linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <net/addrconf.h>
  66#include <asm/uaccess.h>
  67
  68#include "cxgb4.h"
  69#include "t4_regs.h"
  70#include "t4_values.h"
  71#include "t4_msg.h"
  72#include "t4fw_api.h"
  73#include "t4fw_version.h"
  74#include "cxgb4_dcb.h"
  75#include "cxgb4_debugfs.h"
  76#include "clip_tbl.h"
  77#include "l2t.h"
  78
  79char cxgb4_driver_name[] = KBUILD_MODNAME;
  80
  81#ifdef DRV_VERSION
  82#undef DRV_VERSION
  83#endif
  84#define DRV_VERSION "2.0.0-ko"
  85const char cxgb4_driver_version[] = DRV_VERSION;
  86#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  87
  88/* Host shadow copy of ingress filter entry.  This is in host native format
  89 * and doesn't match the ordering or bit order, etc. of the hardware of the
  90 * firmware command.  The use of bit-field structure elements is purely to
  91 * remind ourselves of the field size limitations and save memory in the case
  92 * where the filter table is large.
  93 */
  94struct filter_entry {
  95        /* Administrative fields for filter.
  96         */
  97        u32 valid:1;            /* filter allocated and valid */
  98        u32 locked:1;           /* filter is administratively locked */
  99
 100        u32 pending:1;          /* filter action is pending firmware reply */
 101        u32 smtidx:8;           /* Source MAC Table index for smac */
 102        struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
 103
 104        /* The filter itself.  Most of this is a straight copy of information
 105         * provided by the extended ioctl().  Some fields are translated to
 106         * internal forms -- for instance the Ingress Queue ID passed in from
 107         * the ioctl() is translated into the Absolute Ingress Queue ID.
 108         */
 109        struct ch_filter_specification fs;
 110};
 111
 112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
 113                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
 114                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 115
 116/* Macros needed to support the PCI Device ID Table ...
 117 */
 118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 119        static const struct pci_device_id cxgb4_pci_tbl[] = {
 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
 121
 122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 123 * called for both.
 124 */
 125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 126
 127#define CH_PCI_ID_TABLE_ENTRY(devid) \
 128                {PCI_VDEVICE(CHELSIO, (devid)), 4}
 129
 130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 131                { 0, } \
 132        }
 133
 134#include "t4_pci_id_tbl.h"
 135
 136#define FW4_FNAME "cxgb4/t4fw.bin"
 137#define FW5_FNAME "cxgb4/t5fw.bin"
 138#define FW6_FNAME "cxgb4/t6fw.bin"
 139#define FW4_CFNAME "cxgb4/t4-config.txt"
 140#define FW5_CFNAME "cxgb4/t5-config.txt"
 141#define FW6_CFNAME "cxgb4/t6-config.txt"
 142#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 143#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 144#define PHY_AQ1202_DEVICEID 0x4409
 145#define PHY_BCM84834_DEVICEID 0x4486
 146
 147MODULE_DESCRIPTION(DRV_DESC);
 148MODULE_AUTHOR("Chelsio Communications");
 149MODULE_LICENSE("Dual BSD/GPL");
 150MODULE_VERSION(DRV_VERSION);
 151MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 152MODULE_FIRMWARE(FW4_FNAME);
 153MODULE_FIRMWARE(FW5_FNAME);
 154MODULE_FIRMWARE(FW6_FNAME);
 155
 156/*
 157 * Normally we're willing to become the firmware's Master PF but will be happy
 158 * if another PF has already become the Master and initialized the adapter.
 159 * Setting "force_init" will cause this driver to forcibly establish itself as
 160 * the Master PF and initialize the adapter.
 161 */
 162static uint force_init;
 163
 164module_param(force_init, uint, 0644);
 165MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
 166                 "deprecated parameter");
 167
 168static int dflt_msg_enable = DFLT_MSG_ENABLE;
 169
 170module_param(dflt_msg_enable, int, 0644);
 171MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
 172
 173/*
 174 * The driver uses the best interrupt scheme available on a platform in the
 175 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 176 * of these schemes the driver may consider as follows:
 177 *
 178 * msi = 2: choose from among all three options
 179 * msi = 1: only consider MSI and INTx interrupts
 180 * msi = 0: force INTx interrupts
 181 */
 182static int msi = 2;
 183
 184module_param(msi, int, 0644);
 185MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 186
 187/*
 188 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 189 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 190 * boundaries.  This is a requirement for many architectures which will throw
 191 * a machine check fault if an attempt is made to access one of the 4-byte IP
 192 * header fields on a non-4-byte boundary.  And it's a major performance issue
 193 * even on some architectures which allow it like some implementations of the
 194 * x86 ISA.  However, some architectures don't mind this and for some very
 195 * edge-case performance sensitive applications (like forwarding large volumes
 196 * of small packets), setting this DMA offset to 0 will decrease the number of
 197 * PCI-E Bus transfers enough to measurably affect performance.
 198 */
 199static int rx_dma_offset = 2;
 200
 201#ifdef CONFIG_PCI_IOV
 202/* Configure the number of PCI-E Virtual Function which are to be instantiated
 203 * on SR-IOV Capable Physical Functions.
 204 */
 205static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
 206
 207module_param_array(num_vf, uint, NULL, 0644);
 208MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
 209#endif
 210
 211/* TX Queue select used to determine what algorithm to use for selecting TX
 212 * queue. Select between the kernel provided function (select_queue=0) or user
 213 * cxgb_select_queue function (select_queue=1)
 214 *
 215 * Default: select_queue=0
 216 */
 217static int select_queue;
 218module_param(select_queue, int, 0644);
 219MODULE_PARM_DESC(select_queue,
 220                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 221
 222static struct dentry *cxgb4_debugfs_root;
 223
 224static LIST_HEAD(adapter_list);
 225static DEFINE_MUTEX(uld_mutex);
 226/* Adapter list to be accessed from atomic context */
 227static LIST_HEAD(adap_rcu_list);
 228static DEFINE_SPINLOCK(adap_rcu_lock);
 229static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
 230static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
 231
 232static void link_report(struct net_device *dev)
 233{
 234        if (!netif_carrier_ok(dev))
 235                netdev_info(dev, "link down\n");
 236        else {
 237                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 238
 239                const char *s;
 240                const struct port_info *p = netdev_priv(dev);
 241
 242                switch (p->link_cfg.speed) {
 243                case 10000:
 244                        s = "10Gbps";
 245                        break;
 246                case 1000:
 247                        s = "1000Mbps";
 248                        break;
 249                case 100:
 250                        s = "100Mbps";
 251                        break;
 252                case 40000:
 253                        s = "40Gbps";
 254                        break;
 255                default:
 256                        pr_info("%s: unsupported speed: %d\n",
 257                                dev->name, p->link_cfg.speed);
 258                        return;
 259                }
 260
 261                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 262                            fc[p->link_cfg.fc]);
 263        }
 264}
 265
 266#ifdef CONFIG_CHELSIO_T4_DCB
 267/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 268static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 269{
 270        struct port_info *pi = netdev_priv(dev);
 271        struct adapter *adap = pi->adapter;
 272        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 273        int i;
 274
 275        /* We use a simple mapping of Port TX Queue Index to DCB
 276         * Priority when we're enabling DCB.
 277         */
 278        for (i = 0; i < pi->nqsets; i++, txq++) {
 279                u32 name, value;
 280                int err;
 281
 282                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 283                        FW_PARAMS_PARAM_X_V(
 284                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 285                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 286                value = enable ? i : 0xffffffff;
 287
 288                /* Since we can be called while atomic (from "interrupt
 289                 * level") we need to issue the Set Parameters Commannd
 290                 * without sleeping (timeout < 0).
 291                 */
 292                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 293                                            &name, &value,
 294                                            -FW_CMD_MAX_TIMEOUT);
 295
 296                if (err)
 297                        dev_err(adap->pdev_dev,
 298                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 299                                enable ? "set" : "unset", pi->port_id, i, -err);
 300                else
 301                        txq->dcb_prio = value;
 302        }
 303}
 304#endif /* CONFIG_CHELSIO_T4_DCB */
 305
 306void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 307{
 308        struct net_device *dev = adapter->port[port_id];
 309
 310        /* Skip changes from disabled ports. */
 311        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 312                if (link_stat)
 313                        netif_carrier_on(dev);
 314                else {
 315#ifdef CONFIG_CHELSIO_T4_DCB
 316                        cxgb4_dcb_state_init(dev);
 317                        dcb_tx_queue_prio_enable(dev, false);
 318#endif /* CONFIG_CHELSIO_T4_DCB */
 319                        netif_carrier_off(dev);
 320                }
 321
 322                link_report(dev);
 323        }
 324}
 325
 326void t4_os_portmod_changed(const struct adapter *adap, int port_id)
 327{
 328        static const char *mod_str[] = {
 329                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 330        };
 331
 332        const struct net_device *dev = adap->port[port_id];
 333        const struct port_info *pi = netdev_priv(dev);
 334
 335        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 336                netdev_info(dev, "port module unplugged\n");
 337        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 338                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 339}
 340
 341int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 342module_param(dbfifo_int_thresh, int, 0644);
 343MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 344
 345/*
 346 * usecs to sleep while draining the dbfifo
 347 */
 348static int dbfifo_drain_delay = 1000;
 349module_param(dbfifo_drain_delay, int, 0644);
 350MODULE_PARM_DESC(dbfifo_drain_delay,
 351                 "usecs to sleep while draining the dbfifo");
 352
 353static inline int cxgb4_set_addr_hash(struct port_info *pi)
 354{
 355        struct adapter *adap = pi->adapter;
 356        u64 vec = 0;
 357        bool ucast = false;
 358        struct hash_mac_addr *entry;
 359
 360        /* Calculate the hash vector for the updated list and program it */
 361        list_for_each_entry(entry, &adap->mac_hlist, list) {
 362                ucast |= is_unicast_ether_addr(entry->addr);
 363                vec |= (1ULL << hash_mac_addr(entry->addr));
 364        }
 365        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 366                                vec, false);
 367}
 368
 369static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 370{
 371        struct port_info *pi = netdev_priv(netdev);
 372        struct adapter *adap = pi->adapter;
 373        int ret;
 374        u64 mhash = 0;
 375        u64 uhash = 0;
 376        bool free = false;
 377        bool ucast = is_unicast_ether_addr(mac_addr);
 378        const u8 *maclist[1] = {mac_addr};
 379        struct hash_mac_addr *new_entry;
 380
 381        ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
 382                                NULL, ucast ? &uhash : &mhash, false);
 383        if (ret < 0)
 384                goto out;
 385        /* if hash != 0, then add the addr to hash addr list
 386         * so on the end we will calculate the hash for the
 387         * list and program it
 388         */
 389        if (uhash || mhash) {
 390                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 391                if (!new_entry)
 392                        return -ENOMEM;
 393                ether_addr_copy(new_entry->addr, mac_addr);
 394                list_add_tail(&new_entry->list, &adap->mac_hlist);
 395                ret = cxgb4_set_addr_hash(pi);
 396        }
 397out:
 398        return ret < 0 ? ret : 0;
 399}
 400
 401static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 402{
 403        struct port_info *pi = netdev_priv(netdev);
 404        struct adapter *adap = pi->adapter;
 405        int ret;
 406        const u8 *maclist[1] = {mac_addr};
 407        struct hash_mac_addr *entry, *tmp;
 408
 409        /* If the MAC address to be removed is in the hash addr
 410         * list, delete it from the list and update hash vector
 411         */
 412        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 413                if (ether_addr_equal(entry->addr, mac_addr)) {
 414                        list_del(&entry->list);
 415                        kfree(entry);
 416                        return cxgb4_set_addr_hash(pi);
 417                }
 418        }
 419
 420        ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
 421        return ret < 0 ? -EINVAL : 0;
 422}
 423
 424/*
 425 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 426 * If @mtu is -1 it is left unchanged.
 427 */
 428static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 429{
 430        struct port_info *pi = netdev_priv(dev);
 431        struct adapter *adapter = pi->adapter;
 432
 433        if (!(dev->flags & IFF_PROMISC)) {
 434                __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 435                if (!(dev->flags & IFF_ALLMULTI))
 436                        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 437        }
 438
 439        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
 440                             (dev->flags & IFF_PROMISC) ? 1 : 0,
 441                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 442                             sleep_ok);
 443}
 444
 445/**
 446 *      link_start - enable a port
 447 *      @dev: the port to enable
 448 *
 449 *      Performs the MAC and PHY actions needed to enable a port.
 450 */
 451static int link_start(struct net_device *dev)
 452{
 453        int ret;
 454        struct port_info *pi = netdev_priv(dev);
 455        unsigned int mb = pi->adapter->pf;
 456
 457        /*
 458         * We do not set address filters and promiscuity here, the stack does
 459         * that step explicitly.
 460         */
 461        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
 462                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 463        if (ret == 0) {
 464                ret = t4_change_mac(pi->adapter, mb, pi->viid,
 465                                    pi->xact_addr_filt, dev->dev_addr, true,
 466                                    true);
 467                if (ret >= 0) {
 468                        pi->xact_addr_filt = ret;
 469                        ret = 0;
 470                }
 471        }
 472        if (ret == 0)
 473                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 474                                    &pi->link_cfg);
 475        if (ret == 0) {
 476                local_bh_disable();
 477                ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
 478                                          true, CXGB4_DCB_ENABLED);
 479                local_bh_enable();
 480        }
 481
 482        return ret;
 483}
 484
 485int cxgb4_dcb_enabled(const struct net_device *dev)
 486{
 487#ifdef CONFIG_CHELSIO_T4_DCB
 488        struct port_info *pi = netdev_priv(dev);
 489
 490        if (!pi->dcb.enabled)
 491                return 0;
 492
 493        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 494                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 495#else
 496        return 0;
 497#endif
 498}
 499EXPORT_SYMBOL(cxgb4_dcb_enabled);
 500
 501#ifdef CONFIG_CHELSIO_T4_DCB
 502/* Handle a Data Center Bridging update message from the firmware. */
 503static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 504{
 505        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 506        struct net_device *dev = adap->port[port];
 507        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 508        int new_dcb_enabled;
 509
 510        cxgb4_dcb_handle_fw_update(adap, pcmd);
 511        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 512
 513        /* If the DCB has become enabled or disabled on the port then we're
 514         * going to need to set up/tear down DCB Priority parameters for the
 515         * TX Queues associated with the port.
 516         */
 517        if (new_dcb_enabled != old_dcb_enabled)
 518                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 519}
 520#endif /* CONFIG_CHELSIO_T4_DCB */
 521
 522/* Clear a filter and release any of its resources that we own.  This also
 523 * clears the filter's "pending" status.
 524 */
 525static void clear_filter(struct adapter *adap, struct filter_entry *f)
 526{
 527        /* If the new or old filter have loopback rewriteing rules then we'll
 528         * need to free any existing Layer Two Table (L2T) entries of the old
 529         * filter rule.  The firmware will handle freeing up any Source MAC
 530         * Table (SMT) entries used for rewriting Source MAC Addresses in
 531         * loopback rules.
 532         */
 533        if (f->l2t)
 534                cxgb4_l2t_release(f->l2t);
 535
 536        /* The zeroing of the filter rule below clears the filter valid,
 537         * pending, locked flags, l2t pointer, etc. so it's all we need for
 538         * this operation.
 539         */
 540        memset(f, 0, sizeof(*f));
 541}
 542
 543/* Handle a filter write/deletion reply.
 544 */
 545static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
 546{
 547        unsigned int idx = GET_TID(rpl);
 548        unsigned int nidx = idx - adap->tids.ftid_base;
 549        unsigned int ret;
 550        struct filter_entry *f;
 551
 552        if (idx >= adap->tids.ftid_base && nidx <
 553           (adap->tids.nftids + adap->tids.nsftids)) {
 554                idx = nidx;
 555                ret = TCB_COOKIE_G(rpl->cookie);
 556                f = &adap->tids.ftid_tab[idx];
 557
 558                if (ret == FW_FILTER_WR_FLT_DELETED) {
 559                        /* Clear the filter when we get confirmation from the
 560                         * hardware that the filter has been deleted.
 561                         */
 562                        clear_filter(adap, f);
 563                } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
 564                        dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
 565                                idx);
 566                        clear_filter(adap, f);
 567                } else if (ret == FW_FILTER_WR_FLT_ADDED) {
 568                        f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
 569                        f->pending = 0;  /* asynchronous setup completed */
 570                        f->valid = 1;
 571                } else {
 572                        /* Something went wrong.  Issue a warning about the
 573                         * problem and clear everything out.
 574                         */
 575                        dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
 576                                idx, ret);
 577                        clear_filter(adap, f);
 578                }
 579        }
 580}
 581
 582/* Response queue handler for the FW event queue.
 583 */
 584static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 585                          const struct pkt_gl *gl)
 586{
 587        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 588
 589        rsp++;                                          /* skip RSS header */
 590
 591        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 592         */
 593        if (unlikely(opcode == CPL_FW4_MSG &&
 594           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 595                rsp++;
 596                opcode = ((const struct rss_header *)rsp)->opcode;
 597                rsp++;
 598                if (opcode != CPL_SGE_EGR_UPDATE) {
 599                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 600                                , opcode);
 601                        goto out;
 602                }
 603        }
 604
 605        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 606                const struct cpl_sge_egr_update *p = (void *)rsp;
 607                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 608                struct sge_txq *txq;
 609
 610                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 611                txq->restarts++;
 612                if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
 613                        struct sge_eth_txq *eq;
 614
 615                        eq = container_of(txq, struct sge_eth_txq, q);
 616                        netif_tx_wake_queue(eq->txq);
 617                } else {
 618                        struct sge_ofld_txq *oq;
 619
 620                        oq = container_of(txq, struct sge_ofld_txq, q);
 621                        tasklet_schedule(&oq->qresume_tsk);
 622                }
 623        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 624                const struct cpl_fw6_msg *p = (void *)rsp;
 625
 626#ifdef CONFIG_CHELSIO_T4_DCB
 627                const struct fw_port_cmd *pcmd = (const void *)p->data;
 628                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 629                unsigned int action =
 630                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 631
 632                if (cmd == FW_PORT_CMD &&
 633                    action == FW_PORT_ACTION_GET_PORT_INFO) {
 634                        int port = FW_PORT_CMD_PORTID_G(
 635                                        be32_to_cpu(pcmd->op_to_portid));
 636                        struct net_device *dev = q->adap->port[port];
 637                        int state_input = ((pcmd->u.info.dcbxdis_pkd &
 638                                            FW_PORT_CMD_DCBXDIS_F)
 639                                           ? CXGB4_DCB_INPUT_FW_DISABLED
 640                                           : CXGB4_DCB_INPUT_FW_ENABLED);
 641
 642                        cxgb4_dcb_state_fsm(dev, state_input);
 643                }
 644
 645                if (cmd == FW_PORT_CMD &&
 646                    action == FW_PORT_ACTION_L2_DCB_CFG)
 647                        dcb_rpl(q->adap, pcmd);
 648                else
 649#endif
 650                        if (p->type == 0)
 651                                t4_handle_fw_rpl(q->adap, p->data);
 652        } else if (opcode == CPL_L2T_WRITE_RPL) {
 653                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 654
 655                do_l2t_write_rpl(q->adap, p);
 656        } else if (opcode == CPL_SET_TCB_RPL) {
 657                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 658
 659                filter_rpl(q->adap, p);
 660        } else
 661                dev_err(q->adap->pdev_dev,
 662                        "unexpected CPL %#x on FW event queue\n", opcode);
 663out:
 664        return 0;
 665}
 666
 667/* Flush the aggregated lro sessions */
 668static void uldrx_flush_handler(struct sge_rspq *q)
 669{
 670        if (ulds[q->uld].lro_flush)
 671                ulds[q->uld].lro_flush(&q->lro_mgr);
 672}
 673
 674/**
 675 *      uldrx_handler - response queue handler for ULD queues
 676 *      @q: the response queue that received the packet
 677 *      @rsp: the response queue descriptor holding the offload message
 678 *      @gl: the gather list of packet fragments
 679 *
 680 *      Deliver an ingress offload packet to a ULD.  All processing is done by
 681 *      the ULD, we just maintain statistics.
 682 */
 683static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
 684                         const struct pkt_gl *gl)
 685{
 686        struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
 687        int ret;
 688
 689        /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
 690         */
 691        if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
 692            ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
 693                rsp += 2;
 694
 695        if (q->flush_handler)
 696                ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
 697                                                  rsp, gl, &q->lro_mgr,
 698                                                  &q->napi);
 699        else
 700                ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
 701                                              rsp, gl);
 702
 703        if (ret) {
 704                rxq->stats.nomem++;
 705                return -1;
 706        }
 707
 708        if (gl == NULL)
 709                rxq->stats.imm++;
 710        else if (gl == CXGB4_MSG_AN)
 711                rxq->stats.an++;
 712        else
 713                rxq->stats.pkts++;
 714        return 0;
 715}
 716
 717static void disable_msi(struct adapter *adapter)
 718{
 719        if (adapter->flags & USING_MSIX) {
 720                pci_disable_msix(adapter->pdev);
 721                adapter->flags &= ~USING_MSIX;
 722        } else if (adapter->flags & USING_MSI) {
 723                pci_disable_msi(adapter->pdev);
 724                adapter->flags &= ~USING_MSI;
 725        }
 726}
 727
 728/*
 729 * Interrupt handler for non-data events used with MSI-X.
 730 */
 731static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 732{
 733        struct adapter *adap = cookie;
 734        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 735
 736        if (v & PFSW_F) {
 737                adap->swintr = 1;
 738                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 739        }
 740        if (adap->flags & MASTER_PF)
 741                t4_slow_intr_handler(adap);
 742        return IRQ_HANDLED;
 743}
 744
 745/*
 746 * Name the MSI-X interrupts.
 747 */
 748static void name_msix_vecs(struct adapter *adap)
 749{
 750        int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
 751
 752        /* non-data interrupts */
 753        snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
 754
 755        /* FW events */
 756        snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
 757                 adap->port[0]->name);
 758
 759        /* Ethernet queues */
 760        for_each_port(adap, j) {
 761                struct net_device *d = adap->port[j];
 762                const struct port_info *pi = netdev_priv(d);
 763
 764                for (i = 0; i < pi->nqsets; i++, msi_idx++)
 765                        snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
 766                                 d->name, i);
 767        }
 768
 769        /* offload queues */
 770        for_each_iscsirxq(&adap->sge, i)
 771                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
 772                         adap->port[0]->name, i);
 773
 774        for_each_iscsitrxq(&adap->sge, i)
 775                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
 776                         adap->port[0]->name, i);
 777
 778        for_each_rdmarxq(&adap->sge, i)
 779                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
 780                         adap->port[0]->name, i);
 781
 782        for_each_rdmaciq(&adap->sge, i)
 783                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
 784                         adap->port[0]->name, i);
 785}
 786
 787static int request_msix_queue_irqs(struct adapter *adap)
 788{
 789        struct sge *s = &adap->sge;
 790        int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
 791        int iscsitqidx = 0;
 792        int msi_index = 2;
 793
 794        err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
 795                          adap->msix_info[1].desc, &s->fw_evtq);
 796        if (err)
 797                return err;
 798
 799        for_each_ethrxq(s, ethqidx) {
 800                err = request_irq(adap->msix_info[msi_index].vec,
 801                                  t4_sge_intr_msix, 0,
 802                                  adap->msix_info[msi_index].desc,
 803                                  &s->ethrxq[ethqidx].rspq);
 804                if (err)
 805                        goto unwind;
 806                msi_index++;
 807        }
 808        for_each_iscsirxq(s, iscsiqidx) {
 809                err = request_irq(adap->msix_info[msi_index].vec,
 810                                  t4_sge_intr_msix, 0,
 811                                  adap->msix_info[msi_index].desc,
 812                                  &s->iscsirxq[iscsiqidx].rspq);
 813                if (err)
 814                        goto unwind;
 815                msi_index++;
 816        }
 817        for_each_iscsitrxq(s, iscsitqidx) {
 818                err = request_irq(adap->msix_info[msi_index].vec,
 819                                  t4_sge_intr_msix, 0,
 820                                  adap->msix_info[msi_index].desc,
 821                                  &s->iscsitrxq[iscsitqidx].rspq);
 822                if (err)
 823                        goto unwind;
 824                msi_index++;
 825        }
 826        for_each_rdmarxq(s, rdmaqidx) {
 827                err = request_irq(adap->msix_info[msi_index].vec,
 828                                  t4_sge_intr_msix, 0,
 829                                  adap->msix_info[msi_index].desc,
 830                                  &s->rdmarxq[rdmaqidx].rspq);
 831                if (err)
 832                        goto unwind;
 833                msi_index++;
 834        }
 835        for_each_rdmaciq(s, rdmaciqqidx) {
 836                err = request_irq(adap->msix_info[msi_index].vec,
 837                                  t4_sge_intr_msix, 0,
 838                                  adap->msix_info[msi_index].desc,
 839                                  &s->rdmaciq[rdmaciqqidx].rspq);
 840                if (err)
 841                        goto unwind;
 842                msi_index++;
 843        }
 844        return 0;
 845
 846unwind:
 847        while (--rdmaciqqidx >= 0)
 848                free_irq(adap->msix_info[--msi_index].vec,
 849                         &s->rdmaciq[rdmaciqqidx].rspq);
 850        while (--rdmaqidx >= 0)
 851                free_irq(adap->msix_info[--msi_index].vec,
 852                         &s->rdmarxq[rdmaqidx].rspq);
 853        while (--iscsitqidx >= 0)
 854                free_irq(adap->msix_info[--msi_index].vec,
 855                         &s->iscsitrxq[iscsitqidx].rspq);
 856        while (--iscsiqidx >= 0)
 857                free_irq(adap->msix_info[--msi_index].vec,
 858                         &s->iscsirxq[iscsiqidx].rspq);
 859        while (--ethqidx >= 0)
 860                free_irq(adap->msix_info[--msi_index].vec,
 861                         &s->ethrxq[ethqidx].rspq);
 862        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 863        return err;
 864}
 865
 866static void free_msix_queue_irqs(struct adapter *adap)
 867{
 868        int i, msi_index = 2;
 869        struct sge *s = &adap->sge;
 870
 871        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 872        for_each_ethrxq(s, i)
 873                free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
 874        for_each_iscsirxq(s, i)
 875                free_irq(adap->msix_info[msi_index++].vec,
 876                         &s->iscsirxq[i].rspq);
 877        for_each_iscsitrxq(s, i)
 878                free_irq(adap->msix_info[msi_index++].vec,
 879                         &s->iscsitrxq[i].rspq);
 880        for_each_rdmarxq(s, i)
 881                free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
 882        for_each_rdmaciq(s, i)
 883                free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
 884}
 885
 886/**
 887 *      cxgb4_write_rss - write the RSS table for a given port
 888 *      @pi: the port
 889 *      @queues: array of queue indices for RSS
 890 *
 891 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 892 *      packets to the Rx queues in @queues.
 893 *      Should never be called before setting up sge eth rx queues
 894 */
 895int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 896{
 897        u16 *rss;
 898        int i, err;
 899        struct adapter *adapter = pi->adapter;
 900        const struct sge_eth_rxq *rxq;
 901
 902        rxq = &adapter->sge.ethrxq[pi->first_qset];
 903        rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
 904        if (!rss)
 905                return -ENOMEM;
 906
 907        /* map the queue indices to queue ids */
 908        for (i = 0; i < pi->rss_size; i++, queues++)
 909                rss[i] = rxq[*queues].rspq.abs_id;
 910
 911        err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
 912                                  pi->rss_size, rss, pi->rss_size);
 913        /* If Tunnel All Lookup isn't specified in the global RSS
 914         * Configuration, then we need to specify a default Ingress
 915         * Queue for any ingress packets which aren't hashed.  We'll
 916         * use our first ingress queue ...
 917         */
 918        if (!err)
 919                err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
 920                                       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 921                                       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 922                                       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 923                                       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 924                                       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 925                                       rss[0]);
 926        kfree(rss);
 927        return err;
 928}
 929
 930/**
 931 *      setup_rss - configure RSS
 932 *      @adap: the adapter
 933 *
 934 *      Sets up RSS for each port.
 935 */
 936static int setup_rss(struct adapter *adap)
 937{
 938        int i, j, err;
 939
 940        for_each_port(adap, i) {
 941                const struct port_info *pi = adap2pinfo(adap, i);
 942
 943                /* Fill default values with equal distribution */
 944                for (j = 0; j < pi->rss_size; j++)
 945                        pi->rss[j] = j % pi->nqsets;
 946
 947                err = cxgb4_write_rss(pi, pi->rss);
 948                if (err)
 949                        return err;
 950        }
 951        return 0;
 952}
 953
 954/*
 955 * Return the channel of the ingress queue with the given qid.
 956 */
 957static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 958{
 959        qid -= p->ingr_start;
 960        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 961}
 962
 963/*
 964 * Wait until all NAPI handlers are descheduled.
 965 */
 966static void quiesce_rx(struct adapter *adap)
 967{
 968        int i;
 969
 970        for (i = 0; i < adap->sge.ingr_sz; i++) {
 971                struct sge_rspq *q = adap->sge.ingr_map[i];
 972
 973                if (q && q->handler) {
 974                        napi_disable(&q->napi);
 975                        local_bh_disable();
 976                        while (!cxgb_poll_lock_napi(q))
 977                                mdelay(1);
 978                        local_bh_enable();
 979                }
 980
 981        }
 982}
 983
 984/* Disable interrupt and napi handler */
 985static void disable_interrupts(struct adapter *adap)
 986{
 987        if (adap->flags & FULL_INIT_DONE) {
 988                t4_intr_disable(adap);
 989                if (adap->flags & USING_MSIX) {
 990                        free_msix_queue_irqs(adap);
 991                        free_irq(adap->msix_info[0].vec, adap);
 992                } else {
 993                        free_irq(adap->pdev->irq, adap);
 994                }
 995                quiesce_rx(adap);
 996        }
 997}
 998
 999/*
1000 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1001 */
1002static void enable_rx(struct adapter *adap)
1003{
1004        int i;
1005
1006        for (i = 0; i < adap->sge.ingr_sz; i++) {
1007                struct sge_rspq *q = adap->sge.ingr_map[i];
1008
1009                if (!q)
1010                        continue;
1011                if (q->handler) {
1012                        cxgb_busy_poll_init_lock(q);
1013                        napi_enable(&q->napi);
1014                }
1015                /* 0-increment GTS to start the timer and enable interrupts */
1016                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1017                             SEINTARM_V(q->intr_params) |
1018                             INGRESSQID_V(q->cntxt_id));
1019        }
1020}
1021
1022static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1023                           unsigned int nq, unsigned int per_chan, int msi_idx,
1024                           u16 *ids, bool lro)
1025{
1026        int i, err;
1027
1028        for (i = 0; i < nq; i++, q++) {
1029                if (msi_idx > 0)
1030                        msi_idx++;
1031                err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1032                                       adap->port[i / per_chan],
1033                                       msi_idx, q->fl.size ? &q->fl : NULL,
1034                                       uldrx_handler,
1035                                       lro ? uldrx_flush_handler : NULL,
1036                                       0);
1037                if (err)
1038                        return err;
1039                memset(&q->stats, 0, sizeof(q->stats));
1040                if (ids)
1041                        ids[i] = q->rspq.abs_id;
1042        }
1043        return 0;
1044}
1045
1046/**
1047 *      setup_sge_queues - configure SGE Tx/Rx/response queues
1048 *      @adap: the adapter
1049 *
1050 *      Determines how many sets of SGE queues to use and initializes them.
1051 *      We support multiple queue sets per port if we have MSI-X, otherwise
1052 *      just one queue set per port.
1053 */
1054static int setup_sge_queues(struct adapter *adap)
1055{
1056        int err, msi_idx, i, j;
1057        struct sge *s = &adap->sge;
1058
1059        bitmap_zero(s->starving_fl, s->egr_sz);
1060        bitmap_zero(s->txq_maperr, s->egr_sz);
1061
1062        if (adap->flags & USING_MSIX)
1063                msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1064        else {
1065                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1066                                       NULL, NULL, NULL, -1);
1067                if (err)
1068                        return err;
1069                msi_idx = -((int)s->intrq.abs_id + 1);
1070        }
1071
1072        /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1073         * don't forget to update the following which need to be
1074         * synchronized to and changes here.
1075         *
1076         * 1. The calculations of MAX_INGQ in cxgb4.h.
1077         *
1078         * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1079         *    to accommodate any new/deleted Ingress Queues
1080         *    which need MSI-X Vectors.
1081         *
1082         * 3. Update sge_qinfo_show() to include information on the
1083         *    new/deleted queues.
1084         */
1085        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1086                               msi_idx, NULL, fwevtq_handler, NULL, -1);
1087        if (err) {
1088freeout:        t4_free_sge_resources(adap);
1089                return err;
1090        }
1091
1092        for_each_port(adap, i) {
1093                struct net_device *dev = adap->port[i];
1094                struct port_info *pi = netdev_priv(dev);
1095                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1096                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1097
1098                for (j = 0; j < pi->nqsets; j++, q++) {
1099                        if (msi_idx > 0)
1100                                msi_idx++;
1101                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1102                                               msi_idx, &q->fl,
1103                                               t4_ethrx_handler,
1104                                               NULL,
1105                                               t4_get_mps_bg_map(adap,
1106                                                                 pi->tx_chan));
1107                        if (err)
1108                                goto freeout;
1109                        q->rspq.idx = j;
1110                        memset(&q->stats, 0, sizeof(q->stats));
1111                }
1112                for (j = 0; j < pi->nqsets; j++, t++) {
1113                        err = t4_sge_alloc_eth_txq(adap, t, dev,
1114                                        netdev_get_tx_queue(dev, j),
1115                                        s->fw_evtq.cntxt_id);
1116                        if (err)
1117                                goto freeout;
1118                }
1119        }
1120
1121        j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1122        for_each_iscsirxq(s, i) {
1123                err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1124                                            adap->port[i / j],
1125                                            s->fw_evtq.cntxt_id);
1126                if (err)
1127                        goto freeout;
1128        }
1129
1130#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1131        err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1132        if (err) \
1133                goto freeout; \
1134        if (msi_idx > 0) \
1135                msi_idx += nq; \
1136} while (0)
1137
1138        ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1139        ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1140        ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1141        j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1142        ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1143
1144#undef ALLOC_OFLD_RXQS
1145
1146        for_each_port(adap, i) {
1147                /*
1148                 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1149                 * have RDMA queues, and that's the right value.
1150                 */
1151                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1152                                            s->fw_evtq.cntxt_id,
1153                                            s->rdmarxq[i].rspq.cntxt_id);
1154                if (err)
1155                        goto freeout;
1156        }
1157
1158        t4_write_reg(adap, is_t4(adap->params.chip) ?
1159                                MPS_TRC_RSS_CONTROL_A :
1160                                MPS_T5_TRC_RSS_CONTROL_A,
1161                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1162                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1163        return 0;
1164}
1165
1166/*
1167 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1168 * The allocated memory is cleared.
1169 */
1170void *t4_alloc_mem(size_t size)
1171{
1172        void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1173
1174        if (!p)
1175                p = vzalloc(size);
1176        return p;
1177}
1178
1179/*
1180 * Free memory allocated through alloc_mem().
1181 */
1182void t4_free_mem(void *addr)
1183{
1184        kvfree(addr);
1185}
1186
1187/* Send a Work Request to write the filter at a specified index.  We construct
1188 * a Firmware Filter Work Request to have the work done and put the indicated
1189 * filter into "pending" mode which will prevent any further actions against
1190 * it till we get a reply from the firmware on the completion status of the
1191 * request.
1192 */
1193static int set_filter_wr(struct adapter *adapter, int fidx)
1194{
1195        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1196        struct sk_buff *skb;
1197        struct fw_filter_wr *fwr;
1198        unsigned int ftid;
1199
1200        skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1201        if (!skb)
1202                return -ENOMEM;
1203
1204        /* If the new filter requires loopback Destination MAC and/or VLAN
1205         * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1206         * the filter.
1207         */
1208        if (f->fs.newdmac || f->fs.newvlan) {
1209                /* allocate L2T entry for new filter */
1210                f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1211                                                f->fs.eport, f->fs.dmac);
1212                if (f->l2t == NULL) {
1213                        kfree_skb(skb);
1214                        return -ENOMEM;
1215                }
1216        }
1217
1218        ftid = adapter->tids.ftid_base + fidx;
1219
1220        fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1221        memset(fwr, 0, sizeof(*fwr));
1222
1223        /* It would be nice to put most of the following in t4_hw.c but most
1224         * of the work is translating the cxgbtool ch_filter_specification
1225         * into the Work Request and the definition of that structure is
1226         * currently in cxgbtool.h which isn't appropriate to pull into the
1227         * common code.  We may eventually try to come up with a more neutral
1228         * filter specification structure but for now it's easiest to simply
1229         * put this fairly direct code in line ...
1230         */
1231        fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1232        fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1233        fwr->tid_to_iq =
1234                htonl(FW_FILTER_WR_TID_V(ftid) |
1235                      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1236                      FW_FILTER_WR_NOREPLY_V(0) |
1237                      FW_FILTER_WR_IQ_V(f->fs.iq));
1238        fwr->del_filter_to_l2tix =
1239                htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1240                      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1241                      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1242                      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1243                      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1244                      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1245                      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1246                      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1247                      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1248                                             f->fs.newvlan == VLAN_REWRITE) |
1249                      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1250                                            f->fs.newvlan == VLAN_REWRITE) |
1251                      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1252                      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1253                      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1254                      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1255        fwr->ethtype = htons(f->fs.val.ethtype);
1256        fwr->ethtypem = htons(f->fs.mask.ethtype);
1257        fwr->frag_to_ovlan_vldm =
1258                (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1259                 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1260                 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1261                 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1262                 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1263                 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1264        fwr->smac_sel = 0;
1265        fwr->rx_chan_rx_rpl_iq =
1266                htons(FW_FILTER_WR_RX_CHAN_V(0) |
1267                      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1268        fwr->maci_to_matchtypem =
1269                htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1270                      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1271                      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1272                      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1273                      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1274                      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1275                      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1276                      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1277        fwr->ptcl = f->fs.val.proto;
1278        fwr->ptclm = f->fs.mask.proto;
1279        fwr->ttyp = f->fs.val.tos;
1280        fwr->ttypm = f->fs.mask.tos;
1281        fwr->ivlan = htons(f->fs.val.ivlan);
1282        fwr->ivlanm = htons(f->fs.mask.ivlan);
1283        fwr->ovlan = htons(f->fs.val.ovlan);
1284        fwr->ovlanm = htons(f->fs.mask.ovlan);
1285        memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1286        memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1287        memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1288        memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1289        fwr->lp = htons(f->fs.val.lport);
1290        fwr->lpm = htons(f->fs.mask.lport);
1291        fwr->fp = htons(f->fs.val.fport);
1292        fwr->fpm = htons(f->fs.mask.fport);
1293        if (f->fs.newsmac)
1294                memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1295
1296        /* Mark the filter as "pending" and ship off the Filter Work Request.
1297         * When we get the Work Request Reply we'll clear the pending status.
1298         */
1299        f->pending = 1;
1300        set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1301        t4_ofld_send(adapter, skb);
1302        return 0;
1303}
1304
1305/* Delete the filter at a specified index.
1306 */
1307static int del_filter_wr(struct adapter *adapter, int fidx)
1308{
1309        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1310        struct sk_buff *skb;
1311        struct fw_filter_wr *fwr;
1312        unsigned int len, ftid;
1313
1314        len = sizeof(*fwr);
1315        ftid = adapter->tids.ftid_base + fidx;
1316
1317        skb = alloc_skb(len, GFP_KERNEL);
1318        if (!skb)
1319                return -ENOMEM;
1320
1321        fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1322        t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1323
1324        /* Mark the filter as "pending" and ship off the Filter Work Request.
1325         * When we get the Work Request Reply we'll clear the pending status.
1326         */
1327        f->pending = 1;
1328        t4_mgmt_tx(adapter, skb);
1329        return 0;
1330}
1331
1332static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1333                             void *accel_priv, select_queue_fallback_t fallback)
1334{
1335        int txq;
1336
1337#ifdef CONFIG_CHELSIO_T4_DCB
1338        /* If a Data Center Bridging has been successfully negotiated on this
1339         * link then we'll use the skb's priority to map it to a TX Queue.
1340         * The skb's priority is determined via the VLAN Tag Priority Code
1341         * Point field.
1342         */
1343        if (cxgb4_dcb_enabled(dev)) {
1344                u16 vlan_tci;
1345                int err;
1346
1347                err = vlan_get_tag(skb, &vlan_tci);
1348                if (unlikely(err)) {
1349                        if (net_ratelimit())
1350                                netdev_warn(dev,
1351                                            "TX Packet without VLAN Tag on DCB Link\n");
1352                        txq = 0;
1353                } else {
1354                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1355#ifdef CONFIG_CHELSIO_T4_FCOE
1356                        if (skb->protocol == htons(ETH_P_FCOE))
1357                                txq = skb->priority & 0x7;
1358#endif /* CONFIG_CHELSIO_T4_FCOE */
1359                }
1360                return txq;
1361        }
1362#endif /* CONFIG_CHELSIO_T4_DCB */
1363
1364        if (select_queue) {
1365                txq = (skb_rx_queue_recorded(skb)
1366                        ? skb_get_rx_queue(skb)
1367                        : smp_processor_id());
1368
1369                while (unlikely(txq >= dev->real_num_tx_queues))
1370                        txq -= dev->real_num_tx_queues;
1371
1372                return txq;
1373        }
1374
1375        return fallback(dev, skb) % dev->real_num_tx_queues;
1376}
1377
1378static int closest_timer(const struct sge *s, int time)
1379{
1380        int i, delta, match = 0, min_delta = INT_MAX;
1381
1382        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1383                delta = time - s->timer_val[i];
1384                if (delta < 0)
1385                        delta = -delta;
1386                if (delta < min_delta) {
1387                        min_delta = delta;
1388                        match = i;
1389                }
1390        }
1391        return match;
1392}
1393
1394static int closest_thres(const struct sge *s, int thres)
1395{
1396        int i, delta, match = 0, min_delta = INT_MAX;
1397
1398        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1399                delta = thres - s->counter_val[i];
1400                if (delta < 0)
1401                        delta = -delta;
1402                if (delta < min_delta) {
1403                        min_delta = delta;
1404                        match = i;
1405                }
1406        }
1407        return match;
1408}
1409
1410/**
1411 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1412 *      @q: the Rx queue
1413 *      @us: the hold-off time in us, or 0 to disable timer
1414 *      @cnt: the hold-off packet count, or 0 to disable counter
1415 *
1416 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1417 *      one of the two needs to be enabled for the queue to generate interrupts.
1418 */
1419int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1420                               unsigned int us, unsigned int cnt)
1421{
1422        struct adapter *adap = q->adap;
1423
1424        if ((us | cnt) == 0)
1425                cnt = 1;
1426
1427        if (cnt) {
1428                int err;
1429                u32 v, new_idx;
1430
1431                new_idx = closest_thres(&adap->sge, cnt);
1432                if (q->desc && q->pktcnt_idx != new_idx) {
1433                        /* the queue has already been created, update it */
1434                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1435                            FW_PARAMS_PARAM_X_V(
1436                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1437                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1438                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1439                                            &v, &new_idx);
1440                        if (err)
1441                                return err;
1442                }
1443                q->pktcnt_idx = new_idx;
1444        }
1445
1446        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1447        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1448        return 0;
1449}
1450
1451static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1452{
1453        const struct port_info *pi = netdev_priv(dev);
1454        netdev_features_t changed = dev->features ^ features;
1455        int err;
1456
1457        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1458                return 0;
1459
1460        err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1461                            -1, -1, -1,
1462                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463        if (unlikely(err))
1464                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1465        return err;
1466}
1467
1468static int setup_debugfs(struct adapter *adap)
1469{
1470        if (IS_ERR_OR_NULL(adap->debugfs_root))
1471                return -1;
1472
1473#ifdef CONFIG_DEBUG_FS
1474        t4_setup_debugfs(adap);
1475#endif
1476        return 0;
1477}
1478
1479/*
1480 * upper-layer driver support
1481 */
1482
1483/*
1484 * Allocate an active-open TID and set it to the supplied value.
1485 */
1486int cxgb4_alloc_atid(struct tid_info *t, void *data)
1487{
1488        int atid = -1;
1489
1490        spin_lock_bh(&t->atid_lock);
1491        if (t->afree) {
1492                union aopen_entry *p = t->afree;
1493
1494                atid = (p - t->atid_tab) + t->atid_base;
1495                t->afree = p->next;
1496                p->data = data;
1497                t->atids_in_use++;
1498        }
1499        spin_unlock_bh(&t->atid_lock);
1500        return atid;
1501}
1502EXPORT_SYMBOL(cxgb4_alloc_atid);
1503
1504/*
1505 * Release an active-open TID.
1506 */
1507void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1508{
1509        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1510
1511        spin_lock_bh(&t->atid_lock);
1512        p->next = t->afree;
1513        t->afree = p;
1514        t->atids_in_use--;
1515        spin_unlock_bh(&t->atid_lock);
1516}
1517EXPORT_SYMBOL(cxgb4_free_atid);
1518
1519/*
1520 * Allocate a server TID and set it to the supplied value.
1521 */
1522int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1523{
1524        int stid;
1525
1526        spin_lock_bh(&t->stid_lock);
1527        if (family == PF_INET) {
1528                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1529                if (stid < t->nstids)
1530                        __set_bit(stid, t->stid_bmap);
1531                else
1532                        stid = -1;
1533        } else {
1534                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1535                if (stid < 0)
1536                        stid = -1;
1537        }
1538        if (stid >= 0) {
1539                t->stid_tab[stid].data = data;
1540                stid += t->stid_base;
1541                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1542                 * This is equivalent to 4 TIDs. With CLIP enabled it
1543                 * needs 2 TIDs.
1544                 */
1545                if (family == PF_INET)
1546                        t->stids_in_use++;
1547                else
1548                        t->stids_in_use += 2;
1549        }
1550        spin_unlock_bh(&t->stid_lock);
1551        return stid;
1552}
1553EXPORT_SYMBOL(cxgb4_alloc_stid);
1554
1555/* Allocate a server filter TID and set it to the supplied value.
1556 */
1557int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1558{
1559        int stid;
1560
1561        spin_lock_bh(&t->stid_lock);
1562        if (family == PF_INET) {
1563                stid = find_next_zero_bit(t->stid_bmap,
1564                                t->nstids + t->nsftids, t->nstids);
1565                if (stid < (t->nstids + t->nsftids))
1566                        __set_bit(stid, t->stid_bmap);
1567                else
1568                        stid = -1;
1569        } else {
1570                stid = -1;
1571        }
1572        if (stid >= 0) {
1573                t->stid_tab[stid].data = data;
1574                stid -= t->nstids;
1575                stid += t->sftid_base;
1576                t->sftids_in_use++;
1577        }
1578        spin_unlock_bh(&t->stid_lock);
1579        return stid;
1580}
1581EXPORT_SYMBOL(cxgb4_alloc_sftid);
1582
1583/* Release a server TID.
1584 */
1585void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1586{
1587        /* Is it a server filter TID? */
1588        if (t->nsftids && (stid >= t->sftid_base)) {
1589                stid -= t->sftid_base;
1590                stid += t->nstids;
1591        } else {
1592                stid -= t->stid_base;
1593        }
1594
1595        spin_lock_bh(&t->stid_lock);
1596        if (family == PF_INET)
1597                __clear_bit(stid, t->stid_bmap);
1598        else
1599                bitmap_release_region(t->stid_bmap, stid, 1);
1600        t->stid_tab[stid].data = NULL;
1601        if (stid < t->nstids) {
1602                if (family == PF_INET)
1603                        t->stids_in_use--;
1604                else
1605                        t->stids_in_use -= 2;
1606        } else {
1607                t->sftids_in_use--;
1608        }
1609        spin_unlock_bh(&t->stid_lock);
1610}
1611EXPORT_SYMBOL(cxgb4_free_stid);
1612
1613/*
1614 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1615 */
1616static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1617                           unsigned int tid)
1618{
1619        struct cpl_tid_release *req;
1620
1621        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1622        req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1623        INIT_TP_WR(req, tid);
1624        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1625}
1626
1627/*
1628 * Queue a TID release request and if necessary schedule a work queue to
1629 * process it.
1630 */
1631static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1632                                    unsigned int tid)
1633{
1634        void **p = &t->tid_tab[tid];
1635        struct adapter *adap = container_of(t, struct adapter, tids);
1636
1637        spin_lock_bh(&adap->tid_release_lock);
1638        *p = adap->tid_release_head;
1639        /* Low 2 bits encode the Tx channel number */
1640        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1641        if (!adap->tid_release_task_busy) {
1642                adap->tid_release_task_busy = true;
1643                queue_work(adap->workq, &adap->tid_release_task);
1644        }
1645        spin_unlock_bh(&adap->tid_release_lock);
1646}
1647
1648/*
1649 * Process the list of pending TID release requests.
1650 */
1651static void process_tid_release_list(struct work_struct *work)
1652{
1653        struct sk_buff *skb;
1654        struct adapter *adap;
1655
1656        adap = container_of(work, struct adapter, tid_release_task);
1657
1658        spin_lock_bh(&adap->tid_release_lock);
1659        while (adap->tid_release_head) {
1660                void **p = adap->tid_release_head;
1661                unsigned int chan = (uintptr_t)p & 3;
1662                p = (void *)p - chan;
1663
1664                adap->tid_release_head = *p;
1665                *p = NULL;
1666                spin_unlock_bh(&adap->tid_release_lock);
1667
1668                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1669                                         GFP_KERNEL)))
1670                        schedule_timeout_uninterruptible(1);
1671
1672                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1673                t4_ofld_send(adap, skb);
1674                spin_lock_bh(&adap->tid_release_lock);
1675        }
1676        adap->tid_release_task_busy = false;
1677        spin_unlock_bh(&adap->tid_release_lock);
1678}
1679
1680/*
1681 * Release a TID and inform HW.  If we are unable to allocate the release
1682 * message we defer to a work queue.
1683 */
1684void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1685{
1686        struct sk_buff *skb;
1687        struct adapter *adap = container_of(t, struct adapter, tids);
1688
1689        WARN_ON(tid >= t->ntids);
1690
1691        if (t->tid_tab[tid]) {
1692                t->tid_tab[tid] = NULL;
1693                if (t->hash_base && (tid >= t->hash_base))
1694                        atomic_dec(&t->hash_tids_in_use);
1695                else
1696                        atomic_dec(&t->tids_in_use);
1697        }
1698
1699        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1700        if (likely(skb)) {
1701                mk_tid_release(skb, chan, tid);
1702                t4_ofld_send(adap, skb);
1703        } else
1704                cxgb4_queue_tid_release(t, chan, tid);
1705}
1706EXPORT_SYMBOL(cxgb4_remove_tid);
1707
1708/*
1709 * Allocate and initialize the TID tables.  Returns 0 on success.
1710 */
1711static int tid_init(struct tid_info *t)
1712{
1713        size_t size;
1714        unsigned int stid_bmap_size;
1715        unsigned int natids = t->natids;
1716        struct adapter *adap = container_of(t, struct adapter, tids);
1717
1718        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1719        size = t->ntids * sizeof(*t->tid_tab) +
1720               natids * sizeof(*t->atid_tab) +
1721               t->nstids * sizeof(*t->stid_tab) +
1722               t->nsftids * sizeof(*t->stid_tab) +
1723               stid_bmap_size * sizeof(long) +
1724               t->nftids * sizeof(*t->ftid_tab) +
1725               t->nsftids * sizeof(*t->ftid_tab);
1726
1727        t->tid_tab = t4_alloc_mem(size);
1728        if (!t->tid_tab)
1729                return -ENOMEM;
1730
1731        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1732        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1733        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1734        t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1735        spin_lock_init(&t->stid_lock);
1736        spin_lock_init(&t->atid_lock);
1737
1738        t->stids_in_use = 0;
1739        t->sftids_in_use = 0;
1740        t->afree = NULL;
1741        t->atids_in_use = 0;
1742        atomic_set(&t->tids_in_use, 0);
1743        atomic_set(&t->hash_tids_in_use, 0);
1744
1745        /* Setup the free list for atid_tab and clear the stid bitmap. */
1746        if (natids) {
1747                while (--natids)
1748                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1749                t->afree = t->atid_tab;
1750        }
1751        bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1752        /* Reserve stid 0 for T4/T5 adapters */
1753        if (!t->stid_base &&
1754            (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1755                __set_bit(0, t->stid_bmap);
1756
1757        return 0;
1758}
1759
1760/**
1761 *      cxgb4_create_server - create an IP server
1762 *      @dev: the device
1763 *      @stid: the server TID
1764 *      @sip: local IP address to bind server to
1765 *      @sport: the server's TCP port
1766 *      @queue: queue to direct messages from this server to
1767 *
1768 *      Create an IP server for the given port and address.
1769 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1770 */
1771int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1772                        __be32 sip, __be16 sport, __be16 vlan,
1773                        unsigned int queue)
1774{
1775        unsigned int chan;
1776        struct sk_buff *skb;
1777        struct adapter *adap;
1778        struct cpl_pass_open_req *req;
1779        int ret;
1780
1781        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1782        if (!skb)
1783                return -ENOMEM;
1784
1785        adap = netdev2adap(dev);
1786        req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1787        INIT_TP_WR(req, 0);
1788        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1789        req->local_port = sport;
1790        req->peer_port = htons(0);
1791        req->local_ip = sip;
1792        req->peer_ip = htonl(0);
1793        chan = rxq_to_chan(&adap->sge, queue);
1794        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1795        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1796                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1797        ret = t4_mgmt_tx(adap, skb);
1798        return net_xmit_eval(ret);
1799}
1800EXPORT_SYMBOL(cxgb4_create_server);
1801
1802/*      cxgb4_create_server6 - create an IPv6 server
1803 *      @dev: the device
1804 *      @stid: the server TID
1805 *      @sip: local IPv6 address to bind server to
1806 *      @sport: the server's TCP port
1807 *      @queue: queue to direct messages from this server to
1808 *
1809 *      Create an IPv6 server for the given port and address.
1810 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1811 */
1812int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1813                         const struct in6_addr *sip, __be16 sport,
1814                         unsigned int queue)
1815{
1816        unsigned int chan;
1817        struct sk_buff *skb;
1818        struct adapter *adap;
1819        struct cpl_pass_open_req6 *req;
1820        int ret;
1821
1822        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1823        if (!skb)
1824                return -ENOMEM;
1825
1826        adap = netdev2adap(dev);
1827        req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1828        INIT_TP_WR(req, 0);
1829        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1830        req->local_port = sport;
1831        req->peer_port = htons(0);
1832        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1833        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1834        req->peer_ip_hi = cpu_to_be64(0);
1835        req->peer_ip_lo = cpu_to_be64(0);
1836        chan = rxq_to_chan(&adap->sge, queue);
1837        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1838        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1839                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1840        ret = t4_mgmt_tx(adap, skb);
1841        return net_xmit_eval(ret);
1842}
1843EXPORT_SYMBOL(cxgb4_create_server6);
1844
1845int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1846                        unsigned int queue, bool ipv6)
1847{
1848        struct sk_buff *skb;
1849        struct adapter *adap;
1850        struct cpl_close_listsvr_req *req;
1851        int ret;
1852
1853        adap = netdev2adap(dev);
1854
1855        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1856        if (!skb)
1857                return -ENOMEM;
1858
1859        req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1860        INIT_TP_WR(req, 0);
1861        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1862        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1863                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1864        ret = t4_mgmt_tx(adap, skb);
1865        return net_xmit_eval(ret);
1866}
1867EXPORT_SYMBOL(cxgb4_remove_server);
1868
1869/**
1870 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1871 *      @mtus: the HW MTU table
1872 *      @mtu: the target MTU
1873 *      @idx: index of selected entry in the MTU table
1874 *
1875 *      Returns the index and the value in the HW MTU table that is closest to
1876 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1877 *      table, in which case that smallest available value is selected.
1878 */
1879unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1880                            unsigned int *idx)
1881{
1882        unsigned int i = 0;
1883
1884        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1885                ++i;
1886        if (idx)
1887                *idx = i;
1888        return mtus[i];
1889}
1890EXPORT_SYMBOL(cxgb4_best_mtu);
1891
1892/**
1893 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1894 *     @mtus: the HW MTU table
1895 *     @header_size: Header Size
1896 *     @data_size_max: maximum Data Segment Size
1897 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1898 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1899 *
1900 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1901 *     MTU Table based solely on a Maximum MTU parameter, we break that
1902 *     parameter up into a Header Size and Maximum Data Segment Size, and
1903 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1904 *     the Hardware MTU Table which will result in a Data Segment Size with
1905 *     the requested alignment _and_ that MTU isn't "too far" from the
1906 *     closest MTU, then we'll return that rather than the closest MTU.
1907 */
1908unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1909                                    unsigned short header_size,
1910                                    unsigned short data_size_max,
1911                                    unsigned short data_size_align,
1912                                    unsigned int *mtu_idxp)
1913{
1914        unsigned short max_mtu = header_size + data_size_max;
1915        unsigned short data_size_align_mask = data_size_align - 1;
1916        int mtu_idx, aligned_mtu_idx;
1917
1918        /* Scan the MTU Table till we find an MTU which is larger than our
1919         * Maximum MTU or we reach the end of the table.  Along the way,
1920         * record the last MTU found, if any, which will result in a Data
1921         * Segment Length matching the requested alignment.
1922         */
1923        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1924                unsigned short data_size = mtus[mtu_idx] - header_size;
1925
1926                /* If this MTU minus the Header Size would result in a
1927                 * Data Segment Size of the desired alignment, remember it.
1928                 */
1929                if ((data_size & data_size_align_mask) == 0)
1930                        aligned_mtu_idx = mtu_idx;
1931
1932                /* If we're not at the end of the Hardware MTU Table and the
1933                 * next element is larger than our Maximum MTU, drop out of
1934                 * the loop.
1935                 */
1936                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1937                        break;
1938        }
1939
1940        /* If we fell out of the loop because we ran to the end of the table,
1941         * then we just have to use the last [largest] entry.
1942         */
1943        if (mtu_idx == NMTUS)
1944                mtu_idx--;
1945
1946        /* If we found an MTU which resulted in the requested Data Segment
1947         * Length alignment and that's "not far" from the largest MTU which is
1948         * less than or equal to the maximum MTU, then use that.
1949         */
1950        if (aligned_mtu_idx >= 0 &&
1951            mtu_idx - aligned_mtu_idx <= 1)
1952                mtu_idx = aligned_mtu_idx;
1953
1954        /* If the caller has passed in an MTU Index pointer, pass the
1955         * MTU Index back.  Return the MTU value.
1956         */
1957        if (mtu_idxp)
1958                *mtu_idxp = mtu_idx;
1959        return mtus[mtu_idx];
1960}
1961EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1962
1963/**
1964 *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1965 *      @chip: chip type
1966 *      @viid: VI id of the given port
1967 *
1968 *      Return the SMT index for this VI.
1969 */
1970unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1971{
1972        /* In T4/T5, SMT contains 256 SMAC entries organized in
1973         * 128 rows of 2 entries each.
1974         * In T6, SMT contains 256 SMAC entries in 256 rows.
1975         * TODO: The below code needs to be updated when we add support
1976         * for 256 VFs.
1977         */
1978        if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1979                return ((viid & 0x7f) << 1);
1980        else
1981                return (viid & 0x7f);
1982}
1983EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1984
1985/**
1986 *      cxgb4_port_chan - get the HW channel of a port
1987 *      @dev: the net device for the port
1988 *
1989 *      Return the HW Tx channel of the given port.
1990 */
1991unsigned int cxgb4_port_chan(const struct net_device *dev)
1992{
1993        return netdev2pinfo(dev)->tx_chan;
1994}
1995EXPORT_SYMBOL(cxgb4_port_chan);
1996
1997unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1998{
1999        struct adapter *adap = netdev2adap(dev);
2000        u32 v1, v2, lp_count, hp_count;
2001
2002        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2003        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2004        if (is_t4(adap->params.chip)) {
2005                lp_count = LP_COUNT_G(v1);
2006                hp_count = HP_COUNT_G(v1);
2007        } else {
2008                lp_count = LP_COUNT_T5_G(v1);
2009                hp_count = HP_COUNT_T5_G(v2);
2010        }
2011        return lpfifo ? lp_count : hp_count;
2012}
2013EXPORT_SYMBOL(cxgb4_dbfifo_count);
2014
2015/**
2016 *      cxgb4_port_viid - get the VI id of a port
2017 *      @dev: the net device for the port
2018 *
2019 *      Return the VI id of the given port.
2020 */
2021unsigned int cxgb4_port_viid(const struct net_device *dev)
2022{
2023        return netdev2pinfo(dev)->viid;
2024}
2025EXPORT_SYMBOL(cxgb4_port_viid);
2026
2027/**
2028 *      cxgb4_port_idx - get the index of a port
2029 *      @dev: the net device for the port
2030 *
2031 *      Return the index of the given port.
2032 */
2033unsigned int cxgb4_port_idx(const struct net_device *dev)
2034{
2035        return netdev2pinfo(dev)->port_id;
2036}
2037EXPORT_SYMBOL(cxgb4_port_idx);
2038
2039void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2040                         struct tp_tcp_stats *v6)
2041{
2042        struct adapter *adap = pci_get_drvdata(pdev);
2043
2044        spin_lock(&adap->stats_lock);
2045        t4_tp_get_tcp_stats(adap, v4, v6);
2046        spin_unlock(&adap->stats_lock);
2047}
2048EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2049
2050void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2051                      const unsigned int *pgsz_order)
2052{
2053        struct adapter *adap = netdev2adap(dev);
2054
2055        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2056        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2057                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2058                     HPZ3_V(pgsz_order[3]));
2059}
2060EXPORT_SYMBOL(cxgb4_iscsi_init);
2061
2062int cxgb4_flush_eq_cache(struct net_device *dev)
2063{
2064        struct adapter *adap = netdev2adap(dev);
2065
2066        return t4_sge_ctxt_flush(adap, adap->mbox);
2067}
2068EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2069
2070static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2071{
2072        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2073        __be64 indices;
2074        int ret;
2075
2076        spin_lock(&adap->win0_lock);
2077        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2078                           sizeof(indices), (__be32 *)&indices,
2079                           T4_MEMORY_READ);
2080        spin_unlock(&adap->win0_lock);
2081        if (!ret) {
2082                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2083                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2084        }
2085        return ret;
2086}
2087
2088int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2089                        u16 size)
2090{
2091        struct adapter *adap = netdev2adap(dev);
2092        u16 hw_pidx, hw_cidx;
2093        int ret;
2094
2095        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2096        if (ret)
2097                goto out;
2098
2099        if (pidx != hw_pidx) {
2100                u16 delta;
2101                u32 val;
2102
2103                if (pidx >= hw_pidx)
2104                        delta = pidx - hw_pidx;
2105                else
2106                        delta = size - hw_pidx + pidx;
2107
2108                if (is_t4(adap->params.chip))
2109                        val = PIDX_V(delta);
2110                else
2111                        val = PIDX_T5_V(delta);
2112                wmb();
2113                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2114                             QID_V(qid) | val);
2115        }
2116out:
2117        return ret;
2118}
2119EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2120
2121int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2122{
2123        struct adapter *adap;
2124        u32 offset, memtype, memaddr;
2125        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2126        u32 edc0_end, edc1_end, mc0_end, mc1_end;
2127        int ret;
2128
2129        adap = netdev2adap(dev);
2130
2131        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2132
2133        /* Figure out where the offset lands in the Memory Type/Address scheme.
2134         * This code assumes that the memory is laid out starting at offset 0
2135         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2136         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2137         * MC0, and some have both MC0 and MC1.
2138         */
2139        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2140        edc0_size = EDRAM0_SIZE_G(size) << 20;
2141        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2142        edc1_size = EDRAM1_SIZE_G(size) << 20;
2143        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2144        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2145
2146        edc0_end = edc0_size;
2147        edc1_end = edc0_end + edc1_size;
2148        mc0_end = edc1_end + mc0_size;
2149
2150        if (offset < edc0_end) {
2151                memtype = MEM_EDC0;
2152                memaddr = offset;
2153        } else if (offset < edc1_end) {
2154                memtype = MEM_EDC1;
2155                memaddr = offset - edc0_end;
2156        } else {
2157                if (offset < mc0_end) {
2158                        memtype = MEM_MC0;
2159                        memaddr = offset - edc1_end;
2160                } else if (is_t5(adap->params.chip)) {
2161                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2162                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2163                        mc1_end = mc0_end + mc1_size;
2164                        if (offset < mc1_end) {
2165                                memtype = MEM_MC1;
2166                                memaddr = offset - mc0_end;
2167                        } else {
2168                                /* offset beyond the end of any memory */
2169                                goto err;
2170                        }
2171                } else {
2172                        /* T4/T6 only has a single memory channel */
2173                        goto err;
2174                }
2175        }
2176
2177        spin_lock(&adap->win0_lock);
2178        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2179        spin_unlock(&adap->win0_lock);
2180        return ret;
2181
2182err:
2183        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2184                stag, offset);
2185        return -EINVAL;
2186}
2187EXPORT_SYMBOL(cxgb4_read_tpte);
2188
2189u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2190{
2191        u32 hi, lo;
2192        struct adapter *adap;
2193
2194        adap = netdev2adap(dev);
2195        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2196        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2197
2198        return ((u64)hi << 32) | (u64)lo;
2199}
2200EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2201
2202int cxgb4_bar2_sge_qregs(struct net_device *dev,
2203                         unsigned int qid,
2204                         enum cxgb4_bar2_qtype qtype,
2205                         int user,
2206                         u64 *pbar2_qoffset,
2207                         unsigned int *pbar2_qid)
2208{
2209        return t4_bar2_sge_qregs(netdev2adap(dev),
2210                                 qid,
2211                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2212                                  ? T4_BAR2_QTYPE_EGRESS
2213                                  : T4_BAR2_QTYPE_INGRESS),
2214                                 user,
2215                                 pbar2_qoffset,
2216                                 pbar2_qid);
2217}
2218EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2219
2220static struct pci_driver cxgb4_driver;
2221
2222static void check_neigh_update(struct neighbour *neigh)
2223{
2224        const struct device *parent;
2225        const struct net_device *netdev = neigh->dev;
2226
2227        if (netdev->priv_flags & IFF_802_1Q_VLAN)
2228                netdev = vlan_dev_real_dev(netdev);
2229        parent = netdev->dev.parent;
2230        if (parent && parent->driver == &cxgb4_driver.driver)
2231                t4_l2t_update(dev_get_drvdata(parent), neigh);
2232}
2233
2234static int netevent_cb(struct notifier_block *nb, unsigned long event,
2235                       void *data)
2236{
2237        switch (event) {
2238        case NETEVENT_NEIGH_UPDATE:
2239                check_neigh_update(data);
2240                break;
2241        case NETEVENT_REDIRECT:
2242        default:
2243                break;
2244        }
2245        return 0;
2246}
2247
2248static bool netevent_registered;
2249static struct notifier_block cxgb4_netevent_nb = {
2250        .notifier_call = netevent_cb
2251};
2252
2253static void drain_db_fifo(struct adapter *adap, int usecs)
2254{
2255        u32 v1, v2, lp_count, hp_count;
2256
2257        do {
2258                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2259                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2260                if (is_t4(adap->params.chip)) {
2261                        lp_count = LP_COUNT_G(v1);
2262                        hp_count = HP_COUNT_G(v1);
2263                } else {
2264                        lp_count = LP_COUNT_T5_G(v1);
2265                        hp_count = HP_COUNT_T5_G(v2);
2266                }
2267
2268                if (lp_count == 0 && hp_count == 0)
2269                        break;
2270                set_current_state(TASK_UNINTERRUPTIBLE);
2271                schedule_timeout(usecs_to_jiffies(usecs));
2272        } while (1);
2273}
2274
2275static void disable_txq_db(struct sge_txq *q)
2276{
2277        unsigned long flags;
2278
2279        spin_lock_irqsave(&q->db_lock, flags);
2280        q->db_disabled = 1;
2281        spin_unlock_irqrestore(&q->db_lock, flags);
2282}
2283
2284static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2285{
2286        spin_lock_irq(&q->db_lock);
2287        if (q->db_pidx_inc) {
2288                /* Make sure that all writes to the TX descriptors
2289                 * are committed before we tell HW about them.
2290                 */
2291                wmb();
2292                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2293                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2294                q->db_pidx_inc = 0;
2295        }
2296        q->db_disabled = 0;
2297        spin_unlock_irq(&q->db_lock);
2298}
2299
2300static void disable_dbs(struct adapter *adap)
2301{
2302        int i;
2303
2304        for_each_ethrxq(&adap->sge, i)
2305                disable_txq_db(&adap->sge.ethtxq[i].q);
2306        for_each_iscsirxq(&adap->sge, i)
2307                disable_txq_db(&adap->sge.ofldtxq[i].q);
2308        for_each_port(adap, i)
2309                disable_txq_db(&adap->sge.ctrlq[i].q);
2310}
2311
2312static void enable_dbs(struct adapter *adap)
2313{
2314        int i;
2315
2316        for_each_ethrxq(&adap->sge, i)
2317                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2318        for_each_iscsirxq(&adap->sge, i)
2319                enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2320        for_each_port(adap, i)
2321                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2322}
2323
2324static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2325{
2326        if (adap->uld_handle[CXGB4_ULD_RDMA])
2327                ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2328                                cmd);
2329}
2330
2331static void process_db_full(struct work_struct *work)
2332{
2333        struct adapter *adap;
2334
2335        adap = container_of(work, struct adapter, db_full_task);
2336
2337        drain_db_fifo(adap, dbfifo_drain_delay);
2338        enable_dbs(adap);
2339        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2340        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2341                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2342                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2343                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2344        else
2345                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2346                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2347}
2348
2349static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2350{
2351        u16 hw_pidx, hw_cidx;
2352        int ret;
2353
2354        spin_lock_irq(&q->db_lock);
2355        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2356        if (ret)
2357                goto out;
2358        if (q->db_pidx != hw_pidx) {
2359                u16 delta;
2360                u32 val;
2361
2362                if (q->db_pidx >= hw_pidx)
2363                        delta = q->db_pidx - hw_pidx;
2364                else
2365                        delta = q->size - hw_pidx + q->db_pidx;
2366
2367                if (is_t4(adap->params.chip))
2368                        val = PIDX_V(delta);
2369                else
2370                        val = PIDX_T5_V(delta);
2371                wmb();
2372                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2373                             QID_V(q->cntxt_id) | val);
2374        }
2375out:
2376        q->db_disabled = 0;
2377        q->db_pidx_inc = 0;
2378        spin_unlock_irq(&q->db_lock);
2379        if (ret)
2380                CH_WARN(adap, "DB drop recovery failed.\n");
2381}
2382static void recover_all_queues(struct adapter *adap)
2383{
2384        int i;
2385
2386        for_each_ethrxq(&adap->sge, i)
2387                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2388        for_each_iscsirxq(&adap->sge, i)
2389                sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2390        for_each_port(adap, i)
2391                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2392}
2393
2394static void process_db_drop(struct work_struct *work)
2395{
2396        struct adapter *adap;
2397
2398        adap = container_of(work, struct adapter, db_drop_task);
2399
2400        if (is_t4(adap->params.chip)) {
2401                drain_db_fifo(adap, dbfifo_drain_delay);
2402                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2403                drain_db_fifo(adap, dbfifo_drain_delay);
2404                recover_all_queues(adap);
2405                drain_db_fifo(adap, dbfifo_drain_delay);
2406                enable_dbs(adap);
2407                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2408        } else if (is_t5(adap->params.chip)) {
2409                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2410                u16 qid = (dropped_db >> 15) & 0x1ffff;
2411                u16 pidx_inc = dropped_db & 0x1fff;
2412                u64 bar2_qoffset;
2413                unsigned int bar2_qid;
2414                int ret;
2415
2416                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2417                                        0, &bar2_qoffset, &bar2_qid);
2418                if (ret)
2419                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2420                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2421                else
2422                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2423                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2424
2425                /* Re-enable BAR2 WC */
2426                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2427        }
2428
2429        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2430                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2431}
2432
2433void t4_db_full(struct adapter *adap)
2434{
2435        if (is_t4(adap->params.chip)) {
2436                disable_dbs(adap);
2437                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2438                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2439                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2440                queue_work(adap->workq, &adap->db_full_task);
2441        }
2442}
2443
2444void t4_db_dropped(struct adapter *adap)
2445{
2446        if (is_t4(adap->params.chip)) {
2447                disable_dbs(adap);
2448                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2449        }
2450        queue_work(adap->workq, &adap->db_drop_task);
2451}
2452
2453static void uld_attach(struct adapter *adap, unsigned int uld)
2454{
2455        void *handle;
2456        struct cxgb4_lld_info lli;
2457        unsigned short i;
2458
2459        lli.pdev = adap->pdev;
2460        lli.pf = adap->pf;
2461        lli.l2t = adap->l2t;
2462        lli.tids = &adap->tids;
2463        lli.ports = adap->port;
2464        lli.vr = &adap->vres;
2465        lli.mtus = adap->params.mtus;
2466        if (uld == CXGB4_ULD_RDMA) {
2467                lli.rxq_ids = adap->sge.rdma_rxq;
2468                lli.ciq_ids = adap->sge.rdma_ciq;
2469                lli.nrxq = adap->sge.rdmaqs;
2470                lli.nciq = adap->sge.rdmaciqs;
2471        } else if (uld == CXGB4_ULD_ISCSI) {
2472                lli.rxq_ids = adap->sge.iscsi_rxq;
2473                lli.nrxq = adap->sge.iscsiqsets;
2474        } else if (uld == CXGB4_ULD_ISCSIT) {
2475                lli.rxq_ids = adap->sge.iscsit_rxq;
2476                lli.nrxq = adap->sge.niscsitq;
2477        }
2478        lli.ntxq = adap->sge.iscsiqsets;
2479        lli.nchan = adap->params.nports;
2480        lli.nports = adap->params.nports;
2481        lli.wr_cred = adap->params.ofldq_wr_cred;
2482        lli.adapter_type = adap->params.chip;
2483        lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2484        lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2485        lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2486        lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2487        lli.iscsi_ppm = &adap->iscsi_ppm;
2488        lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2489        lli.udb_density = 1 << adap->params.sge.eq_qpp;
2490        lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2491        lli.filt_mode = adap->params.tp.vlan_pri_map;
2492        /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2493        for (i = 0; i < NCHAN; i++)
2494                lli.tx_modq[i] = i;
2495        lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2496        lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2497        lli.fw_vers = adap->params.fw_vers;
2498        lli.dbfifo_int_thresh = dbfifo_int_thresh;
2499        lli.sge_ingpadboundary = adap->sge.fl_align;
2500        lli.sge_egrstatuspagesize = adap->sge.stat_len;
2501        lli.sge_pktshift = adap->sge.pktshift;
2502        lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2503        lli.max_ordird_qp = adap->params.max_ordird_qp;
2504        lli.max_ird_adapter = adap->params.max_ird_adapter;
2505        lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2506        lli.nodeid = dev_to_node(adap->pdev_dev);
2507
2508        handle = ulds[uld].add(&lli);
2509        if (IS_ERR(handle)) {
2510                dev_warn(adap->pdev_dev,
2511                         "could not attach to the %s driver, error %ld\n",
2512                         uld_str[uld], PTR_ERR(handle));
2513                return;
2514        }
2515
2516        adap->uld_handle[uld] = handle;
2517
2518        if (!netevent_registered) {
2519                register_netevent_notifier(&cxgb4_netevent_nb);
2520                netevent_registered = true;
2521        }
2522
2523        if (adap->flags & FULL_INIT_DONE)
2524                ulds[uld].state_change(handle, CXGB4_STATE_UP);
2525}
2526
2527static void attach_ulds(struct adapter *adap)
2528{
2529        unsigned int i;
2530
2531        spin_lock(&adap_rcu_lock);
2532        list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2533        spin_unlock(&adap_rcu_lock);
2534
2535        mutex_lock(&uld_mutex);
2536        list_add_tail(&adap->list_node, &adapter_list);
2537        for (i = 0; i < CXGB4_ULD_MAX; i++)
2538                if (ulds[i].add)
2539                        uld_attach(adap, i);
2540        mutex_unlock(&uld_mutex);
2541}
2542
2543static void detach_ulds(struct adapter *adap)
2544{
2545        unsigned int i;
2546
2547        mutex_lock(&uld_mutex);
2548        list_del(&adap->list_node);
2549        for (i = 0; i < CXGB4_ULD_MAX; i++)
2550                if (adap->uld_handle[i]) {
2551                        ulds[i].state_change(adap->uld_handle[i],
2552                                             CXGB4_STATE_DETACH);
2553                        adap->uld_handle[i] = NULL;
2554                }
2555        if (netevent_registered && list_empty(&adapter_list)) {
2556                unregister_netevent_notifier(&cxgb4_netevent_nb);
2557                netevent_registered = false;
2558        }
2559        mutex_unlock(&uld_mutex);
2560
2561        spin_lock(&adap_rcu_lock);
2562        list_del_rcu(&adap->rcu_node);
2563        spin_unlock(&adap_rcu_lock);
2564}
2565
2566static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2567{
2568        unsigned int i;
2569
2570        mutex_lock(&uld_mutex);
2571        for (i = 0; i < CXGB4_ULD_MAX; i++)
2572                if (adap->uld_handle[i])
2573                        ulds[i].state_change(adap->uld_handle[i], new_state);
2574        mutex_unlock(&uld_mutex);
2575}
2576
2577/**
2578 *      cxgb4_register_uld - register an upper-layer driver
2579 *      @type: the ULD type
2580 *      @p: the ULD methods
2581 *
2582 *      Registers an upper-layer driver with this driver and notifies the ULD
2583 *      about any presently available devices that support its type.  Returns
2584 *      %-EBUSY if a ULD of the same type is already registered.
2585 */
2586int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2587{
2588        int ret = 0;
2589        struct adapter *adap;
2590
2591        if (type >= CXGB4_ULD_MAX)
2592                return -EINVAL;
2593        mutex_lock(&uld_mutex);
2594        if (ulds[type].add) {
2595                ret = -EBUSY;
2596                goto out;
2597        }
2598        ulds[type] = *p;
2599        list_for_each_entry(adap, &adapter_list, list_node)
2600                uld_attach(adap, type);
2601out:    mutex_unlock(&uld_mutex);
2602        return ret;
2603}
2604EXPORT_SYMBOL(cxgb4_register_uld);
2605
2606/**
2607 *      cxgb4_unregister_uld - unregister an upper-layer driver
2608 *      @type: the ULD type
2609 *
2610 *      Unregisters an existing upper-layer driver.
2611 */
2612int cxgb4_unregister_uld(enum cxgb4_uld type)
2613{
2614        struct adapter *adap;
2615
2616        if (type >= CXGB4_ULD_MAX)
2617                return -EINVAL;
2618        mutex_lock(&uld_mutex);
2619        list_for_each_entry(adap, &adapter_list, list_node)
2620                adap->uld_handle[type] = NULL;
2621        ulds[type].add = NULL;
2622        mutex_unlock(&uld_mutex);
2623        return 0;
2624}
2625EXPORT_SYMBOL(cxgb4_unregister_uld);
2626
2627#if IS_ENABLED(CONFIG_IPV6)
2628static int cxgb4_inet6addr_handler(struct notifier_block *this,
2629                                   unsigned long event, void *data)
2630{
2631        struct inet6_ifaddr *ifa = data;
2632        struct net_device *event_dev = ifa->idev->dev;
2633        const struct device *parent = NULL;
2634#if IS_ENABLED(CONFIG_BONDING)
2635        struct adapter *adap;
2636#endif
2637        if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2638                event_dev = vlan_dev_real_dev(event_dev);
2639#if IS_ENABLED(CONFIG_BONDING)
2640        if (event_dev->flags & IFF_MASTER) {
2641                list_for_each_entry(adap, &adapter_list, list_node) {
2642                        switch (event) {
2643                        case NETDEV_UP:
2644                                cxgb4_clip_get(adap->port[0],
2645                                               (const u32 *)ifa, 1);
2646                                break;
2647                        case NETDEV_DOWN:
2648                                cxgb4_clip_release(adap->port[0],
2649                                                   (const u32 *)ifa, 1);
2650                                break;
2651                        default:
2652                                break;
2653                        }
2654                }
2655                return NOTIFY_OK;
2656        }
2657#endif
2658
2659        if (event_dev)
2660                parent = event_dev->dev.parent;
2661
2662        if (parent && parent->driver == &cxgb4_driver.driver) {
2663                switch (event) {
2664                case NETDEV_UP:
2665                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2666                        break;
2667                case NETDEV_DOWN:
2668                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2669                        break;
2670                default:
2671                        break;
2672                }
2673        }
2674        return NOTIFY_OK;
2675}
2676
2677static bool inet6addr_registered;
2678static struct notifier_block cxgb4_inet6addr_notifier = {
2679        .notifier_call = cxgb4_inet6addr_handler
2680};
2681
2682static void update_clip(const struct adapter *adap)
2683{
2684        int i;
2685        struct net_device *dev;
2686        int ret;
2687
2688        rcu_read_lock();
2689
2690        for (i = 0; i < MAX_NPORTS; i++) {
2691                dev = adap->port[i];
2692                ret = 0;
2693
2694                if (dev)
2695                        ret = cxgb4_update_root_dev_clip(dev);
2696
2697                if (ret < 0)
2698                        break;
2699        }
2700        rcu_read_unlock();
2701}
2702#endif /* IS_ENABLED(CONFIG_IPV6) */
2703
2704/**
2705 *      cxgb_up - enable the adapter
2706 *      @adap: adapter being enabled
2707 *
2708 *      Called when the first port is enabled, this function performs the
2709 *      actions necessary to make an adapter operational, such as completing
2710 *      the initialization of HW modules, and enabling interrupts.
2711 *
2712 *      Must be called with the rtnl lock held.
2713 */
2714static int cxgb_up(struct adapter *adap)
2715{
2716        int err;
2717
2718        err = setup_sge_queues(adap);
2719        if (err)
2720                goto out;
2721        err = setup_rss(adap);
2722        if (err)
2723                goto freeq;
2724
2725        if (adap->flags & USING_MSIX) {
2726                name_msix_vecs(adap);
2727                err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2728                                  adap->msix_info[0].desc, adap);
2729                if (err)
2730                        goto irq_err;
2731
2732                err = request_msix_queue_irqs(adap);
2733                if (err) {
2734                        free_irq(adap->msix_info[0].vec, adap);
2735                        goto irq_err;
2736                }
2737        } else {
2738                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2739                                  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2740                                  adap->port[0]->name, adap);
2741                if (err)
2742                        goto irq_err;
2743        }
2744        enable_rx(adap);
2745        t4_sge_start(adap);
2746        t4_intr_enable(adap);
2747        adap->flags |= FULL_INIT_DONE;
2748        notify_ulds(adap, CXGB4_STATE_UP);
2749#if IS_ENABLED(CONFIG_IPV6)
2750        update_clip(adap);
2751#endif
2752        /* Initialize hash mac addr list*/
2753        INIT_LIST_HEAD(&adap->mac_hlist);
2754 out:
2755        return err;
2756 irq_err:
2757        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2758 freeq:
2759        t4_free_sge_resources(adap);
2760        goto out;
2761}
2762
2763static void cxgb_down(struct adapter *adapter)
2764{
2765        cancel_work_sync(&adapter->tid_release_task);
2766        cancel_work_sync(&adapter->db_full_task);
2767        cancel_work_sync(&adapter->db_drop_task);
2768        adapter->tid_release_task_busy = false;
2769        adapter->tid_release_head = NULL;
2770
2771        t4_sge_stop(adapter);
2772        t4_free_sge_resources(adapter);
2773        adapter->flags &= ~FULL_INIT_DONE;
2774}
2775
2776/*
2777 * net_device operations
2778 */
2779static int cxgb_open(struct net_device *dev)
2780{
2781        int err;
2782        struct port_info *pi = netdev_priv(dev);
2783        struct adapter *adapter = pi->adapter;
2784
2785        netif_carrier_off(dev);
2786
2787        if (!(adapter->flags & FULL_INIT_DONE)) {
2788                err = cxgb_up(adapter);
2789                if (err < 0)
2790                        return err;
2791        }
2792
2793        err = link_start(dev);
2794        if (!err)
2795                netif_tx_start_all_queues(dev);
2796        return err;
2797}
2798
2799static int cxgb_close(struct net_device *dev)
2800{
2801        struct port_info *pi = netdev_priv(dev);
2802        struct adapter *adapter = pi->adapter;
2803
2804        netif_tx_stop_all_queues(dev);
2805        netif_carrier_off(dev);
2806        return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2807}
2808
2809/* Return an error number if the indicated filter isn't writable ...
2810 */
2811static int writable_filter(struct filter_entry *f)
2812{
2813        if (f->locked)
2814                return -EPERM;
2815        if (f->pending)
2816                return -EBUSY;
2817
2818        return 0;
2819}
2820
2821/* Delete the filter at the specified index (if valid).  The checks for all
2822 * the common problems with doing this like the filter being locked, currently
2823 * pending in another operation, etc.
2824 */
2825static int delete_filter(struct adapter *adapter, unsigned int fidx)
2826{
2827        struct filter_entry *f;
2828        int ret;
2829
2830        if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2831                return -EINVAL;
2832
2833        f = &adapter->tids.ftid_tab[fidx];
2834        ret = writable_filter(f);
2835        if (ret)
2836                return ret;
2837        if (f->valid)
2838                return del_filter_wr(adapter, fidx);
2839
2840        return 0;
2841}
2842
2843int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2844                __be32 sip, __be16 sport, __be16 vlan,
2845                unsigned int queue, unsigned char port, unsigned char mask)
2846{
2847        int ret;
2848        struct filter_entry *f;
2849        struct adapter *adap;
2850        int i;
2851        u8 *val;
2852
2853        adap = netdev2adap(dev);
2854
2855        /* Adjust stid to correct filter index */
2856        stid -= adap->tids.sftid_base;
2857        stid += adap->tids.nftids;
2858
2859        /* Check to make sure the filter requested is writable ...
2860         */
2861        f = &adap->tids.ftid_tab[stid];
2862        ret = writable_filter(f);
2863        if (ret)
2864                return ret;
2865
2866        /* Clear out any old resources being used by the filter before
2867         * we start constructing the new filter.
2868         */
2869        if (f->valid)
2870                clear_filter(adap, f);
2871
2872        /* Clear out filter specifications */
2873        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2874        f->fs.val.lport = cpu_to_be16(sport);
2875        f->fs.mask.lport  = ~0;
2876        val = (u8 *)&sip;
2877        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2878                for (i = 0; i < 4; i++) {
2879                        f->fs.val.lip[i] = val[i];
2880                        f->fs.mask.lip[i] = ~0;
2881                }
2882                if (adap->params.tp.vlan_pri_map & PORT_F) {
2883                        f->fs.val.iport = port;
2884                        f->fs.mask.iport = mask;
2885                }
2886        }
2887
2888        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2889                f->fs.val.proto = IPPROTO_TCP;
2890                f->fs.mask.proto = ~0;
2891        }
2892
2893        f->fs.dirsteer = 1;
2894        f->fs.iq = queue;
2895        /* Mark filter as locked */
2896        f->locked = 1;
2897        f->fs.rpttid = 1;
2898
2899        ret = set_filter_wr(adap, stid);
2900        if (ret) {
2901                clear_filter(adap, f);
2902                return ret;
2903        }
2904
2905        return 0;
2906}
2907EXPORT_SYMBOL(cxgb4_create_server_filter);
2908
2909int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2910                unsigned int queue, bool ipv6)
2911{
2912        int ret;
2913        struct filter_entry *f;
2914        struct adapter *adap;
2915
2916        adap = netdev2adap(dev);
2917
2918        /* Adjust stid to correct filter index */
2919        stid -= adap->tids.sftid_base;
2920        stid += adap->tids.nftids;
2921
2922        f = &adap->tids.ftid_tab[stid];
2923        /* Unlock the filter */
2924        f->locked = 0;
2925
2926        ret = delete_filter(adap, stid);
2927        if (ret)
2928                return ret;
2929
2930        return 0;
2931}
2932EXPORT_SYMBOL(cxgb4_remove_server_filter);
2933
2934static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2935                                                struct rtnl_link_stats64 *ns)
2936{
2937        struct port_stats stats;
2938        struct port_info *p = netdev_priv(dev);
2939        struct adapter *adapter = p->adapter;
2940
2941        /* Block retrieving statistics during EEH error
2942         * recovery. Otherwise, the recovery might fail
2943         * and the PCI device will be removed permanently
2944         */
2945        spin_lock(&adapter->stats_lock);
2946        if (!netif_device_present(dev)) {
2947                spin_unlock(&adapter->stats_lock);
2948                return ns;
2949        }
2950        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2951                                 &p->stats_base);
2952        spin_unlock(&adapter->stats_lock);
2953
2954        ns->tx_bytes   = stats.tx_octets;
2955        ns->tx_packets = stats.tx_frames;
2956        ns->rx_bytes   = stats.rx_octets;
2957        ns->rx_packets = stats.rx_frames;
2958        ns->multicast  = stats.rx_mcast_frames;
2959
2960        /* detailed rx_errors */
2961        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2962                               stats.rx_runt;
2963        ns->rx_over_errors   = 0;
2964        ns->rx_crc_errors    = stats.rx_fcs_err;
2965        ns->rx_frame_errors  = stats.rx_symbol_err;
2966        ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2967                               stats.rx_ovflow2 + stats.rx_ovflow3 +
2968                               stats.rx_trunc0 + stats.rx_trunc1 +
2969                               stats.rx_trunc2 + stats.rx_trunc3;
2970        ns->rx_missed_errors = 0;
2971
2972        /* detailed tx_errors */
2973        ns->tx_aborted_errors   = 0;
2974        ns->tx_carrier_errors   = 0;
2975        ns->tx_fifo_errors      = 0;
2976        ns->tx_heartbeat_errors = 0;
2977        ns->tx_window_errors    = 0;
2978
2979        ns->tx_errors = stats.tx_error_frames;
2980        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2981                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2982        return ns;
2983}
2984
2985static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2986{
2987        unsigned int mbox;
2988        int ret = 0, prtad, devad;
2989        struct port_info *pi = netdev_priv(dev);
2990        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2991
2992        switch (cmd) {
2993        case SIOCGMIIPHY:
2994                if (pi->mdio_addr < 0)
2995                        return -EOPNOTSUPP;
2996                data->phy_id = pi->mdio_addr;
2997                break;
2998        case SIOCGMIIREG:
2999        case SIOCSMIIREG:
3000                if (mdio_phy_id_is_c45(data->phy_id)) {
3001                        prtad = mdio_phy_id_prtad(data->phy_id);
3002                        devad = mdio_phy_id_devad(data->phy_id);
3003                } else if (data->phy_id < 32) {
3004                        prtad = data->phy_id;
3005                        devad = 0;
3006                        data->reg_num &= 0x1f;
3007                } else
3008                        return -EINVAL;
3009
3010                mbox = pi->adapter->pf;
3011                if (cmd == SIOCGMIIREG)
3012                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3013                                         data->reg_num, &data->val_out);
3014                else
3015                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3016                                         data->reg_num, data->val_in);
3017                break;
3018        case SIOCGHWTSTAMP:
3019                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3020                                    sizeof(pi->tstamp_config)) ?
3021                        -EFAULT : 0;
3022        case SIOCSHWTSTAMP:
3023                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3024                                   sizeof(pi->tstamp_config)))
3025                        return -EFAULT;
3026
3027                switch (pi->tstamp_config.rx_filter) {
3028                case HWTSTAMP_FILTER_NONE:
3029                        pi->rxtstamp = false;
3030                        break;
3031                case HWTSTAMP_FILTER_ALL:
3032                        pi->rxtstamp = true;
3033                        break;
3034                default:
3035                        pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3036                        return -ERANGE;
3037                }
3038
3039                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3040                                    sizeof(pi->tstamp_config)) ?
3041                        -EFAULT : 0;
3042        default:
3043                return -EOPNOTSUPP;
3044        }
3045        return ret;
3046}
3047
3048static void cxgb_set_rxmode(struct net_device *dev)
3049{
3050        /* unfortunately we can't return errors to the stack */
3051        set_rxmode(dev, -1, false);
3052}
3053
3054static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3055{
3056        int ret;
3057        struct port_info *pi = netdev_priv(dev);
3058
3059        if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3060                return -EINVAL;
3061        ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3062                            -1, -1, -1, true);
3063        if (!ret)
3064                dev->mtu = new_mtu;
3065        return ret;
3066}
3067
3068static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3069{
3070        int ret;
3071        struct sockaddr *addr = p;
3072        struct port_info *pi = netdev_priv(dev);
3073
3074        if (!is_valid_ether_addr(addr->sa_data))
3075                return -EADDRNOTAVAIL;
3076
3077        ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3078                            pi->xact_addr_filt, addr->sa_data, true, true);
3079        if (ret < 0)
3080                return ret;
3081
3082        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3083        pi->xact_addr_filt = ret;
3084        return 0;
3085}
3086
3087#ifdef CONFIG_NET_POLL_CONTROLLER
3088static void cxgb_netpoll(struct net_device *dev)
3089{
3090        struct port_info *pi = netdev_priv(dev);
3091        struct adapter *adap = pi->adapter;
3092
3093        if (adap->flags & USING_MSIX) {
3094                int i;
3095                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3096
3097                for (i = pi->nqsets; i; i--, rx++)
3098                        t4_sge_intr_msix(0, &rx->rspq);
3099        } else
3100                t4_intr_handler(adap)(0, adap);
3101}
3102#endif
3103
3104static const struct net_device_ops cxgb4_netdev_ops = {
3105        .ndo_open             = cxgb_open,
3106        .ndo_stop             = cxgb_close,
3107        .ndo_start_xmit       = t4_eth_xmit,
3108        .ndo_select_queue     = cxgb_select_queue,
3109        .ndo_get_stats64      = cxgb_get_stats,
3110        .ndo_set_rx_mode      = cxgb_set_rxmode,
3111        .ndo_set_mac_address  = cxgb_set_mac_addr,
3112        .ndo_set_features     = cxgb_set_features,
3113        .ndo_validate_addr    = eth_validate_addr,
3114        .ndo_do_ioctl         = cxgb_ioctl,
3115        .ndo_change_mtu       = cxgb_change_mtu,
3116#ifdef CONFIG_NET_POLL_CONTROLLER
3117        .ndo_poll_controller  = cxgb_netpoll,
3118#endif
3119#ifdef CONFIG_CHELSIO_T4_FCOE
3120        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3121        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3122#endif /* CONFIG_CHELSIO_T4_FCOE */
3123#ifdef CONFIG_NET_RX_BUSY_POLL
3124        .ndo_busy_poll        = cxgb_busy_poll,
3125#endif
3126
3127};
3128
3129void t4_fatal_err(struct adapter *adap)
3130{
3131        t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3132        t4_intr_disable(adap);
3133        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3134}
3135
3136static void setup_memwin(struct adapter *adap)
3137{
3138        u32 nic_win_base = t4_get_util_window(adap);
3139
3140        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3141}
3142
3143static void setup_memwin_rdma(struct adapter *adap)
3144{
3145        if (adap->vres.ocq.size) {
3146                u32 start;
3147                unsigned int sz_kb;
3148
3149                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3150                start &= PCI_BASE_ADDRESS_MEM_MASK;
3151                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3152                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3153                t4_write_reg(adap,
3154                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3155                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3156                t4_write_reg(adap,
3157                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3158                             adap->vres.ocq.start);
3159                t4_read_reg(adap,
3160                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3161        }
3162}
3163
3164static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3165{
3166        u32 v;
3167        int ret;
3168
3169        /* get device capabilities */
3170        memset(c, 0, sizeof(*c));
3171        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3172                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
3173        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3174        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3175        if (ret < 0)
3176                return ret;
3177
3178        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3179                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3180        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3181        if (ret < 0)
3182                return ret;
3183
3184        ret = t4_config_glbl_rss(adap, adap->pf,
3185                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3186                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3187                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3188        if (ret < 0)
3189                return ret;
3190
3191        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3192                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3193                          FW_CMD_CAP_PF);
3194        if (ret < 0)
3195                return ret;
3196
3197        t4_sge_init(adap);
3198
3199        /* tweak some settings */
3200        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3201        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3202        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3203        v = t4_read_reg(adap, TP_PIO_DATA_A);
3204        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3205
3206        /* first 4 Tx modulation queues point to consecutive Tx channels */
3207        adap->params.tp.tx_modq_map = 0xE4;
3208        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3209                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3210
3211        /* associate each Tx modulation queue with consecutive Tx channels */
3212        v = 0x84218421;
3213        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3214                          &v, 1, TP_TX_SCHED_HDR_A);
3215        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3216                          &v, 1, TP_TX_SCHED_FIFO_A);
3217        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3218                          &v, 1, TP_TX_SCHED_PCMD_A);
3219
3220#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3221        if (is_offload(adap)) {
3222                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3223                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3224                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3225                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3226                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3227                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3228                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3229                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3230                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3231                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3232        }
3233
3234        /* get basic stuff going */
3235        return t4_early_init(adap, adap->pf);
3236}
3237
3238/*
3239 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3240 */
3241#define MAX_ATIDS 8192U
3242
3243/*
3244 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3245 *
3246 * If the firmware we're dealing with has Configuration File support, then
3247 * we use that to perform all configuration
3248 */
3249
3250/*
3251 * Tweak configuration based on module parameters, etc.  Most of these have
3252 * defaults assigned to them by Firmware Configuration Files (if we're using
3253 * them) but need to be explicitly set if we're using hard-coded
3254 * initialization.  But even in the case of using Firmware Configuration
3255 * Files, we'd like to expose the ability to change these via module
3256 * parameters so these are essentially common tweaks/settings for
3257 * Configuration Files and hard-coded initialization ...
3258 */
3259static int adap_init0_tweaks(struct adapter *adapter)
3260{
3261        /*
3262         * Fix up various Host-Dependent Parameters like Page Size, Cache
3263         * Line Size, etc.  The firmware default is for a 4KB Page Size and
3264         * 64B Cache Line Size ...
3265         */
3266        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3267
3268        /*
3269         * Process module parameters which affect early initialization.
3270         */
3271        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3272                dev_err(&adapter->pdev->dev,
3273                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
3274                        rx_dma_offset);
3275                rx_dma_offset = 2;
3276        }
3277        t4_set_reg_field(adapter, SGE_CONTROL_A,
3278                         PKTSHIFT_V(PKTSHIFT_M),
3279                         PKTSHIFT_V(rx_dma_offset));
3280
3281        /*
3282         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3283         * adds the pseudo header itself.
3284         */
3285        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3286                               CSUM_HAS_PSEUDO_HDR_F, 0);
3287
3288        return 0;
3289}
3290
3291/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3292 * unto themselves and they contain their own firmware to perform their
3293 * tasks ...
3294 */
3295static int phy_aq1202_version(const u8 *phy_fw_data,
3296                              size_t phy_fw_size)
3297{
3298        int offset;
3299
3300        /* At offset 0x8 you're looking for the primary image's
3301         * starting offset which is 3 Bytes wide
3302         *
3303         * At offset 0xa of the primary image, you look for the offset
3304         * of the DRAM segment which is 3 Bytes wide.
3305         *
3306         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3307         * wide
3308         */
3309        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3310        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3311        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3312
3313        offset = le24(phy_fw_data + 0x8) << 12;
3314        offset = le24(phy_fw_data + offset + 0xa);
3315        return be16(phy_fw_data + offset + 0x27e);
3316
3317        #undef be16
3318        #undef le16
3319        #undef le24
3320}
3321
3322static struct info_10gbt_phy_fw {
3323        unsigned int phy_fw_id;         /* PCI Device ID */
3324        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3325        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3326        int phy_flash;                  /* Has FLASH for PHY Firmware */
3327} phy_info_array[] = {
3328        {
3329                PHY_AQ1202_DEVICEID,
3330                PHY_AQ1202_FIRMWARE,
3331                phy_aq1202_version,
3332                1,
3333        },
3334        {
3335                PHY_BCM84834_DEVICEID,
3336                PHY_BCM84834_FIRMWARE,
3337                NULL,
3338                0,
3339        },
3340        { 0, NULL, NULL },
3341};
3342
3343static struct info_10gbt_phy_fw *find_phy_info(int devid)
3344{
3345        int i;
3346
3347        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3348                if (phy_info_array[i].phy_fw_id == devid)
3349                        return &phy_info_array[i];
3350        }
3351        return NULL;
3352}
3353
3354/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3355 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3356 * we return a negative error number.  If we transfer new firmware we return 1
3357 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3358 */
3359static int adap_init0_phy(struct adapter *adap)
3360{
3361        const struct firmware *phyf;
3362        int ret;
3363        struct info_10gbt_phy_fw *phy_info;
3364
3365        /* Use the device ID to determine which PHY file to flash.
3366         */
3367        phy_info = find_phy_info(adap->pdev->device);
3368        if (!phy_info) {
3369                dev_warn(adap->pdev_dev,
3370                         "No PHY Firmware file found for this PHY\n");
3371                return -EOPNOTSUPP;
3372        }
3373
3374        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3375         * use that. The adapter firmware provides us with a memory buffer
3376         * where we can load a PHY firmware file from the host if we want to
3377         * override the PHY firmware File in flash.
3378         */
3379        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3380                                      adap->pdev_dev);
3381        if (ret < 0) {
3382                /* For adapters without FLASH attached to PHY for their
3383                 * firmware, it's obviously a fatal error if we can't get the
3384                 * firmware to the adapter.  For adapters with PHY firmware
3385                 * FLASH storage, it's worth a warning if we can't find the
3386                 * PHY Firmware but we'll neuter the error ...
3387                 */
3388                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3389                        "/lib/firmware/%s, error %d\n",
3390                        phy_info->phy_fw_file, -ret);
3391                if (phy_info->phy_flash) {
3392                        int cur_phy_fw_ver = 0;
3393
3394                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3395                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3396                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3397                        ret = 0;
3398                }
3399
3400                return ret;
3401        }
3402
3403        /* Load PHY Firmware onto adapter.
3404         */
3405        ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3406                             phy_info->phy_fw_version,
3407                             (u8 *)phyf->data, phyf->size);
3408        if (ret < 0)
3409                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3410                        -ret);
3411        else if (ret > 0) {
3412                int new_phy_fw_ver = 0;
3413
3414                if (phy_info->phy_fw_version)
3415                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3416                                                                  phyf->size);
3417                dev_info(adap->pdev_dev, "Successfully transferred PHY "
3418                         "Firmware /lib/firmware/%s, version %#x\n",
3419                         phy_info->phy_fw_file, new_phy_fw_ver);
3420        }
3421
3422        release_firmware(phyf);
3423
3424        return ret;
3425}
3426
3427/*
3428 * Attempt to initialize the adapter via a Firmware Configuration File.
3429 */
3430static int adap_init0_config(struct adapter *adapter, int reset)
3431{
3432        struct fw_caps_config_cmd caps_cmd;
3433        const struct firmware *cf;
3434        unsigned long mtype = 0, maddr = 0;
3435        u32 finiver, finicsum, cfcsum;
3436        int ret;
3437        int config_issued = 0;
3438        char *fw_config_file, fw_config_file_path[256];
3439        char *config_name = NULL;
3440
3441        /*
3442         * Reset device if necessary.
3443         */
3444        if (reset) {
3445                ret = t4_fw_reset(adapter, adapter->mbox,
3446                                  PIORSTMODE_F | PIORST_F);
3447                if (ret < 0)
3448                        goto bye;
3449        }
3450
3451        /* If this is a 10Gb/s-BT adapter make sure the chip-external
3452         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3453         * to be performed after any global adapter RESET above since some
3454         * PHYs only have local RAM copies of the PHY firmware.
3455         */
3456        if (is_10gbt_device(adapter->pdev->device)) {
3457                ret = adap_init0_phy(adapter);
3458                if (ret < 0)
3459                        goto bye;
3460        }
3461        /*
3462         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3463         * then use that.  Otherwise, use the configuration file stored
3464         * in the adapter flash ...
3465         */
3466        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3467        case CHELSIO_T4:
3468                fw_config_file = FW4_CFNAME;
3469                break;
3470        case CHELSIO_T5:
3471                fw_config_file = FW5_CFNAME;
3472                break;
3473        case CHELSIO_T6:
3474                fw_config_file = FW6_CFNAME;
3475                break;
3476        default:
3477                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3478                       adapter->pdev->device);
3479                ret = -EINVAL;
3480                goto bye;
3481        }
3482
3483        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3484        if (ret < 0) {
3485                config_name = "On FLASH";
3486                mtype = FW_MEMTYPE_CF_FLASH;
3487                maddr = t4_flash_cfg_addr(adapter);
3488        } else {
3489                u32 params[7], val[7];
3490
3491                sprintf(fw_config_file_path,
3492                        "/lib/firmware/%s", fw_config_file);
3493                config_name = fw_config_file_path;
3494
3495                if (cf->size >= FLASH_CFG_MAX_SIZE)
3496                        ret = -ENOMEM;
3497                else {
3498                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3499                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3500                        ret = t4_query_params(adapter, adapter->mbox,
3501                                              adapter->pf, 0, 1, params, val);
3502                        if (ret == 0) {
3503                                /*
3504                                 * For t4_memory_rw() below addresses and
3505                                 * sizes have to be in terms of multiples of 4
3506                                 * bytes.  So, if the Configuration File isn't
3507                                 * a multiple of 4 bytes in length we'll have
3508                                 * to write that out separately since we can't
3509                                 * guarantee that the bytes following the
3510                                 * residual byte in the buffer returned by
3511                                 * request_firmware() are zeroed out ...
3512                                 */
3513                                size_t resid = cf->size & 0x3;
3514                                size_t size = cf->size & ~0x3;
3515                                __be32 *data = (__be32 *)cf->data;
3516
3517                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3518                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3519
3520                                spin_lock(&adapter->win0_lock);
3521                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
3522                                                   size, data, T4_MEMORY_WRITE);
3523                                if (ret == 0 && resid != 0) {
3524                                        union {
3525                                                __be32 word;
3526                                                char buf[4];
3527                                        } last;
3528                                        int i;
3529
3530                                        last.word = data[size >> 2];
3531                                        for (i = resid; i < 4; i++)
3532                                                last.buf[i] = 0;
3533                                        ret = t4_memory_rw(adapter, 0, mtype,
3534                                                           maddr + size,
3535                                                           4, &last.word,
3536                                                           T4_MEMORY_WRITE);
3537                                }
3538                                spin_unlock(&adapter->win0_lock);
3539                        }
3540                }
3541
3542                release_firmware(cf);
3543                if (ret)
3544                        goto bye;
3545        }
3546
3547        /*
3548         * Issue a Capability Configuration command to the firmware to get it
3549         * to parse the Configuration File.  We don't use t4_fw_config_file()
3550         * because we want the ability to modify various features after we've
3551         * processed the configuration file ...
3552         */
3553        memset(&caps_cmd, 0, sizeof(caps_cmd));
3554        caps_cmd.op_to_write =
3555                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3556                      FW_CMD_REQUEST_F |
3557                      FW_CMD_READ_F);
3558        caps_cmd.cfvalid_to_len16 =
3559                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3560                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3561                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3562                      FW_LEN16(caps_cmd));
3563        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3564                         &caps_cmd);
3565
3566        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3567         * Configuration File in FLASH), our last gasp effort is to use the
3568         * Firmware Configuration File which is embedded in the firmware.  A
3569         * very few early versions of the firmware didn't have one embedded
3570         * but we can ignore those.
3571         */
3572        if (ret == -ENOENT) {
3573                memset(&caps_cmd, 0, sizeof(caps_cmd));
3574                caps_cmd.op_to_write =
3575                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3576                                        FW_CMD_REQUEST_F |
3577                                        FW_CMD_READ_F);
3578                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3579                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3580                                sizeof(caps_cmd), &caps_cmd);
3581                config_name = "Firmware Default";
3582        }
3583
3584        config_issued = 1;
3585        if (ret < 0)
3586                goto bye;
3587
3588        finiver = ntohl(caps_cmd.finiver);
3589        finicsum = ntohl(caps_cmd.finicsum);
3590        cfcsum = ntohl(caps_cmd.cfcsum);
3591        if (finicsum != cfcsum)
3592                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3593                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3594                         finicsum, cfcsum);
3595
3596        /*
3597         * And now tell the firmware to use the configuration we just loaded.
3598         */
3599        caps_cmd.op_to_write =
3600                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3601                      FW_CMD_REQUEST_F |
3602                      FW_CMD_WRITE_F);
3603        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3604        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3605                         NULL);
3606        if (ret < 0)
3607                goto bye;
3608
3609        /*
3610         * Tweak configuration based on system architecture, module
3611         * parameters, etc.
3612         */
3613        ret = adap_init0_tweaks(adapter);
3614        if (ret < 0)
3615                goto bye;
3616
3617        /*
3618         * And finally tell the firmware to initialize itself using the
3619         * parameters from the Configuration File.
3620         */
3621        ret = t4_fw_initialize(adapter, adapter->mbox);
3622        if (ret < 0)
3623                goto bye;
3624
3625        /* Emit Firmware Configuration File information and return
3626         * successfully.
3627         */
3628        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3629                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3630                 config_name, finiver, cfcsum);
3631        return 0;
3632
3633        /*
3634         * Something bad happened.  Return the error ...  (If the "error"
3635         * is that there's no Configuration File on the adapter we don't
3636         * want to issue a warning since this is fairly common.)
3637         */
3638bye:
3639        if (config_issued && ret != -ENOENT)
3640                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3641                         config_name, -ret);
3642        return ret;
3643}
3644
3645static struct fw_info fw_info_array[] = {
3646        {
3647                .chip = CHELSIO_T4,
3648                .fs_name = FW4_CFNAME,
3649                .fw_mod_name = FW4_FNAME,
3650                .fw_hdr = {
3651                        .chip = FW_HDR_CHIP_T4,
3652                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3653                        .intfver_nic = FW_INTFVER(T4, NIC),
3654                        .intfver_vnic = FW_INTFVER(T4, VNIC),
3655                        .intfver_ri = FW_INTFVER(T4, RI),
3656                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3657                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
3658                },
3659        }, {
3660                .chip = CHELSIO_T5,
3661                .fs_name = FW5_CFNAME,
3662                .fw_mod_name = FW5_FNAME,
3663                .fw_hdr = {
3664                        .chip = FW_HDR_CHIP_T5,
3665                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3666                        .intfver_nic = FW_INTFVER(T5, NIC),
3667                        .intfver_vnic = FW_INTFVER(T5, VNIC),
3668                        .intfver_ri = FW_INTFVER(T5, RI),
3669                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3670                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
3671                },
3672        }, {
3673                .chip = CHELSIO_T6,
3674                .fs_name = FW6_CFNAME,
3675                .fw_mod_name = FW6_FNAME,
3676                .fw_hdr = {
3677                        .chip = FW_HDR_CHIP_T6,
3678                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3679                        .intfver_nic = FW_INTFVER(T6, NIC),
3680                        .intfver_vnic = FW_INTFVER(T6, VNIC),
3681                        .intfver_ofld = FW_INTFVER(T6, OFLD),
3682                        .intfver_ri = FW_INTFVER(T6, RI),
3683                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3684                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3685                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3686                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
3687                },
3688        }
3689
3690};
3691
3692static struct fw_info *find_fw_info(int chip)
3693{
3694        int i;
3695
3696        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3697                if (fw_info_array[i].chip == chip)
3698                        return &fw_info_array[i];
3699        }
3700        return NULL;
3701}
3702
3703/*
3704 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3705 */
3706static int adap_init0(struct adapter *adap)
3707{
3708        int ret;
3709        u32 v, port_vec;
3710        enum dev_state state;
3711        u32 params[7], val[7];
3712        struct fw_caps_config_cmd caps_cmd;
3713        int reset = 1;
3714
3715        /* Grab Firmware Device Log parameters as early as possible so we have
3716         * access to it for debugging, etc.
3717         */
3718        ret = t4_init_devlog_params(adap);
3719        if (ret < 0)
3720                return ret;
3721
3722        /* Contact FW, advertising Master capability */
3723        ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3724        if (ret < 0) {
3725                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3726                        ret);
3727                return ret;
3728        }
3729        if (ret == adap->mbox)
3730                adap->flags |= MASTER_PF;
3731
3732        /*
3733         * If we're the Master PF Driver and the device is uninitialized,
3734         * then let's consider upgrading the firmware ...  (We always want
3735         * to check the firmware version number in order to A. get it for
3736         * later reporting and B. to warn if the currently loaded firmware
3737         * is excessively mismatched relative to the driver.)
3738         */
3739        t4_get_fw_version(adap, &adap->params.fw_vers);
3740        t4_get_tp_version(adap, &adap->params.tp_vers);
3741        ret = t4_check_fw_version(adap);
3742        /* If firmware is too old (not supported by driver) force an update. */
3743        if (ret)
3744                state = DEV_STATE_UNINIT;
3745        if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3746                struct fw_info *fw_info;
3747                struct fw_hdr *card_fw;
3748                const struct firmware *fw;
3749                const u8 *fw_data = NULL;
3750                unsigned int fw_size = 0;
3751
3752                /* This is the firmware whose headers the driver was compiled
3753                 * against
3754                 */
3755                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3756                if (fw_info == NULL) {
3757                        dev_err(adap->pdev_dev,
3758                                "unable to get firmware info for chip %d.\n",
3759                                CHELSIO_CHIP_VERSION(adap->params.chip));
3760                        return -EINVAL;
3761                }
3762
3763                /* allocate memory to read the header of the firmware on the
3764                 * card
3765                 */
3766                card_fw = t4_alloc_mem(sizeof(*card_fw));
3767
3768                /* Get FW from from /lib/firmware/ */
3769                ret = request_firmware(&fw, fw_info->fw_mod_name,
3770                                       adap->pdev_dev);
3771                if (ret < 0) {
3772                        dev_err(adap->pdev_dev,
3773                                "unable to load firmware image %s, error %d\n",
3774                                fw_info->fw_mod_name, ret);
3775                } else {
3776                        fw_data = fw->data;
3777                        fw_size = fw->size;
3778                }
3779
3780                /* upgrade FW logic */
3781                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3782                                 state, &reset);
3783
3784                /* Cleaning up */
3785                release_firmware(fw);
3786                t4_free_mem(card_fw);
3787
3788                if (ret < 0)
3789                        goto bye;
3790        }
3791
3792        /*
3793         * Grab VPD parameters.  This should be done after we establish a
3794         * connection to the firmware since some of the VPD parameters
3795         * (notably the Core Clock frequency) are retrieved via requests to
3796         * the firmware.  On the other hand, we need these fairly early on
3797         * so we do this right after getting ahold of the firmware.
3798         */
3799        ret = t4_get_vpd_params(adap, &adap->params.vpd);
3800        if (ret < 0)
3801                goto bye;
3802
3803        /*
3804         * Find out what ports are available to us.  Note that we need to do
3805         * this before calling adap_init0_no_config() since it needs nports
3806         * and portvec ...
3807         */
3808        v =
3809            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3810            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3811        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3812        if (ret < 0)
3813                goto bye;
3814
3815        adap->params.nports = hweight32(port_vec);
3816        adap->params.portvec = port_vec;
3817
3818        /* If the firmware is initialized already, emit a simply note to that
3819         * effect. Otherwise, it's time to try initializing the adapter.
3820         */
3821        if (state == DEV_STATE_INIT) {
3822                dev_info(adap->pdev_dev, "Coming up as %s: "\
3823                         "Adapter already initialized\n",
3824                         adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3825        } else {
3826                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3827                         "Initializing adapter\n");
3828
3829                /* Find out whether we're dealing with a version of the
3830                 * firmware which has configuration file support.
3831                 */
3832                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3833                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3834                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3835                                      params, val);
3836
3837                /* If the firmware doesn't support Configuration Files,
3838                 * return an error.
3839                 */
3840                if (ret < 0) {
3841                        dev_err(adap->pdev_dev, "firmware doesn't support "
3842                                "Firmware Configuration Files\n");
3843                        goto bye;
3844                }
3845
3846                /* The firmware provides us with a memory buffer where we can
3847                 * load a Configuration File from the host if we want to
3848                 * override the Configuration File in flash.
3849                 */
3850                ret = adap_init0_config(adap, reset);
3851                if (ret == -ENOENT) {
3852                        dev_err(adap->pdev_dev, "no Configuration File "
3853                                "present on adapter.\n");
3854                        goto bye;
3855                }
3856                if (ret < 0) {
3857                        dev_err(adap->pdev_dev, "could not initialize "
3858                                "adapter, error %d\n", -ret);
3859                        goto bye;
3860                }
3861        }
3862
3863        /* Give the SGE code a chance to pull in anything that it needs ...
3864         * Note that this must be called after we retrieve our VPD parameters
3865         * in order to know how to convert core ticks to seconds, etc.
3866         */
3867        ret = t4_sge_init(adap);
3868        if (ret < 0)
3869                goto bye;
3870
3871        if (is_bypass_device(adap->pdev->device))
3872                adap->params.bypass = 1;
3873
3874        /*
3875         * Grab some of our basic fundamental operating parameters.
3876         */
3877#define FW_PARAM_DEV(param) \
3878        (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3879        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3880
3881#define FW_PARAM_PFVF(param) \
3882        FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3883        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3884        FW_PARAMS_PARAM_Y_V(0) | \
3885        FW_PARAMS_PARAM_Z_V(0)
3886
3887        params[0] = FW_PARAM_PFVF(EQ_START);
3888        params[1] = FW_PARAM_PFVF(L2T_START);
3889        params[2] = FW_PARAM_PFVF(L2T_END);
3890        params[3] = FW_PARAM_PFVF(FILTER_START);
3891        params[4] = FW_PARAM_PFVF(FILTER_END);
3892        params[5] = FW_PARAM_PFVF(IQFLINT_START);
3893        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3894        if (ret < 0)
3895                goto bye;
3896        adap->sge.egr_start = val[0];
3897        adap->l2t_start = val[1];
3898        adap->l2t_end = val[2];
3899        adap->tids.ftid_base = val[3];
3900        adap->tids.nftids = val[4] - val[3] + 1;
3901        adap->sge.ingr_start = val[5];
3902
3903        /* qids (ingress/egress) returned from firmware can be anywhere
3904         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3905         * Hence driver needs to allocate memory for this range to
3906         * store the queue info. Get the highest IQFLINT/EQ index returned
3907         * in FW_EQ_*_CMD.alloc command.
3908         */
3909        params[0] = FW_PARAM_PFVF(EQ_END);
3910        params[1] = FW_PARAM_PFVF(IQFLINT_END);
3911        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3912        if (ret < 0)
3913                goto bye;
3914        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3915        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3916
3917        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3918                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3919        if (!adap->sge.egr_map) {
3920                ret = -ENOMEM;
3921                goto bye;
3922        }
3923
3924        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3925                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3926        if (!adap->sge.ingr_map) {
3927                ret = -ENOMEM;
3928                goto bye;
3929        }
3930
3931        /* Allocate the memory for the vaious egress queue bitmaps
3932         * ie starving_fl, txq_maperr and blocked_fl.
3933         */
3934        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3935                                        sizeof(long), GFP_KERNEL);
3936        if (!adap->sge.starving_fl) {
3937                ret = -ENOMEM;
3938                goto bye;
3939        }
3940
3941        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3942                                       sizeof(long), GFP_KERNEL);
3943        if (!adap->sge.txq_maperr) {
3944                ret = -ENOMEM;
3945                goto bye;
3946        }
3947
3948#ifdef CONFIG_DEBUG_FS
3949        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3950                                       sizeof(long), GFP_KERNEL);
3951        if (!adap->sge.blocked_fl) {
3952                ret = -ENOMEM;
3953                goto bye;
3954        }
3955#endif
3956
3957        params[0] = FW_PARAM_PFVF(CLIP_START);
3958        params[1] = FW_PARAM_PFVF(CLIP_END);
3959        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3960        if (ret < 0)
3961                goto bye;
3962        adap->clipt_start = val[0];
3963        adap->clipt_end = val[1];
3964
3965        /* query params related to active filter region */
3966        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3967        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3968        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3969        /* If Active filter size is set we enable establishing
3970         * offload connection through firmware work request
3971         */
3972        if ((val[0] != val[1]) && (ret >= 0)) {
3973                adap->flags |= FW_OFLD_CONN;
3974                adap->tids.aftid_base = val[0];
3975                adap->tids.aftid_end = val[1];
3976        }
3977
3978        /* If we're running on newer firmware, let it know that we're
3979         * prepared to deal with encapsulated CPL messages.  Older
3980         * firmware won't understand this and we'll just get
3981         * unencapsulated messages ...
3982         */
3983        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3984        val[0] = 1;
3985        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3986
3987        /*
3988         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3989         * capability.  Earlier versions of the firmware didn't have the
3990         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3991         * permission to use ULPTX MEMWRITE DSGL.
3992         */
3993        if (is_t4(adap->params.chip)) {
3994                adap->params.ulptx_memwrite_dsgl = false;
3995        } else {
3996                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3997                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3998                                      1, params, val);
3999                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4000        }
4001
4002        /*
4003         * Get device capabilities so we can determine what resources we need
4004         * to manage.
4005         */
4006        memset(&caps_cmd, 0, sizeof(caps_cmd));
4007        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4008                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4009        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4010        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4011                         &caps_cmd);
4012        if (ret < 0)
4013                goto bye;
4014
4015        if (caps_cmd.ofldcaps) {
4016                /* query offload-related parameters */
4017                params[0] = FW_PARAM_DEV(NTID);
4018                params[1] = FW_PARAM_PFVF(SERVER_START);
4019                params[2] = FW_PARAM_PFVF(SERVER_END);
4020                params[3] = FW_PARAM_PFVF(TDDP_START);
4021                params[4] = FW_PARAM_PFVF(TDDP_END);
4022                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4023                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4024                                      params, val);
4025                if (ret < 0)
4026                        goto bye;
4027                adap->tids.ntids = val[0];
4028                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4029                adap->tids.stid_base = val[1];
4030                adap->tids.nstids = val[2] - val[1] + 1;
4031                /*
4032                 * Setup server filter region. Divide the available filter
4033                 * region into two parts. Regular filters get 1/3rd and server
4034                 * filters get 2/3rd part. This is only enabled if workarond
4035                 * path is enabled.
4036                 * 1. For regular filters.
4037                 * 2. Server filter: This are special filters which are used
4038                 * to redirect SYN packets to offload queue.
4039                 */
4040                if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4041                        adap->tids.sftid_base = adap->tids.ftid_base +
4042                                        DIV_ROUND_UP(adap->tids.nftids, 3);
4043                        adap->tids.nsftids = adap->tids.nftids -
4044                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4045                        adap->tids.nftids = adap->tids.sftid_base -
4046                                                adap->tids.ftid_base;
4047                }
4048                adap->vres.ddp.start = val[3];
4049                adap->vres.ddp.size = val[4] - val[3] + 1;
4050                adap->params.ofldq_wr_cred = val[5];
4051
4052                adap->params.offload = 1;
4053        }
4054        if (caps_cmd.rdmacaps) {
4055                params[0] = FW_PARAM_PFVF(STAG_START);
4056                params[1] = FW_PARAM_PFVF(STAG_END);
4057                params[2] = FW_PARAM_PFVF(RQ_START);
4058                params[3] = FW_PARAM_PFVF(RQ_END);
4059                params[4] = FW_PARAM_PFVF(PBL_START);
4060                params[5] = FW_PARAM_PFVF(PBL_END);
4061                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4062                                      params, val);
4063                if (ret < 0)
4064                        goto bye;
4065                adap->vres.stag.start = val[0];
4066                adap->vres.stag.size = val[1] - val[0] + 1;
4067                adap->vres.rq.start = val[2];
4068                adap->vres.rq.size = val[3] - val[2] + 1;
4069                adap->vres.pbl.start = val[4];
4070                adap->vres.pbl.size = val[5] - val[4] + 1;
4071
4072                params[0] = FW_PARAM_PFVF(SQRQ_START);
4073                params[1] = FW_PARAM_PFVF(SQRQ_END);
4074                params[2] = FW_PARAM_PFVF(CQ_START);
4075                params[3] = FW_PARAM_PFVF(CQ_END);
4076                params[4] = FW_PARAM_PFVF(OCQ_START);
4077                params[5] = FW_PARAM_PFVF(OCQ_END);
4078                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4079                                      val);
4080                if (ret < 0)
4081                        goto bye;
4082                adap->vres.qp.start = val[0];
4083                adap->vres.qp.size = val[1] - val[0] + 1;
4084                adap->vres.cq.start = val[2];
4085                adap->vres.cq.size = val[3] - val[2] + 1;
4086                adap->vres.ocq.start = val[4];
4087                adap->vres.ocq.size = val[5] - val[4] + 1;
4088
4089                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4090                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4091                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4092                                      val);
4093                if (ret < 0) {
4094                        adap->params.max_ordird_qp = 8;
4095                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4096                        ret = 0;
4097                } else {
4098                        adap->params.max_ordird_qp = val[0];
4099                        adap->params.max_ird_adapter = val[1];
4100                }
4101                dev_info(adap->pdev_dev,
4102                         "max_ordird_qp %d max_ird_adapter %d\n",
4103                         adap->params.max_ordird_qp,
4104                         adap->params.max_ird_adapter);
4105        }
4106        if (caps_cmd.iscsicaps) {
4107                params[0] = FW_PARAM_PFVF(ISCSI_START);
4108                params[1] = FW_PARAM_PFVF(ISCSI_END);
4109                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4110                                      params, val);
4111                if (ret < 0)
4112                        goto bye;
4113                adap->vres.iscsi.start = val[0];
4114                adap->vres.iscsi.size = val[1] - val[0] + 1;
4115        }
4116#undef FW_PARAM_PFVF
4117#undef FW_PARAM_DEV
4118
4119        /* The MTU/MSS Table is initialized by now, so load their values.  If
4120         * we're initializing the adapter, then we'll make any modifications
4121         * we want to the MTU/MSS Table and also initialize the congestion
4122         * parameters.
4123         */
4124        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4125        if (state != DEV_STATE_INIT) {
4126                int i;
4127
4128                /* The default MTU Table contains values 1492 and 1500.
4129                 * However, for TCP, it's better to have two values which are
4130                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4131                 * This allows us to have a TCP Data Payload which is a
4132                 * multiple of 8 regardless of what combination of TCP Options
4133                 * are in use (always a multiple of 4 bytes) which is
4134                 * important for performance reasons.  For instance, if no
4135                 * options are in use, then we have a 20-byte IP header and a
4136                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4137                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4138                 * which is not a multiple of 8.  So using an MSS of 1488 in
4139                 * this case results in a TCP Data Payload of 1448 bytes which
4140                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4141                 * Stamps have been negotiated, then an MTU of 1500 bytes
4142                 * results in a TCP Data Payload of 1448 bytes which, as
4143                 * above, is a multiple of 8 bytes ...
4144                 */
4145                for (i = 0; i < NMTUS; i++)
4146                        if (adap->params.mtus[i] == 1492) {
4147                                adap->params.mtus[i] = 1488;
4148                                break;
4149                        }
4150
4151                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4152                             adap->params.b_wnd);
4153        }
4154        t4_init_sge_params(adap);
4155        adap->flags |= FW_OK;
4156        t4_init_tp_params(adap);
4157        return 0;
4158
4159        /*
4160         * Something bad happened.  If a command timed out or failed with EIO
4161         * FW does not operate within its spec or something catastrophic
4162         * happened to HW/FW, stop issuing commands.
4163         */
4164bye:
4165        kfree(adap->sge.egr_map);
4166        kfree(adap->sge.ingr_map);
4167        kfree(adap->sge.starving_fl);
4168        kfree(adap->sge.txq_maperr);
4169#ifdef CONFIG_DEBUG_FS
4170        kfree(adap->sge.blocked_fl);
4171#endif
4172        if (ret != -ETIMEDOUT && ret != -EIO)
4173                t4_fw_bye(adap, adap->mbox);
4174        return ret;
4175}
4176
4177/* EEH callbacks */
4178
4179static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4180                                         pci_channel_state_t state)
4181{
4182        int i;
4183        struct adapter *adap = pci_get_drvdata(pdev);
4184
4185        if (!adap)
4186                goto out;
4187
4188        rtnl_lock();
4189        adap->flags &= ~FW_OK;
4190        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4191        spin_lock(&adap->stats_lock);
4192        for_each_port(adap, i) {
4193                struct net_device *dev = adap->port[i];
4194
4195                netif_device_detach(dev);
4196                netif_carrier_off(dev);
4197        }
4198        spin_unlock(&adap->stats_lock);
4199        disable_interrupts(adap);
4200        if (adap->flags & FULL_INIT_DONE)
4201                cxgb_down(adap);
4202        rtnl_unlock();
4203        if ((adap->flags & DEV_ENABLED)) {
4204                pci_disable_device(pdev);
4205                adap->flags &= ~DEV_ENABLED;
4206        }
4207out:    return state == pci_channel_io_perm_failure ?
4208                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4209}
4210
4211static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4212{
4213        int i, ret;
4214        struct fw_caps_config_cmd c;
4215        struct adapter *adap = pci_get_drvdata(pdev);
4216
4217        if (!adap) {
4218                pci_restore_state(pdev);
4219                pci_save_state(pdev);
4220                return PCI_ERS_RESULT_RECOVERED;
4221        }
4222
4223        if (!(adap->flags & DEV_ENABLED)) {
4224                if (pci_enable_device(pdev)) {
4225                        dev_err(&pdev->dev, "Cannot reenable PCI "
4226                                            "device after reset\n");
4227                        return PCI_ERS_RESULT_DISCONNECT;
4228                }
4229                adap->flags |= DEV_ENABLED;
4230        }
4231
4232        pci_set_master(pdev);
4233        pci_restore_state(pdev);
4234        pci_save_state(pdev);
4235        pci_cleanup_aer_uncorrect_error_status(pdev);
4236
4237        if (t4_wait_dev_ready(adap->regs) < 0)
4238                return PCI_ERS_RESULT_DISCONNECT;
4239        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4240                return PCI_ERS_RESULT_DISCONNECT;
4241        adap->flags |= FW_OK;
4242        if (adap_init1(adap, &c))
4243                return PCI_ERS_RESULT_DISCONNECT;
4244
4245        for_each_port(adap, i) {
4246                struct port_info *p = adap2pinfo(adap, i);
4247
4248                ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4249                                  NULL, NULL);
4250                if (ret < 0)
4251                        return PCI_ERS_RESULT_DISCONNECT;
4252                p->viid = ret;
4253                p->xact_addr_filt = -1;
4254        }
4255
4256        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4257                     adap->params.b_wnd);
4258        setup_memwin(adap);
4259        if (cxgb_up(adap))
4260                return PCI_ERS_RESULT_DISCONNECT;
4261        return PCI_ERS_RESULT_RECOVERED;
4262}
4263
4264static void eeh_resume(struct pci_dev *pdev)
4265{
4266        int i;
4267        struct adapter *adap = pci_get_drvdata(pdev);
4268
4269        if (!adap)
4270                return;
4271
4272        rtnl_lock();
4273        for_each_port(adap, i) {
4274                struct net_device *dev = adap->port[i];
4275
4276                if (netif_running(dev)) {
4277                        link_start(dev);
4278                        cxgb_set_rxmode(dev);
4279                }
4280                netif_device_attach(dev);
4281        }
4282        rtnl_unlock();
4283}
4284
4285static const struct pci_error_handlers cxgb4_eeh = {
4286        .error_detected = eeh_err_detected,
4287        .slot_reset     = eeh_slot_reset,
4288        .resume         = eeh_resume,
4289};
4290
4291static inline bool is_x_10g_port(const struct link_config *lc)
4292{
4293        return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4294               (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4295}
4296
4297static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4298                             unsigned int us, unsigned int cnt,
4299                             unsigned int size, unsigned int iqe_size)
4300{
4301        q->adap = adap;
4302        cxgb4_set_rspq_intr_params(q, us, cnt);
4303        q->iqe_len = iqe_size;
4304        q->size = size;
4305}
4306
4307/*
4308 * Perform default configuration of DMA queues depending on the number and type
4309 * of ports we found and the number of available CPUs.  Most settings can be
4310 * modified by the admin prior to actual use.
4311 */
4312static void cfg_queues(struct adapter *adap)
4313{
4314        struct sge *s = &adap->sge;
4315        int i, n10g = 0, qidx = 0;
4316#ifndef CONFIG_CHELSIO_T4_DCB
4317        int q10g = 0;
4318#endif
4319        int ciq_size;
4320
4321        for_each_port(adap, i)
4322                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4323#ifdef CONFIG_CHELSIO_T4_DCB
4324        /* For Data Center Bridging support we need to be able to support up
4325         * to 8 Traffic Priorities; each of which will be assigned to its
4326         * own TX Queue in order to prevent Head-Of-Line Blocking.
4327         */
4328        if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4329                dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4330                        MAX_ETH_QSETS, adap->params.nports * 8);
4331                BUG_ON(1);
4332        }
4333
4334        for_each_port(adap, i) {
4335                struct port_info *pi = adap2pinfo(adap, i);
4336
4337                pi->first_qset = qidx;
4338                pi->nqsets = 8;
4339                qidx += pi->nqsets;
4340        }
4341#else /* !CONFIG_CHELSIO_T4_DCB */
4342        /*
4343         * We default to 1 queue per non-10G port and up to # of cores queues
4344         * per 10G port.
4345         */
4346        if (n10g)
4347                q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4348        if (q10g > netif_get_num_default_rss_queues())
4349                q10g = netif_get_num_default_rss_queues();
4350
4351        for_each_port(adap, i) {
4352                struct port_info *pi = adap2pinfo(adap, i);
4353
4354                pi->first_qset = qidx;
4355                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4356                qidx += pi->nqsets;
4357        }
4358#endif /* !CONFIG_CHELSIO_T4_DCB */
4359
4360        s->ethqsets = qidx;
4361        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4362
4363        if (is_offload(adap)) {
4364                /*
4365                 * For offload we use 1 queue/channel if all ports are up to 1G,
4366                 * otherwise we divide all available queues amongst the channels
4367                 * capped by the number of available cores.
4368                 */
4369                if (n10g) {
4370                        i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4371                                  num_online_cpus());
4372                        s->iscsiqsets = roundup(i, adap->params.nports);
4373                } else
4374                        s->iscsiqsets = adap->params.nports;
4375                /* For RDMA one Rx queue per channel suffices */
4376                s->rdmaqs = adap->params.nports;
4377                /* Try and allow at least 1 CIQ per cpu rounding down
4378                 * to the number of ports, with a minimum of 1 per port.
4379                 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4380                 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4381                 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4382                 */
4383                s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4384                s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4385                                adap->params.nports;
4386                s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4387
4388                if (!is_t4(adap->params.chip))
4389                        s->niscsitq = s->iscsiqsets;
4390        }
4391
4392        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4393                struct sge_eth_rxq *r = &s->ethrxq[i];
4394
4395                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4396                r->fl.size = 72;
4397        }
4398
4399        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4400                s->ethtxq[i].q.size = 1024;
4401
4402        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4403                s->ctrlq[i].q.size = 512;
4404
4405        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4406                s->ofldtxq[i].q.size = 1024;
4407
4408        for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4409                struct sge_ofld_rxq *r = &s->iscsirxq[i];
4410
4411                init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4412                r->rspq.uld = CXGB4_ULD_ISCSI;
4413                r->fl.size = 72;
4414        }
4415
4416        if (!is_t4(adap->params.chip)) {
4417                for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4418                        struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4419
4420                        init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4421                        r->rspq.uld = CXGB4_ULD_ISCSIT;
4422                        r->fl.size = 72;
4423                }
4424        }
4425
4426        for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4427                struct sge_ofld_rxq *r = &s->rdmarxq[i];
4428
4429                init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4430                r->rspq.uld = CXGB4_ULD_RDMA;
4431                r->fl.size = 72;
4432        }
4433
4434        ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4435        if (ciq_size > SGE_MAX_IQ_SIZE) {
4436                CH_WARN(adap, "CIQ size too small for available IQs\n");
4437                ciq_size = SGE_MAX_IQ_SIZE;
4438        }
4439
4440        for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4441                struct sge_ofld_rxq *r = &s->rdmaciq[i];
4442
4443                init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4444                r->rspq.uld = CXGB4_ULD_RDMA;
4445        }
4446
4447        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4448        init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4449}
4450
4451/*
4452 * Reduce the number of Ethernet queues across all ports to at most n.
4453 * n provides at least one queue per port.
4454 */
4455static void reduce_ethqs(struct adapter *adap, int n)
4456{
4457        int i;
4458        struct port_info *pi;
4459
4460        while (n < adap->sge.ethqsets)
4461                for_each_port(adap, i) {
4462                        pi = adap2pinfo(adap, i);
4463                        if (pi->nqsets > 1) {
4464                                pi->nqsets--;
4465                                adap->sge.ethqsets--;
4466                                if (adap->sge.ethqsets <= n)
4467                                        break;
4468                        }
4469                }
4470
4471        n = 0;
4472        for_each_port(adap, i) {
4473                pi = adap2pinfo(adap, i);
4474                pi->first_qset = n;
4475                n += pi->nqsets;
4476        }
4477}
4478
4479/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4480#define EXTRA_VECS 2
4481
4482static int enable_msix(struct adapter *adap)
4483{
4484        int ofld_need = 0;
4485        int i, want, need, allocated;
4486        struct sge *s = &adap->sge;
4487        unsigned int nchan = adap->params.nports;
4488        struct msix_entry *entries;
4489
4490        entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4491                          GFP_KERNEL);
4492        if (!entries)
4493                return -ENOMEM;
4494
4495        for (i = 0; i < MAX_INGQ + 1; ++i)
4496                entries[i].entry = i;
4497
4498        want = s->max_ethqsets + EXTRA_VECS;
4499        if (is_offload(adap)) {
4500                want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4501                        s->niscsitq;
4502                /* need nchan for each possible ULD */
4503                if (is_t4(adap->params.chip))
4504                        ofld_need = 3 * nchan;
4505                else
4506                        ofld_need = 4 * nchan;
4507        }
4508#ifdef CONFIG_CHELSIO_T4_DCB
4509        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4510         * each port.
4511         */
4512        need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4513#else
4514        need = adap->params.nports + EXTRA_VECS + ofld_need;
4515#endif
4516        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4517        if (allocated < 0) {
4518                dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4519                         " not using MSI-X\n");
4520                kfree(entries);
4521                return allocated;
4522        }
4523
4524        /* Distribute available vectors to the various queue groups.
4525         * Every group gets its minimum requirement and NIC gets top
4526         * priority for leftovers.
4527         */
4528        i = allocated - EXTRA_VECS - ofld_need;
4529        if (i < s->max_ethqsets) {
4530                s->max_ethqsets = i;
4531                if (i < s->ethqsets)
4532                        reduce_ethqs(adap, i);
4533        }
4534        if (is_offload(adap)) {
4535                if (allocated < want) {
4536                        s->rdmaqs = nchan;
4537                        s->rdmaciqs = nchan;
4538
4539                        if (!is_t4(adap->params.chip))
4540                                s->niscsitq = nchan;
4541                }
4542
4543                /* leftovers go to OFLD */
4544                i = allocated - EXTRA_VECS - s->max_ethqsets -
4545                    s->rdmaqs - s->rdmaciqs - s->niscsitq;
4546                s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4547
4548        }
4549        for (i = 0; i < allocated; ++i)
4550                adap->msix_info[i].vec = entries[i].vector;
4551        dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4552                 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4553                 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4554                 s->rdmaciqs);
4555
4556        kfree(entries);
4557        return 0;
4558}
4559
4560#undef EXTRA_VECS
4561
4562static int init_rss(struct adapter *adap)
4563{
4564        unsigned int i;
4565        int err;
4566
4567        err = t4_init_rss_mode(adap, adap->mbox);
4568        if (err)
4569                return err;
4570
4571        for_each_port(adap, i) {
4572                struct port_info *pi = adap2pinfo(adap, i);
4573
4574                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4575                if (!pi->rss)
4576                        return -ENOMEM;
4577        }
4578        return 0;
4579}
4580
4581static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4582                                        enum pci_bus_speed *speed,
4583                                        enum pcie_link_width *width)
4584{
4585        u32 lnkcap1, lnkcap2;
4586        int err1, err2;
4587
4588#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4589
4590        *speed = PCI_SPEED_UNKNOWN;
4591        *width = PCIE_LNK_WIDTH_UNKNOWN;
4592
4593        err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4594                                          &lnkcap1);
4595        err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4596                                          &lnkcap2);
4597        if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4598                if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4599                        *speed = PCIE_SPEED_8_0GT;
4600                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4601                        *speed = PCIE_SPEED_5_0GT;
4602                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4603                        *speed = PCIE_SPEED_2_5GT;
4604        }
4605        if (!err1) {
4606                *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4607                if (!lnkcap2) { /* pre-r3.0 */
4608                        if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4609                                *speed = PCIE_SPEED_5_0GT;
4610                        else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4611                                *speed = PCIE_SPEED_2_5GT;
4612                }
4613        }
4614
4615        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4616                return err1 ? err1 : err2 ? err2 : -EINVAL;
4617        return 0;
4618}
4619
4620static void cxgb4_check_pcie_caps(struct adapter *adap)
4621{
4622        enum pcie_link_width width, width_cap;
4623        enum pci_bus_speed speed, speed_cap;
4624
4625#define PCIE_SPEED_STR(speed) \
4626        (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4627         speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4628         speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4629         "Unknown")
4630
4631        if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4632                dev_warn(adap->pdev_dev,
4633                         "Unable to determine PCIe device BW capabilities\n");
4634                return;
4635        }
4636
4637        if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4638            speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4639                dev_warn(adap->pdev_dev,
4640                         "Unable to determine PCI Express bandwidth.\n");
4641                return;
4642        }
4643
4644        dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4645                 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4646        dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4647                 width, width_cap);
4648        if (speed < speed_cap || width < width_cap)
4649                dev_info(adap->pdev_dev,
4650                         "A slot with more lanes and/or higher speed is "
4651                         "suggested for optimal performance.\n");
4652}
4653
4654static void print_port_info(const struct net_device *dev)
4655{
4656        char buf[80];
4657        char *bufp = buf;
4658        const char *spd = "";
4659        const struct port_info *pi = netdev_priv(dev);
4660        const struct adapter *adap = pi->adapter;
4661
4662        if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4663                spd = " 2.5 GT/s";
4664        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4665                spd = " 5 GT/s";
4666        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4667                spd = " 8 GT/s";
4668
4669        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4670                bufp += sprintf(bufp, "100/");
4671        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4672                bufp += sprintf(bufp, "1000/");
4673        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4674                bufp += sprintf(bufp, "10G/");
4675        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4676                bufp += sprintf(bufp, "40G/");
4677        if (bufp != buf)
4678                --bufp;
4679        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4680
4681        netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
4682                    adap->params.vpd.id,
4683                    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4684                    is_offload(adap) ? "R" : "",
4685                    (adap->flags & USING_MSIX) ? " MSI-X" :
4686                    (adap->flags & USING_MSI) ? " MSI" : "");
4687        netdev_info(dev, "S/N: %s, P/N: %s\n",
4688                    adap->params.vpd.sn, adap->params.vpd.pn);
4689}
4690
4691static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4692{
4693        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4694}
4695
4696/*
4697 * Free the following resources:
4698 * - memory used for tables
4699 * - MSI/MSI-X
4700 * - net devices
4701 * - resources FW is holding for us
4702 */
4703static void free_some_resources(struct adapter *adapter)
4704{
4705        unsigned int i;
4706
4707        t4_free_mem(adapter->l2t);
4708        t4_free_mem(adapter->tids.tid_tab);
4709        kfree(adapter->sge.egr_map);
4710        kfree(adapter->sge.ingr_map);
4711        kfree(adapter->sge.starving_fl);
4712        kfree(adapter->sge.txq_maperr);
4713#ifdef CONFIG_DEBUG_FS
4714        kfree(adapter->sge.blocked_fl);
4715#endif
4716        disable_msi(adapter);
4717
4718        for_each_port(adapter, i)
4719                if (adapter->port[i]) {
4720                        struct port_info *pi = adap2pinfo(adapter, i);
4721
4722                        if (pi->viid != 0)
4723                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
4724                                           0, pi->viid);
4725                        kfree(adap2pinfo(adapter, i)->rss);
4726                        free_netdev(adapter->port[i]);
4727                }
4728        if (adapter->flags & FW_OK)
4729                t4_fw_bye(adapter, adapter->pf);
4730}
4731
4732#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4733#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4734                   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4735#define SEGMENT_SIZE 128
4736
4737static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4738{
4739        u16 device_id;
4740
4741        /* Retrieve adapter's device ID */
4742        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4743
4744        switch (device_id >> 12) {
4745        case CHELSIO_T4:
4746                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4747        case CHELSIO_T5:
4748                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4749        case CHELSIO_T6:
4750                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4751        default:
4752                dev_err(&pdev->dev, "Device %d is not supported\n",
4753                        device_id);
4754        }
4755        return -EINVAL;
4756}
4757
4758static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4759{
4760        int func, i, err, s_qpp, qpp, num_seg;
4761        struct port_info *pi;
4762        bool highdma = false;
4763        struct adapter *adapter = NULL;
4764        void __iomem *regs;
4765        u32 whoami, pl_rev;
4766        enum chip_type chip;
4767
4768        printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4769
4770        err = pci_request_regions(pdev, KBUILD_MODNAME);
4771        if (err) {
4772                /* Just info, some other driver may have claimed the device. */
4773                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4774                return err;
4775        }
4776
4777        err = pci_enable_device(pdev);
4778        if (err) {
4779                dev_err(&pdev->dev, "cannot enable PCI device\n");
4780                goto out_release_regions;
4781        }
4782
4783        regs = pci_ioremap_bar(pdev, 0);
4784        if (!regs) {
4785                dev_err(&pdev->dev, "cannot map device registers\n");
4786                err = -ENOMEM;
4787                goto out_disable_device;
4788        }
4789
4790        err = t4_wait_dev_ready(regs);
4791        if (err < 0)
4792                goto out_unmap_bar0;
4793
4794        /* We control everything through one PF */
4795        whoami = readl(regs + PL_WHOAMI_A);
4796        pl_rev = REV_G(readl(regs + PL_REV_A));
4797        chip = get_chip_type(pdev, pl_rev);
4798        func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4799                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4800        if (func != ent->driver_data) {
4801                iounmap(regs);
4802                pci_disable_device(pdev);
4803                pci_save_state(pdev);        /* to restore SR-IOV later */
4804                goto sriov;
4805        }
4806
4807        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4808                highdma = true;
4809                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4810                if (err) {
4811                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4812                                "coherent allocations\n");
4813                        goto out_unmap_bar0;
4814                }
4815        } else {
4816                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4817                if (err) {
4818                        dev_err(&pdev->dev, "no usable DMA configuration\n");
4819                        goto out_unmap_bar0;
4820                }
4821        }
4822
4823        pci_enable_pcie_error_reporting(pdev);
4824        enable_pcie_relaxed_ordering(pdev);
4825        pci_set_master(pdev);
4826        pci_save_state(pdev);
4827
4828        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4829        if (!adapter) {
4830                err = -ENOMEM;
4831                goto out_unmap_bar0;
4832        }
4833
4834        adapter->workq = create_singlethread_workqueue("cxgb4");
4835        if (!adapter->workq) {
4836                err = -ENOMEM;
4837                goto out_free_adapter;
4838        }
4839
4840        /* PCI device has been enabled */
4841        adapter->flags |= DEV_ENABLED;
4842
4843        adapter->regs = regs;
4844        adapter->pdev = pdev;
4845        adapter->pdev_dev = &pdev->dev;
4846        adapter->mbox = func;
4847        adapter->pf = func;
4848        adapter->msg_enable = dflt_msg_enable;
4849        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4850
4851        spin_lock_init(&adapter->stats_lock);
4852        spin_lock_init(&adapter->tid_release_lock);
4853        spin_lock_init(&adapter->win0_lock);
4854
4855        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4856        INIT_WORK(&adapter->db_full_task, process_db_full);
4857        INIT_WORK(&adapter->db_drop_task, process_db_drop);
4858
4859        err = t4_prep_adapter(adapter);
4860        if (err)
4861                goto out_free_adapter;
4862
4863
4864        if (!is_t4(adapter->params.chip)) {
4865                s_qpp = (QUEUESPERPAGEPF0_S +
4866                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4867                        adapter->pf);
4868                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4869                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4870                num_seg = PAGE_SIZE / SEGMENT_SIZE;
4871
4872                /* Each segment size is 128B. Write coalescing is enabled only
4873                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4874                 * queue is less no of segments that can be accommodated in
4875                 * a page size.
4876                 */
4877                if (qpp > num_seg) {
4878                        dev_err(&pdev->dev,
4879                                "Incorrect number of egress queues per page\n");
4880                        err = -EINVAL;
4881                        goto out_free_adapter;
4882                }
4883                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4884                pci_resource_len(pdev, 2));
4885                if (!adapter->bar2) {
4886                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
4887                        err = -ENOMEM;
4888                        goto out_free_adapter;
4889                }
4890        }
4891
4892        setup_memwin(adapter);
4893        err = adap_init0(adapter);
4894#ifdef CONFIG_DEBUG_FS
4895        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4896#endif
4897        setup_memwin_rdma(adapter);
4898        if (err)
4899                goto out_unmap_bar;
4900
4901        /* configure SGE_STAT_CFG_A to read WC stats */
4902        if (!is_t4(adapter->params.chip))
4903                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4904                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4905                              T6_STATMODE_V(0)));
4906
4907        for_each_port(adapter, i) {
4908                struct net_device *netdev;
4909
4910                netdev = alloc_etherdev_mq(sizeof(struct port_info),
4911                                           MAX_ETH_QSETS);
4912                if (!netdev) {
4913                        err = -ENOMEM;
4914                        goto out_free_dev;
4915                }
4916
4917                SET_NETDEV_DEV(netdev, &pdev->dev);
4918
4919                adapter->port[i] = netdev;
4920                pi = netdev_priv(netdev);
4921                pi->adapter = adapter;
4922                pi->xact_addr_filt = -1;
4923                pi->port_id = i;
4924                netdev->irq = pdev->irq;
4925
4926                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4927                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4928                        NETIF_F_RXCSUM | NETIF_F_RXHASH |
4929                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4930                if (highdma)
4931                        netdev->hw_features |= NETIF_F_HIGHDMA;
4932                netdev->features |= netdev->hw_features;
4933                netdev->vlan_features = netdev->features & VLAN_FEAT;
4934
4935                netdev->priv_flags |= IFF_UNICAST_FLT;
4936
4937                netdev->netdev_ops = &cxgb4_netdev_ops;
4938#ifdef CONFIG_CHELSIO_T4_DCB
4939                netdev->dcbnl_ops = &cxgb4_dcb_ops;
4940                cxgb4_dcb_state_init(netdev);
4941#endif
4942                cxgb4_set_ethtool_ops(netdev);
4943        }
4944
4945        pci_set_drvdata(pdev, adapter);
4946
4947        if (adapter->flags & FW_OK) {
4948                err = t4_port_init(adapter, func, func, 0);
4949                if (err)
4950                        goto out_free_dev;
4951        } else if (adapter->params.nports == 1) {
4952                /* If we don't have a connection to the firmware -- possibly
4953                 * because of an error -- grab the raw VPD parameters so we
4954                 * can set the proper MAC Address on the debug network
4955                 * interface that we've created.
4956                 */
4957                u8 hw_addr[ETH_ALEN];
4958                u8 *na = adapter->params.vpd.na;
4959
4960                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4961                if (!err) {
4962                        for (i = 0; i < ETH_ALEN; i++)
4963                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4964                                              hex2val(na[2 * i + 1]));
4965                        t4_set_hw_addr(adapter, 0, hw_addr);
4966                }
4967        }
4968
4969        /* Configure queues and allocate tables now, they can be needed as
4970         * soon as the first register_netdev completes.
4971         */
4972        cfg_queues(adapter);
4973
4974        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4975        if (!adapter->l2t) {
4976                /* We tolerate a lack of L2T, giving up some functionality */
4977                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4978                adapter->params.offload = 0;
4979        }
4980
4981#if IS_ENABLED(CONFIG_IPV6)
4982        if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4983            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4984                /* CLIP functionality is not present in hardware,
4985                 * hence disable all offload features
4986                 */
4987                dev_warn(&pdev->dev,
4988                         "CLIP not enabled in hardware, continuing\n");
4989                adapter->params.offload = 0;
4990        } else {
4991                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4992                                                  adapter->clipt_end);
4993                if (!adapter->clipt) {
4994                        /* We tolerate a lack of clip_table, giving up
4995                         * some functionality
4996                         */
4997                        dev_warn(&pdev->dev,
4998                                 "could not allocate Clip table, continuing\n");
4999                        adapter->params.offload = 0;
5000                }
5001        }
5002#endif
5003        if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5004                dev_warn(&pdev->dev, "could not allocate TID table, "
5005                         "continuing\n");
5006                adapter->params.offload = 0;
5007        }
5008
5009        if (is_offload(adapter)) {
5010                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5011                        u32 hash_base, hash_reg;
5012
5013                        if (chip <= CHELSIO_T5) {
5014                                hash_reg = LE_DB_TID_HASHBASE_A;
5015                                hash_base = t4_read_reg(adapter, hash_reg);
5016                                adapter->tids.hash_base = hash_base / 4;
5017                        } else {
5018                                hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5019                                hash_base = t4_read_reg(adapter, hash_reg);
5020                                adapter->tids.hash_base = hash_base;
5021                        }
5022                }
5023        }
5024
5025        /* See what interrupts we'll be using */
5026        if (msi > 1 && enable_msix(adapter) == 0)
5027                adapter->flags |= USING_MSIX;
5028        else if (msi > 0 && pci_enable_msi(pdev) == 0)
5029                adapter->flags |= USING_MSI;
5030
5031        /* check for PCI Express bandwidth capabiltites */
5032        cxgb4_check_pcie_caps(adapter);
5033
5034        err = init_rss(adapter);
5035        if (err)
5036                goto out_free_dev;
5037
5038        /*
5039         * The card is now ready to go.  If any errors occur during device
5040         * registration we do not fail the whole card but rather proceed only
5041         * with the ports we manage to register successfully.  However we must
5042         * register at least one net device.
5043         */
5044        for_each_port(adapter, i) {
5045                pi = adap2pinfo(adapter, i);
5046                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5047                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5048
5049                err = register_netdev(adapter->port[i]);
5050                if (err)
5051                        break;
5052                adapter->chan_map[pi->tx_chan] = i;
5053                print_port_info(adapter->port[i]);
5054        }
5055        if (i == 0) {
5056                dev_err(&pdev->dev, "could not register any net devices\n");
5057                goto out_free_dev;
5058        }
5059        if (err) {
5060                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5061                err = 0;
5062        }
5063
5064        if (cxgb4_debugfs_root) {
5065                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5066                                                           cxgb4_debugfs_root);
5067                setup_debugfs(adapter);
5068        }
5069
5070        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5071        pdev->needs_freset = 1;
5072
5073        if (is_offload(adapter))
5074                attach_ulds(adapter);
5075
5076sriov:
5077#ifdef CONFIG_PCI_IOV
5078        if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5079                if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5080                        dev_info(&pdev->dev,
5081                                 "instantiated %u virtual functions\n",
5082                                 num_vf[func]);
5083#endif
5084        return 0;
5085
5086 out_free_dev:
5087        free_some_resources(adapter);
5088 out_unmap_bar:
5089        if (!is_t4(adapter->params.chip))
5090                iounmap(adapter->bar2);
5091 out_free_adapter:
5092        if (adapter->workq)
5093                destroy_workqueue(adapter->workq);
5094
5095        kfree(adapter);
5096 out_unmap_bar0:
5097        iounmap(regs);
5098 out_disable_device:
5099        pci_disable_pcie_error_reporting(pdev);
5100        pci_disable_device(pdev);
5101 out_release_regions:
5102        pci_release_regions(pdev);
5103        return err;
5104}
5105
5106static void remove_one(struct pci_dev *pdev)
5107{
5108        struct adapter *adapter = pci_get_drvdata(pdev);
5109
5110#ifdef CONFIG_PCI_IOV
5111        pci_disable_sriov(pdev);
5112
5113#endif
5114
5115        if (adapter) {
5116                int i;
5117
5118                /* Tear down per-adapter Work Queue first since it can contain
5119                 * references to our adapter data structure.
5120                 */
5121                destroy_workqueue(adapter->workq);
5122
5123                if (is_offload(adapter))
5124                        detach_ulds(adapter);
5125
5126                disable_interrupts(adapter);
5127
5128                for_each_port(adapter, i)
5129                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5130                                unregister_netdev(adapter->port[i]);
5131
5132                debugfs_remove_recursive(adapter->debugfs_root);
5133
5134                /* If we allocated filters, free up state associated with any
5135                 * valid filters ...
5136                 */
5137                if (adapter->tids.ftid_tab) {
5138                        struct filter_entry *f = &adapter->tids.ftid_tab[0];
5139                        for (i = 0; i < (adapter->tids.nftids +
5140                                        adapter->tids.nsftids); i++, f++)
5141                                if (f->valid)
5142                                        clear_filter(adapter, f);
5143                }
5144
5145                if (adapter->flags & FULL_INIT_DONE)
5146                        cxgb_down(adapter);
5147
5148                free_some_resources(adapter);
5149#if IS_ENABLED(CONFIG_IPV6)
5150                t4_cleanup_clip_tbl(adapter);
5151#endif
5152                iounmap(adapter->regs);
5153                if (!is_t4(adapter->params.chip))
5154                        iounmap(adapter->bar2);
5155                pci_disable_pcie_error_reporting(pdev);
5156                if ((adapter->flags & DEV_ENABLED)) {
5157                        pci_disable_device(pdev);
5158                        adapter->flags &= ~DEV_ENABLED;
5159                }
5160                pci_release_regions(pdev);
5161                synchronize_rcu();
5162                kfree(adapter);
5163        } else
5164                pci_release_regions(pdev);
5165}
5166
5167static struct pci_driver cxgb4_driver = {
5168        .name     = KBUILD_MODNAME,
5169        .id_table = cxgb4_pci_tbl,
5170        .probe    = init_one,
5171        .remove   = remove_one,
5172        .shutdown = remove_one,
5173        .err_handler = &cxgb4_eeh,
5174};
5175
5176static int __init cxgb4_init_module(void)
5177{
5178        int ret;
5179
5180        /* Debugfs support is optional, just warn if this fails */
5181        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5182        if (!cxgb4_debugfs_root)
5183                pr_warn("could not create debugfs entry, continuing\n");
5184
5185        ret = pci_register_driver(&cxgb4_driver);
5186        if (ret < 0)
5187                debugfs_remove(cxgb4_debugfs_root);
5188
5189#if IS_ENABLED(CONFIG_IPV6)
5190        if (!inet6addr_registered) {
5191                register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5192                inet6addr_registered = true;
5193        }
5194#endif
5195
5196        return ret;
5197}
5198
5199static void __exit cxgb4_cleanup_module(void)
5200{
5201#if IS_ENABLED(CONFIG_IPV6)
5202        if (inet6addr_registered) {
5203                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5204                inet6addr_registered = false;
5205        }
5206#endif
5207        pci_unregister_driver(&cxgb4_driver);
5208        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5209}
5210
5211module_init(cxgb4_init_module);
5212module_exit(cxgb4_cleanup_module);
5213