linux/drivers/net/ethernet/intel/e1000e/netdev.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/vmalloc.h>
  29#include <linux/pagemap.h>
  30#include <linux/delay.h>
  31#include <linux/netdevice.h>
  32#include <linux/interrupt.h>
  33#include <linux/tcp.h>
  34#include <linux/ipv6.h>
  35#include <linux/slab.h>
  36#include <net/checksum.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/ethtool.h>
  39#include <linux/if_vlan.h>
  40#include <linux/cpu.h>
  41#include <linux/smp.h>
  42#include <linux/pm_qos.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/aer.h>
  45#include <linux/prefetch.h>
  46
  47#include "e1000.h"
  48
  49#define DRV_EXTRAVERSION "-k"
  50
  51#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
  52char e1000e_driver_name[] = "e1000e";
  53const char e1000e_driver_version[] = DRV_VERSION;
  54
  55#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  56static int debug = -1;
  57module_param(debug, int, 0);
  58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59
  60static const struct e1000_info *e1000_info_tbl[] = {
  61        [board_82571]           = &e1000_82571_info,
  62        [board_82572]           = &e1000_82572_info,
  63        [board_82573]           = &e1000_82573_info,
  64        [board_82574]           = &e1000_82574_info,
  65        [board_82583]           = &e1000_82583_info,
  66        [board_80003es2lan]     = &e1000_es2_info,
  67        [board_ich8lan]         = &e1000_ich8_info,
  68        [board_ich9lan]         = &e1000_ich9_info,
  69        [board_ich10lan]        = &e1000_ich10_info,
  70        [board_pchlan]          = &e1000_pch_info,
  71        [board_pch2lan]         = &e1000_pch2_info,
  72        [board_pch_lpt]         = &e1000_pch_lpt_info,
  73        [board_pch_spt]         = &e1000_pch_spt_info,
  74};
  75
  76struct e1000_reg_info {
  77        u32 ofs;
  78        char *name;
  79};
  80
  81static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  82        /* General Registers */
  83        {E1000_CTRL, "CTRL"},
  84        {E1000_STATUS, "STATUS"},
  85        {E1000_CTRL_EXT, "CTRL_EXT"},
  86
  87        /* Interrupt Registers */
  88        {E1000_ICR, "ICR"},
  89
  90        /* Rx Registers */
  91        {E1000_RCTL, "RCTL"},
  92        {E1000_RDLEN(0), "RDLEN"},
  93        {E1000_RDH(0), "RDH"},
  94        {E1000_RDT(0), "RDT"},
  95        {E1000_RDTR, "RDTR"},
  96        {E1000_RXDCTL(0), "RXDCTL"},
  97        {E1000_ERT, "ERT"},
  98        {E1000_RDBAL(0), "RDBAL"},
  99        {E1000_RDBAH(0), "RDBAH"},
 100        {E1000_RDFH, "RDFH"},
 101        {E1000_RDFT, "RDFT"},
 102        {E1000_RDFHS, "RDFHS"},
 103        {E1000_RDFTS, "RDFTS"},
 104        {E1000_RDFPC, "RDFPC"},
 105
 106        /* Tx Registers */
 107        {E1000_TCTL, "TCTL"},
 108        {E1000_TDBAL(0), "TDBAL"},
 109        {E1000_TDBAH(0), "TDBAH"},
 110        {E1000_TDLEN(0), "TDLEN"},
 111        {E1000_TDH(0), "TDH"},
 112        {E1000_TDT(0), "TDT"},
 113        {E1000_TIDV, "TIDV"},
 114        {E1000_TXDCTL(0), "TXDCTL"},
 115        {E1000_TADV, "TADV"},
 116        {E1000_TARC(0), "TARC"},
 117        {E1000_TDFH, "TDFH"},
 118        {E1000_TDFT, "TDFT"},
 119        {E1000_TDFHS, "TDFHS"},
 120        {E1000_TDFTS, "TDFTS"},
 121        {E1000_TDFPC, "TDFPC"},
 122
 123        /* List Terminator */
 124        {0, NULL}
 125};
 126
 127/**
 128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 129 * @hw: pointer to the HW structure
 130 *
 131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 132 * be accessing the registers at the same time.  Normally, this is handled in
 133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 134 * accesses later than it should which could result in the register to have
 135 * an incorrect value.  Workaround this by checking the FWSM register which
 136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 137 * and try again a number of times.
 138 **/
 139s32 __ew32_prepare(struct e1000_hw *hw)
 140{
 141        s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 142
 143        while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 144                udelay(50);
 145
 146        return i;
 147}
 148
 149void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 150{
 151        if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 152                __ew32_prepare(hw);
 153
 154        writel(val, hw->hw_addr + reg);
 155}
 156
 157/**
 158 * e1000_regdump - register printout routine
 159 * @hw: pointer to the HW structure
 160 * @reginfo: pointer to the register info table
 161 **/
 162static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 163{
 164        int n = 0;
 165        char rname[16];
 166        u32 regs[8];
 167
 168        switch (reginfo->ofs) {
 169        case E1000_RXDCTL(0):
 170                for (n = 0; n < 2; n++)
 171                        regs[n] = __er32(hw, E1000_RXDCTL(n));
 172                break;
 173        case E1000_TXDCTL(0):
 174                for (n = 0; n < 2; n++)
 175                        regs[n] = __er32(hw, E1000_TXDCTL(n));
 176                break;
 177        case E1000_TARC(0):
 178                for (n = 0; n < 2; n++)
 179                        regs[n] = __er32(hw, E1000_TARC(n));
 180                break;
 181        default:
 182                pr_info("%-15s %08x\n",
 183                        reginfo->name, __er32(hw, reginfo->ofs));
 184                return;
 185        }
 186
 187        snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 188        pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 189}
 190
 191static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 192                                 struct e1000_buffer *bi)
 193{
 194        int i;
 195        struct e1000_ps_page *ps_page;
 196
 197        for (i = 0; i < adapter->rx_ps_pages; i++) {
 198                ps_page = &bi->ps_pages[i];
 199
 200                if (ps_page->page) {
 201                        pr_info("packet dump for ps_page %d:\n", i);
 202                        print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 203                                       16, 1, page_address(ps_page->page),
 204                                       PAGE_SIZE, true);
 205                }
 206        }
 207}
 208
 209/**
 210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 211 * @adapter: board private structure
 212 **/
 213static void e1000e_dump(struct e1000_adapter *adapter)
 214{
 215        struct net_device *netdev = adapter->netdev;
 216        struct e1000_hw *hw = &adapter->hw;
 217        struct e1000_reg_info *reginfo;
 218        struct e1000_ring *tx_ring = adapter->tx_ring;
 219        struct e1000_tx_desc *tx_desc;
 220        struct my_u0 {
 221                __le64 a;
 222                __le64 b;
 223        } *u0;
 224        struct e1000_buffer *buffer_info;
 225        struct e1000_ring *rx_ring = adapter->rx_ring;
 226        union e1000_rx_desc_packet_split *rx_desc_ps;
 227        union e1000_rx_desc_extended *rx_desc;
 228        struct my_u1 {
 229                __le64 a;
 230                __le64 b;
 231                __le64 c;
 232                __le64 d;
 233        } *u1;
 234        u32 staterr;
 235        int i = 0;
 236
 237        if (!netif_msg_hw(adapter))
 238                return;
 239
 240        /* Print netdevice Info */
 241        if (netdev) {
 242                dev_info(&adapter->pdev->dev, "Net device Info\n");
 243                pr_info("Device Name     state            trans_start      last_rx\n");
 244                pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 245                        netdev->state, netdev->trans_start, netdev->last_rx);
 246        }
 247
 248        /* Print Registers */
 249        dev_info(&adapter->pdev->dev, "Register Dump\n");
 250        pr_info(" Register Name   Value\n");
 251        for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 252             reginfo->name; reginfo++) {
 253                e1000_regdump(hw, reginfo);
 254        }
 255
 256        /* Print Tx Ring Summary */
 257        if (!netdev || !netif_running(netdev))
 258                return;
 259
 260        dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 261        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 262        buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 263        pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 264                0, tx_ring->next_to_use, tx_ring->next_to_clean,
 265                (unsigned long long)buffer_info->dma,
 266                buffer_info->length,
 267                buffer_info->next_to_watch,
 268                (unsigned long long)buffer_info->time_stamp);
 269
 270        /* Print Tx Ring */
 271        if (!netif_msg_tx_done(adapter))
 272                goto rx_ring_summary;
 273
 274        dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 275
 276        /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 277         *
 278         * Legacy Transmit Descriptor
 279         *   +--------------------------------------------------------------+
 280         * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 281         *   +--------------------------------------------------------------+
 282         * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 283         *   +--------------------------------------------------------------+
 284         *   63       48 47        36 35    32 31     24 23    16 15        0
 285         *
 286         * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 287         *   63      48 47    40 39       32 31             16 15    8 7      0
 288         *   +----------------------------------------------------------------+
 289         * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 290         *   +----------------------------------------------------------------+
 291         * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 292         *   +----------------------------------------------------------------+
 293         *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 294         *
 295         * Extended Data Descriptor (DTYP=0x1)
 296         *   +----------------------------------------------------------------+
 297         * 0 |                     Buffer Address [63:0]                      |
 298         *   +----------------------------------------------------------------+
 299         * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 300         *   +----------------------------------------------------------------+
 301         *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 302         */
 303        pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 304        pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 305        pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 306        for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 307                const char *next_desc;
 308                tx_desc = E1000_TX_DESC(*tx_ring, i);
 309                buffer_info = &tx_ring->buffer_info[i];
 310                u0 = (struct my_u0 *)tx_desc;
 311                if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 312                        next_desc = " NTC/U";
 313                else if (i == tx_ring->next_to_use)
 314                        next_desc = " NTU";
 315                else if (i == tx_ring->next_to_clean)
 316                        next_desc = " NTC";
 317                else
 318                        next_desc = "";
 319                pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 320                        (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 321                         ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 322                        i,
 323                        (unsigned long long)le64_to_cpu(u0->a),
 324                        (unsigned long long)le64_to_cpu(u0->b),
 325                        (unsigned long long)buffer_info->dma,
 326                        buffer_info->length, buffer_info->next_to_watch,
 327                        (unsigned long long)buffer_info->time_stamp,
 328                        buffer_info->skb, next_desc);
 329
 330                if (netif_msg_pktdata(adapter) && buffer_info->skb)
 331                        print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 332                                       16, 1, buffer_info->skb->data,
 333                                       buffer_info->skb->len, true);
 334        }
 335
 336        /* Print Rx Ring Summary */
 337rx_ring_summary:
 338        dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 339        pr_info("Queue [NTU] [NTC]\n");
 340        pr_info(" %5d %5X %5X\n",
 341                0, rx_ring->next_to_use, rx_ring->next_to_clean);
 342
 343        /* Print Rx Ring */
 344        if (!netif_msg_rx_status(adapter))
 345                return;
 346
 347        dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 348        switch (adapter->rx_ps_pages) {
 349        case 1:
 350        case 2:
 351        case 3:
 352                /* [Extended] Packet Split Receive Descriptor Format
 353                 *
 354                 *    +-----------------------------------------------------+
 355                 *  0 |                Buffer Address 0 [63:0]              |
 356                 *    +-----------------------------------------------------+
 357                 *  8 |                Buffer Address 1 [63:0]              |
 358                 *    +-----------------------------------------------------+
 359                 * 16 |                Buffer Address 2 [63:0]              |
 360                 *    +-----------------------------------------------------+
 361                 * 24 |                Buffer Address 3 [63:0]              |
 362                 *    +-----------------------------------------------------+
 363                 */
 364                pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 365                /* [Extended] Receive Descriptor (Write-Back) Format
 366                 *
 367                 *   63       48 47    32 31     13 12    8 7    4 3        0
 368                 *   +------------------------------------------------------+
 369                 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 370                 *   | Checksum | Ident  |         | Queue |      |  Type   |
 371                 *   +------------------------------------------------------+
 372                 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 373                 *   +------------------------------------------------------+
 374                 *   63       48 47    32 31            20 19               0
 375                 */
 376                pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 377                for (i = 0; i < rx_ring->count; i++) {
 378                        const char *next_desc;
 379                        buffer_info = &rx_ring->buffer_info[i];
 380                        rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 381                        u1 = (struct my_u1 *)rx_desc_ps;
 382                        staterr =
 383                            le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 384
 385                        if (i == rx_ring->next_to_use)
 386                                next_desc = " NTU";
 387                        else if (i == rx_ring->next_to_clean)
 388                                next_desc = " NTC";
 389                        else
 390                                next_desc = "";
 391
 392                        if (staterr & E1000_RXD_STAT_DD) {
 393                                /* Descriptor Done */
 394                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 395                                        "RWB", i,
 396                                        (unsigned long long)le64_to_cpu(u1->a),
 397                                        (unsigned long long)le64_to_cpu(u1->b),
 398                                        (unsigned long long)le64_to_cpu(u1->c),
 399                                        (unsigned long long)le64_to_cpu(u1->d),
 400                                        buffer_info->skb, next_desc);
 401                        } else {
 402                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 403                                        "R  ", i,
 404                                        (unsigned long long)le64_to_cpu(u1->a),
 405                                        (unsigned long long)le64_to_cpu(u1->b),
 406                                        (unsigned long long)le64_to_cpu(u1->c),
 407                                        (unsigned long long)le64_to_cpu(u1->d),
 408                                        (unsigned long long)buffer_info->dma,
 409                                        buffer_info->skb, next_desc);
 410
 411                                if (netif_msg_pktdata(adapter))
 412                                        e1000e_dump_ps_pages(adapter,
 413                                                             buffer_info);
 414                        }
 415                }
 416                break;
 417        default:
 418        case 0:
 419                /* Extended Receive Descriptor (Read) Format
 420                 *
 421                 *   +-----------------------------------------------------+
 422                 * 0 |                Buffer Address [63:0]                |
 423                 *   +-----------------------------------------------------+
 424                 * 8 |                      Reserved                       |
 425                 *   +-----------------------------------------------------+
 426                 */
 427                pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 428                /* Extended Receive Descriptor (Write-Back) Format
 429                 *
 430                 *   63       48 47    32 31    24 23            4 3        0
 431                 *   +------------------------------------------------------+
 432                 *   |     RSS Hash      |        |               |         |
 433                 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 434                 *   | Packet   | IP     |        |               |  Type   |
 435                 *   | Checksum | Ident  |        |               |         |
 436                 *   +------------------------------------------------------+
 437                 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 438                 *   +------------------------------------------------------+
 439                 *   63       48 47    32 31            20 19               0
 440                 */
 441                pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 442
 443                for (i = 0; i < rx_ring->count; i++) {
 444                        const char *next_desc;
 445
 446                        buffer_info = &rx_ring->buffer_info[i];
 447                        rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 448                        u1 = (struct my_u1 *)rx_desc;
 449                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 450
 451                        if (i == rx_ring->next_to_use)
 452                                next_desc = " NTU";
 453                        else if (i == rx_ring->next_to_clean)
 454                                next_desc = " NTC";
 455                        else
 456                                next_desc = "";
 457
 458                        if (staterr & E1000_RXD_STAT_DD) {
 459                                /* Descriptor Done */
 460                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 461                                        "RWB", i,
 462                                        (unsigned long long)le64_to_cpu(u1->a),
 463                                        (unsigned long long)le64_to_cpu(u1->b),
 464                                        buffer_info->skb, next_desc);
 465                        } else {
 466                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 467                                        "R  ", i,
 468                                        (unsigned long long)le64_to_cpu(u1->a),
 469                                        (unsigned long long)le64_to_cpu(u1->b),
 470                                        (unsigned long long)buffer_info->dma,
 471                                        buffer_info->skb, next_desc);
 472
 473                                if (netif_msg_pktdata(adapter) &&
 474                                    buffer_info->skb)
 475                                        print_hex_dump(KERN_INFO, "",
 476                                                       DUMP_PREFIX_ADDRESS, 16,
 477                                                       1,
 478                                                       buffer_info->skb->data,
 479                                                       adapter->rx_buffer_len,
 480                                                       true);
 481                        }
 482                }
 483        }
 484}
 485
 486/**
 487 * e1000_desc_unused - calculate if we have unused descriptors
 488 **/
 489static int e1000_desc_unused(struct e1000_ring *ring)
 490{
 491        if (ring->next_to_clean > ring->next_to_use)
 492                return ring->next_to_clean - ring->next_to_use - 1;
 493
 494        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 495}
 496
 497/**
 498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 499 * @adapter: board private structure
 500 * @hwtstamps: time stamp structure to update
 501 * @systim: unsigned 64bit system time value.
 502 *
 503 * Convert the system time value stored in the RX/TXSTMP registers into a
 504 * hwtstamp which can be used by the upper level time stamping functions.
 505 *
 506 * The 'systim_lock' spinlock is used to protect the consistency of the
 507 * system time value. This is needed because reading the 64 bit time
 508 * value involves reading two 32 bit registers. The first read latches the
 509 * value.
 510 **/
 511static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 512                                      struct skb_shared_hwtstamps *hwtstamps,
 513                                      u64 systim)
 514{
 515        u64 ns;
 516        unsigned long flags;
 517
 518        spin_lock_irqsave(&adapter->systim_lock, flags);
 519        ns = timecounter_cyc2time(&adapter->tc, systim);
 520        spin_unlock_irqrestore(&adapter->systim_lock, flags);
 521
 522        memset(hwtstamps, 0, sizeof(*hwtstamps));
 523        hwtstamps->hwtstamp = ns_to_ktime(ns);
 524}
 525
 526/**
 527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 528 * @adapter: board private structure
 529 * @status: descriptor extended error and status field
 530 * @skb: particular skb to include time stamp
 531 *
 532 * If the time stamp is valid, convert it into the timecounter ns value
 533 * and store that result into the shhwtstamps structure which is passed
 534 * up the network stack.
 535 **/
 536static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 537                               struct sk_buff *skb)
 538{
 539        struct e1000_hw *hw = &adapter->hw;
 540        u64 rxstmp;
 541
 542        if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 543            !(status & E1000_RXDEXT_STATERR_TST) ||
 544            !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 545                return;
 546
 547        /* The Rx time stamp registers contain the time stamp.  No other
 548         * received packet will be time stamped until the Rx time stamp
 549         * registers are read.  Because only one packet can be time stamped
 550         * at a time, the register values must belong to this packet and
 551         * therefore none of the other additional attributes need to be
 552         * compared.
 553         */
 554        rxstmp = (u64)er32(RXSTMPL);
 555        rxstmp |= (u64)er32(RXSTMPH) << 32;
 556        e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 557
 558        adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 559}
 560
 561/**
 562 * e1000_receive_skb - helper function to handle Rx indications
 563 * @adapter: board private structure
 564 * @staterr: descriptor extended error and status field as written by hardware
 565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 566 * @skb: pointer to sk_buff to be indicated to stack
 567 **/
 568static void e1000_receive_skb(struct e1000_adapter *adapter,
 569                              struct net_device *netdev, struct sk_buff *skb,
 570                              u32 staterr, __le16 vlan)
 571{
 572        u16 tag = le16_to_cpu(vlan);
 573
 574        e1000e_rx_hwtstamp(adapter, staterr, skb);
 575
 576        skb->protocol = eth_type_trans(skb, netdev);
 577
 578        if (staterr & E1000_RXD_STAT_VP)
 579                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 580
 581        napi_gro_receive(&adapter->napi, skb);
 582}
 583
 584/**
 585 * e1000_rx_checksum - Receive Checksum Offload
 586 * @adapter: board private structure
 587 * @status_err: receive descriptor status and error fields
 588 * @csum: receive descriptor csum field
 589 * @sk_buff: socket buffer with received data
 590 **/
 591static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 592                              struct sk_buff *skb)
 593{
 594        u16 status = (u16)status_err;
 595        u8 errors = (u8)(status_err >> 24);
 596
 597        skb_checksum_none_assert(skb);
 598
 599        /* Rx checksum disabled */
 600        if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 601                return;
 602
 603        /* Ignore Checksum bit is set */
 604        if (status & E1000_RXD_STAT_IXSM)
 605                return;
 606
 607        /* TCP/UDP checksum error bit or IP checksum error bit is set */
 608        if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 609                /* let the stack verify checksum errors */
 610                adapter->hw_csum_err++;
 611                return;
 612        }
 613
 614        /* TCP/UDP Checksum has not been calculated */
 615        if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 616                return;
 617
 618        /* It must be a TCP or UDP packet with a valid checksum */
 619        skb->ip_summed = CHECKSUM_UNNECESSARY;
 620        adapter->hw_csum_good++;
 621}
 622
 623static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 624{
 625        struct e1000_adapter *adapter = rx_ring->adapter;
 626        struct e1000_hw *hw = &adapter->hw;
 627        s32 ret_val = __ew32_prepare(hw);
 628
 629        writel(i, rx_ring->tail);
 630
 631        if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 632                u32 rctl = er32(RCTL);
 633
 634                ew32(RCTL, rctl & ~E1000_RCTL_EN);
 635                e_err("ME firmware caused invalid RDT - resetting\n");
 636                schedule_work(&adapter->reset_task);
 637        }
 638}
 639
 640static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 641{
 642        struct e1000_adapter *adapter = tx_ring->adapter;
 643        struct e1000_hw *hw = &adapter->hw;
 644        s32 ret_val = __ew32_prepare(hw);
 645
 646        writel(i, tx_ring->tail);
 647
 648        if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 649                u32 tctl = er32(TCTL);
 650
 651                ew32(TCTL, tctl & ~E1000_TCTL_EN);
 652                e_err("ME firmware caused invalid TDT - resetting\n");
 653                schedule_work(&adapter->reset_task);
 654        }
 655}
 656
 657/**
 658 * e1000_alloc_rx_buffers - Replace used receive buffers
 659 * @rx_ring: Rx descriptor ring
 660 **/
 661static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 662                                   int cleaned_count, gfp_t gfp)
 663{
 664        struct e1000_adapter *adapter = rx_ring->adapter;
 665        struct net_device *netdev = adapter->netdev;
 666        struct pci_dev *pdev = adapter->pdev;
 667        union e1000_rx_desc_extended *rx_desc;
 668        struct e1000_buffer *buffer_info;
 669        struct sk_buff *skb;
 670        unsigned int i;
 671        unsigned int bufsz = adapter->rx_buffer_len;
 672
 673        i = rx_ring->next_to_use;
 674        buffer_info = &rx_ring->buffer_info[i];
 675
 676        while (cleaned_count--) {
 677                skb = buffer_info->skb;
 678                if (skb) {
 679                        skb_trim(skb, 0);
 680                        goto map_skb;
 681                }
 682
 683                skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 684                if (!skb) {
 685                        /* Better luck next round */
 686                        adapter->alloc_rx_buff_failed++;
 687                        break;
 688                }
 689
 690                buffer_info->skb = skb;
 691map_skb:
 692                buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 693                                                  adapter->rx_buffer_len,
 694                                                  DMA_FROM_DEVICE);
 695                if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 696                        dev_err(&pdev->dev, "Rx DMA map failed\n");
 697                        adapter->rx_dma_failed++;
 698                        break;
 699                }
 700
 701                rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 702                rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 703
 704                if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 705                        /* Force memory writes to complete before letting h/w
 706                         * know there are new descriptors to fetch.  (Only
 707                         * applicable for weak-ordered memory model archs,
 708                         * such as IA-64).
 709                         */
 710                        wmb();
 711                        if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 712                                e1000e_update_rdt_wa(rx_ring, i);
 713                        else
 714                                writel(i, rx_ring->tail);
 715                }
 716                i++;
 717                if (i == rx_ring->count)
 718                        i = 0;
 719                buffer_info = &rx_ring->buffer_info[i];
 720        }
 721
 722        rx_ring->next_to_use = i;
 723}
 724
 725/**
 726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 727 * @rx_ring: Rx descriptor ring
 728 **/
 729static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 730                                      int cleaned_count, gfp_t gfp)
 731{
 732        struct e1000_adapter *adapter = rx_ring->adapter;
 733        struct net_device *netdev = adapter->netdev;
 734        struct pci_dev *pdev = adapter->pdev;
 735        union e1000_rx_desc_packet_split *rx_desc;
 736        struct e1000_buffer *buffer_info;
 737        struct e1000_ps_page *ps_page;
 738        struct sk_buff *skb;
 739        unsigned int i, j;
 740
 741        i = rx_ring->next_to_use;
 742        buffer_info = &rx_ring->buffer_info[i];
 743
 744        while (cleaned_count--) {
 745                rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 746
 747                for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 748                        ps_page = &buffer_info->ps_pages[j];
 749                        if (j >= adapter->rx_ps_pages) {
 750                                /* all unused desc entries get hw null ptr */
 751                                rx_desc->read.buffer_addr[j + 1] =
 752                                    ~cpu_to_le64(0);
 753                                continue;
 754                        }
 755                        if (!ps_page->page) {
 756                                ps_page->page = alloc_page(gfp);
 757                                if (!ps_page->page) {
 758                                        adapter->alloc_rx_buff_failed++;
 759                                        goto no_buffers;
 760                                }
 761                                ps_page->dma = dma_map_page(&pdev->dev,
 762                                                            ps_page->page,
 763                                                            0, PAGE_SIZE,
 764                                                            DMA_FROM_DEVICE);
 765                                if (dma_mapping_error(&pdev->dev,
 766                                                      ps_page->dma)) {
 767                                        dev_err(&adapter->pdev->dev,
 768                                                "Rx DMA page map failed\n");
 769                                        adapter->rx_dma_failed++;
 770                                        goto no_buffers;
 771                                }
 772                        }
 773                        /* Refresh the desc even if buffer_addrs
 774                         * didn't change because each write-back
 775                         * erases this info.
 776                         */
 777                        rx_desc->read.buffer_addr[j + 1] =
 778                            cpu_to_le64(ps_page->dma);
 779                }
 780
 781                skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 782                                                  gfp);
 783
 784                if (!skb) {
 785                        adapter->alloc_rx_buff_failed++;
 786                        break;
 787                }
 788
 789                buffer_info->skb = skb;
 790                buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 791                                                  adapter->rx_ps_bsize0,
 792                                                  DMA_FROM_DEVICE);
 793                if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 794                        dev_err(&pdev->dev, "Rx DMA map failed\n");
 795                        adapter->rx_dma_failed++;
 796                        /* cleanup skb */
 797                        dev_kfree_skb_any(skb);
 798                        buffer_info->skb = NULL;
 799                        break;
 800                }
 801
 802                rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 803
 804                if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 805                        /* Force memory writes to complete before letting h/w
 806                         * know there are new descriptors to fetch.  (Only
 807                         * applicable for weak-ordered memory model archs,
 808                         * such as IA-64).
 809                         */
 810                        wmb();
 811                        if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 812                                e1000e_update_rdt_wa(rx_ring, i << 1);
 813                        else
 814                                writel(i << 1, rx_ring->tail);
 815                }
 816
 817                i++;
 818                if (i == rx_ring->count)
 819                        i = 0;
 820                buffer_info = &rx_ring->buffer_info[i];
 821        }
 822
 823no_buffers:
 824        rx_ring->next_to_use = i;
 825}
 826
 827/**
 828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 829 * @rx_ring: Rx descriptor ring
 830 * @cleaned_count: number of buffers to allocate this pass
 831 **/
 832
 833static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 834                                         int cleaned_count, gfp_t gfp)
 835{
 836        struct e1000_adapter *adapter = rx_ring->adapter;
 837        struct net_device *netdev = adapter->netdev;
 838        struct pci_dev *pdev = adapter->pdev;
 839        union e1000_rx_desc_extended *rx_desc;
 840        struct e1000_buffer *buffer_info;
 841        struct sk_buff *skb;
 842        unsigned int i;
 843        unsigned int bufsz = 256 - 16;  /* for skb_reserve */
 844
 845        i = rx_ring->next_to_use;
 846        buffer_info = &rx_ring->buffer_info[i];
 847
 848        while (cleaned_count--) {
 849                skb = buffer_info->skb;
 850                if (skb) {
 851                        skb_trim(skb, 0);
 852                        goto check_page;
 853                }
 854
 855                skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 856                if (unlikely(!skb)) {
 857                        /* Better luck next round */
 858                        adapter->alloc_rx_buff_failed++;
 859                        break;
 860                }
 861
 862                buffer_info->skb = skb;
 863check_page:
 864                /* allocate a new page if necessary */
 865                if (!buffer_info->page) {
 866                        buffer_info->page = alloc_page(gfp);
 867                        if (unlikely(!buffer_info->page)) {
 868                                adapter->alloc_rx_buff_failed++;
 869                                break;
 870                        }
 871                }
 872
 873                if (!buffer_info->dma) {
 874                        buffer_info->dma = dma_map_page(&pdev->dev,
 875                                                        buffer_info->page, 0,
 876                                                        PAGE_SIZE,
 877                                                        DMA_FROM_DEVICE);
 878                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 879                                adapter->alloc_rx_buff_failed++;
 880                                break;
 881                        }
 882                }
 883
 884                rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 885                rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 886
 887                if (unlikely(++i == rx_ring->count))
 888                        i = 0;
 889                buffer_info = &rx_ring->buffer_info[i];
 890        }
 891
 892        if (likely(rx_ring->next_to_use != i)) {
 893                rx_ring->next_to_use = i;
 894                if (unlikely(i-- == 0))
 895                        i = (rx_ring->count - 1);
 896
 897                /* Force memory writes to complete before letting h/w
 898                 * know there are new descriptors to fetch.  (Only
 899                 * applicable for weak-ordered memory model archs,
 900                 * such as IA-64).
 901                 */
 902                wmb();
 903                if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 904                        e1000e_update_rdt_wa(rx_ring, i);
 905                else
 906                        writel(i, rx_ring->tail);
 907        }
 908}
 909
 910static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 911                                 struct sk_buff *skb)
 912{
 913        if (netdev->features & NETIF_F_RXHASH)
 914                skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 915}
 916
 917/**
 918 * e1000_clean_rx_irq - Send received data up the network stack
 919 * @rx_ring: Rx descriptor ring
 920 *
 921 * the return value indicates whether actual cleaning was done, there
 922 * is no guarantee that everything was cleaned
 923 **/
 924static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 925                               int work_to_do)
 926{
 927        struct e1000_adapter *adapter = rx_ring->adapter;
 928        struct net_device *netdev = adapter->netdev;
 929        struct pci_dev *pdev = adapter->pdev;
 930        struct e1000_hw *hw = &adapter->hw;
 931        union e1000_rx_desc_extended *rx_desc, *next_rxd;
 932        struct e1000_buffer *buffer_info, *next_buffer;
 933        u32 length, staterr;
 934        unsigned int i;
 935        int cleaned_count = 0;
 936        bool cleaned = false;
 937        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 938
 939        i = rx_ring->next_to_clean;
 940        rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 941        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 942        buffer_info = &rx_ring->buffer_info[i];
 943
 944        while (staterr & E1000_RXD_STAT_DD) {
 945                struct sk_buff *skb;
 946
 947                if (*work_done >= work_to_do)
 948                        break;
 949                (*work_done)++;
 950                dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
 951
 952                skb = buffer_info->skb;
 953                buffer_info->skb = NULL;
 954
 955                prefetch(skb->data - NET_IP_ALIGN);
 956
 957                i++;
 958                if (i == rx_ring->count)
 959                        i = 0;
 960                next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 961                prefetch(next_rxd);
 962
 963                next_buffer = &rx_ring->buffer_info[i];
 964
 965                cleaned = true;
 966                cleaned_count++;
 967                dma_unmap_single(&pdev->dev, buffer_info->dma,
 968                                 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 969                buffer_info->dma = 0;
 970
 971                length = le16_to_cpu(rx_desc->wb.upper.length);
 972
 973                /* !EOP means multiple descriptors were used to store a single
 974                 * packet, if that's the case we need to toss it.  In fact, we
 975                 * need to toss every packet with the EOP bit clear and the
 976                 * next frame that _does_ have the EOP bit set, as it is by
 977                 * definition only a frame fragment
 978                 */
 979                if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 980                        adapter->flags2 |= FLAG2_IS_DISCARDING;
 981
 982                if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 983                        /* All receives must fit into a single buffer */
 984                        e_dbg("Receive packet consumed multiple buffers\n");
 985                        /* recycle */
 986                        buffer_info->skb = skb;
 987                        if (staterr & E1000_RXD_STAT_EOP)
 988                                adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 989                        goto next_desc;
 990                }
 991
 992                if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 993                             !(netdev->features & NETIF_F_RXALL))) {
 994                        /* recycle */
 995                        buffer_info->skb = skb;
 996                        goto next_desc;
 997                }
 998
 999                /* adjust length to remove Ethernet CRC */
1000                if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001                        /* If configured to store CRC, don't subtract FCS,
1002                         * but keep the FCS bytes out of the total_rx_bytes
1003                         * counter
1004                         */
1005                        if (netdev->features & NETIF_F_RXFCS)
1006                                total_rx_bytes -= 4;
1007                        else
1008                                length -= 4;
1009                }
1010
1011                total_rx_bytes += length;
1012                total_rx_packets++;
1013
1014                /* code added for copybreak, this should improve
1015                 * performance for small packets with large amounts
1016                 * of reassembly being done in the stack
1017                 */
1018                if (length < copybreak) {
1019                        struct sk_buff *new_skb =
1020                                napi_alloc_skb(&adapter->napi, length);
1021                        if (new_skb) {
1022                                skb_copy_to_linear_data_offset(new_skb,
1023                                                               -NET_IP_ALIGN,
1024                                                               (skb->data -
1025                                                                NET_IP_ALIGN),
1026                                                               (length +
1027                                                                NET_IP_ALIGN));
1028                                /* save the skb in buffer_info as good */
1029                                buffer_info->skb = skb;
1030                                skb = new_skb;
1031                        }
1032                        /* else just continue with the old one */
1033                }
1034                /* end copybreak code */
1035                skb_put(skb, length);
1036
1037                /* Receive Checksum Offload */
1038                e1000_rx_checksum(adapter, staterr, skb);
1039
1040                e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042                e1000_receive_skb(adapter, netdev, skb, staterr,
1043                                  rx_desc->wb.upper.vlan);
1044
1045next_desc:
1046                rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048                /* return some buffers to hardware, one at a time is too slow */
1049                if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050                        adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051                                              GFP_ATOMIC);
1052                        cleaned_count = 0;
1053                }
1054
1055                /* use prefetched values */
1056                rx_desc = next_rxd;
1057                buffer_info = next_buffer;
1058
1059                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060        }
1061        rx_ring->next_to_clean = i;
1062
1063        cleaned_count = e1000_desc_unused(rx_ring);
1064        if (cleaned_count)
1065                adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067        adapter->total_rx_bytes += total_rx_bytes;
1068        adapter->total_rx_packets += total_rx_packets;
1069        return cleaned;
1070}
1071
1072static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073                            struct e1000_buffer *buffer_info)
1074{
1075        struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077        if (buffer_info->dma) {
1078                if (buffer_info->mapped_as_page)
1079                        dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080                                       buffer_info->length, DMA_TO_DEVICE);
1081                else
1082                        dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083                                         buffer_info->length, DMA_TO_DEVICE);
1084                buffer_info->dma = 0;
1085        }
1086        if (buffer_info->skb) {
1087                dev_kfree_skb_any(buffer_info->skb);
1088                buffer_info->skb = NULL;
1089        }
1090        buffer_info->time_stamp = 0;
1091}
1092
1093static void e1000_print_hw_hang(struct work_struct *work)
1094{
1095        struct e1000_adapter *adapter = container_of(work,
1096                                                     struct e1000_adapter,
1097                                                     print_hang_task);
1098        struct net_device *netdev = adapter->netdev;
1099        struct e1000_ring *tx_ring = adapter->tx_ring;
1100        unsigned int i = tx_ring->next_to_clean;
1101        unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102        struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103        struct e1000_hw *hw = &adapter->hw;
1104        u16 phy_status, phy_1000t_status, phy_ext_status;
1105        u16 pci_status;
1106
1107        if (test_bit(__E1000_DOWN, &adapter->state))
1108                return;
1109
1110        if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111                /* May be block on write-back, flush and detect again
1112                 * flush pending descriptor writebacks to memory
1113                 */
1114                ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115                /* execute the writes immediately */
1116                e1e_flush();
1117                /* Due to rare timing issues, write to TIDV again to ensure
1118                 * the write is successful
1119                 */
1120                ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121                /* execute the writes immediately */
1122                e1e_flush();
1123                adapter->tx_hang_recheck = true;
1124                return;
1125        }
1126        adapter->tx_hang_recheck = false;
1127
1128        if (er32(TDH(0)) == er32(TDT(0))) {
1129                e_dbg("false hang detected, ignoring\n");
1130                return;
1131        }
1132
1133        /* Real hang detected */
1134        netif_stop_queue(netdev);
1135
1136        e1e_rphy(hw, MII_BMSR, &phy_status);
1137        e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138        e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140        pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142        /* detected Hardware unit hang */
1143        e_err("Detected Hardware Unit Hang:\n"
1144              "  TDH                  <%x>\n"
1145              "  TDT                  <%x>\n"
1146              "  next_to_use          <%x>\n"
1147              "  next_to_clean        <%x>\n"
1148              "buffer_info[next_to_clean]:\n"
1149              "  time_stamp           <%lx>\n"
1150              "  next_to_watch        <%x>\n"
1151              "  jiffies              <%lx>\n"
1152              "  next_to_watch.status <%x>\n"
1153              "MAC Status             <%x>\n"
1154              "PHY Status             <%x>\n"
1155              "PHY 1000BASE-T Status  <%x>\n"
1156              "PHY Extended Status    <%x>\n"
1157              "PCI Status             <%x>\n",
1158              readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159              tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160              eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161              phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163        e1000e_dump(adapter);
1164
1165        /* Suggest workaround for known h/w issue */
1166        if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167                e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168}
1169
1170/**
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1173 *
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb.  The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1177 */
1178static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179{
1180        struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181                                                     tx_hwtstamp_work);
1182        struct e1000_hw *hw = &adapter->hw;
1183
1184        if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185                struct skb_shared_hwtstamps shhwtstamps;
1186                u64 txstmp;
1187
1188                txstmp = er32(TXSTMPL);
1189                txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191                e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193                skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194                dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195                adapter->tx_hwtstamp_skb = NULL;
1196        } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197                              + adapter->tx_timeout_factor * HZ)) {
1198                dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199                adapter->tx_hwtstamp_skb = NULL;
1200                adapter->tx_hwtstamp_timeouts++;
1201                e_warn("clearing Tx timestamp hang\n");
1202        } else {
1203                /* reschedule to check later */
1204                schedule_work(&adapter->tx_hwtstamp_work);
1205        }
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217        struct e1000_adapter *adapter = tx_ring->adapter;
1218        struct net_device *netdev = adapter->netdev;
1219        struct e1000_hw *hw = &adapter->hw;
1220        struct e1000_tx_desc *tx_desc, *eop_desc;
1221        struct e1000_buffer *buffer_info;
1222        unsigned int i, eop;
1223        unsigned int count = 0;
1224        unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225        unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227        i = tx_ring->next_to_clean;
1228        eop = tx_ring->buffer_info[i].next_to_watch;
1229        eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231        while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232               (count < tx_ring->count)) {
1233                bool cleaned = false;
1234
1235                dma_rmb();              /* read buffer_info after eop_desc */
1236                for (; !cleaned; count++) {
1237                        tx_desc = E1000_TX_DESC(*tx_ring, i);
1238                        buffer_info = &tx_ring->buffer_info[i];
1239                        cleaned = (i == eop);
1240
1241                        if (cleaned) {
1242                                total_tx_packets += buffer_info->segs;
1243                                total_tx_bytes += buffer_info->bytecount;
1244                                if (buffer_info->skb) {
1245                                        bytes_compl += buffer_info->skb->len;
1246                                        pkts_compl++;
1247                                }
1248                        }
1249
1250                        e1000_put_txbuf(tx_ring, buffer_info);
1251                        tx_desc->upper.data = 0;
1252
1253                        i++;
1254                        if (i == tx_ring->count)
1255                                i = 0;
1256                }
1257
1258                if (i == tx_ring->next_to_use)
1259                        break;
1260                eop = tx_ring->buffer_info[i].next_to_watch;
1261                eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262        }
1263
1264        tx_ring->next_to_clean = i;
1265
1266        netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269        if (count && netif_carrier_ok(netdev) &&
1270            e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271                /* Make sure that anybody stopping the queue after this
1272                 * sees the new next_to_clean.
1273                 */
1274                smp_mb();
1275
1276                if (netif_queue_stopped(netdev) &&
1277                    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278                        netif_wake_queue(netdev);
1279                        ++adapter->restart_queue;
1280                }
1281        }
1282
1283        if (adapter->detect_tx_hung) {
1284                /* Detect a transmit hang in hardware, this serializes the
1285                 * check with the clearing of time_stamp and movement of i
1286                 */
1287                adapter->detect_tx_hung = false;
1288                if (tx_ring->buffer_info[i].time_stamp &&
1289                    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290                               + (adapter->tx_timeout_factor * HZ)) &&
1291                    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292                        schedule_work(&adapter->print_hang_task);
1293                else
1294                        adapter->tx_hang_recheck = false;
1295        }
1296        adapter->total_tx_bytes += total_tx_bytes;
1297        adapter->total_tx_packets += total_tx_packets;
1298        return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 *
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1307 **/
1308static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309                                  int work_to_do)
1310{
1311        struct e1000_adapter *adapter = rx_ring->adapter;
1312        struct e1000_hw *hw = &adapter->hw;
1313        union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314        struct net_device *netdev = adapter->netdev;
1315        struct pci_dev *pdev = adapter->pdev;
1316        struct e1000_buffer *buffer_info, *next_buffer;
1317        struct e1000_ps_page *ps_page;
1318        struct sk_buff *skb;
1319        unsigned int i, j;
1320        u32 length, staterr;
1321        int cleaned_count = 0;
1322        bool cleaned = false;
1323        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325        i = rx_ring->next_to_clean;
1326        rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327        staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328        buffer_info = &rx_ring->buffer_info[i];
1329
1330        while (staterr & E1000_RXD_STAT_DD) {
1331                if (*work_done >= work_to_do)
1332                        break;
1333                (*work_done)++;
1334                skb = buffer_info->skb;
1335                dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1336
1337                /* in the packet split case this is header only */
1338                prefetch(skb->data - NET_IP_ALIGN);
1339
1340                i++;
1341                if (i == rx_ring->count)
1342                        i = 0;
1343                next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344                prefetch(next_rxd);
1345
1346                next_buffer = &rx_ring->buffer_info[i];
1347
1348                cleaned = true;
1349                cleaned_count++;
1350                dma_unmap_single(&pdev->dev, buffer_info->dma,
1351                                 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352                buffer_info->dma = 0;
1353
1354                /* see !EOP comment in other Rx routine */
1355                if (!(staterr & E1000_RXD_STAT_EOP))
1356                        adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358                if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359                        e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360                        dev_kfree_skb_irq(skb);
1361                        if (staterr & E1000_RXD_STAT_EOP)
1362                                adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363                        goto next_desc;
1364                }
1365
1366                if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367                             !(netdev->features & NETIF_F_RXALL))) {
1368                        dev_kfree_skb_irq(skb);
1369                        goto next_desc;
1370                }
1371
1372                length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374                if (!length) {
1375                        e_dbg("Last part of the packet spanning multiple descriptors\n");
1376                        dev_kfree_skb_irq(skb);
1377                        goto next_desc;
1378                }
1379
1380                /* Good Receive */
1381                skb_put(skb, length);
1382
1383                {
1384                        /* this looks ugly, but it seems compiler issues make
1385                         * it more efficient than reusing j
1386                         */
1387                        int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389                        /* page alloc/put takes too long and effects small
1390                         * packet throughput, so unsplit small packets and
1391                         * save the alloc/put only valid in softirq (napi)
1392                         * context to call kmap_*
1393                         */
1394                        if (l1 && (l1 <= copybreak) &&
1395                            ((length + l1) <= adapter->rx_ps_bsize0)) {
1396                                u8 *vaddr;
1397
1398                                ps_page = &buffer_info->ps_pages[0];
1399
1400                                /* there is no documentation about how to call
1401                                 * kmap_atomic, so we can't hold the mapping
1402                                 * very long
1403                                 */
1404                                dma_sync_single_for_cpu(&pdev->dev,
1405                                                        ps_page->dma,
1406                                                        PAGE_SIZE,
1407                                                        DMA_FROM_DEVICE);
1408                                vaddr = kmap_atomic(ps_page->page);
1409                                memcpy(skb_tail_pointer(skb), vaddr, l1);
1410                                kunmap_atomic(vaddr);
1411                                dma_sync_single_for_device(&pdev->dev,
1412                                                           ps_page->dma,
1413                                                           PAGE_SIZE,
1414                                                           DMA_FROM_DEVICE);
1415
1416                                /* remove the CRC */
1417                                if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418                                        if (!(netdev->features & NETIF_F_RXFCS))
1419                                                l1 -= 4;
1420                                }
1421
1422                                skb_put(skb, l1);
1423                                goto copydone;
1424                        }       /* if */
1425                }
1426
1427                for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428                        length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429                        if (!length)
1430                                break;
1431
1432                        ps_page = &buffer_info->ps_pages[j];
1433                        dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434                                       DMA_FROM_DEVICE);
1435                        ps_page->dma = 0;
1436                        skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437                        ps_page->page = NULL;
1438                        skb->len += length;
1439                        skb->data_len += length;
1440                        skb->truesize += PAGE_SIZE;
1441                }
1442
1443                /* strip the ethernet crc, problem is we're using pages now so
1444                 * this whole operation can get a little cpu intensive
1445                 */
1446                if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447                        if (!(netdev->features & NETIF_F_RXFCS))
1448                                pskb_trim(skb, skb->len - 4);
1449                }
1450
1451copydone:
1452                total_rx_bytes += skb->len;
1453                total_rx_packets++;
1454
1455                e1000_rx_checksum(adapter, staterr, skb);
1456
1457                e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459                if (rx_desc->wb.upper.header_status &
1460                    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461                        adapter->rx_hdr_split++;
1462
1463                e1000_receive_skb(adapter, netdev, skb, staterr,
1464                                  rx_desc->wb.middle.vlan);
1465
1466next_desc:
1467                rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468                buffer_info->skb = NULL;
1469
1470                /* return some buffers to hardware, one at a time is too slow */
1471                if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472                        adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473                                              GFP_ATOMIC);
1474                        cleaned_count = 0;
1475                }
1476
1477                /* use prefetched values */
1478                rx_desc = next_rxd;
1479                buffer_info = next_buffer;
1480
1481                staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482        }
1483        rx_ring->next_to_clean = i;
1484
1485        cleaned_count = e1000_desc_unused(rx_ring);
1486        if (cleaned_count)
1487                adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489        adapter->total_rx_bytes += total_rx_bytes;
1490        adapter->total_rx_packets += total_rx_packets;
1491        return cleaned;
1492}
1493
1494/**
1495 * e1000_consume_page - helper function
1496 **/
1497static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498                               u16 length)
1499{
1500        bi->page = NULL;
1501        skb->len += length;
1502        skb->data_len += length;
1503        skb->truesize += PAGE_SIZE;
1504}
1505
1506/**
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1509 *
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1512 **/
1513static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514                                     int work_to_do)
1515{
1516        struct e1000_adapter *adapter = rx_ring->adapter;
1517        struct net_device *netdev = adapter->netdev;
1518        struct pci_dev *pdev = adapter->pdev;
1519        union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520        struct e1000_buffer *buffer_info, *next_buffer;
1521        u32 length, staterr;
1522        unsigned int i;
1523        int cleaned_count = 0;
1524        bool cleaned = false;
1525        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526        struct skb_shared_info *shinfo;
1527
1528        i = rx_ring->next_to_clean;
1529        rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531        buffer_info = &rx_ring->buffer_info[i];
1532
1533        while (staterr & E1000_RXD_STAT_DD) {
1534                struct sk_buff *skb;
1535
1536                if (*work_done >= work_to_do)
1537                        break;
1538                (*work_done)++;
1539                dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1540
1541                skb = buffer_info->skb;
1542                buffer_info->skb = NULL;
1543
1544                ++i;
1545                if (i == rx_ring->count)
1546                        i = 0;
1547                next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548                prefetch(next_rxd);
1549
1550                next_buffer = &rx_ring->buffer_info[i];
1551
1552                cleaned = true;
1553                cleaned_count++;
1554                dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555                               DMA_FROM_DEVICE);
1556                buffer_info->dma = 0;
1557
1558                length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560                /* errors is only valid for DD + EOP descriptors */
1561                if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562                             ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563                              !(netdev->features & NETIF_F_RXALL)))) {
1564                        /* recycle both page and skb */
1565                        buffer_info->skb = skb;
1566                        /* an error means any chain goes out the window too */
1567                        if (rx_ring->rx_skb_top)
1568                                dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569                        rx_ring->rx_skb_top = NULL;
1570                        goto next_desc;
1571                }
1572#define rxtop (rx_ring->rx_skb_top)
1573                if (!(staterr & E1000_RXD_STAT_EOP)) {
1574                        /* this descriptor is only the beginning (or middle) */
1575                        if (!rxtop) {
1576                                /* this is the beginning of a chain */
1577                                rxtop = skb;
1578                                skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579                                                   0, length);
1580                        } else {
1581                                /* this is the middle of a chain */
1582                                shinfo = skb_shinfo(rxtop);
1583                                skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584                                                   buffer_info->page, 0,
1585                                                   length);
1586                                /* re-use the skb, only consumed the page */
1587                                buffer_info->skb = skb;
1588                        }
1589                        e1000_consume_page(buffer_info, rxtop, length);
1590                        goto next_desc;
1591                } else {
1592                        if (rxtop) {
1593                                /* end of the chain */
1594                                shinfo = skb_shinfo(rxtop);
1595                                skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596                                                   buffer_info->page, 0,
1597                                                   length);
1598                                /* re-use the current skb, we only consumed the
1599                                 * page
1600                                 */
1601                                buffer_info->skb = skb;
1602                                skb = rxtop;
1603                                rxtop = NULL;
1604                                e1000_consume_page(buffer_info, skb, length);
1605                        } else {
1606                                /* no chain, got EOP, this buf is the packet
1607                                 * copybreak to save the put_page/alloc_page
1608                                 */
1609                                if (length <= copybreak &&
1610                                    skb_tailroom(skb) >= length) {
1611                                        u8 *vaddr;
1612                                        vaddr = kmap_atomic(buffer_info->page);
1613                                        memcpy(skb_tail_pointer(skb), vaddr,
1614                                               length);
1615                                        kunmap_atomic(vaddr);
1616                                        /* re-use the page, so don't erase
1617                                         * buffer_info->page
1618                                         */
1619                                        skb_put(skb, length);
1620                                } else {
1621                                        skb_fill_page_desc(skb, 0,
1622                                                           buffer_info->page, 0,
1623                                                           length);
1624                                        e1000_consume_page(buffer_info, skb,
1625                                                           length);
1626                                }
1627                        }
1628                }
1629
1630                /* Receive Checksum Offload */
1631                e1000_rx_checksum(adapter, staterr, skb);
1632
1633                e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635                /* probably a little skewed due to removing CRC */
1636                total_rx_bytes += skb->len;
1637                total_rx_packets++;
1638
1639                /* eth type trans needs skb->data to point to something */
1640                if (!pskb_may_pull(skb, ETH_HLEN)) {
1641                        e_err("pskb_may_pull failed.\n");
1642                        dev_kfree_skb_irq(skb);
1643                        goto next_desc;
1644                }
1645
1646                e1000_receive_skb(adapter, netdev, skb, staterr,
1647                                  rx_desc->wb.upper.vlan);
1648
1649next_desc:
1650                rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652                /* return some buffers to hardware, one at a time is too slow */
1653                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654                        adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655                                              GFP_ATOMIC);
1656                        cleaned_count = 0;
1657                }
1658
1659                /* use prefetched values */
1660                rx_desc = next_rxd;
1661                buffer_info = next_buffer;
1662
1663                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664        }
1665        rx_ring->next_to_clean = i;
1666
1667        cleaned_count = e1000_desc_unused(rx_ring);
1668        if (cleaned_count)
1669                adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671        adapter->total_rx_bytes += total_rx_bytes;
1672        adapter->total_rx_packets += total_rx_packets;
1673        return cleaned;
1674}
1675
1676/**
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1679 **/
1680static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681{
1682        struct e1000_adapter *adapter = rx_ring->adapter;
1683        struct e1000_buffer *buffer_info;
1684        struct e1000_ps_page *ps_page;
1685        struct pci_dev *pdev = adapter->pdev;
1686        unsigned int i, j;
1687
1688        /* Free all the Rx ring sk_buffs */
1689        for (i = 0; i < rx_ring->count; i++) {
1690                buffer_info = &rx_ring->buffer_info[i];
1691                if (buffer_info->dma) {
1692                        if (adapter->clean_rx == e1000_clean_rx_irq)
1693                                dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                 adapter->rx_buffer_len,
1695                                                 DMA_FROM_DEVICE);
1696                        else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697                                dma_unmap_page(&pdev->dev, buffer_info->dma,
1698                                               PAGE_SIZE, DMA_FROM_DEVICE);
1699                        else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700                                dma_unmap_single(&pdev->dev, buffer_info->dma,
1701                                                 adapter->rx_ps_bsize0,
1702                                                 DMA_FROM_DEVICE);
1703                        buffer_info->dma = 0;
1704                }
1705
1706                if (buffer_info->page) {
1707                        put_page(buffer_info->page);
1708                        buffer_info->page = NULL;
1709                }
1710
1711                if (buffer_info->skb) {
1712                        dev_kfree_skb(buffer_info->skb);
1713                        buffer_info->skb = NULL;
1714                }
1715
1716                for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717                        ps_page = &buffer_info->ps_pages[j];
1718                        if (!ps_page->page)
1719                                break;
1720                        dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721                                       DMA_FROM_DEVICE);
1722                        ps_page->dma = 0;
1723                        put_page(ps_page->page);
1724                        ps_page->page = NULL;
1725                }
1726        }
1727
1728        /* there also may be some cached data from a chained receive */
1729        if (rx_ring->rx_skb_top) {
1730                dev_kfree_skb(rx_ring->rx_skb_top);
1731                rx_ring->rx_skb_top = NULL;
1732        }
1733
1734        /* Zero out the descriptor ring */
1735        memset(rx_ring->desc, 0, rx_ring->size);
1736
1737        rx_ring->next_to_clean = 0;
1738        rx_ring->next_to_use = 0;
1739        adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740}
1741
1742static void e1000e_downshift_workaround(struct work_struct *work)
1743{
1744        struct e1000_adapter *adapter = container_of(work,
1745                                                     struct e1000_adapter,
1746                                                     downshift_task);
1747
1748        if (test_bit(__E1000_DOWN, &adapter->state))
1749                return;
1750
1751        e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1752}
1753
1754/**
1755 * e1000_intr_msi - Interrupt Handler
1756 * @irq: interrupt number
1757 * @data: pointer to a network interface device structure
1758 **/
1759static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1760{
1761        struct net_device *netdev = data;
1762        struct e1000_adapter *adapter = netdev_priv(netdev);
1763        struct e1000_hw *hw = &adapter->hw;
1764        u32 icr = er32(ICR);
1765
1766        /* read ICR disables interrupts using IAM */
1767        if (icr & E1000_ICR_LSC) {
1768                hw->mac.get_link_status = true;
1769                /* ICH8 workaround-- Call gig speed drop workaround on cable
1770                 * disconnect (LSC) before accessing any PHY registers
1771                 */
1772                if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1773                    (!(er32(STATUS) & E1000_STATUS_LU)))
1774                        schedule_work(&adapter->downshift_task);
1775
1776                /* 80003ES2LAN workaround-- For packet buffer work-around on
1777                 * link down event; disable receives here in the ISR and reset
1778                 * adapter in watchdog
1779                 */
1780                if (netif_carrier_ok(netdev) &&
1781                    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1782                        /* disable receives */
1783                        u32 rctl = er32(RCTL);
1784
1785                        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1786                        adapter->flags |= FLAG_RESTART_NOW;
1787                }
1788                /* guard against interrupt when we're going down */
1789                if (!test_bit(__E1000_DOWN, &adapter->state))
1790                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1791        }
1792
1793        /* Reset on uncorrectable ECC error */
1794        if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1795                                        (hw->mac.type == e1000_pch_spt))) {
1796                u32 pbeccsts = er32(PBECCSTS);
1797
1798                adapter->corr_errors +=
1799                    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1800                adapter->uncorr_errors +=
1801                    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1802                    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1803
1804                /* Do the reset outside of interrupt context */
1805                schedule_work(&adapter->reset_task);
1806
1807                /* return immediately since reset is imminent */
1808                return IRQ_HANDLED;
1809        }
1810
1811        if (napi_schedule_prep(&adapter->napi)) {
1812                adapter->total_tx_bytes = 0;
1813                adapter->total_tx_packets = 0;
1814                adapter->total_rx_bytes = 0;
1815                adapter->total_rx_packets = 0;
1816                __napi_schedule(&adapter->napi);
1817        }
1818
1819        return IRQ_HANDLED;
1820}
1821
1822/**
1823 * e1000_intr - Interrupt Handler
1824 * @irq: interrupt number
1825 * @data: pointer to a network interface device structure
1826 **/
1827static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1828{
1829        struct net_device *netdev = data;
1830        struct e1000_adapter *adapter = netdev_priv(netdev);
1831        struct e1000_hw *hw = &adapter->hw;
1832        u32 rctl, icr = er32(ICR);
1833
1834        if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1835                return IRQ_NONE;        /* Not our interrupt */
1836
1837        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838         * not set, then the adapter didn't send an interrupt
1839         */
1840        if (!(icr & E1000_ICR_INT_ASSERTED))
1841                return IRQ_NONE;
1842
1843        /* Interrupt Auto-Mask...upon reading ICR,
1844         * interrupts are masked.  No need for the
1845         * IMC write
1846         */
1847
1848        if (icr & E1000_ICR_LSC) {
1849                hw->mac.get_link_status = true;
1850                /* ICH8 workaround-- Call gig speed drop workaround on cable
1851                 * disconnect (LSC) before accessing any PHY registers
1852                 */
1853                if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1854                    (!(er32(STATUS) & E1000_STATUS_LU)))
1855                        schedule_work(&adapter->downshift_task);
1856
1857                /* 80003ES2LAN workaround--
1858                 * For packet buffer work-around on link down event;
1859                 * disable receives here in the ISR and
1860                 * reset adapter in watchdog
1861                 */
1862                if (netif_carrier_ok(netdev) &&
1863                    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1864                        /* disable receives */
1865                        rctl = er32(RCTL);
1866                        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867                        adapter->flags |= FLAG_RESTART_NOW;
1868                }
1869                /* guard against interrupt when we're going down */
1870                if (!test_bit(__E1000_DOWN, &adapter->state))
1871                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1872        }
1873
1874        /* Reset on uncorrectable ECC error */
1875        if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1876                                        (hw->mac.type == e1000_pch_spt))) {
1877                u32 pbeccsts = er32(PBECCSTS);
1878
1879                adapter->corr_errors +=
1880                    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1881                adapter->uncorr_errors +=
1882                    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1883                    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1884
1885                /* Do the reset outside of interrupt context */
1886                schedule_work(&adapter->reset_task);
1887
1888                /* return immediately since reset is imminent */
1889                return IRQ_HANDLED;
1890        }
1891
1892        if (napi_schedule_prep(&adapter->napi)) {
1893                adapter->total_tx_bytes = 0;
1894                adapter->total_tx_packets = 0;
1895                adapter->total_rx_bytes = 0;
1896                adapter->total_rx_packets = 0;
1897                __napi_schedule(&adapter->napi);
1898        }
1899
1900        return IRQ_HANDLED;
1901}
1902
1903static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1904{
1905        struct net_device *netdev = data;
1906        struct e1000_adapter *adapter = netdev_priv(netdev);
1907        struct e1000_hw *hw = &adapter->hw;
1908
1909        hw->mac.get_link_status = true;
1910
1911        /* guard against interrupt when we're going down */
1912        if (!test_bit(__E1000_DOWN, &adapter->state)) {
1913                mod_timer(&adapter->watchdog_timer, jiffies + 1);
1914                ew32(IMS, E1000_IMS_OTHER);
1915        }
1916
1917        return IRQ_HANDLED;
1918}
1919
1920static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1921{
1922        struct net_device *netdev = data;
1923        struct e1000_adapter *adapter = netdev_priv(netdev);
1924        struct e1000_hw *hw = &adapter->hw;
1925        struct e1000_ring *tx_ring = adapter->tx_ring;
1926
1927        adapter->total_tx_bytes = 0;
1928        adapter->total_tx_packets = 0;
1929
1930        if (!e1000_clean_tx_irq(tx_ring))
1931                /* Ring was not completely cleaned, so fire another interrupt */
1932                ew32(ICS, tx_ring->ims_val);
1933
1934        if (!test_bit(__E1000_DOWN, &adapter->state))
1935                ew32(IMS, adapter->tx_ring->ims_val);
1936
1937        return IRQ_HANDLED;
1938}
1939
1940static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1941{
1942        struct net_device *netdev = data;
1943        struct e1000_adapter *adapter = netdev_priv(netdev);
1944        struct e1000_ring *rx_ring = adapter->rx_ring;
1945
1946        /* Write the ITR value calculated at the end of the
1947         * previous interrupt.
1948         */
1949        if (rx_ring->set_itr) {
1950                u32 itr = rx_ring->itr_val ?
1951                          1000000000 / (rx_ring->itr_val * 256) : 0;
1952
1953                writel(itr, rx_ring->itr_register);
1954                rx_ring->set_itr = 0;
1955        }
1956
1957        if (napi_schedule_prep(&adapter->napi)) {
1958                adapter->total_rx_bytes = 0;
1959                adapter->total_rx_packets = 0;
1960                __napi_schedule(&adapter->napi);
1961        }
1962        return IRQ_HANDLED;
1963}
1964
1965/**
1966 * e1000_configure_msix - Configure MSI-X hardware
1967 *
1968 * e1000_configure_msix sets up the hardware to properly
1969 * generate MSI-X interrupts.
1970 **/
1971static void e1000_configure_msix(struct e1000_adapter *adapter)
1972{
1973        struct e1000_hw *hw = &adapter->hw;
1974        struct e1000_ring *rx_ring = adapter->rx_ring;
1975        struct e1000_ring *tx_ring = adapter->tx_ring;
1976        int vector = 0;
1977        u32 ctrl_ext, ivar = 0;
1978
1979        adapter->eiac_mask = 0;
1980
1981        /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1982        if (hw->mac.type == e1000_82574) {
1983                u32 rfctl = er32(RFCTL);
1984
1985                rfctl |= E1000_RFCTL_ACK_DIS;
1986                ew32(RFCTL, rfctl);
1987        }
1988
1989        /* Configure Rx vector */
1990        rx_ring->ims_val = E1000_IMS_RXQ0;
1991        adapter->eiac_mask |= rx_ring->ims_val;
1992        if (rx_ring->itr_val)
1993                writel(1000000000 / (rx_ring->itr_val * 256),
1994                       rx_ring->itr_register);
1995        else
1996                writel(1, rx_ring->itr_register);
1997        ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1998
1999        /* Configure Tx vector */
2000        tx_ring->ims_val = E1000_IMS_TXQ0;
2001        vector++;
2002        if (tx_ring->itr_val)
2003                writel(1000000000 / (tx_ring->itr_val * 256),
2004                       tx_ring->itr_register);
2005        else
2006                writel(1, tx_ring->itr_register);
2007        adapter->eiac_mask |= tx_ring->ims_val;
2008        ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2009
2010        /* set vector for Other Causes, e.g. link changes */
2011        vector++;
2012        ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2013        if (rx_ring->itr_val)
2014                writel(1000000000 / (rx_ring->itr_val * 256),
2015                       hw->hw_addr + E1000_EITR_82574(vector));
2016        else
2017                writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2018        adapter->eiac_mask |= E1000_IMS_OTHER;
2019
2020        /* Cause Tx interrupts on every write back */
2021        ivar |= (1 << 31);
2022
2023        ew32(IVAR, ivar);
2024
2025        /* enable MSI-X PBA support */
2026        ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2027        ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2028        ew32(CTRL_EXT, ctrl_ext);
2029        e1e_flush();
2030}
2031
2032void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2033{
2034        if (adapter->msix_entries) {
2035                pci_disable_msix(adapter->pdev);
2036                kfree(adapter->msix_entries);
2037                adapter->msix_entries = NULL;
2038        } else if (adapter->flags & FLAG_MSI_ENABLED) {
2039                pci_disable_msi(adapter->pdev);
2040                adapter->flags &= ~FLAG_MSI_ENABLED;
2041        }
2042}
2043
2044/**
2045 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2046 *
2047 * Attempt to configure interrupts using the best available
2048 * capabilities of the hardware and kernel.
2049 **/
2050void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2051{
2052        int err;
2053        int i;
2054
2055        switch (adapter->int_mode) {
2056        case E1000E_INT_MODE_MSIX:
2057                if (adapter->flags & FLAG_HAS_MSIX) {
2058                        adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2059                        adapter->msix_entries = kcalloc(adapter->num_vectors,
2060                                                        sizeof(struct
2061                                                               msix_entry),
2062                                                        GFP_KERNEL);
2063                        if (adapter->msix_entries) {
2064                                struct e1000_adapter *a = adapter;
2065
2066                                for (i = 0; i < adapter->num_vectors; i++)
2067                                        adapter->msix_entries[i].entry = i;
2068
2069                                err = pci_enable_msix_range(a->pdev,
2070                                                            a->msix_entries,
2071                                                            a->num_vectors,
2072                                                            a->num_vectors);
2073                                if (err > 0)
2074                                        return;
2075                        }
2076                        /* MSI-X failed, so fall through and try MSI */
2077                        e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2078                        e1000e_reset_interrupt_capability(adapter);
2079                }
2080                adapter->int_mode = E1000E_INT_MODE_MSI;
2081                /* Fall through */
2082        case E1000E_INT_MODE_MSI:
2083                if (!pci_enable_msi(adapter->pdev)) {
2084                        adapter->flags |= FLAG_MSI_ENABLED;
2085                } else {
2086                        adapter->int_mode = E1000E_INT_MODE_LEGACY;
2087                        e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2088                }
2089                /* Fall through */
2090        case E1000E_INT_MODE_LEGACY:
2091                /* Don't do anything; this is the system default */
2092                break;
2093        }
2094
2095        /* store the number of vectors being used */
2096        adapter->num_vectors = 1;
2097}
2098
2099/**
2100 * e1000_request_msix - Initialize MSI-X interrupts
2101 *
2102 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2103 * kernel.
2104 **/
2105static int e1000_request_msix(struct e1000_adapter *adapter)
2106{
2107        struct net_device *netdev = adapter->netdev;
2108        int err = 0, vector = 0;
2109
2110        if (strlen(netdev->name) < (IFNAMSIZ - 5))
2111                snprintf(adapter->rx_ring->name,
2112                         sizeof(adapter->rx_ring->name) - 1,
2113                         "%s-rx-0", netdev->name);
2114        else
2115                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2116        err = request_irq(adapter->msix_entries[vector].vector,
2117                          e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2118                          netdev);
2119        if (err)
2120                return err;
2121        adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2122            E1000_EITR_82574(vector);
2123        adapter->rx_ring->itr_val = adapter->itr;
2124        vector++;
2125
2126        if (strlen(netdev->name) < (IFNAMSIZ - 5))
2127                snprintf(adapter->tx_ring->name,
2128                         sizeof(adapter->tx_ring->name) - 1,
2129                         "%s-tx-0", netdev->name);
2130        else
2131                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2132        err = request_irq(adapter->msix_entries[vector].vector,
2133                          e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2134                          netdev);
2135        if (err)
2136                return err;
2137        adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2138            E1000_EITR_82574(vector);
2139        adapter->tx_ring->itr_val = adapter->itr;
2140        vector++;
2141
2142        err = request_irq(adapter->msix_entries[vector].vector,
2143                          e1000_msix_other, 0, netdev->name, netdev);
2144        if (err)
2145                return err;
2146
2147        e1000_configure_msix(adapter);
2148
2149        return 0;
2150}
2151
2152/**
2153 * e1000_request_irq - initialize interrupts
2154 *
2155 * Attempts to configure interrupts using the best available
2156 * capabilities of the hardware and kernel.
2157 **/
2158static int e1000_request_irq(struct e1000_adapter *adapter)
2159{
2160        struct net_device *netdev = adapter->netdev;
2161        int err;
2162
2163        if (adapter->msix_entries) {
2164                err = e1000_request_msix(adapter);
2165                if (!err)
2166                        return err;
2167                /* fall back to MSI */
2168                e1000e_reset_interrupt_capability(adapter);
2169                adapter->int_mode = E1000E_INT_MODE_MSI;
2170                e1000e_set_interrupt_capability(adapter);
2171        }
2172        if (adapter->flags & FLAG_MSI_ENABLED) {
2173                err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2174                                  netdev->name, netdev);
2175                if (!err)
2176                        return err;
2177
2178                /* fall back to legacy interrupt */
2179                e1000e_reset_interrupt_capability(adapter);
2180                adapter->int_mode = E1000E_INT_MODE_LEGACY;
2181        }
2182
2183        err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2184                          netdev->name, netdev);
2185        if (err)
2186                e_err("Unable to allocate interrupt, Error: %d\n", err);
2187
2188        return err;
2189}
2190
2191static void e1000_free_irq(struct e1000_adapter *adapter)
2192{
2193        struct net_device *netdev = adapter->netdev;
2194
2195        if (adapter->msix_entries) {
2196                int vector = 0;
2197
2198                free_irq(adapter->msix_entries[vector].vector, netdev);
2199                vector++;
2200
2201                free_irq(adapter->msix_entries[vector].vector, netdev);
2202                vector++;
2203
2204                /* Other Causes interrupt vector */
2205                free_irq(adapter->msix_entries[vector].vector, netdev);
2206                return;
2207        }
2208
2209        free_irq(adapter->pdev->irq, netdev);
2210}
2211
2212/**
2213 * e1000_irq_disable - Mask off interrupt generation on the NIC
2214 **/
2215static void e1000_irq_disable(struct e1000_adapter *adapter)
2216{
2217        struct e1000_hw *hw = &adapter->hw;
2218
2219        ew32(IMC, ~0);
2220        if (adapter->msix_entries)
2221                ew32(EIAC_82574, 0);
2222        e1e_flush();
2223
2224        if (adapter->msix_entries) {
2225                int i;
2226
2227                for (i = 0; i < adapter->num_vectors; i++)
2228                        synchronize_irq(adapter->msix_entries[i].vector);
2229        } else {
2230                synchronize_irq(adapter->pdev->irq);
2231        }
2232}
2233
2234/**
2235 * e1000_irq_enable - Enable default interrupt generation settings
2236 **/
2237static void e1000_irq_enable(struct e1000_adapter *adapter)
2238{
2239        struct e1000_hw *hw = &adapter->hw;
2240
2241        if (adapter->msix_entries) {
2242                ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2243                ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2244        } else if ((hw->mac.type == e1000_pch_lpt) ||
2245                   (hw->mac.type == e1000_pch_spt)) {
2246                ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2247        } else {
2248                ew32(IMS, IMS_ENABLE_MASK);
2249        }
2250        e1e_flush();
2251}
2252
2253/**
2254 * e1000e_get_hw_control - get control of the h/w from f/w
2255 * @adapter: address of board private structure
2256 *
2257 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2258 * For ASF and Pass Through versions of f/w this means that
2259 * the driver is loaded. For AMT version (only with 82573)
2260 * of the f/w this means that the network i/f is open.
2261 **/
2262void e1000e_get_hw_control(struct e1000_adapter *adapter)
2263{
2264        struct e1000_hw *hw = &adapter->hw;
2265        u32 ctrl_ext;
2266        u32 swsm;
2267
2268        /* Let firmware know the driver has taken over */
2269        if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2270                swsm = er32(SWSM);
2271                ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2272        } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273                ctrl_ext = er32(CTRL_EXT);
2274                ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2275        }
2276}
2277
2278/**
2279 * e1000e_release_hw_control - release control of the h/w to f/w
2280 * @adapter: address of board private structure
2281 *
2282 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2283 * For ASF and Pass Through versions of f/w this means that the
2284 * driver is no longer loaded. For AMT version (only with 82573) i
2285 * of the f/w this means that the network i/f is closed.
2286 *
2287 **/
2288void e1000e_release_hw_control(struct e1000_adapter *adapter)
2289{
2290        struct e1000_hw *hw = &adapter->hw;
2291        u32 ctrl_ext;
2292        u32 swsm;
2293
2294        /* Let firmware taken over control of h/w */
2295        if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2296                swsm = er32(SWSM);
2297                ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2298        } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2299                ctrl_ext = er32(CTRL_EXT);
2300                ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2301        }
2302}
2303
2304/**
2305 * e1000_alloc_ring_dma - allocate memory for a ring structure
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308                                struct e1000_ring *ring)
2309{
2310        struct pci_dev *pdev = adapter->pdev;
2311
2312        ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313                                        GFP_KERNEL);
2314        if (!ring->desc)
2315                return -ENOMEM;
2316
2317        return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328        struct e1000_adapter *adapter = tx_ring->adapter;
2329        int err = -ENOMEM, size;
2330
2331        size = sizeof(struct e1000_buffer) * tx_ring->count;
2332        tx_ring->buffer_info = vzalloc(size);
2333        if (!tx_ring->buffer_info)
2334                goto err;
2335
2336        /* round up to nearest 4K */
2337        tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338        tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340        err = e1000_alloc_ring_dma(adapter, tx_ring);
2341        if (err)
2342                goto err;
2343
2344        tx_ring->next_to_use = 0;
2345        tx_ring->next_to_clean = 0;
2346
2347        return 0;
2348err:
2349        vfree(tx_ring->buffer_info);
2350        e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351        return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362        struct e1000_adapter *adapter = rx_ring->adapter;
2363        struct e1000_buffer *buffer_info;
2364        int i, size, desc_len, err = -ENOMEM;
2365
2366        size = sizeof(struct e1000_buffer) * rx_ring->count;
2367        rx_ring->buffer_info = vzalloc(size);
2368        if (!rx_ring->buffer_info)
2369                goto err;
2370
2371        for (i = 0; i < rx_ring->count; i++) {
2372                buffer_info = &rx_ring->buffer_info[i];
2373                buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374                                                sizeof(struct e1000_ps_page),
2375                                                GFP_KERNEL);
2376                if (!buffer_info->ps_pages)
2377                        goto err_pages;
2378        }
2379
2380        desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382        /* Round up to nearest 4K */
2383        rx_ring->size = rx_ring->count * desc_len;
2384        rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386        err = e1000_alloc_ring_dma(adapter, rx_ring);
2387        if (err)
2388                goto err_pages;
2389
2390        rx_ring->next_to_clean = 0;
2391        rx_ring->next_to_use = 0;
2392        rx_ring->rx_skb_top = NULL;
2393
2394        return 0;
2395
2396err_pages:
2397        for (i = 0; i < rx_ring->count; i++) {
2398                buffer_info = &rx_ring->buffer_info[i];
2399                kfree(buffer_info->ps_pages);
2400        }
2401err:
2402        vfree(rx_ring->buffer_info);
2403        e_err("Unable to allocate memory for the receive descriptor ring\n");
2404        return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413        struct e1000_adapter *adapter = tx_ring->adapter;
2414        struct e1000_buffer *buffer_info;
2415        unsigned long size;
2416        unsigned int i;
2417
2418        for (i = 0; i < tx_ring->count; i++) {
2419                buffer_info = &tx_ring->buffer_info[i];
2420                e1000_put_txbuf(tx_ring, buffer_info);
2421        }
2422
2423        netdev_reset_queue(adapter->netdev);
2424        size = sizeof(struct e1000_buffer) * tx_ring->count;
2425        memset(tx_ring->buffer_info, 0, size);
2426
2427        memset(tx_ring->desc, 0, tx_ring->size);
2428
2429        tx_ring->next_to_use = 0;
2430        tx_ring->next_to_clean = 0;
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441        struct e1000_adapter *adapter = tx_ring->adapter;
2442        struct pci_dev *pdev = adapter->pdev;
2443
2444        e1000_clean_tx_ring(tx_ring);
2445
2446        vfree(tx_ring->buffer_info);
2447        tx_ring->buffer_info = NULL;
2448
2449        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450                          tx_ring->dma);
2451        tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462        struct e1000_adapter *adapter = rx_ring->adapter;
2463        struct pci_dev *pdev = adapter->pdev;
2464        int i;
2465
2466        e1000_clean_rx_ring(rx_ring);
2467
2468        for (i = 0; i < rx_ring->count; i++)
2469                kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471        vfree(rx_ring->buffer_info);
2472        rx_ring->buffer_info = NULL;
2473
2474        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475                          rx_ring->dma);
2476        rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
2481 * @adapter: pointer to adapter
2482 * @itr_setting: current adapter->itr
2483 * @packets: the number of packets during this measurement interval
2484 * @bytes: the number of bytes during this measurement interval
2485 *
2486 *      Stores a new ITR value based on packets and byte
2487 *      counts during the last interrupt.  The advantage of per interrupt
2488 *      computation is faster updates and more accurate ITR for the current
2489 *      traffic pattern.  Constants in this function were computed
2490 *      based on theoretical maximum wire speed and thresholds were set based
2491 *      on testing data as well as attempting to minimize response time
2492 *      while increasing bulk throughput.  This functionality is controlled
2493 *      by the InterruptThrottleRate module parameter.
2494 **/
2495static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2496{
2497        unsigned int retval = itr_setting;
2498
2499        if (packets == 0)
2500                return itr_setting;
2501
2502        switch (itr_setting) {
2503        case lowest_latency:
2504                /* handle TSO and jumbo frames */
2505                if (bytes / packets > 8000)
2506                        retval = bulk_latency;
2507                else if ((packets < 5) && (bytes > 512))
2508                        retval = low_latency;
2509                break;
2510        case low_latency:       /* 50 usec aka 20000 ints/s */
2511                if (bytes > 10000) {
2512                        /* this if handles the TSO accounting */
2513                        if (bytes / packets > 8000)
2514                                retval = bulk_latency;
2515                        else if ((packets < 10) || ((bytes / packets) > 1200))
2516                                retval = bulk_latency;
2517                        else if ((packets > 35))
2518                                retval = lowest_latency;
2519                } else if (bytes / packets > 2000) {
2520                        retval = bulk_latency;
2521                } else if (packets <= 2 && bytes < 512) {
2522                        retval = lowest_latency;
2523                }
2524                break;
2525        case bulk_latency:      /* 250 usec aka 4000 ints/s */
2526                if (bytes > 25000) {
2527                        if (packets > 35)
2528                                retval = low_latency;
2529                } else if (bytes < 6000) {
2530                        retval = low_latency;
2531                }
2532                break;
2533        }
2534
2535        return retval;
2536}
2537
2538static void e1000_set_itr(struct e1000_adapter *adapter)
2539{
2540        u16 current_itr;
2541        u32 new_itr = adapter->itr;
2542
2543        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2544        if (adapter->link_speed != SPEED_1000) {
2545                current_itr = 0;
2546                new_itr = 4000;
2547                goto set_itr_now;
2548        }
2549
2550        if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2551                new_itr = 0;
2552                goto set_itr_now;
2553        }
2554
2555        adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2556                                           adapter->total_tx_packets,
2557                                           adapter->total_tx_bytes);
2558        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2559        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2560                adapter->tx_itr = low_latency;
2561
2562        adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2563                                           adapter->total_rx_packets,
2564                                           adapter->total_rx_bytes);
2565        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2566        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2567                adapter->rx_itr = low_latency;
2568
2569        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2570
2571        /* counts and packets in update_itr are dependent on these numbers */
2572        switch (current_itr) {
2573        case lowest_latency:
2574                new_itr = 70000;
2575                break;
2576        case low_latency:
2577                new_itr = 20000;        /* aka hwitr = ~200 */
2578                break;
2579        case bulk_latency:
2580                new_itr = 4000;
2581                break;
2582        default:
2583                break;
2584        }
2585
2586set_itr_now:
2587        if (new_itr != adapter->itr) {
2588                /* this attempts to bias the interrupt rate towards Bulk
2589                 * by adding intermediate steps when interrupt rate is
2590                 * increasing
2591                 */
2592                new_itr = new_itr > adapter->itr ?
2593                    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2594                adapter->itr = new_itr;
2595                adapter->rx_ring->itr_val = new_itr;
2596                if (adapter->msix_entries)
2597                        adapter->rx_ring->set_itr = 1;
2598                else
2599                        e1000e_write_itr(adapter, new_itr);
2600        }
2601}
2602
2603/**
2604 * e1000e_write_itr - write the ITR value to the appropriate registers
2605 * @adapter: address of board private structure
2606 * @itr: new ITR value to program
2607 *
2608 * e1000e_write_itr determines if the adapter is in MSI-X mode
2609 * and, if so, writes the EITR registers with the ITR value.
2610 * Otherwise, it writes the ITR value into the ITR register.
2611 **/
2612void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2613{
2614        struct e1000_hw *hw = &adapter->hw;
2615        u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2616
2617        if (adapter->msix_entries) {
2618                int vector;
2619
2620                for (vector = 0; vector < adapter->num_vectors; vector++)
2621                        writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2622        } else {
2623                ew32(ITR, new_itr);
2624        }
2625}
2626
2627/**
2628 * e1000_alloc_queues - Allocate memory for all rings
2629 * @adapter: board private structure to initialize
2630 **/
2631static int e1000_alloc_queues(struct e1000_adapter *adapter)
2632{
2633        int size = sizeof(struct e1000_ring);
2634
2635        adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2636        if (!adapter->tx_ring)
2637                goto err;
2638        adapter->tx_ring->count = adapter->tx_ring_count;
2639        adapter->tx_ring->adapter = adapter;
2640
2641        adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2642        if (!adapter->rx_ring)
2643                goto err;
2644        adapter->rx_ring->count = adapter->rx_ring_count;
2645        adapter->rx_ring->adapter = adapter;
2646
2647        return 0;
2648err:
2649        e_err("Unable to allocate memory for queues\n");
2650        kfree(adapter->rx_ring);
2651        kfree(adapter->tx_ring);
2652        return -ENOMEM;
2653}
2654
2655/**
2656 * e1000e_poll - NAPI Rx polling callback
2657 * @napi: struct associated with this polling callback
2658 * @weight: number of packets driver is allowed to process this poll
2659 **/
2660static int e1000e_poll(struct napi_struct *napi, int weight)
2661{
2662        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2663                                                     napi);
2664        struct e1000_hw *hw = &adapter->hw;
2665        struct net_device *poll_dev = adapter->netdev;
2666        int tx_cleaned = 1, work_done = 0;
2667
2668        adapter = netdev_priv(poll_dev);
2669
2670        if (!adapter->msix_entries ||
2671            (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2672                tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2673
2674        adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2675
2676        if (!tx_cleaned)
2677                work_done = weight;
2678
2679        /* If weight not fully consumed, exit the polling mode */
2680        if (work_done < weight) {
2681                if (adapter->itr_setting & 3)
2682                        e1000_set_itr(adapter);
2683                napi_complete_done(napi, work_done);
2684                if (!test_bit(__E1000_DOWN, &adapter->state)) {
2685                        if (adapter->msix_entries)
2686                                ew32(IMS, adapter->rx_ring->ims_val);
2687                        else
2688                                e1000_irq_enable(adapter);
2689                }
2690        }
2691
2692        return work_done;
2693}
2694
2695static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2696                                 __always_unused __be16 proto, u16 vid)
2697{
2698        struct e1000_adapter *adapter = netdev_priv(netdev);
2699        struct e1000_hw *hw = &adapter->hw;
2700        u32 vfta, index;
2701
2702        /* don't update vlan cookie if already programmed */
2703        if ((adapter->hw.mng_cookie.status &
2704             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2705            (vid == adapter->mng_vlan_id))
2706                return 0;
2707
2708        /* add VID to filter table */
2709        if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2710                index = (vid >> 5) & 0x7F;
2711                vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2712                vfta |= (1 << (vid & 0x1F));
2713                hw->mac.ops.write_vfta(hw, index, vfta);
2714        }
2715
2716        set_bit(vid, adapter->active_vlans);
2717
2718        return 0;
2719}
2720
2721static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2722                                  __always_unused __be16 proto, u16 vid)
2723{
2724        struct e1000_adapter *adapter = netdev_priv(netdev);
2725        struct e1000_hw *hw = &adapter->hw;
2726        u32 vfta, index;
2727
2728        if ((adapter->hw.mng_cookie.status &
2729             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730            (vid == adapter->mng_vlan_id)) {
2731                /* release control to f/w */
2732                e1000e_release_hw_control(adapter);
2733                return 0;
2734        }
2735
2736        /* remove VID from filter table */
2737        if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2738                index = (vid >> 5) & 0x7F;
2739                vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2740                vfta &= ~(1 << (vid & 0x1F));
2741                hw->mac.ops.write_vfta(hw, index, vfta);
2742        }
2743
2744        clear_bit(vid, adapter->active_vlans);
2745
2746        return 0;
2747}
2748
2749/**
2750 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2751 * @adapter: board private structure to initialize
2752 **/
2753static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2754{
2755        struct net_device *netdev = adapter->netdev;
2756        struct e1000_hw *hw = &adapter->hw;
2757        u32 rctl;
2758
2759        if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2760                /* disable VLAN receive filtering */
2761                rctl = er32(RCTL);
2762                rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2763                ew32(RCTL, rctl);
2764
2765                if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2766                        e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2767                                               adapter->mng_vlan_id);
2768                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2769                }
2770        }
2771}
2772
2773/**
2774 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2775 * @adapter: board private structure to initialize
2776 **/
2777static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2778{
2779        struct e1000_hw *hw = &adapter->hw;
2780        u32 rctl;
2781
2782        if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2783                /* enable VLAN receive filtering */
2784                rctl = er32(RCTL);
2785                rctl |= E1000_RCTL_VFE;
2786                rctl &= ~E1000_RCTL_CFIEN;
2787                ew32(RCTL, rctl);
2788        }
2789}
2790
2791/**
2792 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2793 * @adapter: board private structure to initialize
2794 **/
2795static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2796{
2797        struct e1000_hw *hw = &adapter->hw;
2798        u32 ctrl;
2799
2800        /* disable VLAN tag insert/strip */
2801        ctrl = er32(CTRL);
2802        ctrl &= ~E1000_CTRL_VME;
2803        ew32(CTRL, ctrl);
2804}
2805
2806/**
2807 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2809 **/
2810static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2811{
2812        struct e1000_hw *hw = &adapter->hw;
2813        u32 ctrl;
2814
2815        /* enable VLAN tag insert/strip */
2816        ctrl = er32(CTRL);
2817        ctrl |= E1000_CTRL_VME;
2818        ew32(CTRL, ctrl);
2819}
2820
2821static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2822{
2823        struct net_device *netdev = adapter->netdev;
2824        u16 vid = adapter->hw.mng_cookie.vlan_id;
2825        u16 old_vid = adapter->mng_vlan_id;
2826
2827        if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2828                e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2829                adapter->mng_vlan_id = vid;
2830        }
2831
2832        if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2833                e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2834}
2835
2836static void e1000_restore_vlan(struct e1000_adapter *adapter)
2837{
2838        u16 vid;
2839
2840        e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2841
2842        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2843            e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2844}
2845
2846static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2847{
2848        struct e1000_hw *hw = &adapter->hw;
2849        u32 manc, manc2h, mdef, i, j;
2850
2851        if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2852                return;
2853
2854        manc = er32(MANC);
2855
2856        /* enable receiving management packets to the host. this will probably
2857         * generate destination unreachable messages from the host OS, but
2858         * the packets will be handled on SMBUS
2859         */
2860        manc |= E1000_MANC_EN_MNG2HOST;
2861        manc2h = er32(MANC2H);
2862
2863        switch (hw->mac.type) {
2864        default:
2865                manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2866                break;
2867        case e1000_82574:
2868        case e1000_82583:
2869                /* Check if IPMI pass-through decision filter already exists;
2870                 * if so, enable it.
2871                 */
2872                for (i = 0, j = 0; i < 8; i++) {
2873                        mdef = er32(MDEF(i));
2874
2875                        /* Ignore filters with anything other than IPMI ports */
2876                        if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2877                                continue;
2878
2879                        /* Enable this decision filter in MANC2H */
2880                        if (mdef)
2881                                manc2h |= (1 << i);
2882
2883                        j |= mdef;
2884                }
2885
2886                if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2887                        break;
2888
2889                /* Create new decision filter in an empty filter */
2890                for (i = 0, j = 0; i < 8; i++)
2891                        if (er32(MDEF(i)) == 0) {
2892                                ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2893                                               E1000_MDEF_PORT_664));
2894                                manc2h |= (1 << 1);
2895                                j++;
2896                                break;
2897                        }
2898
2899                if (!j)
2900                        e_warn("Unable to create IPMI pass-through filter\n");
2901                break;
2902        }
2903
2904        ew32(MANC2H, manc2h);
2905        ew32(MANC, manc);
2906}
2907
2908/**
2909 * e1000_configure_tx - Configure Transmit Unit after Reset
2910 * @adapter: board private structure
2911 *
2912 * Configure the Tx unit of the MAC after a reset.
2913 **/
2914static void e1000_configure_tx(struct e1000_adapter *adapter)
2915{
2916        struct e1000_hw *hw = &adapter->hw;
2917        struct e1000_ring *tx_ring = adapter->tx_ring;
2918        u64 tdba;
2919        u32 tdlen, tctl, tarc;
2920
2921        /* Setup the HW Tx Head and Tail descriptor pointers */
2922        tdba = tx_ring->dma;
2923        tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2924        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2925        ew32(TDBAH(0), (tdba >> 32));
2926        ew32(TDLEN(0), tdlen);
2927        ew32(TDH(0), 0);
2928        ew32(TDT(0), 0);
2929        tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2930        tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2931
2932        writel(0, tx_ring->head);
2933        if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2934                e1000e_update_tdt_wa(tx_ring, 0);
2935        else
2936                writel(0, tx_ring->tail);
2937
2938        /* Set the Tx Interrupt Delay register */
2939        ew32(TIDV, adapter->tx_int_delay);
2940        /* Tx irq moderation */
2941        ew32(TADV, adapter->tx_abs_int_delay);
2942
2943        if (adapter->flags2 & FLAG2_DMA_BURST) {
2944                u32 txdctl = er32(TXDCTL(0));
2945
2946                txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2947                            E1000_TXDCTL_WTHRESH);
2948                /* set up some performance related parameters to encourage the
2949                 * hardware to use the bus more efficiently in bursts, depends
2950                 * on the tx_int_delay to be enabled,
2951                 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2952                 * hthresh = 1 ==> prefetch when one or more available
2953                 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2954                 * BEWARE: this seems to work but should be considered first if
2955                 * there are Tx hangs or other Tx related bugs
2956                 */
2957                txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2958                ew32(TXDCTL(0), txdctl);
2959        }
2960        /* erratum work around: set txdctl the same for both queues */
2961        ew32(TXDCTL(1), er32(TXDCTL(0)));
2962
2963        /* Program the Transmit Control Register */
2964        tctl = er32(TCTL);
2965        tctl &= ~E1000_TCTL_CT;
2966        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2967                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2968
2969        if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2970                tarc = er32(TARC(0));
2971                /* set the speed mode bit, we'll clear it if we're not at
2972                 * gigabit link later
2973                 */
2974#define SPEED_MODE_BIT (1 << 21)
2975                tarc |= SPEED_MODE_BIT;
2976                ew32(TARC(0), tarc);
2977        }
2978
2979        /* errata: program both queues to unweighted RR */
2980        if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2981                tarc = er32(TARC(0));
2982                tarc |= 1;
2983                ew32(TARC(0), tarc);
2984                tarc = er32(TARC(1));
2985                tarc |= 1;
2986                ew32(TARC(1), tarc);
2987        }
2988
2989        /* Setup Transmit Descriptor Settings for eop descriptor */
2990        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2991
2992        /* only set IDE if we are delaying interrupts using the timers */
2993        if (adapter->tx_int_delay)
2994                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2995
2996        /* enable Report Status bit */
2997        adapter->txd_cmd |= E1000_TXD_CMD_RS;
2998
2999        ew32(TCTL, tctl);
3000
3001        hw->mac.ops.config_collision_dist(hw);
3002
3003        /* SPT Si errata workaround to avoid data corruption */
3004        if (hw->mac.type == e1000_pch_spt) {
3005                u32 reg_val;
3006
3007                reg_val = er32(IOSFPC);
3008                reg_val |= E1000_RCTL_RDMTS_HEX;
3009                ew32(IOSFPC, reg_val);
3010
3011                reg_val = er32(TARC(0));
3012                reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3013                ew32(TARC(0), reg_val);
3014        }
3015}
3016
3017/**
3018 * e1000_setup_rctl - configure the receive control registers
3019 * @adapter: Board private structure
3020 **/
3021#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022                           (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023static void e1000_setup_rctl(struct e1000_adapter *adapter)
3024{
3025        struct e1000_hw *hw = &adapter->hw;
3026        u32 rctl, rfctl;
3027        u32 pages = 0;
3028
3029        /* Workaround Si errata on PCHx - configure jumbo frame flow.
3030         * If jumbo frames not set, program related MAC/PHY registers
3031         * to h/w defaults
3032         */
3033        if (hw->mac.type >= e1000_pch2lan) {
3034                s32 ret_val;
3035
3036                if (adapter->netdev->mtu > ETH_DATA_LEN)
3037                        ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3038                else
3039                        ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3040
3041                if (ret_val)
3042                        e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3043        }
3044
3045        /* Program MC offset vector base */
3046        rctl = er32(RCTL);
3047        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3048        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3049            E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3050            (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3051
3052        /* Do not Store bad packets */
3053        rctl &= ~E1000_RCTL_SBP;
3054
3055        /* Enable Long Packet receive */
3056        if (adapter->netdev->mtu <= ETH_DATA_LEN)
3057                rctl &= ~E1000_RCTL_LPE;
3058        else
3059                rctl |= E1000_RCTL_LPE;
3060
3061        /* Some systems expect that the CRC is included in SMBUS traffic. The
3062         * hardware strips the CRC before sending to both SMBUS (BMC) and to
3063         * host memory when this is enabled
3064         */
3065        if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3066                rctl |= E1000_RCTL_SECRC;
3067
3068        /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3069        if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3070                u16 phy_data;
3071
3072                e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3073                phy_data &= 0xfff8;
3074                phy_data |= (1 << 2);
3075                e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3076
3077                e1e_rphy(hw, 22, &phy_data);
3078                phy_data &= 0x0fff;
3079                phy_data |= (1 << 14);
3080                e1e_wphy(hw, 0x10, 0x2823);
3081                e1e_wphy(hw, 0x11, 0x0003);
3082                e1e_wphy(hw, 22, phy_data);
3083        }
3084
3085        /* Setup buffer sizes */
3086        rctl &= ~E1000_RCTL_SZ_4096;
3087        rctl |= E1000_RCTL_BSEX;
3088        switch (adapter->rx_buffer_len) {
3089        case 2048:
3090        default:
3091                rctl |= E1000_RCTL_SZ_2048;
3092                rctl &= ~E1000_RCTL_BSEX;
3093                break;
3094        case 4096:
3095                rctl |= E1000_RCTL_SZ_4096;
3096                break;
3097        case 8192:
3098                rctl |= E1000_RCTL_SZ_8192;
3099                break;
3100        case 16384:
3101                rctl |= E1000_RCTL_SZ_16384;
3102                break;
3103        }
3104
3105        /* Enable Extended Status in all Receive Descriptors */
3106        rfctl = er32(RFCTL);
3107        rfctl |= E1000_RFCTL_EXTEN;
3108        ew32(RFCTL, rfctl);
3109
3110        /* 82571 and greater support packet-split where the protocol
3111         * header is placed in skb->data and the packet data is
3112         * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3113         * In the case of a non-split, skb->data is linearly filled,
3114         * followed by the page buffers.  Therefore, skb->data is
3115         * sized to hold the largest protocol header.
3116         *
3117         * allocations using alloc_page take too long for regular MTU
3118         * so only enable packet split for jumbo frames
3119         *
3120         * Using pages when the page size is greater than 16k wastes
3121         * a lot of memory, since we allocate 3 pages at all times
3122         * per packet.
3123         */
3124        pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3125        if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3126                adapter->rx_ps_pages = pages;
3127        else
3128                adapter->rx_ps_pages = 0;
3129
3130        if (adapter->rx_ps_pages) {
3131                u32 psrctl = 0;
3132
3133                /* Enable Packet split descriptors */
3134                rctl |= E1000_RCTL_DTYP_PS;
3135
3136                psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3137
3138                switch (adapter->rx_ps_pages) {
3139                case 3:
3140                        psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3141                        /* fall-through */
3142                case 2:
3143                        psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3144                        /* fall-through */
3145                case 1:
3146                        psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3147                        break;
3148                }
3149
3150                ew32(PSRCTL, psrctl);
3151        }
3152
3153        /* This is useful for sniffing bad packets. */
3154        if (adapter->netdev->features & NETIF_F_RXALL) {
3155                /* UPE and MPE will be handled by normal PROMISC logic
3156                 * in e1000e_set_rx_mode
3157                 */
3158                rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3159                         E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3160                         E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3161
3162                rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3163                          E1000_RCTL_DPF |      /* Allow filtered pause */
3164                          E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3165                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3166                 * and that breaks VLANs.
3167                 */
3168        }
3169
3170        ew32(RCTL, rctl);
3171        /* just started the receive unit, no need to restart */
3172        adapter->flags &= ~FLAG_RESTART_NOW;
3173}
3174
3175/**
3176 * e1000_configure_rx - Configure Receive Unit after Reset
3177 * @adapter: board private structure
3178 *
3179 * Configure the Rx unit of the MAC after a reset.
3180 **/
3181static void e1000_configure_rx(struct e1000_adapter *adapter)
3182{
3183        struct e1000_hw *hw = &adapter->hw;
3184        struct e1000_ring *rx_ring = adapter->rx_ring;
3185        u64 rdba;
3186        u32 rdlen, rctl, rxcsum, ctrl_ext;
3187
3188        if (adapter->rx_ps_pages) {
3189                /* this is a 32 byte descriptor */
3190                rdlen = rx_ring->count *
3191                    sizeof(union e1000_rx_desc_packet_split);
3192                adapter->clean_rx = e1000_clean_rx_irq_ps;
3193                adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3194        } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3195                rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3196                adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3197                adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3198        } else {
3199                rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3200                adapter->clean_rx = e1000_clean_rx_irq;
3201                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3202        }
3203
3204        /* disable receives while setting up the descriptors */
3205        rctl = er32(RCTL);
3206        if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3207                ew32(RCTL, rctl & ~E1000_RCTL_EN);
3208        e1e_flush();
3209        usleep_range(10000, 20000);
3210
3211        if (adapter->flags2 & FLAG2_DMA_BURST) {
3212                /* set the writeback threshold (only takes effect if the RDTR
3213                 * is set). set GRAN=1 and write back up to 0x4 worth, and
3214                 * enable prefetching of 0x20 Rx descriptors
3215                 * granularity = 01
3216                 * wthresh = 04,
3217                 * hthresh = 04,
3218                 * pthresh = 0x20
3219                 */
3220                ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3221                ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3222
3223                /* override the delay timers for enabling bursting, only if
3224                 * the value was not set by the user via module options
3225                 */
3226                if (adapter->rx_int_delay == DEFAULT_RDTR)
3227                        adapter->rx_int_delay = BURST_RDTR;
3228                if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3229                        adapter->rx_abs_int_delay = BURST_RADV;
3230        }
3231
3232        /* set the Receive Delay Timer Register */
3233        ew32(RDTR, adapter->rx_int_delay);
3234
3235        /* irq moderation */
3236        ew32(RADV, adapter->rx_abs_int_delay);
3237        if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3238                e1000e_write_itr(adapter, adapter->itr);
3239
3240        ctrl_ext = er32(CTRL_EXT);
3241        /* Auto-Mask interrupts upon ICR access */
3242        ctrl_ext |= E1000_CTRL_EXT_IAME;
3243        ew32(IAM, 0xffffffff);
3244        ew32(CTRL_EXT, ctrl_ext);
3245        e1e_flush();
3246
3247        /* Setup the HW Rx Head and Tail Descriptor Pointers and
3248         * the Base and Length of the Rx Descriptor Ring
3249         */
3250        rdba = rx_ring->dma;
3251        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3252        ew32(RDBAH(0), (rdba >> 32));
3253        ew32(RDLEN(0), rdlen);
3254        ew32(RDH(0), 0);
3255        ew32(RDT(0), 0);
3256        rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3257        rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3258
3259        writel(0, rx_ring->head);
3260        if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3261                e1000e_update_rdt_wa(rx_ring, 0);
3262        else
3263                writel(0, rx_ring->tail);
3264
3265        /* Enable Receive Checksum Offload for TCP and UDP */
3266        rxcsum = er32(RXCSUM);
3267        if (adapter->netdev->features & NETIF_F_RXCSUM)
3268                rxcsum |= E1000_RXCSUM_TUOFL;
3269        else
3270                rxcsum &= ~E1000_RXCSUM_TUOFL;
3271        ew32(RXCSUM, rxcsum);
3272
3273        /* With jumbo frames, excessive C-state transition latencies result
3274         * in dropped transactions.
3275         */
3276        if (adapter->netdev->mtu > ETH_DATA_LEN) {
3277                u32 lat =
3278                    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3279                     adapter->max_frame_size) * 8 / 1000;
3280
3281                if (adapter->flags & FLAG_IS_ICH) {
3282                        u32 rxdctl = er32(RXDCTL(0));
3283
3284                        ew32(RXDCTL(0), rxdctl | 0x3);
3285                }
3286
3287                pm_qos_update_request(&adapter->pm_qos_req, lat);
3288        } else {
3289                pm_qos_update_request(&adapter->pm_qos_req,
3290                                      PM_QOS_DEFAULT_VALUE);
3291        }
3292
3293        /* Enable Receives */
3294        ew32(RCTL, rctl);
3295}
3296
3297/**
3298 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3299 * @netdev: network interface device structure
3300 *
3301 * Writes multicast address list to the MTA hash table.
3302 * Returns: -ENOMEM on failure
3303 *                0 on no addresses written
3304 *                X on writing X addresses to MTA
3305 */
3306static int e1000e_write_mc_addr_list(struct net_device *netdev)
3307{
3308        struct e1000_adapter *adapter = netdev_priv(netdev);
3309        struct e1000_hw *hw = &adapter->hw;
3310        struct netdev_hw_addr *ha;
3311        u8 *mta_list;
3312        int i;
3313
3314        if (netdev_mc_empty(netdev)) {
3315                /* nothing to program, so clear mc list */
3316                hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3317                return 0;
3318        }
3319
3320        mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3321        if (!mta_list)
3322                return -ENOMEM;
3323
3324        /* update_mc_addr_list expects a packed array of only addresses. */
3325        i = 0;
3326        netdev_for_each_mc_addr(ha, netdev)
3327            memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3328
3329        hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3330        kfree(mta_list);
3331
3332        return netdev_mc_count(netdev);
3333}
3334
3335/**
3336 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3337 * @netdev: network interface device structure
3338 *
3339 * Writes unicast address list to the RAR table.
3340 * Returns: -ENOMEM on failure/insufficient address space
3341 *                0 on no addresses written
3342 *                X on writing X addresses to the RAR table
3343 **/
3344static int e1000e_write_uc_addr_list(struct net_device *netdev)
3345{
3346        struct e1000_adapter *adapter = netdev_priv(netdev);
3347        struct e1000_hw *hw = &adapter->hw;
3348        unsigned int rar_entries;
3349        int count = 0;
3350
3351        rar_entries = hw->mac.ops.rar_get_count(hw);
3352
3353        /* save a rar entry for our hardware address */
3354        rar_entries--;
3355
3356        /* save a rar entry for the LAA workaround */
3357        if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3358                rar_entries--;
3359
3360        /* return ENOMEM indicating insufficient memory for addresses */
3361        if (netdev_uc_count(netdev) > rar_entries)
3362                return -ENOMEM;
3363
3364        if (!netdev_uc_empty(netdev) && rar_entries) {
3365                struct netdev_hw_addr *ha;
3366
3367                /* write the addresses in reverse order to avoid write
3368                 * combining
3369                 */
3370                netdev_for_each_uc_addr(ha, netdev) {
3371                        int rval;
3372
3373                        if (!rar_entries)
3374                                break;
3375                        rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3376                        if (rval < 0)
3377                                return -ENOMEM;
3378                        count++;
3379                }
3380        }
3381
3382        /* zero out the remaining RAR entries not used above */
3383        for (; rar_entries > 0; rar_entries--) {
3384                ew32(RAH(rar_entries), 0);
3385                ew32(RAL(rar_entries), 0);
3386        }
3387        e1e_flush();
3388
3389        return count;
3390}
3391
3392/**
3393 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3394 * @netdev: network interface device structure
3395 *
3396 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3397 * address list or the network interface flags are updated.  This routine is
3398 * responsible for configuring the hardware for proper unicast, multicast,
3399 * promiscuous mode, and all-multi behavior.
3400 **/
3401static void e1000e_set_rx_mode(struct net_device *netdev)
3402{
3403        struct e1000_adapter *adapter = netdev_priv(netdev);
3404        struct e1000_hw *hw = &adapter->hw;
3405        u32 rctl;
3406
3407        if (pm_runtime_suspended(netdev->dev.parent))
3408                return;
3409
3410        /* Check for Promiscuous and All Multicast modes */
3411        rctl = er32(RCTL);
3412
3413        /* clear the affected bits */
3414        rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3415
3416        if (netdev->flags & IFF_PROMISC) {
3417                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3418                /* Do not hardware filter VLANs in promisc mode */
3419                e1000e_vlan_filter_disable(adapter);
3420        } else {
3421                int count;
3422
3423                if (netdev->flags & IFF_ALLMULTI) {
3424                        rctl |= E1000_RCTL_MPE;
3425                } else {
3426                        /* Write addresses to the MTA, if the attempt fails
3427                         * then we should just turn on promiscuous mode so
3428                         * that we can at least receive multicast traffic
3429                         */
3430                        count = e1000e_write_mc_addr_list(netdev);
3431                        if (count < 0)
3432                                rctl |= E1000_RCTL_MPE;
3433                }
3434                e1000e_vlan_filter_enable(adapter);
3435                /* Write addresses to available RAR registers, if there is not
3436                 * sufficient space to store all the addresses then enable
3437                 * unicast promiscuous mode
3438                 */
3439                count = e1000e_write_uc_addr_list(netdev);
3440                if (count < 0)
3441                        rctl |= E1000_RCTL_UPE;
3442        }
3443
3444        ew32(RCTL, rctl);
3445
3446        if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3447                e1000e_vlan_strip_enable(adapter);
3448        else
3449                e1000e_vlan_strip_disable(adapter);
3450}
3451
3452static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3453{
3454        struct e1000_hw *hw = &adapter->hw;
3455        u32 mrqc, rxcsum;
3456        u32 rss_key[10];
3457        int i;
3458
3459        netdev_rss_key_fill(rss_key, sizeof(rss_key));
3460        for (i = 0; i < 10; i++)
3461                ew32(RSSRK(i), rss_key[i]);
3462
3463        /* Direct all traffic to queue 0 */
3464        for (i = 0; i < 32; i++)
3465                ew32(RETA(i), 0);
3466
3467        /* Disable raw packet checksumming so that RSS hash is placed in
3468         * descriptor on writeback.
3469         */
3470        rxcsum = er32(RXCSUM);
3471        rxcsum |= E1000_RXCSUM_PCSD;
3472
3473        ew32(RXCSUM, rxcsum);
3474
3475        mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3476                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3477                E1000_MRQC_RSS_FIELD_IPV6 |
3478                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3479                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3480
3481        ew32(MRQC, mrqc);
3482}
3483
3484/**
3485 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3486 * @adapter: board private structure
3487 * @timinca: pointer to returned time increment attributes
3488 *
3489 * Get attributes for incrementing the System Time Register SYSTIML/H at
3490 * the default base frequency, and set the cyclecounter shift value.
3491 **/
3492s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3493{
3494        struct e1000_hw *hw = &adapter->hw;
3495        u32 incvalue, incperiod, shift;
3496
3497        /* Make sure clock is enabled on I217/I218/I219  before checking
3498         * the frequency
3499         */
3500        if (((hw->mac.type == e1000_pch_lpt) ||
3501             (hw->mac.type == e1000_pch_spt)) &&
3502            !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3503            !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3504                u32 fextnvm7 = er32(FEXTNVM7);
3505
3506                if (!(fextnvm7 & (1 << 0))) {
3507                        ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3508                        e1e_flush();
3509                }
3510        }
3511
3512        switch (hw->mac.type) {
3513        case e1000_pch2lan:
3514        case e1000_pch_lpt:
3515                if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3516                        /* Stable 96MHz frequency */
3517                        incperiod = INCPERIOD_96MHz;
3518                        incvalue = INCVALUE_96MHz;
3519                        shift = INCVALUE_SHIFT_96MHz;
3520                        adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3521                } else {
3522                        /* Stable 25MHz frequency */
3523                        incperiod = INCPERIOD_25MHz;
3524                        incvalue = INCVALUE_25MHz;
3525                        shift = INCVALUE_SHIFT_25MHz;
3526                        adapter->cc.shift = shift;
3527                }
3528                break;
3529        case e1000_pch_spt:
3530                if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3531                        /* Stable 24MHz frequency */
3532                        incperiod = INCPERIOD_24MHz;
3533                        incvalue = INCVALUE_24MHz;
3534                        shift = INCVALUE_SHIFT_24MHz;
3535                        adapter->cc.shift = shift;
3536                        break;
3537                }
3538                return -EINVAL;
3539        case e1000_82574:
3540        case e1000_82583:
3541                /* Stable 25MHz frequency */
3542                incperiod = INCPERIOD_25MHz;
3543                incvalue = INCVALUE_25MHz;
3544                shift = INCVALUE_SHIFT_25MHz;
3545                adapter->cc.shift = shift;
3546                break;
3547        default:
3548                return -EINVAL;
3549        }
3550
3551        *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3552                    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3553
3554        return 0;
3555}
3556
3557/**
3558 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3559 * @adapter: board private structure
3560 *
3561 * Outgoing time stamping can be enabled and disabled. Play nice and
3562 * disable it when requested, although it shouldn't cause any overhead
3563 * when no packet needs it. At most one packet in the queue may be
3564 * marked for time stamping, otherwise it would be impossible to tell
3565 * for sure to which packet the hardware time stamp belongs.
3566 *
3567 * Incoming time stamping has to be configured via the hardware filters.
3568 * Not all combinations are supported, in particular event type has to be
3569 * specified. Matching the kind of event packet is not supported, with the
3570 * exception of "all V2 events regardless of level 2 or 4".
3571 **/
3572static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3573                                  struct hwtstamp_config *config)
3574{
3575        struct e1000_hw *hw = &adapter->hw;
3576        u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3577        u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3578        u32 rxmtrl = 0;
3579        u16 rxudp = 0;
3580        bool is_l4 = false;
3581        bool is_l2 = false;
3582        u32 regval;
3583        s32 ret_val;
3584
3585        if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3586                return -EINVAL;
3587
3588        /* flags reserved for future extensions - must be zero */
3589        if (config->flags)
3590                return -EINVAL;
3591
3592        switch (config->tx_type) {
3593        case HWTSTAMP_TX_OFF:
3594                tsync_tx_ctl = 0;
3595                break;
3596        case HWTSTAMP_TX_ON:
3597                break;
3598        default:
3599                return -ERANGE;
3600        }
3601
3602        switch (config->rx_filter) {
3603        case HWTSTAMP_FILTER_NONE:
3604                tsync_rx_ctl = 0;
3605                break;
3606        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3607                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3608                rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3609                is_l4 = true;
3610                break;
3611        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3612                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3613                rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3614                is_l4 = true;
3615                break;
3616        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3617                /* Also time stamps V2 L2 Path Delay Request/Response */
3618                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3619                rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3620                is_l2 = true;
3621                break;
3622        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3623                /* Also time stamps V2 L2 Path Delay Request/Response. */
3624                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3625                rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3626                is_l2 = true;
3627                break;
3628        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3629                /* Hardware cannot filter just V2 L4 Sync messages;
3630                 * fall-through to V2 (both L2 and L4) Sync.
3631                 */
3632        case HWTSTAMP_FILTER_PTP_V2_SYNC:
3633                /* Also time stamps V2 Path Delay Request/Response. */
3634                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3635                rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3636                is_l2 = true;
3637                is_l4 = true;
3638                break;
3639        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3640                /* Hardware cannot filter just V2 L4 Delay Request messages;
3641                 * fall-through to V2 (both L2 and L4) Delay Request.
3642                 */
3643        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3644                /* Also time stamps V2 Path Delay Request/Response. */
3645                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646                rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3647                is_l2 = true;
3648                is_l4 = true;
3649                break;
3650        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3651        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3652                /* Hardware cannot filter just V2 L4 or L2 Event messages;
3653                 * fall-through to all V2 (both L2 and L4) Events.
3654                 */
3655        case HWTSTAMP_FILTER_PTP_V2_EVENT:
3656                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3657                config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3658                is_l2 = true;
3659                is_l4 = true;
3660                break;
3661        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3662                /* For V1, the hardware can only filter Sync messages or
3663                 * Delay Request messages but not both so fall-through to
3664                 * time stamp all packets.
3665                 */
3666        case HWTSTAMP_FILTER_ALL:
3667                is_l2 = true;
3668                is_l4 = true;
3669                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3670                config->rx_filter = HWTSTAMP_FILTER_ALL;
3671                break;
3672        default:
3673                return -ERANGE;
3674        }
3675
3676        adapter->hwtstamp_config = *config;
3677
3678        /* enable/disable Tx h/w time stamping */
3679        regval = er32(TSYNCTXCTL);
3680        regval &= ~E1000_TSYNCTXCTL_ENABLED;
3681        regval |= tsync_tx_ctl;
3682        ew32(TSYNCTXCTL, regval);
3683        if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3684            (regval & E1000_TSYNCTXCTL_ENABLED)) {
3685                e_err("Timesync Tx Control register not set as expected\n");
3686                return -EAGAIN;
3687        }
3688
3689        /* enable/disable Rx h/w time stamping */
3690        regval = er32(TSYNCRXCTL);
3691        regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3692        regval |= tsync_rx_ctl;
3693        ew32(TSYNCRXCTL, regval);
3694        if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3695                                 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3696            (regval & (E1000_TSYNCRXCTL_ENABLED |
3697                       E1000_TSYNCRXCTL_TYPE_MASK))) {
3698                e_err("Timesync Rx Control register not set as expected\n");
3699                return -EAGAIN;
3700        }
3701
3702        /* L2: define ethertype filter for time stamped packets */
3703        if (is_l2)
3704                rxmtrl |= ETH_P_1588;
3705
3706        /* define which PTP packets get time stamped */
3707        ew32(RXMTRL, rxmtrl);
3708
3709        /* Filter by destination port */
3710        if (is_l4) {
3711                rxudp = PTP_EV_PORT;
3712                cpu_to_be16s(&rxudp);
3713        }
3714        ew32(RXUDP, rxudp);
3715
3716        e1e_flush();
3717
3718        /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3719        er32(RXSTMPH);
3720        er32(TXSTMPH);
3721
3722        /* Get and set the System Time Register SYSTIM base frequency */
3723        ret_val = e1000e_get_base_timinca(adapter, &regval);
3724        if (ret_val)
3725                return ret_val;
3726        ew32(TIMINCA, regval);
3727
3728        /* reset the ns time counter */
3729        timecounter_init(&adapter->tc, &adapter->cc,
3730                         ktime_to_ns(ktime_get_real()));
3731
3732        return 0;
3733}
3734
3735/**
3736 * e1000_configure - configure the hardware for Rx and Tx
3737 * @adapter: private board structure
3738 **/
3739static void e1000_configure(struct e1000_adapter *adapter)
3740{
3741        struct e1000_ring *rx_ring = adapter->rx_ring;
3742
3743        e1000e_set_rx_mode(adapter->netdev);
3744
3745        e1000_restore_vlan(adapter);
3746        e1000_init_manageability_pt(adapter);
3747
3748        e1000_configure_tx(adapter);
3749
3750        if (adapter->netdev->features & NETIF_F_RXHASH)
3751                e1000e_setup_rss_hash(adapter);
3752        e1000_setup_rctl(adapter);
3753        e1000_configure_rx(adapter);
3754        adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3755}
3756
3757/**
3758 * e1000e_power_up_phy - restore link in case the phy was powered down
3759 * @adapter: address of board private structure
3760 *
3761 * The phy may be powered down to save power and turn off link when the
3762 * driver is unloaded and wake on lan is not enabled (among others)
3763 * *** this routine MUST be followed by a call to e1000e_reset ***
3764 **/
3765void e1000e_power_up_phy(struct e1000_adapter *adapter)
3766{
3767        if (adapter->hw.phy.ops.power_up)
3768                adapter->hw.phy.ops.power_up(&adapter->hw);
3769
3770        adapter->hw.mac.ops.setup_link(&adapter->hw);
3771}
3772
3773/**
3774 * e1000_power_down_phy - Power down the PHY
3775 *
3776 * Power down the PHY so no link is implied when interface is down.
3777 * The PHY cannot be powered down if management or WoL is active.
3778 */
3779static void e1000_power_down_phy(struct e1000_adapter *adapter)
3780{
3781        if (adapter->hw.phy.ops.power_down)
3782                adapter->hw.phy.ops.power_down(&adapter->hw);
3783}
3784
3785/**
3786 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3787 *
3788 * We want to clear all pending descriptors from the TX ring.
3789 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3790 * the data of the next descriptor. We don't care about the data we are about
3791 * to reset the HW.
3792 */
3793static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3794{
3795        struct e1000_hw *hw = &adapter->hw;
3796        struct e1000_ring *tx_ring = adapter->tx_ring;
3797        struct e1000_tx_desc *tx_desc = NULL;
3798        u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3799        u16 size = 512;
3800
3801        tctl = er32(TCTL);
3802        ew32(TCTL, tctl | E1000_TCTL_EN);
3803        tdt = er32(TDT(0));
3804        BUG_ON(tdt != tx_ring->next_to_use);
3805        tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3806        tx_desc->buffer_addr = tx_ring->dma;
3807
3808        tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3809        tx_desc->upper.data = 0;
3810        /* flush descriptors to memory before notifying the HW */
3811        wmb();
3812        tx_ring->next_to_use++;
3813        if (tx_ring->next_to_use == tx_ring->count)
3814                tx_ring->next_to_use = 0;
3815        ew32(TDT(0), tx_ring->next_to_use);
3816        mmiowb();
3817        usleep_range(200, 250);
3818}
3819
3820/**
3821 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3822 *
3823 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3824 */
3825static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3826{
3827        u32 rctl, rxdctl;
3828        struct e1000_hw *hw = &adapter->hw;
3829
3830        rctl = er32(RCTL);
3831        ew32(RCTL, rctl & ~E1000_RCTL_EN);
3832        e1e_flush();
3833        usleep_range(100, 150);
3834
3835        rxdctl = er32(RXDCTL(0));
3836        /* zero the lower 14 bits (prefetch and host thresholds) */
3837        rxdctl &= 0xffffc000;
3838
3839        /* update thresholds: prefetch threshold to 31, host threshold to 1
3840         * and make sure the granularity is "descriptors" and not "cache lines"
3841         */
3842        rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3843
3844        ew32(RXDCTL(0), rxdctl);
3845        /* momentarily enable the RX ring for the changes to take effect */
3846        ew32(RCTL, rctl | E1000_RCTL_EN);
3847        e1e_flush();
3848        usleep_range(100, 150);
3849        ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850}
3851
3852/**
3853 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3854 *
3855 * In i219, the descriptor rings must be emptied before resetting the HW
3856 * or before changing the device state to D3 during runtime (runtime PM).
3857 *
3858 * Failure to do this will cause the HW to enter a unit hang state which can
3859 * only be released by PCI reset on the device
3860 *
3861 */
3862
3863static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3864{
3865        u16 hang_state;
3866        u32 fext_nvm11, tdlen;
3867        struct e1000_hw *hw = &adapter->hw;
3868
3869        /* First, disable MULR fix in FEXTNVM11 */
3870        fext_nvm11 = er32(FEXTNVM11);
3871        fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3872        ew32(FEXTNVM11, fext_nvm11);
3873        /* do nothing if we're not in faulty state, or if the queue is empty */
3874        tdlen = er32(TDLEN(0));
3875        pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3876                             &hang_state);
3877        if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3878                return;
3879        e1000_flush_tx_ring(adapter);
3880        /* recheck, maybe the fault is caused by the rx ring */
3881        pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3882                             &hang_state);
3883        if (hang_state & FLUSH_DESC_REQUIRED)
3884                e1000_flush_rx_ring(adapter);
3885}
3886
3887/**
3888 * e1000e_reset - bring the hardware into a known good state
3889 *
3890 * This function boots the hardware and enables some settings that
3891 * require a configuration cycle of the hardware - those cannot be
3892 * set/changed during runtime. After reset the device needs to be
3893 * properly configured for Rx, Tx etc.
3894 */
3895void e1000e_reset(struct e1000_adapter *adapter)
3896{
3897        struct e1000_mac_info *mac = &adapter->hw.mac;
3898        struct e1000_fc_info *fc = &adapter->hw.fc;
3899        struct e1000_hw *hw = &adapter->hw;
3900        u32 tx_space, min_tx_space, min_rx_space;
3901        u32 pba = adapter->pba;
3902        u16 hwm;
3903
3904        /* reset Packet Buffer Allocation to default */
3905        ew32(PBA, pba);
3906
3907        if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3908                /* To maintain wire speed transmits, the Tx FIFO should be
3909                 * large enough to accommodate two full transmit packets,
3910                 * rounded up to the next 1KB and expressed in KB.  Likewise,
3911                 * the Rx FIFO should be large enough to accommodate at least
3912                 * one full receive packet and is similarly rounded up and
3913                 * expressed in KB.
3914                 */
3915                pba = er32(PBA);
3916                /* upper 16 bits has Tx packet buffer allocation size in KB */
3917                tx_space = pba >> 16;
3918                /* lower 16 bits has Rx packet buffer allocation size in KB */
3919                pba &= 0xffff;
3920                /* the Tx fifo also stores 16 bytes of information about the Tx
3921                 * but don't include ethernet FCS because hardware appends it
3922                 */
3923                min_tx_space = (adapter->max_frame_size +
3924                                sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3925                min_tx_space = ALIGN(min_tx_space, 1024);
3926                min_tx_space >>= 10;
3927                /* software strips receive CRC, so leave room for it */
3928                min_rx_space = adapter->max_frame_size;
3929                min_rx_space = ALIGN(min_rx_space, 1024);
3930                min_rx_space >>= 10;
3931
3932                /* If current Tx allocation is less than the min Tx FIFO size,
3933                 * and the min Tx FIFO size is less than the current Rx FIFO
3934                 * allocation, take space away from current Rx allocation
3935                 */
3936                if ((tx_space < min_tx_space) &&
3937                    ((min_tx_space - tx_space) < pba)) {
3938                        pba -= min_tx_space - tx_space;
3939
3940                        /* if short on Rx space, Rx wins and must trump Tx
3941                         * adjustment
3942                         */
3943                        if (pba < min_rx_space)
3944                                pba = min_rx_space;
3945                }
3946
3947                ew32(PBA, pba);
3948        }
3949
3950        /* flow control settings
3951         *
3952         * The high water mark must be low enough to fit one full frame
3953         * (or the size used for early receive) above it in the Rx FIFO.
3954         * Set it to the lower of:
3955         * - 90% of the Rx FIFO size, and
3956         * - the full Rx FIFO size minus one full frame
3957         */
3958        if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3959                fc->pause_time = 0xFFFF;
3960        else
3961                fc->pause_time = E1000_FC_PAUSE_TIME;
3962        fc->send_xon = true;
3963        fc->current_mode = fc->requested_mode;
3964
3965        switch (hw->mac.type) {
3966        case e1000_ich9lan:
3967        case e1000_ich10lan:
3968                if (adapter->netdev->mtu > ETH_DATA_LEN) {
3969                        pba = 14;
3970                        ew32(PBA, pba);
3971                        fc->high_water = 0x2800;
3972                        fc->low_water = fc->high_water - 8;
3973                        break;
3974                }
3975                /* fall-through */
3976        default:
3977                hwm = min(((pba << 10) * 9 / 10),
3978                          ((pba << 10) - adapter->max_frame_size));
3979
3980                fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3981                fc->low_water = fc->high_water - 8;
3982                break;
3983        case e1000_pchlan:
3984                /* Workaround PCH LOM adapter hangs with certain network
3985                 * loads.  If hangs persist, try disabling Tx flow control.
3986                 */
3987                if (adapter->netdev->mtu > ETH_DATA_LEN) {
3988                        fc->high_water = 0x3500;
3989                        fc->low_water = 0x1500;
3990                } else {
3991                        fc->high_water = 0x5000;
3992                        fc->low_water = 0x3000;
3993                }
3994                fc->refresh_time = 0x1000;
3995                break;
3996        case e1000_pch2lan:
3997        case e1000_pch_lpt:
3998        case e1000_pch_spt:
3999                fc->refresh_time = 0x0400;
4000
4001                if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4002                        fc->high_water = 0x05C20;
4003                        fc->low_water = 0x05048;
4004                        fc->pause_time = 0x0650;
4005                        break;
4006                }
4007
4008                pba = 14;
4009                ew32(PBA, pba);
4010                fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4011                fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4012                break;
4013        }
4014
4015        /* Alignment of Tx data is on an arbitrary byte boundary with the
4016         * maximum size per Tx descriptor limited only to the transmit
4017         * allocation of the packet buffer minus 96 bytes with an upper
4018         * limit of 24KB due to receive synchronization limitations.
4019         */
4020        adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4021                                       24 << 10);
4022
4023        /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4024         * fit in receive buffer.
4025         */
4026        if (adapter->itr_setting & 0x3) {
4027                if ((adapter->max_frame_size * 2) > (pba << 10)) {
4028                        if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4029                                dev_info(&adapter->pdev->dev,
4030                                         "Interrupt Throttle Rate off\n");
4031                                adapter->flags2 |= FLAG2_DISABLE_AIM;
4032                                e1000e_write_itr(adapter, 0);
4033                        }
4034                } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4035                        dev_info(&adapter->pdev->dev,
4036                                 "Interrupt Throttle Rate on\n");
4037                        adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4038                        adapter->itr = 20000;
4039                        e1000e_write_itr(adapter, adapter->itr);
4040                }
4041        }
4042
4043        if (hw->mac.type == e1000_pch_spt)
4044                e1000_flush_desc_rings(adapter);
4045        /* Allow time for pending master requests to run */
4046        mac->ops.reset_hw(hw);
4047
4048        /* For parts with AMT enabled, let the firmware know
4049         * that the network interface is in control
4050         */
4051        if (adapter->flags & FLAG_HAS_AMT)
4052                e1000e_get_hw_control(adapter);
4053
4054        ew32(WUC, 0);
4055
4056        if (mac->ops.init_hw(hw))
4057                e_err("Hardware Error\n");
4058
4059        e1000_update_mng_vlan(adapter);
4060
4061        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4062        ew32(VET, ETH_P_8021Q);
4063
4064        e1000e_reset_adaptive(hw);
4065
4066        /* initialize systim and reset the ns time counter */
4067        e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4068
4069        /* Set EEE advertisement as appropriate */
4070        if (adapter->flags2 & FLAG2_HAS_EEE) {
4071                s32 ret_val;
4072                u16 adv_addr;
4073
4074                switch (hw->phy.type) {
4075                case e1000_phy_82579:
4076                        adv_addr = I82579_EEE_ADVERTISEMENT;
4077                        break;
4078                case e1000_phy_i217:
4079                        adv_addr = I217_EEE_ADVERTISEMENT;
4080                        break;
4081                default:
4082                        dev_err(&adapter->pdev->dev,
4083                                "Invalid PHY type setting EEE advertisement\n");
4084                        return;
4085                }
4086
4087                ret_val = hw->phy.ops.acquire(hw);
4088                if (ret_val) {
4089                        dev_err(&adapter->pdev->dev,
4090                                "EEE advertisement - unable to acquire PHY\n");
4091                        return;
4092                }
4093
4094                e1000_write_emi_reg_locked(hw, adv_addr,
4095                                           hw->dev_spec.ich8lan.eee_disable ?
4096                                           0 : adapter->eee_advert);
4097
4098                hw->phy.ops.release(hw);
4099        }
4100
4101        if (!netif_running(adapter->netdev) &&
4102            !test_bit(__E1000_TESTING, &adapter->state))
4103                e1000_power_down_phy(adapter);
4104
4105        e1000_get_phy_info(hw);
4106
4107        if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4108            !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4109                u16 phy_data = 0;
4110                /* speed up time to link by disabling smart power down, ignore
4111                 * the return value of this function because there is nothing
4112                 * different we would do if it failed
4113                 */
4114                e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4115                phy_data &= ~IGP02E1000_PM_SPD;
4116                e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4117        }
4118        if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4119                u32 reg;
4120
4121                /* Fextnvm7 @ 0xe4[2] = 1 */
4122                reg = er32(FEXTNVM7);
4123                reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4124                ew32(FEXTNVM7, reg);
4125                /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4126                reg = er32(FEXTNVM9);
4127                reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4128                       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4129                ew32(FEXTNVM9, reg);
4130        }
4131
4132}
4133
4134/**
4135 * e1000e_trigger_lsc - trigger an LSC interrupt
4136 * @adapter: 
4137 *
4138 * Fire a link status change interrupt to start the watchdog.
4139 **/
4140static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4141{
4142        struct e1000_hw *hw = &adapter->hw;
4143
4144        if (adapter->msix_entries)
4145                ew32(ICS, E1000_ICS_OTHER);
4146        else
4147                ew32(ICS, E1000_ICS_LSC);
4148}
4149
4150void e1000e_up(struct e1000_adapter *adapter)
4151{
4152        /* hardware has been reset, we need to reload some things */
4153        e1000_configure(adapter);
4154
4155        clear_bit(__E1000_DOWN, &adapter->state);
4156
4157        if (adapter->msix_entries)
4158                e1000_configure_msix(adapter);
4159        e1000_irq_enable(adapter);
4160
4161        netif_start_queue(adapter->netdev);
4162
4163        e1000e_trigger_lsc(adapter);
4164}
4165
4166static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4167{
4168        struct e1000_hw *hw = &adapter->hw;
4169
4170        if (!(adapter->flags2 & FLAG2_DMA_BURST))
4171                return;
4172
4173        /* flush pending descriptor writebacks to memory */
4174        ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4175        ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4176
4177        /* execute the writes immediately */
4178        e1e_flush();
4179
4180        /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4181         * write is successful
4182         */
4183        ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4184        ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4185
4186        /* execute the writes immediately */
4187        e1e_flush();
4188}
4189
4190static void e1000e_update_stats(struct e1000_adapter *adapter);
4191
4192/**
4193 * e1000e_down - quiesce the device and optionally reset the hardware
4194 * @adapter: board private structure
4195 * @reset: boolean flag to reset the hardware or not
4196 */
4197void e1000e_down(struct e1000_adapter *adapter, bool reset)
4198{
4199        struct net_device *netdev = adapter->netdev;
4200        struct e1000_hw *hw = &adapter->hw;
4201        u32 tctl, rctl;
4202
4203        /* signal that we're down so the interrupt handler does not
4204         * reschedule our watchdog timer
4205         */
4206        set_bit(__E1000_DOWN, &adapter->state);
4207
4208        netif_carrier_off(netdev);
4209
4210        /* disable receives in the hardware */
4211        rctl = er32(RCTL);
4212        if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4213                ew32(RCTL, rctl & ~E1000_RCTL_EN);
4214        /* flush and sleep below */
4215
4216        netif_stop_queue(netdev);
4217
4218        /* disable transmits in the hardware */
4219        tctl = er32(TCTL);
4220        tctl &= ~E1000_TCTL_EN;
4221        ew32(TCTL, tctl);
4222
4223        /* flush both disables and wait for them to finish */
4224        e1e_flush();
4225        usleep_range(10000, 20000);
4226
4227        e1000_irq_disable(adapter);
4228
4229        napi_synchronize(&adapter->napi);
4230
4231        del_timer_sync(&adapter->watchdog_timer);
4232        del_timer_sync(&adapter->phy_info_timer);
4233
4234        spin_lock(&adapter->stats64_lock);
4235        e1000e_update_stats(adapter);
4236        spin_unlock(&adapter->stats64_lock);
4237
4238        e1000e_flush_descriptors(adapter);
4239
4240        adapter->link_speed = 0;
4241        adapter->link_duplex = 0;
4242
4243        /* Disable Si errata workaround on PCHx for jumbo frame flow */
4244        if ((hw->mac.type >= e1000_pch2lan) &&
4245            (adapter->netdev->mtu > ETH_DATA_LEN) &&
4246            e1000_lv_jumbo_workaround_ich8lan(hw, false))
4247                e_dbg("failed to disable jumbo frame workaround mode\n");
4248
4249        if (!pci_channel_offline(adapter->pdev)) {
4250                if (reset)
4251                        e1000e_reset(adapter);
4252                else if (hw->mac.type == e1000_pch_spt)
4253                        e1000_flush_desc_rings(adapter);
4254        }
4255        e1000_clean_tx_ring(adapter->tx_ring);
4256        e1000_clean_rx_ring(adapter->rx_ring);
4257}
4258
4259void e1000e_reinit_locked(struct e1000_adapter *adapter)
4260{
4261        might_sleep();
4262        while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4263                usleep_range(1000, 2000);
4264        e1000e_down(adapter, true);
4265        e1000e_up(adapter);
4266        clear_bit(__E1000_RESETTING, &adapter->state);
4267}
4268
4269/**
4270 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4271 * @cc: cyclecounter structure
4272 **/
4273static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4274{
4275        struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4276                                                     cc);
4277        struct e1000_hw *hw = &adapter->hw;
4278        u32 systimel_1, systimel_2, systimeh;
4279        cycle_t systim, systim_next;
4280        /* SYSTIMH latching upon SYSTIML read does not work well.
4281         * This means that if SYSTIML overflows after we read it but before
4282         * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4283         * will experience a huge non linear increment in the systime value
4284         * to fix that we test for overflow and if true, we re-read systime.
4285         */
4286        systimel_1 = er32(SYSTIML);
4287        systimeh = er32(SYSTIMH);
4288        systimel_2 = er32(SYSTIML);
4289        /* Check for overflow. If there was no overflow, use the values */
4290        if (systimel_1 < systimel_2) {
4291                systim = (cycle_t)systimel_1;
4292                systim |= (cycle_t)systimeh << 32;
4293        } else {
4294                /* There was an overflow, read again SYSTIMH, and use
4295                 * systimel_2
4296                 */
4297                systimeh = er32(SYSTIMH);
4298                systim = (cycle_t)systimel_2;
4299                systim |= (cycle_t)systimeh << 32;
4300        }
4301
4302        if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4303                u64 incvalue, time_delta, rem, temp;
4304                int i;
4305
4306                /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4307                 * check to see that the time is incrementing at a reasonable
4308                 * rate and is a multiple of incvalue
4309                 */
4310                incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4311                for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4312                        /* latch SYSTIMH on read of SYSTIML */
4313                        systim_next = (cycle_t)er32(SYSTIML);
4314                        systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4315
4316                        time_delta = systim_next - systim;
4317                        temp = time_delta;
4318                        rem = do_div(temp, incvalue);
4319
4320                        systim = systim_next;
4321
4322                        if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4323                            (rem == 0))
4324                                break;
4325                }
4326        }
4327        return systim;
4328}
4329
4330/**
4331 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4332 * @adapter: board private structure to initialize
4333 *
4334 * e1000_sw_init initializes the Adapter private data structure.
4335 * Fields are initialized based on PCI device information and
4336 * OS network device settings (MTU size).
4337 **/
4338static int e1000_sw_init(struct e1000_adapter *adapter)
4339{
4340        struct net_device *netdev = adapter->netdev;
4341
4342        adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4343        adapter->rx_ps_bsize0 = 128;
4344        adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4345        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4346        adapter->tx_ring_count = E1000_DEFAULT_TXD;
4347        adapter->rx_ring_count = E1000_DEFAULT_RXD;
4348
4349        spin_lock_init(&adapter->stats64_lock);
4350
4351        e1000e_set_interrupt_capability(adapter);
4352
4353        if (e1000_alloc_queues(adapter))
4354                return -ENOMEM;
4355
4356        /* Setup hardware time stamping cyclecounter */
4357        if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4358                adapter->cc.read = e1000e_cyclecounter_read;
4359                adapter->cc.mask = CYCLECOUNTER_MASK(64);
4360                adapter->cc.mult = 1;
4361                /* cc.shift set in e1000e_get_base_tininca() */
4362
4363                spin_lock_init(&adapter->systim_lock);
4364                INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4365        }
4366
4367        /* Explicitly disable IRQ since the NIC can be in any state. */
4368        e1000_irq_disable(adapter);
4369
4370        set_bit(__E1000_DOWN, &adapter->state);
4371        return 0;
4372}
4373
4374/**
4375 * e1000_intr_msi_test - Interrupt Handler
4376 * @irq: interrupt number
4377 * @data: pointer to a network interface device structure
4378 **/
4379static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4380{
4381        struct net_device *netdev = data;
4382        struct e1000_adapter *adapter = netdev_priv(netdev);
4383        struct e1000_hw *hw = &adapter->hw;
4384        u32 icr = er32(ICR);
4385
4386        e_dbg("icr is %08X\n", icr);
4387        if (icr & E1000_ICR_RXSEQ) {
4388                adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4389                /* Force memory writes to complete before acknowledging the
4390                 * interrupt is handled.
4391                 */
4392                wmb();
4393        }
4394
4395        return IRQ_HANDLED;
4396}
4397
4398/**
4399 * e1000_test_msi_interrupt - Returns 0 for successful test
4400 * @adapter: board private struct
4401 *
4402 * code flow taken from tg3.c
4403 **/
4404static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4405{
4406        struct net_device *netdev = adapter->netdev;
4407        struct e1000_hw *hw = &adapter->hw;
4408        int err;
4409
4410        /* poll_enable hasn't been called yet, so don't need disable */
4411        /* clear any pending events */
4412        er32(ICR);
4413
4414        /* free the real vector and request a test handler */
4415        e1000_free_irq(adapter);
4416        e1000e_reset_interrupt_capability(adapter);
4417
4418        /* Assume that the test fails, if it succeeds then the test
4419         * MSI irq handler will unset this flag
4420         */
4421        adapter->flags |= FLAG_MSI_TEST_FAILED;
4422
4423        err = pci_enable_msi(adapter->pdev);
4424        if (err)
4425                goto msi_test_failed;
4426
4427        err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4428                          netdev->name, netdev);
4429        if (err) {
4430                pci_disable_msi(adapter->pdev);
4431                goto msi_test_failed;
4432        }
4433
4434        /* Force memory writes to complete before enabling and firing an
4435         * interrupt.
4436         */
4437        wmb();
4438
4439        e1000_irq_enable(adapter);
4440
4441        /* fire an unusual interrupt on the test handler */
4442        ew32(ICS, E1000_ICS_RXSEQ);
4443        e1e_flush();
4444        msleep(100);
4445
4446        e1000_irq_disable(adapter);
4447
4448        rmb();                  /* read flags after interrupt has been fired */
4449
4450        if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4451                adapter->int_mode = E1000E_INT_MODE_LEGACY;
4452                e_info("MSI interrupt test failed, using legacy interrupt.\n");
4453        } else {
4454                e_dbg("MSI interrupt test succeeded!\n");
4455        }
4456
4457        free_irq(adapter->pdev->irq, netdev);
4458        pci_disable_msi(adapter->pdev);
4459
4460msi_test_failed:
4461        e1000e_set_interrupt_capability(adapter);
4462        return e1000_request_irq(adapter);
4463}
4464
4465/**
4466 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4467 * @adapter: board private struct
4468 *
4469 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4470 **/
4471static int e1000_test_msi(struct e1000_adapter *adapter)
4472{
4473        int err;
4474        u16 pci_cmd;
4475
4476        if (!(adapter->flags & FLAG_MSI_ENABLED))
4477                return 0;
4478
4479        /* disable SERR in case the MSI write causes a master abort */
4480        pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4481        if (pci_cmd & PCI_COMMAND_SERR)
4482                pci_write_config_word(adapter->pdev, PCI_COMMAND,
4483                                      pci_cmd & ~PCI_COMMAND_SERR);
4484
4485        err = e1000_test_msi_interrupt(adapter);
4486
4487        /* re-enable SERR */
4488        if (pci_cmd & PCI_COMMAND_SERR) {
4489                pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4490                pci_cmd |= PCI_COMMAND_SERR;
4491                pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4492        }
4493
4494        return err;
4495}
4496
4497/**
4498 * e1000_open - Called when a network interface is made active
4499 * @netdev: network interface device structure
4500 *
4501 * Returns 0 on success, negative value on failure
4502 *
4503 * The open entry point is called when a network interface is made
4504 * active by the system (IFF_UP).  At this point all resources needed
4505 * for transmit and receive operations are allocated, the interrupt
4506 * handler is registered with the OS, the watchdog timer is started,
4507 * and the stack is notified that the interface is ready.
4508 **/
4509static int e1000_open(struct net_device *netdev)
4510{
4511        struct e1000_adapter *adapter = netdev_priv(netdev);
4512        struct e1000_hw *hw = &adapter->hw;
4513        struct pci_dev *pdev = adapter->pdev;
4514        int err;
4515
4516        /* disallow open during test */
4517        if (test_bit(__E1000_TESTING, &adapter->state))
4518                return -EBUSY;
4519
4520        pm_runtime_get_sync(&pdev->dev);
4521
4522        netif_carrier_off(netdev);
4523
4524        /* allocate transmit descriptors */
4525        err = e1000e_setup_tx_resources(adapter->tx_ring);
4526        if (err)
4527                goto err_setup_tx;
4528
4529        /* allocate receive descriptors */
4530        err = e1000e_setup_rx_resources(adapter->rx_ring);
4531        if (err)
4532                goto err_setup_rx;
4533
4534        /* If AMT is enabled, let the firmware know that the network
4535         * interface is now open and reset the part to a known state.
4536         */
4537        if (adapter->flags & FLAG_HAS_AMT) {
4538                e1000e_get_hw_control(adapter);
4539                e1000e_reset(adapter);
4540        }
4541
4542        e1000e_power_up_phy(adapter);
4543
4544        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4545        if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4546                e1000_update_mng_vlan(adapter);
4547
4548        /* DMA latency requirement to workaround jumbo issue */
4549        pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4550                           PM_QOS_DEFAULT_VALUE);
4551
4552        /* before we allocate an interrupt, we must be ready to handle it.
4553         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4554         * as soon as we call pci_request_irq, so we have to setup our
4555         * clean_rx handler before we do so.
4556         */
4557        e1000_configure(adapter);
4558
4559        err = e1000_request_irq(adapter);
4560        if (err)
4561                goto err_req_irq;
4562
4563        /* Work around PCIe errata with MSI interrupts causing some chipsets to
4564         * ignore e1000e MSI messages, which means we need to test our MSI
4565         * interrupt now
4566         */
4567        if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4568                err = e1000_test_msi(adapter);
4569                if (err) {
4570                        e_err("Interrupt allocation failed\n");
4571                        goto err_req_irq;
4572                }
4573        }
4574
4575        /* From here on the code is the same as e1000e_up() */
4576        clear_bit(__E1000_DOWN, &adapter->state);
4577
4578        napi_enable(&adapter->napi);
4579
4580        e1000_irq_enable(adapter);
4581
4582        adapter->tx_hang_recheck = false;
4583        netif_start_queue(netdev);
4584
4585        hw->mac.get_link_status = true;
4586        pm_runtime_put(&pdev->dev);
4587
4588        e1000e_trigger_lsc(adapter);
4589
4590        return 0;
4591
4592err_req_irq:
4593        pm_qos_remove_request(&adapter->pm_qos_req);
4594        e1000e_release_hw_control(adapter);
4595        e1000_power_down_phy(adapter);
4596        e1000e_free_rx_resources(adapter->rx_ring);
4597err_setup_rx:
4598        e1000e_free_tx_resources(adapter->tx_ring);
4599err_setup_tx:
4600        e1000e_reset(adapter);
4601        pm_runtime_put_sync(&pdev->dev);
4602
4603        return err;
4604}
4605
4606/**
4607 * e1000_close - Disables a network interface
4608 * @netdev: network interface device structure
4609 *
4610 * Returns 0, this is not allowed to fail
4611 *
4612 * The close entry point is called when an interface is de-activated
4613 * by the OS.  The hardware is still under the drivers control, but
4614 * needs to be disabled.  A global MAC reset is issued to stop the
4615 * hardware, and all transmit and receive resources are freed.
4616 **/
4617static int e1000_close(struct net_device *netdev)
4618{
4619        struct e1000_adapter *adapter = netdev_priv(netdev);
4620        struct pci_dev *pdev = adapter->pdev;
4621        int count = E1000_CHECK_RESET_COUNT;
4622
4623        while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4624                usleep_range(10000, 20000);
4625
4626        WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4627
4628        pm_runtime_get_sync(&pdev->dev);
4629
4630        if (!test_bit(__E1000_DOWN, &adapter->state)) {
4631                e1000e_down(adapter, true);
4632                e1000_free_irq(adapter);
4633
4634                /* Link status message must follow this format */
4635                pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4636        }
4637
4638        napi_disable(&adapter->napi);
4639
4640        e1000e_free_tx_resources(adapter->tx_ring);
4641        e1000e_free_rx_resources(adapter->rx_ring);
4642
4643        /* kill manageability vlan ID if supported, but not if a vlan with
4644         * the same ID is registered on the host OS (let 8021q kill it)
4645         */
4646        if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4647                e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4648                                       adapter->mng_vlan_id);
4649
4650        /* If AMT is enabled, let the firmware know that the network
4651         * interface is now closed
4652         */
4653        if ((adapter->flags & FLAG_HAS_AMT) &&
4654            !test_bit(__E1000_TESTING, &adapter->state))
4655                e1000e_release_hw_control(adapter);
4656
4657        pm_qos_remove_request(&adapter->pm_qos_req);
4658
4659        pm_runtime_put_sync(&pdev->dev);
4660
4661        return 0;
4662}
4663
4664/**
4665 * e1000_set_mac - Change the Ethernet Address of the NIC
4666 * @netdev: network interface device structure
4667 * @p: pointer to an address structure
4668 *
4669 * Returns 0 on success, negative on failure
4670 **/
4671static int e1000_set_mac(struct net_device *netdev, void *p)
4672{
4673        struct e1000_adapter *adapter = netdev_priv(netdev);
4674        struct e1000_hw *hw = &adapter->hw;
4675        struct sockaddr *addr = p;
4676
4677        if (!is_valid_ether_addr(addr->sa_data))
4678                return -EADDRNOTAVAIL;
4679
4680        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4681        memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4682
4683        hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4684
4685        if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4686                /* activate the work around */
4687                e1000e_set_laa_state_82571(&adapter->hw, 1);
4688
4689                /* Hold a copy of the LAA in RAR[14] This is done so that
4690                 * between the time RAR[0] gets clobbered  and the time it
4691                 * gets fixed (in e1000_watchdog), the actual LAA is in one
4692                 * of the RARs and no incoming packets directed to this port
4693                 * are dropped. Eventually the LAA will be in RAR[0] and
4694                 * RAR[14]
4695                 */
4696                hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4697                                    adapter->hw.mac.rar_entry_count - 1);
4698        }
4699
4700        return 0;
4701}
4702
4703/**
4704 * e1000e_update_phy_task - work thread to update phy
4705 * @work: pointer to our work struct
4706 *
4707 * this worker thread exists because we must acquire a
4708 * semaphore to read the phy, which we could msleep while
4709 * waiting for it, and we can't msleep in a timer.
4710 **/
4711static void e1000e_update_phy_task(struct work_struct *work)
4712{
4713        struct e1000_adapter *adapter = container_of(work,
4714                                                     struct e1000_adapter,
4715                                                     update_phy_task);
4716        struct e1000_hw *hw = &adapter->hw;
4717
4718        if (test_bit(__E1000_DOWN, &adapter->state))
4719                return;
4720
4721        e1000_get_phy_info(hw);
4722
4723        /* Enable EEE on 82579 after link up */
4724        if (hw->phy.type >= e1000_phy_82579)
4725                e1000_set_eee_pchlan(hw);
4726}
4727
4728/**
4729 * e1000_update_phy_info - timre call-back to update PHY info
4730 * @data: pointer to adapter cast into an unsigned long
4731 *
4732 * Need to wait a few seconds after link up to get diagnostic information from
4733 * the phy
4734 **/
4735static void e1000_update_phy_info(unsigned long data)
4736{
4737        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4738
4739        if (test_bit(__E1000_DOWN, &adapter->state))
4740                return;
4741
4742        schedule_work(&adapter->update_phy_task);
4743}
4744
4745/**
4746 * e1000e_update_phy_stats - Update the PHY statistics counters
4747 * @adapter: board private structure
4748 *
4749 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4750 **/
4751static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4752{
4753        struct e1000_hw *hw = &adapter->hw;
4754        s32 ret_val;
4755        u16 phy_data;
4756
4757        ret_val = hw->phy.ops.acquire(hw);
4758        if (ret_val)
4759                return;
4760
4761        /* A page set is expensive so check if already on desired page.
4762         * If not, set to the page with the PHY status registers.
4763         */
4764        hw->phy.addr = 1;
4765        ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4766                                           &phy_data);
4767        if (ret_val)
4768                goto release;
4769        if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4770                ret_val = hw->phy.ops.set_page(hw,
4771                                               HV_STATS_PAGE << IGP_PAGE_SHIFT);
4772                if (ret_val)
4773                        goto release;
4774        }
4775
4776        /* Single Collision Count */
4777        hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4778        ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4779        if (!ret_val)
4780                adapter->stats.scc += phy_data;
4781
4782        /* Excessive Collision Count */
4783        hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4784        ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4785        if (!ret_val)
4786                adapter->stats.ecol += phy_data;
4787
4788        /* Multiple Collision Count */
4789        hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4790        ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4791        if (!ret_val)
4792                adapter->stats.mcc += phy_data;
4793
4794        /* Late Collision Count */
4795        hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4796        ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4797        if (!ret_val)
4798                adapter->stats.latecol += phy_data;
4799
4800        /* Collision Count - also used for adaptive IFS */
4801        hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4802        ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4803        if (!ret_val)
4804                hw->mac.collision_delta = phy_data;
4805
4806        /* Defer Count */
4807        hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4808        ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4809        if (!ret_val)
4810                adapter->stats.dc += phy_data;
4811
4812        /* Transmit with no CRS */
4813        hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4814        ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4815        if (!ret_val)
4816                adapter->stats.tncrs += phy_data;
4817
4818release:
4819        hw->phy.ops.release(hw);
4820}
4821
4822/**
4823 * e1000e_update_stats - Update the board statistics counters
4824 * @adapter: board private structure
4825 **/
4826static void e1000e_update_stats(struct e1000_adapter *adapter)
4827{
4828        struct net_device *netdev = adapter->netdev;
4829        struct e1000_hw *hw = &adapter->hw;
4830        struct pci_dev *pdev = adapter->pdev;
4831
4832        /* Prevent stats update while adapter is being reset, or if the pci
4833         * connection is down.
4834         */
4835        if (adapter->link_speed == 0)
4836                return;
4837        if (pci_channel_offline(pdev))
4838                return;
4839
4840        adapter->stats.crcerrs += er32(CRCERRS);
4841        adapter->stats.gprc += er32(GPRC);
4842        adapter->stats.gorc += er32(GORCL);
4843        er32(GORCH);            /* Clear gorc */
4844        adapter->stats.bprc += er32(BPRC);
4845        adapter->stats.mprc += er32(MPRC);
4846        adapter->stats.roc += er32(ROC);
4847
4848        adapter->stats.mpc += er32(MPC);
4849
4850        /* Half-duplex statistics */
4851        if (adapter->link_duplex == HALF_DUPLEX) {
4852                if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4853                        e1000e_update_phy_stats(adapter);
4854                } else {
4855                        adapter->stats.scc += er32(SCC);
4856                        adapter->stats.ecol += er32(ECOL);
4857                        adapter->stats.mcc += er32(MCC);
4858                        adapter->stats.latecol += er32(LATECOL);
4859                        adapter->stats.dc += er32(DC);
4860
4861                        hw->mac.collision_delta = er32(COLC);
4862
4863                        if ((hw->mac.type != e1000_82574) &&
4864                            (hw->mac.type != e1000_82583))
4865                                adapter->stats.tncrs += er32(TNCRS);
4866                }
4867                adapter->stats.colc += hw->mac.collision_delta;
4868        }
4869
4870        adapter->stats.xonrxc += er32(XONRXC);
4871        adapter->stats.xontxc += er32(XONTXC);
4872        adapter->stats.xoffrxc += er32(XOFFRXC);
4873        adapter->stats.xofftxc += er32(XOFFTXC);
4874        adapter->stats.gptc += er32(GPTC);
4875        adapter->stats.gotc += er32(GOTCL);
4876        er32(GOTCH);            /* Clear gotc */
4877        adapter->stats.rnbc += er32(RNBC);
4878        adapter->stats.ruc += er32(RUC);
4879
4880        adapter->stats.mptc += er32(MPTC);
4881        adapter->stats.bptc += er32(BPTC);
4882
4883        /* used for adaptive IFS */
4884
4885        hw->mac.tx_packet_delta = er32(TPT);
4886        adapter->stats.tpt += hw->mac.tx_packet_delta;
4887
4888        adapter->stats.algnerrc += er32(ALGNERRC);
4889        adapter->stats.rxerrc += er32(RXERRC);
4890        adapter->stats.cexterr += er32(CEXTERR);
4891        adapter->stats.tsctc += er32(TSCTC);
4892        adapter->stats.tsctfc += er32(TSCTFC);
4893
4894        /* Fill out the OS statistics structure */
4895        netdev->stats.multicast = adapter->stats.mprc;
4896        netdev->stats.collisions = adapter->stats.colc;
4897
4898        /* Rx Errors */
4899
4900        /* RLEC on some newer hardware can be incorrect so build
4901         * our own version based on RUC and ROC
4902         */
4903        netdev->stats.rx_errors = adapter->stats.rxerrc +
4904            adapter->stats.crcerrs + adapter->stats.algnerrc +
4905            adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4906        netdev->stats.rx_length_errors = adapter->stats.ruc +
4907            adapter->stats.roc;
4908        netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4909        netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4910        netdev->stats.rx_missed_errors = adapter->stats.mpc;
4911
4912        /* Tx Errors */
4913        netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4914        netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4915        netdev->stats.tx_window_errors = adapter->stats.latecol;
4916        netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4917
4918        /* Tx Dropped needs to be maintained elsewhere */
4919
4920        /* Management Stats */
4921        adapter->stats.mgptc += er32(MGTPTC);
4922        adapter->stats.mgprc += er32(MGTPRC);
4923        adapter->stats.mgpdc += er32(MGTPDC);
4924
4925        /* Correctable ECC Errors */
4926        if ((hw->mac.type == e1000_pch_lpt) ||
4927            (hw->mac.type == e1000_pch_spt)) {
4928                u32 pbeccsts = er32(PBECCSTS);
4929
4930                adapter->corr_errors +=
4931                    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4932                adapter->uncorr_errors +=
4933                    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4934                    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4935        }
4936}
4937
4938/**
4939 * e1000_phy_read_status - Update the PHY register status snapshot
4940 * @adapter: board private structure
4941 **/
4942static void e1000_phy_read_status(struct e1000_adapter *adapter)
4943{
4944        struct e1000_hw *hw = &adapter->hw;
4945        struct e1000_phy_regs *phy = &adapter->phy_regs;
4946
4947        if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4948            (er32(STATUS) & E1000_STATUS_LU) &&
4949            (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4950                int ret_val;
4951
4952                ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4953                ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4954                ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4955                ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4956                ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4957                ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4958                ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4959                ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4960                if (ret_val)
4961                        e_warn("Error reading PHY register\n");
4962        } else {
4963                /* Do not read PHY registers if link is not up
4964                 * Set values to typical power-on defaults
4965                 */
4966                phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4967                phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4968                             BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4969                             BMSR_ERCAP);
4970                phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4971                                  ADVERTISE_ALL | ADVERTISE_CSMA);
4972                phy->lpa = 0;
4973                phy->expansion = EXPANSION_ENABLENPAGE;
4974                phy->ctrl1000 = ADVERTISE_1000FULL;
4975                phy->stat1000 = 0;
4976                phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4977        }
4978}
4979
4980static void e1000_print_link_info(struct e1000_adapter *adapter)
4981{
4982        struct e1000_hw *hw = &adapter->hw;
4983        u32 ctrl = er32(CTRL);
4984
4985        /* Link status message must follow this format for user tools */
4986        pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4987                adapter->netdev->name, adapter->link_speed,
4988                adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4989                (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4990                (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4991                (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4992}
4993
4994static bool e1000e_has_link(struct e1000_adapter *adapter)
4995{
4996        struct e1000_hw *hw = &adapter->hw;
4997        bool link_active = false;
4998        s32 ret_val = 0;
4999
5000        /* get_link_status is set on LSC (link status) interrupt or
5001         * Rx sequence error interrupt.  get_link_status will stay
5002         * false until the check_for_link establishes link
5003         * for copper adapters ONLY
5004         */
5005        switch (hw->phy.media_type) {
5006        case e1000_media_type_copper:
5007                if (hw->mac.get_link_status) {
5008                        ret_val = hw->mac.ops.check_for_link(hw);
5009                        link_active = !hw->mac.get_link_status;
5010                } else {
5011                        link_active = true;
5012                }
5013                break;
5014        case e1000_media_type_fiber:
5015                ret_val = hw->mac.ops.check_for_link(hw);
5016                link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5017                break;
5018        case e1000_media_type_internal_serdes:
5019                ret_val = hw->mac.ops.check_for_link(hw);
5020                link_active = adapter->hw.mac.serdes_has_link;
5021                break;
5022        default:
5023        case e1000_media_type_unknown:
5024                break;
5025        }
5026
5027        if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5028            (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5029                /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5030                e_info("Gigabit has been disabled, downgrading speed\n");
5031        }
5032
5033        return link_active;
5034}
5035
5036static void e1000e_enable_receives(struct e1000_adapter *adapter)
5037{
5038        /* make sure the receive unit is started */
5039        if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5040            (adapter->flags & FLAG_RESTART_NOW)) {
5041                struct e1000_hw *hw = &adapter->hw;
5042                u32 rctl = er32(RCTL);
5043
5044                ew32(RCTL, rctl | E1000_RCTL_EN);
5045                adapter->flags &= ~FLAG_RESTART_NOW;
5046        }
5047}
5048
5049static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5050{
5051        struct e1000_hw *hw = &adapter->hw;
5052
5053        /* With 82574 controllers, PHY needs to be checked periodically
5054         * for hung state and reset, if two calls return true
5055         */
5056        if (e1000_check_phy_82574(hw))
5057                adapter->phy_hang_count++;
5058        else
5059                adapter->phy_hang_count = 0;
5060
5061        if (adapter->phy_hang_count > 1) {
5062                adapter->phy_hang_count = 0;
5063                e_dbg("PHY appears hung - resetting\n");
5064                schedule_work(&adapter->reset_task);
5065        }
5066}
5067
5068/**
5069 * e1000_watchdog - Timer Call-back
5070 * @data: pointer to adapter cast into an unsigned long
5071 **/
5072static void e1000_watchdog(unsigned long data)
5073{
5074        struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5075
5076        /* Do the rest outside of interrupt context */
5077        schedule_work(&adapter->watchdog_task);
5078
5079        /* TODO: make this use queue_delayed_work() */
5080}
5081
5082static void e1000_watchdog_task(struct work_struct *work)
5083{
5084        struct e1000_adapter *adapter = container_of(work,
5085                                                     struct e1000_adapter,
5086                                                     watchdog_task);
5087        struct net_device *netdev = adapter->netdev;
5088        struct e1000_mac_info *mac = &adapter->hw.mac;
5089        struct e1000_phy_info *phy = &adapter->hw.phy;
5090        struct e1000_ring *tx_ring = adapter->tx_ring;
5091        struct e1000_hw *hw = &adapter->hw;
5092        u32 link, tctl;
5093
5094        if (test_bit(__E1000_DOWN, &adapter->state))
5095                return;
5096
5097        link = e1000e_has_link(adapter);
5098        if ((netif_carrier_ok(netdev)) && link) {
5099                /* Cancel scheduled suspend requests. */
5100                pm_runtime_resume(netdev->dev.parent);
5101
5102                e1000e_enable_receives(adapter);
5103                goto link_up;
5104        }
5105
5106        if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5107            (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5108                e1000_update_mng_vlan(adapter);
5109
5110        if (link) {
5111                if (!netif_carrier_ok(netdev)) {
5112                        bool txb2b = true;
5113
5114                        /* Cancel scheduled suspend requests. */
5115                        pm_runtime_resume(netdev->dev.parent);
5116
5117                        /* update snapshot of PHY registers on LSC */
5118                        e1000_phy_read_status(adapter);
5119                        mac->ops.get_link_up_info(&adapter->hw,
5120                                                  &adapter->link_speed,
5121                                                  &adapter->link_duplex);
5122                        e1000_print_link_info(adapter);
5123
5124                        /* check if SmartSpeed worked */
5125                        e1000e_check_downshift(hw);
5126                        if (phy->speed_downgraded)
5127                                netdev_warn(netdev,
5128                                            "Link Speed was downgraded by SmartSpeed\n");
5129
5130                        /* On supported PHYs, check for duplex mismatch only
5131                         * if link has autonegotiated at 10/100 half
5132                         */
5133                        if ((hw->phy.type == e1000_phy_igp_3 ||
5134                             hw->phy.type == e1000_phy_bm) &&
5135                            hw->mac.autoneg &&
5136                            (adapter->link_speed == SPEED_10 ||
5137                             adapter->link_speed == SPEED_100) &&
5138                            (adapter->link_duplex == HALF_DUPLEX)) {
5139                                u16 autoneg_exp;
5140
5141                                e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5142
5143                                if (!(autoneg_exp & EXPANSION_NWAY))
5144                                        e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5145                        }
5146
5147                        /* adjust timeout factor according to speed/duplex */
5148                        adapter->tx_timeout_factor = 1;
5149                        switch (adapter->link_speed) {
5150                        case SPEED_10:
5151                                txb2b = false;
5152                                adapter->tx_timeout_factor = 16;
5153                                break;
5154                        case SPEED_100:
5155                                txb2b = false;
5156                                adapter->tx_timeout_factor = 10;
5157                                break;
5158                        }
5159
5160                        /* workaround: re-program speed mode bit after
5161                         * link-up event
5162                         */
5163                        if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5164                            !txb2b) {
5165                                u32 tarc0;
5166
5167                                tarc0 = er32(TARC(0));
5168                                tarc0 &= ~SPEED_MODE_BIT;
5169                                ew32(TARC(0), tarc0);
5170                        }
5171
5172                        /* disable TSO for pcie and 10/100 speeds, to avoid
5173                         * some hardware issues
5174                         */
5175                        if (!(adapter->flags & FLAG_TSO_FORCE)) {
5176                                switch (adapter->link_speed) {
5177                                case SPEED_10:
5178                                case SPEED_100:
5179                                        e_info("10/100 speed: disabling TSO\n");
5180                                        netdev->features &= ~NETIF_F_TSO;
5181                                        netdev->features &= ~NETIF_F_TSO6;
5182                                        break;
5183                                case SPEED_1000:
5184                                        netdev->features |= NETIF_F_TSO;
5185                                        netdev->features |= NETIF_F_TSO6;
5186                                        break;
5187                                default:
5188                                        /* oops */
5189                                        break;
5190                                }
5191                        }
5192
5193                        /* enable transmits in the hardware, need to do this
5194                         * after setting TARC(0)
5195                         */
5196                        tctl = er32(TCTL);
5197                        tctl |= E1000_TCTL_EN;
5198                        ew32(TCTL, tctl);
5199
5200                        /* Perform any post-link-up configuration before
5201                         * reporting link up.
5202                         */
5203                        if (phy->ops.cfg_on_link_up)
5204                                phy->ops.cfg_on_link_up(hw);
5205
5206                        netif_carrier_on(netdev);
5207
5208                        if (!test_bit(__E1000_DOWN, &adapter->state))
5209                                mod_timer(&adapter->phy_info_timer,
5210                                          round_jiffies(jiffies + 2 * HZ));
5211                }
5212        } else {
5213                if (netif_carrier_ok(netdev)) {
5214                        adapter->link_speed = 0;
5215                        adapter->link_duplex = 0;
5216                        /* Link status message must follow this format */
5217                        pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5218                        netif_carrier_off(netdev);
5219                        if (!test_bit(__E1000_DOWN, &adapter->state))
5220                                mod_timer(&adapter->phy_info_timer,
5221                                          round_jiffies(jiffies + 2 * HZ));
5222
5223                        /* 8000ES2LAN requires a Rx packet buffer work-around
5224                         * on link down event; reset the controller to flush
5225                         * the Rx packet buffer.
5226                         */
5227                        if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5228                                adapter->flags |= FLAG_RESTART_NOW;
5229                        else
5230                                pm_schedule_suspend(netdev->dev.parent,
5231                                                    LINK_TIMEOUT);
5232                }
5233        }
5234
5235link_up:
5236        spin_lock(&adapter->stats64_lock);
5237        e1000e_update_stats(adapter);
5238
5239        mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5240        adapter->tpt_old = adapter->stats.tpt;
5241        mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5242        adapter->colc_old = adapter->stats.colc;
5243
5244        adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5245        adapter->gorc_old = adapter->stats.gorc;
5246        adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5247        adapter->gotc_old = adapter->stats.gotc;
5248        spin_unlock(&adapter->stats64_lock);
5249
5250        /* If the link is lost the controller stops DMA, but
5251         * if there is queued Tx work it cannot be done.  So
5252         * reset the controller to flush the Tx packet buffers.
5253         */
5254        if (!netif_carrier_ok(netdev) &&
5255            (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5256                adapter->flags |= FLAG_RESTART_NOW;
5257
5258        /* If reset is necessary, do it outside of interrupt context. */
5259        if (adapter->flags & FLAG_RESTART_NOW) {
5260                schedule_work(&adapter->reset_task);
5261                /* return immediately since reset is imminent */
5262                return;
5263        }
5264
5265        e1000e_update_adaptive(&adapter->hw);
5266
5267        /* Simple mode for Interrupt Throttle Rate (ITR) */
5268        if (adapter->itr_setting == 4) {
5269                /* Symmetric Tx/Rx gets a reduced ITR=2000;
5270                 * Total asymmetrical Tx or Rx gets ITR=8000;
5271                 * everyone else is between 2000-8000.
5272                 */
5273                u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5274                u32 dif = (adapter->gotc > adapter->gorc ?
5275                           adapter->gotc - adapter->gorc :
5276                           adapter->gorc - adapter->gotc) / 10000;
5277                u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5278
5279                e1000e_write_itr(adapter, itr);
5280        }
5281
5282        /* Cause software interrupt to ensure Rx ring is cleaned */
5283        if (adapter->msix_entries)
5284                ew32(ICS, adapter->rx_ring->ims_val);
5285        else
5286                ew32(ICS, E1000_ICS_RXDMT0);
5287
5288        /* flush pending descriptors to memory before detecting Tx hang */
5289        e1000e_flush_descriptors(adapter);
5290
5291        /* Force detection of hung controller every watchdog period */
5292        adapter->detect_tx_hung = true;
5293
5294        /* With 82571 controllers, LAA may be overwritten due to controller
5295         * reset from the other port. Set the appropriate LAA in RAR[0]
5296         */
5297        if (e1000e_get_laa_state_82571(hw))
5298                hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5299
5300        if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5301                e1000e_check_82574_phy_workaround(adapter);
5302
5303        /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5304        if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5305                if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5306                    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5307                        er32(RXSTMPH);
5308                        adapter->rx_hwtstamp_cleared++;
5309                } else {
5310                        adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5311                }
5312        }
5313
5314        /* Reset the timer */
5315        if (!test_bit(__E1000_DOWN, &adapter->state))
5316                mod_timer(&adapter->watchdog_timer,
5317                          round_jiffies(jiffies + 2 * HZ));
5318}
5319
5320#define E1000_TX_FLAGS_CSUM             0x00000001
5321#define E1000_TX_FLAGS_VLAN             0x00000002
5322#define E1000_TX_FLAGS_TSO              0x00000004
5323#define E1000_TX_FLAGS_IPV4             0x00000008
5324#define E1000_TX_FLAGS_NO_FCS           0x00000010
5325#define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5326#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5327#define E1000_TX_FLAGS_VLAN_SHIFT       16
5328
5329static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5330                     __be16 protocol)
5331{
5332        struct e1000_context_desc *context_desc;
5333        struct e1000_buffer *buffer_info;
5334        unsigned int i;
5335        u32 cmd_length = 0;
5336        u16 ipcse = 0, mss;
5337        u8 ipcss, ipcso, tucss, tucso, hdr_len;
5338        int err;
5339
5340        if (!skb_is_gso(skb))
5341                return 0;
5342
5343        err = skb_cow_head(skb, 0);
5344        if (err < 0)
5345                return err;
5346
5347        hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5348        mss = skb_shinfo(skb)->gso_size;
5349        if (protocol == htons(ETH_P_IP)) {
5350                struct iphdr *iph = ip_hdr(skb);
5351                iph->tot_len = 0;
5352                iph->check = 0;
5353                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5354                                                         0, IPPROTO_TCP, 0);
5355                cmd_length = E1000_TXD_CMD_IP;
5356                ipcse = skb_transport_offset(skb) - 1;
5357        } else if (skb_is_gso_v6(skb)) {
5358                ipv6_hdr(skb)->payload_len = 0;
5359                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5360                                                       &ipv6_hdr(skb)->daddr,
5361                                                       0, IPPROTO_TCP, 0);
5362                ipcse = 0;
5363        }
5364        ipcss = skb_network_offset(skb);
5365        ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5366        tucss = skb_transport_offset(skb);
5367        tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5368
5369        cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5370                       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5371
5372        i = tx_ring->next_to_use;
5373        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5374        buffer_info = &tx_ring->buffer_info[i];
5375
5376        context_desc->lower_setup.ip_fields.ipcss = ipcss;
5377        context_desc->lower_setup.ip_fields.ipcso = ipcso;
5378        context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5379        context_desc->upper_setup.tcp_fields.tucss = tucss;
5380        context_desc->upper_setup.tcp_fields.tucso = tucso;
5381        context_desc->upper_setup.tcp_fields.tucse = 0;
5382        context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5383        context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5384        context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5385
5386        buffer_info->time_stamp = jiffies;
5387        buffer_info->next_to_watch = i;
5388
5389        i++;
5390        if (i == tx_ring->count)
5391                i = 0;
5392        tx_ring->next_to_use = i;
5393
5394        return 1;
5395}
5396
5397static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5398                          __be16 protocol)
5399{
5400        struct e1000_adapter *adapter = tx_ring->adapter;
5401        struct e1000_context_desc *context_desc;
5402        struct e1000_buffer *buffer_info;
5403        unsigned int i;
5404        u8 css;
5405        u32 cmd_len = E1000_TXD_CMD_DEXT;
5406
5407        if (skb->ip_summed != CHECKSUM_PARTIAL)
5408                return false;
5409
5410        switch (protocol) {
5411        case cpu_to_be16(ETH_P_IP):
5412                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5413                        cmd_len |= E1000_TXD_CMD_TCP;
5414                break;
5415        case cpu_to_be16(ETH_P_IPV6):
5416                /* XXX not handling all IPV6 headers */
5417                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5418                        cmd_len |= E1000_TXD_CMD_TCP;
5419                break;
5420        default:
5421                if (unlikely(net_ratelimit()))
5422                        e_warn("checksum_partial proto=%x!\n",
5423                               be16_to_cpu(protocol));
5424                break;
5425        }
5426
5427        css = skb_checksum_start_offset(skb);
5428
5429        i = tx_ring->next_to_use;
5430        buffer_info = &tx_ring->buffer_info[i];
5431        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5432
5433        context_desc->lower_setup.ip_config = 0;
5434        context_desc->upper_setup.tcp_fields.tucss = css;
5435        context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5436        context_desc->upper_setup.tcp_fields.tucse = 0;
5437        context_desc->tcp_seg_setup.data = 0;
5438        context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5439
5440        buffer_info->time_stamp = jiffies;
5441        buffer_info->next_to_watch = i;
5442
5443        i++;
5444        if (i == tx_ring->count)
5445                i = 0;
5446        tx_ring->next_to_use = i;
5447
5448        return true;
5449}
5450
5451static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5452                        unsigned int first, unsigned int max_per_txd,
5453                        unsigned int nr_frags)
5454{
5455        struct e1000_adapter *adapter = tx_ring->adapter;
5456        struct pci_dev *pdev = adapter->pdev;
5457        struct e1000_buffer *buffer_info;
5458        unsigned int len = skb_headlen(skb);
5459        unsigned int offset = 0, size, count = 0, i;
5460        unsigned int f, bytecount, segs;
5461
5462        i = tx_ring->next_to_use;
5463
5464        while (len) {
5465                buffer_info = &tx_ring->buffer_info[i];
5466                size = min(len, max_per_txd);
5467
5468                buffer_info->length = size;
5469                buffer_info->time_stamp = jiffies;
5470                buffer_info->next_to_watch = i;
5471                buffer_info->dma = dma_map_single(&pdev->dev,
5472                                                  skb->data + offset,
5473                                                  size, DMA_TO_DEVICE);
5474                buffer_info->mapped_as_page = false;
5475                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5476                        goto dma_error;
5477
5478                len -= size;
5479                offset += size;
5480                count++;
5481
5482                if (len) {
5483                        i++;
5484                        if (i == tx_ring->count)
5485                                i = 0;
5486                }
5487        }
5488
5489        for (f = 0; f < nr_frags; f++) {
5490                const struct skb_frag_struct *frag;
5491
5492                frag = &skb_shinfo(skb)->frags[f];
5493                len = skb_frag_size(frag);
5494                offset = 0;
5495
5496                while (len) {
5497                        i++;
5498                        if (i == tx_ring->count)
5499                                i = 0;
5500
5501                        buffer_info = &tx_ring->buffer_info[i];
5502                        size = min(len, max_per_txd);
5503
5504                        buffer_info->length = size;
5505                        buffer_info->time_stamp = jiffies;
5506                        buffer_info->next_to_watch = i;
5507                        buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5508                                                            offset, size,
5509                                                            DMA_TO_DEVICE);
5510                        buffer_info->mapped_as_page = true;
5511                        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5512                                goto dma_error;
5513
5514                        len -= size;
5515                        offset += size;
5516                        count++;
5517                }
5518        }
5519
5520        segs = skb_shinfo(skb)->gso_segs ? : 1;
5521        /* multiply data chunks by size of headers */
5522        bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5523
5524        tx_ring->buffer_info[i].skb = skb;
5525        tx_ring->buffer_info[i].segs = segs;
5526        tx_ring->buffer_info[i].bytecount = bytecount;
5527        tx_ring->buffer_info[first].next_to_watch = i;
5528
5529        return count;
5530
5531dma_error:
5532        dev_err(&pdev->dev, "Tx DMA map failed\n");
5533        buffer_info->dma = 0;
5534        if (count)
5535                count--;
5536
5537        while (count--) {
5538                if (i == 0)
5539                        i += tx_ring->count;
5540                i--;
5541                buffer_info = &tx_ring->buffer_info[i];
5542                e1000_put_txbuf(tx_ring, buffer_info);
5543        }
5544
5545        return 0;
5546}
5547
5548static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5549{
5550        struct e1000_adapter *adapter = tx_ring->adapter;
5551        struct e1000_tx_desc *tx_desc = NULL;
5552        struct e1000_buffer *buffer_info;
5553        u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5554        unsigned int i;
5555
5556        if (tx_flags & E1000_TX_FLAGS_TSO) {
5557                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5558                    E1000_TXD_CMD_TSE;
5559                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5560
5561                if (tx_flags & E1000_TX_FLAGS_IPV4)
5562                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5563        }
5564
5565        if (tx_flags & E1000_TX_FLAGS_CSUM) {
5566                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5567                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5568        }
5569
5570        if (tx_flags & E1000_TX_FLAGS_VLAN) {
5571                txd_lower |= E1000_TXD_CMD_VLE;
5572                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5573        }
5574
5575        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5576                txd_lower &= ~(E1000_TXD_CMD_IFCS);
5577
5578        if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5579                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5580                txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5581        }
5582
5583        i = tx_ring->next_to_use;
5584
5585        do {
5586                buffer_info = &tx_ring->buffer_info[i];
5587                tx_desc = E1000_TX_DESC(*tx_ring, i);
5588                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5589                tx_desc->lower.data = cpu_to_le32(txd_lower |
5590                                                  buffer_info->length);
5591                tx_desc->upper.data = cpu_to_le32(txd_upper);
5592
5593                i++;
5594                if (i == tx_ring->count)
5595                        i = 0;
5596        } while (--count > 0);
5597
5598        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5599
5600        /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5601        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5602                tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5603
5604        /* Force memory writes to complete before letting h/w
5605         * know there are new descriptors to fetch.  (Only
5606         * applicable for weak-ordered memory model archs,
5607         * such as IA-64).
5608         */
5609        wmb();
5610
5611        tx_ring->next_to_use = i;
5612}
5613
5614#define MINIMUM_DHCP_PACKET_SIZE 282
5615static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5616                                    struct sk_buff *skb)
5617{
5618        struct e1000_hw *hw = &adapter->hw;
5619        u16 length, offset;
5620
5621        if (skb_vlan_tag_present(skb) &&
5622            !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5623              (adapter->hw.mng_cookie.status &
5624               E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5625                return 0;
5626
5627        if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5628                return 0;
5629
5630        if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5631                return 0;
5632
5633        {
5634                const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5635                struct udphdr *udp;
5636
5637                if (ip->protocol != IPPROTO_UDP)
5638                        return 0;
5639
5640                udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5641                if (ntohs(udp->dest) != 67)
5642                        return 0;
5643
5644                offset = (u8 *)udp + 8 - skb->data;
5645                length = skb->len - offset;
5646                return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5647        }
5648
5649        return 0;
5650}
5651
5652static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5653{
5654        struct e1000_adapter *adapter = tx_ring->adapter;
5655
5656        netif_stop_queue(adapter->netdev);
5657        /* Herbert's original patch had:
5658         *  smp_mb__after_netif_stop_queue();
5659         * but since that doesn't exist yet, just open code it.
5660         */
5661        smp_mb();
5662
5663        /* We need to check again in a case another CPU has just
5664         * made room available.
5665         */
5666        if (e1000_desc_unused(tx_ring) < size)
5667                return -EBUSY;
5668
5669        /* A reprieve! */
5670        netif_start_queue(adapter->netdev);
5671        ++adapter->restart_queue;
5672        return 0;
5673}
5674
5675static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5676{
5677        BUG_ON(size > tx_ring->count);
5678
5679        if (e1000_desc_unused(tx_ring) >= size)
5680                return 0;
5681        return __e1000_maybe_stop_tx(tx_ring, size);
5682}
5683
5684static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5685                                    struct net_device *netdev)
5686{
5687        struct e1000_adapter *adapter = netdev_priv(netdev);
5688        struct e1000_ring *tx_ring = adapter->tx_ring;
5689        unsigned int first;
5690        unsigned int tx_flags = 0;
5691        unsigned int len = skb_headlen(skb);
5692        unsigned int nr_frags;
5693        unsigned int mss;
5694        int count = 0;
5695        int tso;
5696        unsigned int f;
5697        __be16 protocol = vlan_get_protocol(skb);
5698
5699        if (test_bit(__E1000_DOWN, &adapter->state)) {
5700                dev_kfree_skb_any(skb);
5701                return NETDEV_TX_OK;
5702        }
5703
5704        if (skb->len <= 0) {
5705                dev_kfree_skb_any(skb);
5706                return NETDEV_TX_OK;
5707        }
5708
5709        /* The minimum packet size with TCTL.PSP set is 17 bytes so
5710         * pad skb in order to meet this minimum size requirement
5711         */
5712        if (skb_put_padto(skb, 17))
5713                return NETDEV_TX_OK;
5714
5715        mss = skb_shinfo(skb)->gso_size;
5716        if (mss) {
5717                u8 hdr_len;
5718
5719                /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5720                 * points to just header, pull a few bytes of payload from
5721                 * frags into skb->data
5722                 */
5723                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5724                /* we do this workaround for ES2LAN, but it is un-necessary,
5725                 * avoiding it could save a lot of cycles
5726                 */
5727                if (skb->data_len && (hdr_len == len)) {
5728                        unsigned int pull_size;
5729
5730                        pull_size = min_t(unsigned int, 4, skb->data_len);
5731                        if (!__pskb_pull_tail(skb, pull_size)) {
5732                                e_err("__pskb_pull_tail failed.\n");
5733                                dev_kfree_skb_any(skb);
5734                                return NETDEV_TX_OK;
5735                        }
5736                        len = skb_headlen(skb);
5737                }
5738        }
5739
5740        /* reserve a descriptor for the offload context */
5741        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5742                count++;
5743        count++;
5744
5745        count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5746
5747        nr_frags = skb_shinfo(skb)->nr_frags;
5748        for (f = 0; f < nr_frags; f++)
5749                count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5750                                      adapter->tx_fifo_limit);
5751
5752        if (adapter->hw.mac.tx_pkt_filtering)
5753                e1000_transfer_dhcp_info(adapter, skb);
5754
5755        /* need: count + 2 desc gap to keep tail from touching
5756         * head, otherwise try next time
5757         */
5758        if (e1000_maybe_stop_tx(tx_ring, count + 2))
5759                return NETDEV_TX_BUSY;
5760
5761        if (skb_vlan_tag_present(skb)) {
5762                tx_flags |= E1000_TX_FLAGS_VLAN;
5763                tx_flags |= (skb_vlan_tag_get(skb) <<
5764                             E1000_TX_FLAGS_VLAN_SHIFT);
5765        }
5766
5767        first = tx_ring->next_to_use;
5768
5769        tso = e1000_tso(tx_ring, skb, protocol);
5770        if (tso < 0) {
5771                dev_kfree_skb_any(skb);
5772                return NETDEV_TX_OK;
5773        }
5774
5775        if (tso)
5776                tx_flags |= E1000_TX_FLAGS_TSO;
5777        else if (e1000_tx_csum(tx_ring, skb, protocol))
5778                tx_flags |= E1000_TX_FLAGS_CSUM;
5779
5780        /* Old method was to assume IPv4 packet by default if TSO was enabled.
5781         * 82571 hardware supports TSO capabilities for IPv6 as well...
5782         * no longer assume, we must.
5783         */
5784        if (protocol == htons(ETH_P_IP))
5785                tx_flags |= E1000_TX_FLAGS_IPV4;
5786
5787        if (unlikely(skb->no_fcs))
5788                tx_flags |= E1000_TX_FLAGS_NO_FCS;
5789
5790        /* if count is 0 then mapping error has occurred */
5791        count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5792                             nr_frags);
5793        if (count) {
5794                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5795                    (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5796                    !adapter->tx_hwtstamp_skb) {
5797                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5798                        tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5799                        adapter->tx_hwtstamp_skb = skb_get(skb);
5800                        adapter->tx_hwtstamp_start = jiffies;
5801                        schedule_work(&adapter->tx_hwtstamp_work);
5802                } else {
5803                        skb_tx_timestamp(skb);
5804                }
5805
5806                netdev_sent_queue(netdev, skb->len);
5807                e1000_tx_queue(tx_ring, tx_flags, count);
5808                /* Make sure there is space in the ring for the next send. */
5809                e1000_maybe_stop_tx(tx_ring,
5810                                    (MAX_SKB_FRAGS *
5811                                     DIV_ROUND_UP(PAGE_SIZE,
5812                                                  adapter->tx_fifo_limit) + 2));
5813
5814                if (!skb->xmit_more ||
5815                    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5816                        if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5817                                e1000e_update_tdt_wa(tx_ring,
5818                                                     tx_ring->next_to_use);
5819                        else
5820                                writel(tx_ring->next_to_use, tx_ring->tail);
5821
5822                        /* we need this if more than one processor can write
5823                         * to our tail at a time, it synchronizes IO on
5824                         *IA64/Altix systems
5825                         */
5826                        mmiowb();
5827                }
5828        } else {
5829                dev_kfree_skb_any(skb);
5830                tx_ring->buffer_info[first].time_stamp = 0;
5831                tx_ring->next_to_use = first;
5832        }
5833
5834        return NETDEV_TX_OK;
5835}
5836
5837/**
5838 * e1000_tx_timeout - Respond to a Tx Hang
5839 * @netdev: network interface device structure
5840 **/
5841static void e1000_tx_timeout(struct net_device *netdev)
5842{
5843        struct e1000_adapter *adapter = netdev_priv(netdev);
5844
5845        /* Do the reset outside of interrupt context */
5846        adapter->tx_timeout_count++;
5847        schedule_work(&adapter->reset_task);
5848}
5849
5850static void e1000_reset_task(struct work_struct *work)
5851{
5852        struct e1000_adapter *adapter;
5853        adapter = container_of(work, struct e1000_adapter, reset_task);
5854
5855        /* don't run the task if already down */
5856        if (test_bit(__E1000_DOWN, &adapter->state))
5857                return;
5858
5859        if (!(adapter->flags & FLAG_RESTART_NOW)) {
5860                e1000e_dump(adapter);
5861                e_err("Reset adapter unexpectedly\n");
5862        }
5863        e1000e_reinit_locked(adapter);
5864}
5865
5866/**
5867 * e1000_get_stats64 - Get System Network Statistics
5868 * @netdev: network interface device structure
5869 * @stats: rtnl_link_stats64 pointer
5870 *
5871 * Returns the address of the device statistics structure.
5872 **/
5873struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5874                                             struct rtnl_link_stats64 *stats)
5875{
5876        struct e1000_adapter *adapter = netdev_priv(netdev);
5877
5878        memset(stats, 0, sizeof(struct rtnl_link_stats64));
5879        spin_lock(&adapter->stats64_lock);
5880        e1000e_update_stats(adapter);
5881        /* Fill out the OS statistics structure */
5882        stats->rx_bytes = adapter->stats.gorc;
5883        stats->rx_packets = adapter->stats.gprc;
5884        stats->tx_bytes = adapter->stats.gotc;
5885        stats->tx_packets = adapter->stats.gptc;
5886        stats->multicast = adapter->stats.mprc;
5887        stats->collisions = adapter->stats.colc;
5888
5889        /* Rx Errors */
5890
5891        /* RLEC on some newer hardware can be incorrect so build
5892         * our own version based on RUC and ROC
5893         */
5894        stats->rx_errors = adapter->stats.rxerrc +
5895            adapter->stats.crcerrs + adapter->stats.algnerrc +
5896            adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5897        stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5898        stats->rx_crc_errors = adapter->stats.crcerrs;
5899        stats->rx_frame_errors = adapter->stats.algnerrc;
5900        stats->rx_missed_errors = adapter->stats.mpc;
5901
5902        /* Tx Errors */
5903        stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5904        stats->tx_aborted_errors = adapter->stats.ecol;
5905        stats->tx_window_errors = adapter->stats.latecol;
5906        stats->tx_carrier_errors = adapter->stats.tncrs;
5907
5908        /* Tx Dropped needs to be maintained elsewhere */
5909
5910        spin_unlock(&adapter->stats64_lock);
5911        return stats;
5912}
5913
5914/**
5915 * e1000_change_mtu - Change the Maximum Transfer Unit
5916 * @netdev: network interface device structure
5917 * @new_mtu: new value for maximum frame size
5918 *
5919 * Returns 0 on success, negative on failure
5920 **/
5921static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5922{
5923        struct e1000_adapter *adapter = netdev_priv(netdev);
5924        int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5925
5926        /* Jumbo frame support */
5927        if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5928            !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5929                e_err("Jumbo Frames not supported.\n");
5930                return -EINVAL;
5931        }
5932
5933        /* Supported frame sizes */
5934        if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5935            (max_frame > adapter->max_hw_frame_size)) {
5936                e_err("Unsupported MTU setting\n");
5937                return -EINVAL;
5938        }
5939
5940        /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5941        if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5942            !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5943            (new_mtu > ETH_DATA_LEN)) {
5944                e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5945                return -EINVAL;
5946        }
5947
5948        while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5949                usleep_range(1000, 2000);
5950        /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5951        adapter->max_frame_size = max_frame;
5952        e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5953        netdev->mtu = new_mtu;
5954
5955        pm_runtime_get_sync(netdev->dev.parent);
5956
5957        if (netif_running(netdev))
5958                e1000e_down(adapter, true);
5959
5960        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5961         * means we reserve 2 more, this pushes us to allocate from the next
5962         * larger slab size.
5963         * i.e. RXBUFFER_2048 --> size-4096 slab
5964         * However with the new *_jumbo_rx* routines, jumbo receives will use
5965         * fragmented skbs
5966         */
5967
5968        if (max_frame <= 2048)
5969                adapter->rx_buffer_len = 2048;
5970        else
5971                adapter->rx_buffer_len = 4096;
5972
5973        /* adjust allocation if LPE protects us, and we aren't using SBP */
5974        if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5975                adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5976
5977        if (netif_running(netdev))
5978                e1000e_up(adapter);
5979        else
5980                e1000e_reset(adapter);
5981
5982        pm_runtime_put_sync(netdev->dev.parent);
5983
5984        clear_bit(__E1000_RESETTING, &adapter->state);
5985
5986        return 0;
5987}
5988
5989static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5990                           int cmd)
5991{
5992        struct e1000_adapter *adapter = netdev_priv(netdev);
5993        struct mii_ioctl_data *data = if_mii(ifr);
5994
5995        if (adapter->hw.phy.media_type != e1000_media_type_copper)
5996                return -EOPNOTSUPP;
5997
5998        switch (cmd) {
5999        case SIOCGMIIPHY:
6000                data->phy_id = adapter->hw.phy.addr;
6001                break;
6002        case SIOCGMIIREG:
6003                e1000_phy_read_status(adapter);
6004
6005                switch (data->reg_num & 0x1F) {
6006                case MII_BMCR:
6007                        data->val_out = adapter->phy_regs.bmcr;
6008                        break;
6009                case MII_BMSR:
6010                        data->val_out = adapter->phy_regs.bmsr;
6011                        break;
6012                case MII_PHYSID1:
6013                        data->val_out = (adapter->hw.phy.id >> 16);
6014                        break;
6015                case MII_PHYSID2:
6016                        data->val_out = (adapter->hw.phy.id & 0xFFFF);
6017                        break;
6018                case MII_ADVERTISE:
6019                        data->val_out = adapter->phy_regs.advertise;
6020                        break;
6021                case MII_LPA:
6022                        data->val_out = adapter->phy_regs.lpa;
6023                        break;
6024                case MII_EXPANSION:
6025                        data->val_out = adapter->phy_regs.expansion;
6026                        break;
6027                case MII_CTRL1000:
6028                        data->val_out = adapter->phy_regs.ctrl1000;
6029                        break;
6030                case MII_STAT1000:
6031                        data->val_out = adapter->phy_regs.stat1000;
6032                        break;
6033                case MII_ESTATUS:
6034                        data->val_out = adapter->phy_regs.estatus;
6035                        break;
6036                default:
6037                        return -EIO;
6038                }
6039                break;
6040        case SIOCSMIIREG:
6041        default:
6042                return -EOPNOTSUPP;
6043        }
6044        return 0;
6045}
6046
6047/**
6048 * e1000e_hwtstamp_ioctl - control hardware time stamping
6049 * @netdev: network interface device structure
6050 * @ifreq: interface request
6051 *
6052 * Outgoing time stamping can be enabled and disabled. Play nice and
6053 * disable it when requested, although it shouldn't cause any overhead
6054 * when no packet needs it. At most one packet in the queue may be
6055 * marked for time stamping, otherwise it would be impossible to tell
6056 * for sure to which packet the hardware time stamp belongs.
6057 *
6058 * Incoming time stamping has to be configured via the hardware filters.
6059 * Not all combinations are supported, in particular event type has to be
6060 * specified. Matching the kind of event packet is not supported, with the
6061 * exception of "all V2 events regardless of level 2 or 4".
6062 **/
6063static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6064{
6065        struct e1000_adapter *adapter = netdev_priv(netdev);
6066        struct hwtstamp_config config;
6067        int ret_val;
6068
6069        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6070                return -EFAULT;
6071
6072        ret_val = e1000e_config_hwtstamp(adapter, &config);
6073        if (ret_val)
6074                return ret_val;
6075
6076        switch (config.rx_filter) {
6077        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6078        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6079        case HWTSTAMP_FILTER_PTP_V2_SYNC:
6080        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6081        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6082        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6083                /* With V2 type filters which specify a Sync or Delay Request,
6084                 * Path Delay Request/Response messages are also time stamped
6085                 * by hardware so notify the caller the requested packets plus
6086                 * some others are time stamped.
6087                 */
6088                config.rx_filter = HWTSTAMP_FILTER_SOME;
6089                break;
6090        default:
6091                break;
6092        }
6093
6094        return copy_to_user(ifr->ifr_data, &config,
6095                            sizeof(config)) ? -EFAULT : 0;
6096}
6097
6098static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6099{
6100        struct e1000_adapter *adapter = netdev_priv(netdev);
6101
6102        return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6103                            sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6104}
6105
6106static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6107{
6108        switch (cmd) {
6109        case SIOCGMIIPHY:
6110        case SIOCGMIIREG:
6111        case SIOCSMIIREG:
6112                return e1000_mii_ioctl(netdev, ifr, cmd);
6113        case SIOCSHWTSTAMP:
6114                return e1000e_hwtstamp_set(netdev, ifr);
6115        case SIOCGHWTSTAMP:
6116                return e1000e_hwtstamp_get(netdev, ifr);
6117        default:
6118                return -EOPNOTSUPP;
6119        }
6120}
6121
6122static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6123{
6124        struct e1000_hw *hw = &adapter->hw;
6125        u32 i, mac_reg, wuc;
6126        u16 phy_reg, wuc_enable;
6127        int retval;
6128
6129        /* copy MAC RARs to PHY RARs */
6130        e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6131
6132        retval = hw->phy.ops.acquire(hw);
6133        if (retval) {
6134                e_err("Could not acquire PHY\n");
6135                return retval;
6136        }
6137
6138        /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6139        retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6140        if (retval)
6141                goto release;
6142
6143        /* copy MAC MTA to PHY MTA - only needed for pchlan */
6144        for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6145                mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6146                hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6147                                           (u16)(mac_reg & 0xFFFF));
6148                hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6149                                           (u16)((mac_reg >> 16) & 0xFFFF));
6150        }
6151
6152        /* configure PHY Rx Control register */
6153        hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6154        mac_reg = er32(RCTL);
6155        if (mac_reg & E1000_RCTL_UPE)
6156                phy_reg |= BM_RCTL_UPE;
6157        if (mac_reg & E1000_RCTL_MPE)
6158                phy_reg |= BM_RCTL_MPE;
6159        phy_reg &= ~(BM_RCTL_MO_MASK);
6160        if (mac_reg & E1000_RCTL_MO_3)
6161                phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6162                            << BM_RCTL_MO_SHIFT);
6163        if (mac_reg & E1000_RCTL_BAM)
6164                phy_reg |= BM_RCTL_BAM;
6165        if (mac_reg & E1000_RCTL_PMCF)
6166                phy_reg |= BM_RCTL_PMCF;
6167        mac_reg = er32(CTRL);
6168        if (mac_reg & E1000_CTRL_RFCE)
6169                phy_reg |= BM_RCTL_RFCE;
6170        hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6171
6172        wuc = E1000_WUC_PME_EN;
6173        if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6174                wuc |= E1000_WUC_APME;
6175
6176        /* enable PHY wakeup in MAC register */
6177        ew32(WUFC, wufc);
6178        ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6179                   E1000_WUC_PME_STATUS | wuc));
6180
6181        /* configure and enable PHY wakeup in PHY registers */
6182        hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6183        hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6184
6185        /* activate PHY wakeup */
6186        wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6187        retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6188        if (retval)
6189                e_err("Could not set PHY Host Wakeup bit\n");
6190release:
6191        hw->phy.ops.release(hw);
6192
6193        return retval;
6194}
6195
6196static void e1000e_flush_lpic(struct pci_dev *pdev)
6197{
6198        struct net_device *netdev = pci_get_drvdata(pdev);
6199        struct e1000_adapter *adapter = netdev_priv(netdev);
6200        struct e1000_hw *hw = &adapter->hw;
6201        u32 ret_val;
6202
6203        pm_runtime_get_sync(netdev->dev.parent);
6204
6205        ret_val = hw->phy.ops.acquire(hw);
6206        if (ret_val)
6207                goto fl_out;
6208
6209        pr_info("EEE TX LPI TIMER: %08X\n",
6210                er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6211
6212        hw->phy.ops.release(hw);
6213
6214fl_out:
6215        pm_runtime_put_sync(netdev->dev.parent);
6216}
6217
6218static int e1000e_pm_freeze(struct device *dev)
6219{
6220        struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6221        struct e1000_adapter *adapter = netdev_priv(netdev);
6222
6223        netif_device_detach(netdev);
6224
6225        if (netif_running(netdev)) {
6226                int count = E1000_CHECK_RESET_COUNT;
6227
6228                while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6229                        usleep_range(10000, 20000);
6230
6231                WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6232
6233                /* Quiesce the device without resetting the hardware */
6234                e1000e_down(adapter, false);
6235                e1000_free_irq(adapter);
6236        }
6237        e1000e_reset_interrupt_capability(adapter);
6238
6239        /* Allow time for pending master requests to run */
6240        e1000e_disable_pcie_master(&adapter->hw);
6241
6242        return 0;
6243}
6244
6245static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6246{
6247        struct net_device *netdev = pci_get_drvdata(pdev);
6248        struct e1000_adapter *adapter = netdev_priv(netdev);
6249        struct e1000_hw *hw = &adapter->hw;
6250        u32 ctrl, ctrl_ext, rctl, status;
6251        /* Runtime suspend should only enable wakeup for link changes */
6252        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6253        int retval = 0;
6254
6255        status = er32(STATUS);
6256        if (status & E1000_STATUS_LU)
6257                wufc &= ~E1000_WUFC_LNKC;
6258
6259        if (wufc) {
6260                e1000_setup_rctl(adapter);
6261                e1000e_set_rx_mode(netdev);
6262
6263                /* turn on all-multi mode if wake on multicast is enabled */
6264                if (wufc & E1000_WUFC_MC) {
6265                        rctl = er32(RCTL);
6266                        rctl |= E1000_RCTL_MPE;
6267                        ew32(RCTL, rctl);
6268                }
6269
6270                ctrl = er32(CTRL);
6271                ctrl |= E1000_CTRL_ADVD3WUC;
6272                if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6273                        ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6274                ew32(CTRL, ctrl);
6275
6276                if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6277                    adapter->hw.phy.media_type ==
6278                    e1000_media_type_internal_serdes) {
6279                        /* keep the laser running in D3 */
6280                        ctrl_ext = er32(CTRL_EXT);
6281                        ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6282                        ew32(CTRL_EXT, ctrl_ext);
6283                }
6284
6285                if (!runtime)
6286                        e1000e_power_up_phy(adapter);
6287
6288                if (adapter->flags & FLAG_IS_ICH)
6289                        e1000_suspend_workarounds_ich8lan(&adapter->hw);
6290
6291                if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6292                        /* enable wakeup by the PHY */
6293                        retval = e1000_init_phy_wakeup(adapter, wufc);
6294                        if (retval)
6295                                return retval;
6296                } else {
6297                        /* enable wakeup by the MAC */
6298                        ew32(WUFC, wufc);
6299                        ew32(WUC, E1000_WUC_PME_EN);
6300                }
6301        } else {
6302                ew32(WUC, 0);
6303                ew32(WUFC, 0);
6304
6305                e1000_power_down_phy(adapter);
6306        }
6307
6308        if (adapter->hw.phy.type == e1000_phy_igp_3) {
6309                e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6310        } else if ((hw->mac.type == e1000_pch_lpt) ||
6311                   (hw->mac.type == e1000_pch_spt)) {
6312                if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6313                        /* ULP does not support wake from unicast, multicast
6314                         * or broadcast.
6315                         */
6316                        retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6317
6318                if (retval)
6319                        return retval;
6320        }
6321
6322        /* Ensure that the appropriate bits are set in LPI_CTRL
6323         * for EEE in Sx
6324         */
6325        if ((hw->phy.type >= e1000_phy_i217) &&
6326            adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6327                u16 lpi_ctrl = 0;
6328
6329                retval = hw->phy.ops.acquire(hw);
6330                if (!retval) {
6331                        retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6332                                                 &lpi_ctrl);
6333                        if (!retval) {
6334                                if (adapter->eee_advert &
6335                                    hw->dev_spec.ich8lan.eee_lp_ability &
6336                                    I82579_EEE_100_SUPPORTED)
6337                                        lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6338                                if (adapter->eee_advert &
6339                                    hw->dev_spec.ich8lan.eee_lp_ability &
6340                                    I82579_EEE_1000_SUPPORTED)
6341                                        lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6342
6343                                retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6344                                                         lpi_ctrl);
6345                        }
6346                }
6347                hw->phy.ops.release(hw);
6348        }
6349
6350        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6351         * would have already happened in close and is redundant.
6352         */
6353        e1000e_release_hw_control(adapter);
6354
6355        pci_clear_master(pdev);
6356
6357        /* The pci-e switch on some quad port adapters will report a
6358         * correctable error when the MAC transitions from D0 to D3.  To
6359         * prevent this we need to mask off the correctable errors on the
6360         * downstream port of the pci-e switch.
6361         *
6362         * We don't have the associated upstream bridge while assigning
6363         * the PCI device into guest. For example, the KVM on power is
6364         * one of the cases.
6365         */
6366        if (adapter->flags & FLAG_IS_QUAD_PORT) {
6367                struct pci_dev *us_dev = pdev->bus->self;
6368                u16 devctl;
6369
6370                if (!us_dev)
6371                        return 0;
6372
6373                pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6374                pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6375                                           (devctl & ~PCI_EXP_DEVCTL_CERE));
6376
6377                pci_save_state(pdev);
6378                pci_prepare_to_sleep(pdev);
6379
6380                pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6381        }
6382
6383        return 0;
6384}
6385
6386/**
6387 * __e1000e_disable_aspm - Disable ASPM states
6388 * @pdev: pointer to PCI device struct
6389 * @state: bit-mask of ASPM states to disable
6390 * @locked: indication if this context holds pci_bus_sem locked.
6391 *
6392 * Some devices *must* have certain ASPM states disabled per hardware errata.
6393 **/
6394static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6395{
6396        struct pci_dev *parent = pdev->bus->self;
6397        u16 aspm_dis_mask = 0;
6398        u16 pdev_aspmc, parent_aspmc;
6399
6400        switch (state) {
6401        case PCIE_LINK_STATE_L0S:
6402        case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6403                aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6404                /* fall-through - can't have L1 without L0s */
6405        case PCIE_LINK_STATE_L1:
6406                aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6407                break;
6408        default:
6409                return;
6410        }
6411
6412        pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6413        pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6414
6415        if (parent) {
6416                pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6417                                          &parent_aspmc);
6418                parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6419        }
6420
6421        /* Nothing to do if the ASPM states to be disabled already are */
6422        if (!(pdev_aspmc & aspm_dis_mask) &&
6423            (!parent || !(parent_aspmc & aspm_dis_mask)))
6424                return;
6425
6426        dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6427                 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6428                 "L0s" : "",
6429                 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6430                 "L1" : "");
6431
6432#ifdef CONFIG_PCIEASPM
6433        if (locked)
6434                pci_disable_link_state_locked(pdev, state);
6435        else
6436                pci_disable_link_state(pdev, state);
6437
6438        /* Double-check ASPM control.  If not disabled by the above, the
6439         * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6440         * not enabled); override by writing PCI config space directly.
6441         */
6442        pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6443        pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6444
6445        if (!(aspm_dis_mask & pdev_aspmc))
6446                return;
6447#endif
6448
6449        /* Both device and parent should have the same ASPM setting.
6450         * Disable ASPM in downstream component first and then upstream.
6451         */
6452        pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6453
6454        if (parent)
6455                pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6456                                           aspm_dis_mask);
6457}
6458
6459/**
6460 * e1000e_disable_aspm - Disable ASPM states.
6461 * @pdev: pointer to PCI device struct
6462 * @state: bit-mask of ASPM states to disable
6463 *
6464 * This function acquires the pci_bus_sem!
6465 * Some devices *must* have certain ASPM states disabled per hardware errata.
6466 **/
6467static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6468{
6469        __e1000e_disable_aspm(pdev, state, 0);
6470}
6471
6472/**
6473 * e1000e_disable_aspm_locked   Disable ASPM states.
6474 * @pdev: pointer to PCI device struct
6475 * @state: bit-mask of ASPM states to disable
6476 *
6477 * This function must be called with pci_bus_sem acquired!
6478 * Some devices *must* have certain ASPM states disabled per hardware errata.
6479 **/
6480static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6481{
6482        __e1000e_disable_aspm(pdev, state, 1);
6483}
6484
6485#ifdef CONFIG_PM
6486static int __e1000_resume(struct pci_dev *pdev)
6487{
6488        struct net_device *netdev = pci_get_drvdata(pdev);
6489        struct e1000_adapter *adapter = netdev_priv(netdev);
6490        struct e1000_hw *hw = &adapter->hw;
6491        u16 aspm_disable_flag = 0;
6492
6493        if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6494                aspm_disable_flag = PCIE_LINK_STATE_L0S;
6495        if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6496                aspm_disable_flag |= PCIE_LINK_STATE_L1;
6497        if (aspm_disable_flag)
6498                e1000e_disable_aspm(pdev, aspm_disable_flag);
6499
6500        pci_set_master(pdev);
6501
6502        if (hw->mac.type >= e1000_pch2lan)
6503                e1000_resume_workarounds_pchlan(&adapter->hw);
6504
6505        e1000e_power_up_phy(adapter);
6506
6507        /* report the system wakeup cause from S3/S4 */
6508        if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6509                u16 phy_data;
6510
6511                e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6512                if (phy_data) {
6513                        e_info("PHY Wakeup cause - %s\n",
6514                               phy_data & E1000_WUS_EX ? "Unicast Packet" :
6515                               phy_data & E1000_WUS_MC ? "Multicast Packet" :
6516                               phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6517                               phy_data & E1000_WUS_MAG ? "Magic Packet" :
6518                               phy_data & E1000_WUS_LNKC ?
6519                               "Link Status Change" : "other");
6520                }
6521                e1e_wphy(&adapter->hw, BM_WUS, ~0);
6522        } else {
6523                u32 wus = er32(WUS);
6524
6525                if (wus) {
6526                        e_info("MAC Wakeup cause - %s\n",
6527                               wus & E1000_WUS_EX ? "Unicast Packet" :
6528                               wus & E1000_WUS_MC ? "Multicast Packet" :
6529                               wus & E1000_WUS_BC ? "Broadcast Packet" :
6530                               wus & E1000_WUS_MAG ? "Magic Packet" :
6531                               wus & E1000_WUS_LNKC ? "Link Status Change" :
6532                               "other");
6533                }
6534                ew32(WUS, ~0);
6535        }
6536
6537        e1000e_reset(adapter);
6538
6539        e1000_init_manageability_pt(adapter);
6540
6541        /* If the controller has AMT, do not set DRV_LOAD until the interface
6542         * is up.  For all other cases, let the f/w know that the h/w is now
6543         * under the control of the driver.
6544         */
6545        if (!(adapter->flags & FLAG_HAS_AMT))
6546                e1000e_get_hw_control(adapter);
6547
6548        return 0;
6549}
6550
6551#ifdef CONFIG_PM_SLEEP
6552static int e1000e_pm_thaw(struct device *dev)
6553{
6554        struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6555        struct e1000_adapter *adapter = netdev_priv(netdev);
6556
6557        e1000e_set_interrupt_capability(adapter);
6558        if (netif_running(netdev)) {
6559                u32 err = e1000_request_irq(adapter);
6560
6561                if (err)
6562                        return err;
6563
6564                e1000e_up(adapter);
6565        }
6566
6567        netif_device_attach(netdev);
6568
6569        return 0;
6570}
6571
6572static int e1000e_pm_suspend(struct device *dev)
6573{
6574        struct pci_dev *pdev = to_pci_dev(dev);
6575
6576        e1000e_flush_lpic(pdev);
6577
6578        e1000e_pm_freeze(dev);
6579
6580        return __e1000_shutdown(pdev, false);
6581}
6582
6583static int e1000e_pm_resume(struct device *dev)
6584{
6585        struct pci_dev *pdev = to_pci_dev(dev);
6586        int rc;
6587
6588        rc = __e1000_resume(pdev);
6589        if (rc)
6590                return rc;
6591
6592        return e1000e_pm_thaw(dev);
6593}
6594#endif /* CONFIG_PM_SLEEP */
6595
6596static int e1000e_pm_runtime_idle(struct device *dev)
6597{
6598        struct pci_dev *pdev = to_pci_dev(dev);
6599        struct net_device *netdev = pci_get_drvdata(pdev);
6600        struct e1000_adapter *adapter = netdev_priv(netdev);
6601        u16 eee_lp;
6602
6603        eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6604
6605        if (!e1000e_has_link(adapter)) {
6606                adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6607                pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6608        }
6609
6610        return -EBUSY;
6611}
6612
6613static int e1000e_pm_runtime_resume(struct device *dev)
6614{
6615        struct pci_dev *pdev = to_pci_dev(dev);
6616        struct net_device *netdev = pci_get_drvdata(pdev);
6617        struct e1000_adapter *adapter = netdev_priv(netdev);
6618        int rc;
6619
6620        rc = __e1000_resume(pdev);
6621        if (rc)
6622                return rc;
6623
6624        if (netdev->flags & IFF_UP)
6625                e1000e_up(adapter);
6626
6627        return rc;
6628}
6629
6630static int e1000e_pm_runtime_suspend(struct device *dev)
6631{
6632        struct pci_dev *pdev = to_pci_dev(dev);
6633        struct net_device *netdev = pci_get_drvdata(pdev);
6634        struct e1000_adapter *adapter = netdev_priv(netdev);
6635
6636        if (netdev->flags & IFF_UP) {
6637                int count = E1000_CHECK_RESET_COUNT;
6638
6639                while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6640                        usleep_range(10000, 20000);
6641
6642                WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6643
6644                /* Down the device without resetting the hardware */
6645                e1000e_down(adapter, false);
6646        }
6647
6648        if (__e1000_shutdown(pdev, true)) {
6649                e1000e_pm_runtime_resume(dev);
6650                return -EBUSY;
6651        }
6652
6653        return 0;
6654}
6655#endif /* CONFIG_PM */
6656
6657static void e1000_shutdown(struct pci_dev *pdev)
6658{
6659        e1000e_flush_lpic(pdev);
6660
6661        e1000e_pm_freeze(&pdev->dev);
6662
6663        __e1000_shutdown(pdev, false);
6664}
6665
6666#ifdef CONFIG_NET_POLL_CONTROLLER
6667
6668static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6669{
6670        struct net_device *netdev = data;
6671        struct e1000_adapter *adapter = netdev_priv(netdev);
6672
6673        if (adapter->msix_entries) {
6674                int vector, msix_irq;
6675
6676                vector = 0;
6677                msix_irq = adapter->msix_entries[vector].vector;
6678                disable_irq(msix_irq);
6679                e1000_intr_msix_rx(msix_irq, netdev);
6680                enable_irq(msix_irq);
6681
6682                vector++;
6683                msix_irq = adapter->msix_entries[vector].vector;
6684                disable_irq(msix_irq);
6685                e1000_intr_msix_tx(msix_irq, netdev);
6686                enable_irq(msix_irq);
6687
6688                vector++;
6689                msix_irq = adapter->msix_entries[vector].vector;
6690                disable_irq(msix_irq);
6691                e1000_msix_other(msix_irq, netdev);
6692                enable_irq(msix_irq);
6693        }
6694
6695        return IRQ_HANDLED;
6696}
6697
6698/**
6699 * e1000_netpoll
6700 * @netdev: network interface device structure
6701 *
6702 * Polling 'interrupt' - used by things like netconsole to send skbs
6703 * without having to re-enable interrupts. It's not called while
6704 * the interrupt routine is executing.
6705 */
6706static void e1000_netpoll(struct net_device *netdev)
6707{
6708        struct e1000_adapter *adapter = netdev_priv(netdev);
6709
6710        switch (adapter->int_mode) {
6711        case E1000E_INT_MODE_MSIX:
6712                e1000_intr_msix(adapter->pdev->irq, netdev);
6713                break;
6714        case E1000E_INT_MODE_MSI:
6715                disable_irq(adapter->pdev->irq);
6716                e1000_intr_msi(adapter->pdev->irq, netdev);
6717                enable_irq(adapter->pdev->irq);
6718                break;
6719        default:                /* E1000E_INT_MODE_LEGACY */
6720                disable_irq(adapter->pdev->irq);
6721                e1000_intr(adapter->pdev->irq, netdev);
6722                enable_irq(adapter->pdev->irq);
6723                break;
6724        }
6725}
6726#endif
6727
6728/**
6729 * e1000_io_error_detected - called when PCI error is detected
6730 * @pdev: Pointer to PCI device
6731 * @state: The current pci connection state
6732 *
6733 * This function is called after a PCI bus error affecting
6734 * this device has been detected.
6735 */
6736static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6737                                                pci_channel_state_t state)
6738{
6739        struct net_device *netdev = pci_get_drvdata(pdev);
6740        struct e1000_adapter *adapter = netdev_priv(netdev);
6741
6742        netif_device_detach(netdev);
6743
6744        if (state == pci_channel_io_perm_failure)
6745                return PCI_ERS_RESULT_DISCONNECT;
6746
6747        if (netif_running(netdev))
6748                e1000e_down(adapter, true);
6749        pci_disable_device(pdev);
6750
6751        /* Request a slot slot reset. */
6752        return PCI_ERS_RESULT_NEED_RESET;
6753}
6754
6755/**
6756 * e1000_io_slot_reset - called after the pci bus has been reset.
6757 * @pdev: Pointer to PCI device
6758 *
6759 * Restart the card from scratch, as if from a cold-boot. Implementation
6760 * resembles the first-half of the e1000e_pm_resume routine.
6761 */
6762static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6763{
6764        struct net_device *netdev = pci_get_drvdata(pdev);
6765        struct e1000_adapter *adapter = netdev_priv(netdev);
6766        struct e1000_hw *hw = &adapter->hw;
6767        u16 aspm_disable_flag = 0;
6768        int err;
6769        pci_ers_result_t result;
6770
6771        if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6772                aspm_disable_flag = PCIE_LINK_STATE_L0S;
6773        if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6774                aspm_disable_flag |= PCIE_LINK_STATE_L1;
6775        if (aspm_disable_flag)
6776                e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6777
6778        err = pci_enable_device_mem(pdev);
6779        if (err) {
6780                dev_err(&pdev->dev,
6781                        "Cannot re-enable PCI device after reset.\n");
6782                result = PCI_ERS_RESULT_DISCONNECT;
6783        } else {
6784                pdev->state_saved = true;
6785                pci_restore_state(pdev);
6786                pci_set_master(pdev);
6787
6788                pci_enable_wake(pdev, PCI_D3hot, 0);
6789                pci_enable_wake(pdev, PCI_D3cold, 0);
6790
6791                e1000e_reset(adapter);
6792                ew32(WUS, ~0);
6793                result = PCI_ERS_RESULT_RECOVERED;
6794        }
6795
6796        pci_cleanup_aer_uncorrect_error_status(pdev);
6797
6798        return result;
6799}
6800
6801/**
6802 * e1000_io_resume - called when traffic can start flowing again.
6803 * @pdev: Pointer to PCI device
6804 *
6805 * This callback is called when the error recovery driver tells us that
6806 * its OK to resume normal operation. Implementation resembles the
6807 * second-half of the e1000e_pm_resume routine.
6808 */
6809static void e1000_io_resume(struct pci_dev *pdev)
6810{
6811        struct net_device *netdev = pci_get_drvdata(pdev);
6812        struct e1000_adapter *adapter = netdev_priv(netdev);
6813
6814        e1000_init_manageability_pt(adapter);
6815
6816        if (netif_running(netdev))
6817                e1000e_up(adapter);
6818
6819        netif_device_attach(netdev);
6820
6821        /* If the controller has AMT, do not set DRV_LOAD until the interface
6822         * is up.  For all other cases, let the f/w know that the h/w is now
6823         * under the control of the driver.
6824         */
6825        if (!(adapter->flags & FLAG_HAS_AMT))
6826                e1000e_get_hw_control(adapter);
6827}
6828
6829static void e1000_print_device_info(struct e1000_adapter *adapter)
6830{
6831        struct e1000_hw *hw = &adapter->hw;
6832        struct net_device *netdev = adapter->netdev;
6833        u32 ret_val;
6834        u8 pba_str[E1000_PBANUM_LENGTH];
6835
6836        /* print bus type/speed/width info */
6837        e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6838               /* bus width */
6839               ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6840                "Width x1"),
6841               /* MAC address */
6842               netdev->dev_addr);
6843        e_info("Intel(R) PRO/%s Network Connection\n",
6844               (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6845        ret_val = e1000_read_pba_string_generic(hw, pba_str,
6846                                                E1000_PBANUM_LENGTH);
6847        if (ret_val)
6848                strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6849        e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6850               hw->mac.type, hw->phy.type, pba_str);
6851}
6852
6853static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6854{
6855        struct e1000_hw *hw = &adapter->hw;
6856        int ret_val;
6857        u16 buf = 0;
6858
6859        if (hw->mac.type != e1000_82573)
6860                return;
6861
6862        ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6863        le16_to_cpus(&buf);
6864        if (!ret_val && (!(buf & (1 << 0)))) {
6865                /* Deep Smart Power Down (DSPD) */
6866                dev_warn(&adapter->pdev->dev,
6867                         "Warning: detected DSPD enabled in EEPROM\n");
6868        }
6869}
6870
6871static netdev_features_t e1000_fix_features(struct net_device *netdev,
6872                                            netdev_features_t features)
6873{
6874        struct e1000_adapter *adapter = netdev_priv(netdev);
6875        struct e1000_hw *hw = &adapter->hw;
6876
6877        /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6878        if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6879                features &= ~NETIF_F_RXFCS;
6880
6881        return features;
6882}
6883
6884static int e1000_set_features(struct net_device *netdev,
6885                              netdev_features_t features)
6886{
6887        struct e1000_adapter *adapter = netdev_priv(netdev);
6888        netdev_features_t changed = features ^ netdev->features;
6889
6890        if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6891                adapter->flags |= FLAG_TSO_FORCE;
6892
6893        if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6894                         NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6895                         NETIF_F_RXALL)))
6896                return 0;
6897
6898        if (changed & NETIF_F_RXFCS) {
6899                if (features & NETIF_F_RXFCS) {
6900                        adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6901                } else {
6902                        /* We need to take it back to defaults, which might mean
6903                         * stripping is still disabled at the adapter level.
6904                         */
6905                        if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6906                                adapter->flags2 |= FLAG2_CRC_STRIPPING;
6907                        else
6908                                adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6909                }
6910        }
6911
6912        netdev->features = features;
6913
6914        if (netif_running(netdev))
6915                e1000e_reinit_locked(adapter);
6916        else
6917                e1000e_reset(adapter);
6918
6919        return 0;
6920}
6921
6922static const struct net_device_ops e1000e_netdev_ops = {
6923        .ndo_open               = e1000_open,
6924        .ndo_stop               = e1000_close,
6925        .ndo_start_xmit         = e1000_xmit_frame,
6926        .ndo_get_stats64        = e1000e_get_stats64,
6927        .ndo_set_rx_mode        = e1000e_set_rx_mode,
6928        .ndo_set_mac_address    = e1000_set_mac,
6929        .ndo_change_mtu         = e1000_change_mtu,
6930        .ndo_do_ioctl           = e1000_ioctl,
6931        .ndo_tx_timeout         = e1000_tx_timeout,
6932        .ndo_validate_addr      = eth_validate_addr,
6933
6934        .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6935        .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6936#ifdef CONFIG_NET_POLL_CONTROLLER
6937        .ndo_poll_controller    = e1000_netpoll,
6938#endif
6939        .ndo_set_features = e1000_set_features,
6940        .ndo_fix_features = e1000_fix_features,
6941        .ndo_features_check     = passthru_features_check,
6942};
6943
6944/**
6945 * e1000_probe - Device Initialization Routine
6946 * @pdev: PCI device information struct
6947 * @ent: entry in e1000_pci_tbl
6948 *
6949 * Returns 0 on success, negative on failure
6950 *
6951 * e1000_probe initializes an adapter identified by a pci_dev structure.
6952 * The OS initialization, configuring of the adapter private structure,
6953 * and a hardware reset occur.
6954 **/
6955static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6956{
6957        struct net_device *netdev;
6958        struct e1000_adapter *adapter;
6959        struct e1000_hw *hw;
6960        const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6961        resource_size_t mmio_start, mmio_len;
6962        resource_size_t flash_start, flash_len;
6963        static int cards_found;
6964        u16 aspm_disable_flag = 0;
6965        int bars, i, err, pci_using_dac;
6966        u16 eeprom_data = 0;
6967        u16 eeprom_apme_mask = E1000_EEPROM_APME;
6968        s32 rval = 0;
6969
6970        if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6971                aspm_disable_flag = PCIE_LINK_STATE_L0S;
6972        if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6973                aspm_disable_flag |= PCIE_LINK_STATE_L1;
6974        if (aspm_disable_flag)
6975                e1000e_disable_aspm(pdev, aspm_disable_flag);
6976
6977        err = pci_enable_device_mem(pdev);
6978        if (err)
6979                return err;
6980
6981        pci_using_dac = 0;
6982        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6983        if (!err) {
6984                pci_using_dac = 1;
6985        } else {
6986                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6987                if (err) {
6988                        dev_err(&pdev->dev,
6989                                "No usable DMA configuration, aborting\n");
6990                        goto err_dma;
6991                }
6992        }
6993
6994        bars = pci_select_bars(pdev, IORESOURCE_MEM);
6995        err = pci_request_selected_regions_exclusive(pdev, bars,
6996                                                     e1000e_driver_name);
6997        if (err)
6998                goto err_pci_reg;
6999
7000        /* AER (Advanced Error Reporting) hooks */
7001        pci_enable_pcie_error_reporting(pdev);
7002
7003        pci_set_master(pdev);
7004        /* PCI config space info */
7005        err = pci_save_state(pdev);
7006        if (err)
7007                goto err_alloc_etherdev;
7008
7009        err = -ENOMEM;
7010        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7011        if (!netdev)
7012                goto err_alloc_etherdev;
7013
7014        SET_NETDEV_DEV(netdev, &pdev->dev);
7015
7016        netdev->irq = pdev->irq;
7017
7018        pci_set_drvdata(pdev, netdev);
7019        adapter = netdev_priv(netdev);
7020        hw = &adapter->hw;
7021        adapter->netdev = netdev;
7022        adapter->pdev = pdev;
7023        adapter->ei = ei;
7024        adapter->pba = ei->pba;
7025        adapter->flags = ei->flags;
7026        adapter->flags2 = ei->flags2;
7027        adapter->hw.adapter = adapter;
7028        adapter->hw.mac.type = ei->mac;
7029        adapter->max_hw_frame_size = ei->max_hw_frame_size;
7030        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7031
7032        mmio_start = pci_resource_start(pdev, 0);
7033        mmio_len = pci_resource_len(pdev, 0);
7034
7035        err = -EIO;
7036        adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7037        if (!adapter->hw.hw_addr)
7038                goto err_ioremap;
7039
7040        if ((adapter->flags & FLAG_HAS_FLASH) &&
7041            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7042            (hw->mac.type < e1000_pch_spt)) {
7043                flash_start = pci_resource_start(pdev, 1);
7044                flash_len = pci_resource_len(pdev, 1);
7045                adapter->hw.flash_address = ioremap(flash_start, flash_len);
7046                if (!adapter->hw.flash_address)
7047                        goto err_flashmap;
7048        }
7049
7050        /* Set default EEE advertisement */
7051        if (adapter->flags2 & FLAG2_HAS_EEE)
7052                adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7053
7054        /* construct the net_device struct */
7055        netdev->netdev_ops = &e1000e_netdev_ops;
7056        e1000e_set_ethtool_ops(netdev);
7057        netdev->watchdog_timeo = 5 * HZ;
7058        netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7059        strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7060
7061        netdev->mem_start = mmio_start;
7062        netdev->mem_end = mmio_start + mmio_len;
7063
7064        adapter->bd_number = cards_found++;
7065
7066        e1000e_check_options(adapter);
7067
7068        /* setup adapter struct */
7069        err = e1000_sw_init(adapter);
7070        if (err)
7071                goto err_sw_init;
7072
7073        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7074        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7075        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7076
7077        err = ei->get_variants(adapter);
7078        if (err)
7079                goto err_hw_init;
7080
7081        if ((adapter->flags & FLAG_IS_ICH) &&
7082            (adapter->flags & FLAG_READ_ONLY_NVM) &&
7083            (hw->mac.type < e1000_pch_spt))
7084                e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7085
7086        hw->mac.ops.get_bus_info(&adapter->hw);
7087
7088        adapter->hw.phy.autoneg_wait_to_complete = 0;
7089
7090        /* Copper options */
7091        if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7092                adapter->hw.phy.mdix = AUTO_ALL_MODES;
7093                adapter->hw.phy.disable_polarity_correction = 0;
7094                adapter->hw.phy.ms_type = e1000_ms_hw_default;
7095        }
7096
7097        if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7098                dev_info(&pdev->dev,
7099                         "PHY reset is blocked due to SOL/IDER session.\n");
7100
7101        /* Set initial default active device features */
7102        netdev->features = (NETIF_F_SG |
7103                            NETIF_F_HW_VLAN_CTAG_RX |
7104                            NETIF_F_HW_VLAN_CTAG_TX |
7105                            NETIF_F_TSO |
7106                            NETIF_F_TSO6 |
7107                            NETIF_F_RXHASH |
7108                            NETIF_F_RXCSUM |
7109                            NETIF_F_HW_CSUM);
7110
7111        /* Set user-changeable features (subset of all device features) */
7112        netdev->hw_features = netdev->features;
7113        netdev->hw_features |= NETIF_F_RXFCS;
7114        netdev->priv_flags |= IFF_SUPP_NOFCS;
7115        netdev->hw_features |= NETIF_F_RXALL;
7116
7117        if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7118                netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7119
7120        netdev->vlan_features |= (NETIF_F_SG |
7121                                  NETIF_F_TSO |
7122                                  NETIF_F_TSO6 |
7123                                  NETIF_F_HW_CSUM);
7124
7125        netdev->priv_flags |= IFF_UNICAST_FLT;
7126
7127        if (pci_using_dac) {
7128                netdev->features |= NETIF_F_HIGHDMA;
7129                netdev->vlan_features |= NETIF_F_HIGHDMA;
7130        }
7131
7132        if (e1000e_enable_mng_pass_thru(&adapter->hw))
7133                adapter->flags |= FLAG_MNG_PT_ENABLED;
7134
7135        /* before reading the NVM, reset the controller to
7136         * put the device in a known good starting state
7137         */
7138        adapter->hw.mac.ops.reset_hw(&adapter->hw);
7139
7140        /* systems with ASPM and others may see the checksum fail on the first
7141         * attempt. Let's give it a few tries
7142         */
7143        for (i = 0;; i++) {
7144                if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7145                        break;
7146                if (i == 2) {
7147                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7148                        err = -EIO;
7149                        goto err_eeprom;
7150                }
7151        }
7152
7153        e1000_eeprom_checks(adapter);
7154
7155        /* copy the MAC address */
7156        if (e1000e_read_mac_addr(&adapter->hw))
7157                dev_err(&pdev->dev,
7158                        "NVM Read Error while reading MAC address\n");
7159
7160        memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7161
7162        if (!is_valid_ether_addr(netdev->dev_addr)) {
7163                dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7164                        netdev->dev_addr);
7165                err = -EIO;
7166                goto err_eeprom;
7167        }
7168
7169        init_timer(&adapter->watchdog_timer);
7170        adapter->watchdog_timer.function = e1000_watchdog;
7171        adapter->watchdog_timer.data = (unsigned long)adapter;
7172
7173        init_timer(&adapter->phy_info_timer);
7174        adapter->phy_info_timer.function = e1000_update_phy_info;
7175        adapter->phy_info_timer.data = (unsigned long)adapter;
7176
7177        INIT_WORK(&adapter->reset_task, e1000_reset_task);
7178        INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7179        INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7180        INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7181        INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7182
7183        /* Initialize link parameters. User can change them with ethtool */
7184        adapter->hw.mac.autoneg = 1;
7185        adapter->fc_autoneg = true;
7186        adapter->hw.fc.requested_mode = e1000_fc_default;
7187        adapter->hw.fc.current_mode = e1000_fc_default;
7188        adapter->hw.phy.autoneg_advertised = 0x2f;
7189
7190        /* Initial Wake on LAN setting - If APM wake is enabled in
7191         * the EEPROM, enable the ACPI Magic Packet filter
7192         */
7193        if (adapter->flags & FLAG_APME_IN_WUC) {
7194                /* APME bit in EEPROM is mapped to WUC.APME */
7195                eeprom_data = er32(WUC);
7196                eeprom_apme_mask = E1000_WUC_APME;
7197                if ((hw->mac.type > e1000_ich10lan) &&
7198                    (eeprom_data & E1000_WUC_PHY_WAKE))
7199                        adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7200        } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7201                if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7202                    (adapter->hw.bus.func == 1))
7203                        rval = e1000_read_nvm(&adapter->hw,
7204                                              NVM_INIT_CONTROL3_PORT_B,
7205                                              1, &eeprom_data);
7206                else
7207                        rval = e1000_read_nvm(&adapter->hw,
7208                                              NVM_INIT_CONTROL3_PORT_A,
7209                                              1, &eeprom_data);
7210        }
7211
7212        /* fetch WoL from EEPROM */
7213        if (rval)
7214                e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7215        else if (eeprom_data & eeprom_apme_mask)
7216                adapter->eeprom_wol |= E1000_WUFC_MAG;
7217
7218        /* now that we have the eeprom settings, apply the special cases
7219         * where the eeprom may be wrong or the board simply won't support
7220         * wake on lan on a particular port
7221         */
7222        if (!(adapter->flags & FLAG_HAS_WOL))
7223                adapter->eeprom_wol = 0;
7224
7225        /* initialize the wol settings based on the eeprom settings */
7226        adapter->wol = adapter->eeprom_wol;
7227
7228        /* make sure adapter isn't asleep if manageability is enabled */
7229        if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7230            (hw->mac.ops.check_mng_mode(hw)))
7231                device_wakeup_enable(&pdev->dev);
7232
7233        /* save off EEPROM version number */
7234        rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7235
7236        if (rval) {
7237                e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7238                adapter->eeprom_vers = 0;
7239        }
7240
7241        /* reset the hardware with the new settings */
7242        e1000e_reset(adapter);
7243
7244        /* If the controller has AMT, do not set DRV_LOAD until the interface
7245         * is up.  For all other cases, let the f/w know that the h/w is now
7246         * under the control of the driver.
7247         */
7248        if (!(adapter->flags & FLAG_HAS_AMT))
7249                e1000e_get_hw_control(adapter);
7250
7251        strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7252        err = register_netdev(netdev);
7253        if (err)
7254                goto err_register;
7255
7256        /* carrier off reporting is important to ethtool even BEFORE open */
7257        netif_carrier_off(netdev);
7258
7259        /* init PTP hardware clock */
7260        e1000e_ptp_init(adapter);
7261
7262        e1000_print_device_info(adapter);
7263
7264        if (pci_dev_run_wake(pdev))
7265                pm_runtime_put_noidle(&pdev->dev);
7266
7267        return 0;
7268
7269err_register:
7270        if (!(adapter->flags & FLAG_HAS_AMT))
7271                e1000e_release_hw_control(adapter);
7272err_eeprom:
7273        if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7274                e1000_phy_hw_reset(&adapter->hw);
7275err_hw_init:
7276        kfree(adapter->tx_ring);
7277        kfree(adapter->rx_ring);
7278err_sw_init:
7279        if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7280                iounmap(adapter->hw.flash_address);
7281        e1000e_reset_interrupt_capability(adapter);
7282err_flashmap:
7283        iounmap(adapter->hw.hw_addr);
7284err_ioremap:
7285        free_netdev(netdev);
7286err_alloc_etherdev:
7287        pci_release_selected_regions(pdev,
7288                                     pci_select_bars(pdev, IORESOURCE_MEM));
7289err_pci_reg:
7290err_dma:
7291        pci_disable_device(pdev);
7292        return err;
7293}
7294
7295/**
7296 * e1000_remove - Device Removal Routine
7297 * @pdev: PCI device information struct
7298 *
7299 * e1000_remove is called by the PCI subsystem to alert the driver
7300 * that it should release a PCI device.  The could be caused by a
7301 * Hot-Plug event, or because the driver is going to be removed from
7302 * memory.
7303 **/
7304static void e1000_remove(struct pci_dev *pdev)
7305{
7306        struct net_device *netdev = pci_get_drvdata(pdev);
7307        struct e1000_adapter *adapter = netdev_priv(netdev);
7308        bool down = test_bit(__E1000_DOWN, &adapter->state);
7309
7310        e1000e_ptp_remove(adapter);
7311
7312        /* The timers may be rescheduled, so explicitly disable them
7313         * from being rescheduled.
7314         */
7315        if (!down)
7316                set_bit(__E1000_DOWN, &adapter->state);
7317        del_timer_sync(&adapter->watchdog_timer);
7318        del_timer_sync(&adapter->phy_info_timer);
7319
7320        cancel_work_sync(&adapter->reset_task);
7321        cancel_work_sync(&adapter->watchdog_task);
7322        cancel_work_sync(&adapter->downshift_task);
7323        cancel_work_sync(&adapter->update_phy_task);
7324        cancel_work_sync(&adapter->print_hang_task);
7325
7326        if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7327                cancel_work_sync(&adapter->tx_hwtstamp_work);
7328                if (adapter->tx_hwtstamp_skb) {
7329                        dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7330                        adapter->tx_hwtstamp_skb = NULL;
7331                }
7332        }
7333
7334        /* Don't lie to e1000_close() down the road. */
7335        if (!down)
7336                clear_bit(__E1000_DOWN, &adapter->state);
7337        unregister_netdev(netdev);
7338
7339        if (pci_dev_run_wake(pdev))
7340                pm_runtime_get_noresume(&pdev->dev);
7341
7342        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7343         * would have already happened in close and is redundant.
7344         */
7345        e1000e_release_hw_control(adapter);
7346
7347        e1000e_reset_interrupt_capability(adapter);
7348        kfree(adapter->tx_ring);
7349        kfree(adapter->rx_ring);
7350
7351        iounmap(adapter->hw.hw_addr);
7352        if ((adapter->hw.flash_address) &&
7353            (adapter->hw.mac.type < e1000_pch_spt))
7354                iounmap(adapter->hw.flash_address);
7355        pci_release_selected_regions(pdev,
7356                                     pci_select_bars(pdev, IORESOURCE_MEM));
7357
7358        free_netdev(netdev);
7359
7360        /* AER disable */
7361        pci_disable_pcie_error_reporting(pdev);
7362
7363        pci_disable_device(pdev);
7364}
7365
7366/* PCI Error Recovery (ERS) */
7367static const struct pci_error_handlers e1000_err_handler = {
7368        .error_detected = e1000_io_error_detected,
7369        .slot_reset = e1000_io_slot_reset,
7370        .resume = e1000_io_resume,
7371};
7372
7373static const struct pci_device_id e1000_pci_tbl[] = {
7374        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7375        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7376        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7377        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7378          board_82571 },
7379        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7380        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7381        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7382        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7383        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7384
7385        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7386        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7387        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7388        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7389
7390        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7391        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7392        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7393
7394        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7395        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7396        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7397
7398        { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7399          board_80003es2lan },
7400        { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7401          board_80003es2lan },
7402        { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7403          board_80003es2lan },
7404        { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7405          board_80003es2lan },
7406
7407        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7408        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7409        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7410        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7411        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7412        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7413        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7414        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7415
7416        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7417        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7418        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7419        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7420        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7421        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7422        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7423        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7424        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7425
7426        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7427        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7428        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7429
7430        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7431        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7432        { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7433
7434        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7435        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7436        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7437        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7438
7439        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7440        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7441
7442        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7443        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7444        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7445        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7446        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7447        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7448        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7449        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7450        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7451        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7452        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7453        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7454        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7455        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7456        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7457        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7458        { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7459
7460        { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7461};
7462MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7463
7464static const struct dev_pm_ops e1000_pm_ops = {
7465#ifdef CONFIG_PM_SLEEP
7466        .suspend        = e1000e_pm_suspend,
7467        .resume         = e1000e_pm_resume,
7468        .freeze         = e1000e_pm_freeze,
7469        .thaw           = e1000e_pm_thaw,
7470        .poweroff       = e1000e_pm_suspend,
7471        .restore        = e1000e_pm_resume,
7472#endif
7473        SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7474                           e1000e_pm_runtime_idle)
7475};
7476
7477/* PCI Device API Driver */
7478static struct pci_driver e1000_driver = {
7479        .name     = e1000e_driver_name,
7480        .id_table = e1000_pci_tbl,
7481        .probe    = e1000_probe,
7482        .remove   = e1000_remove,
7483        .driver   = {
7484                .pm = &e1000_pm_ops,
7485        },
7486        .shutdown = e1000_shutdown,
7487        .err_handler = &e1000_err_handler
7488};
7489
7490/**
7491 * e1000_init_module - Driver Registration Routine
7492 *
7493 * e1000_init_module is the first routine called when the driver is
7494 * loaded. All it does is register with the PCI subsystem.
7495 **/
7496static int __init e1000_init_module(void)
7497{
7498        pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7499                e1000e_driver_version);
7500        pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7501
7502        return pci_register_driver(&e1000_driver);
7503}
7504module_init(e1000_init_module);
7505
7506/**
7507 * e1000_exit_module - Driver Exit Cleanup Routine
7508 *
7509 * e1000_exit_module is called just before the driver is removed
7510 * from memory.
7511 **/
7512static void __exit e1000_exit_module(void)
7513{
7514        pci_unregister_driver(&e1000_driver);
7515}
7516module_exit(e1000_exit_module);
7517
7518MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7519MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7520MODULE_LICENSE("GPL");
7521MODULE_VERSION(DRV_VERSION);
7522
7523/* netdev.c */
7524