[IFLA_CAN_RESTART_MS]) {
 838                /* Do not allow changing restart delay while running */
 839                if (dev->flags & IFF_UP)
 840                        return -EBUSY;
 841                priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 842        }
 843
 844        if (data[IFLA_CAN_RESTART]) {
 845                /* Do not allow a restart while not running */
 846                if (!(dev->flags & IFF_UP))
 847                        return -EINVAL;
 848                err = can_restart_now(dev);
 849                if (err)
 850                        return err;
 851        }
 852
 853        if (data[IFLA_CAN_DATA_BITTIMING]) {
 854                struct can_bittiming dbt;
 855
 856                /* Do not allow changing bittiming while running */
 857                if (dev->flags & IFF_UP)
 858                        return -EBUSY;
 859                memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
 860                       sizeof(dbt));
 861                err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
 862                if (err)
 863                        return err;
 864                memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
 865
 866                if (priv->do_set_data_bittiming) {
 867                        /* Finally, set the bit-timing registers */
 868                        err = priv->do_set_data_bittiming(dev);
 869                        if (err)
 870                                return err;
 871                }
 872        }
 873
 874        return 0;
 875}
 876
 877static size_t can_get_size(const struct net_device *dev)
 878{
 879        struct can_priv *priv = netdev_priv(dev);
 880        size_t size = 0;
 881
 882        if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
 883                size += nla_total_size(sizeof(struct can_bittiming));
 884        if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
 885                size += nla_total_size(sizeof(struct can_bittiming_const));
 886        size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
 887        size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
 888        size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
 889        size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
 890        if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
 891                size += nla_total_size(sizeof(struct can_berr_counter));
 892        if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
 893                size += nla_total_size(sizeof(struct can_bittiming));
 894        if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
 895                size += nla_total_size(sizeof(struct can_bittiming_const));
 896
 897        return size;
 898}
 899
 900static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
 901{
 902        struct can_priv *priv = netdev_priv(dev);
 903        struct can_ctrlmode cm = {.flags = priv->ctrlmode};
 904        struct can_berr_counter bec;
 905        enum can_state state = priv->state;
 906
 907        if (priv->do_get_state)
 908                priv->do_get_state(dev, &state);
 909
 910        if ((priv->bittiming.bitrate &&
 911             nla_put(skb, IFLA_CAN_BITTIMING,
 912                     sizeof(priv->bittiming), &priv->bittiming)) ||
 913
 914            (priv->bittiming_const &&
 915             nla_put(skb, IFLA_CAN_BITTIMING_CONST,
 916                     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
 917
 918            nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
 919            nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 920            nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
 921            nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
 922
 923            (priv->do_get_berr_counter &&
 924             !priv->do_get_berr_counter(dev, &bec) &&
 925             nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
 926
 927            (priv->data_bittiming.bitrate &&
 928             nla_put(skb, IFLA_CAN_DATA_BITTIMING,
 929                     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
 930
 931            (priv->data_bittiming_const &&
 932             nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
 933                     sizeof(*priv->data_bittiming_const),
 934                     priv->data_bittiming_const)))
 935                return -EMSGSIZE;
 936
 937        return 0;
 938}
 939
 940static size_t can_get_xstats_size(const struct net_device *dev)
 941{
 942        return sizeof(struct can_device_stats);
 943}
 944
 945static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
 946{
 947        struct can_priv *priv = netdev_priv(dev);
 948
 949        if (nla_put(skb, IFLA_INFO_XSTATS,
 950                    sizeof(priv->can_stats), &priv->can_stats))
 951                goto nla_put_failure;
 952        return 0;
 953
 954nla_put_failure:
 955        return -EMSGSIZE;
 956}
 957
 958static int can_newlink(struct net *src_net, struct net_device *dev,
 959                       struct nlattr *tb[], struct nlattr *data[])
 960{
 961        return -EOPNOTSUPP;
 962}
 963
 964static struct rtnl_link_ops can_link_ops __read_mostly = {
 965        .kind           = "can",
 966        .maxtype        = IFLA_CAN_MAX,
 967        .policy         = can_policy,
 968        .setup          = can_setup,
 969        .newlink        = can_newlink,
 970        .changelink     = can_changelink,
 971        .get_size       = can_get_size,
 972        .fill_info      = can_fill_info,
 973        .get_xstats_size = can_get_xstats_size,
 974        .fill_xstats    = can_fill_xstats,
 975};
 976
 977/*
 978 * Register the CAN network device
 979 */
 980int register_candev(struct net_device *dev)
 981{
 982        dev->rtnl_link_ops = &can_link_ops;
 983        return register_netdev(dev);
 984}
 985EXPORT_SYMBOL_GPL(register_candev);
 986
 987/*
 988 * Unregister the CAN network device
 989 */
 990void unregister_candev(struct net_device *dev)
 991{
 992        unregister_netdev(dev);
 993}
 994EXPORT_SYMBOL_GPL(unregister_candev);
 995
 996/*
 997 * Test if a network device is a candev based device
 998 * and return the can_priv* if so.
 999 */
1000struct can_priv *safe_candev_priv(struct net_device *dev)
1001{
1002        if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1003                return NULL;
1004
1005        return netdev_priv(dev);
1006}
1007EXPORT_SYMBOL_GPL(safe_candev_priv);
1008
1009static __init int can_dev_init(void)
1010{
1011        int err;
1012
1013        can_led_notifier_init();
1014
1015        err = rtnl_link_register(&can_link_ops);
1016        if (!err)
1017                printk(KERN_INFO MOD_DESC "\n");
1018
1019        return err;
1020}
1021module_init(can_dev_init);
1022
1023static __exit void can_dev_exit(void)
1024{
1025        rtnl_link_unregister(&can_link_ops);
1026
1027        can_led_notifier_exit();
1028}
1029module_exit(can_dev_exit);
1030
1031MODULE_ALIAS_RTNL_LINK("can");
1032