linux/drivers/net/ethernet/intel/igb/e1000_82575.c
<<
>>
Prefs
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24/* e1000_82575
  25 * e1000_82576
  26 */
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/types.h>
  31#include <linux/if_ether.h>
  32#include <linux/i2c.h>
  33
  34#include "e1000_mac.h"
  35#include "e1000_82575.h"
  36#include "e1000_i210.h"
  37#include "igb.h"
  38
  39static s32  igb_get_invariants_82575(struct e1000_hw *);
  40static s32  igb_acquire_phy_82575(struct e1000_hw *);
  41static void igb_release_phy_82575(struct e1000_hw *);
  42static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  43static void igb_release_nvm_82575(struct e1000_hw *);
  44static s32  igb_check_for_link_82575(struct e1000_hw *);
  45static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  46static s32  igb_init_hw_82575(struct e1000_hw *);
  47static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  48static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  49static s32  igb_reset_hw_82575(struct e1000_hw *);
  50static s32  igb_reset_hw_82580(struct e1000_hw *);
  51static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  52static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  53static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  54static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  55static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  56static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  57static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  58static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  59static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  60                                                 u16 *);
  61static s32  igb_get_phy_id_82575(struct e1000_hw *);
  62static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  63static bool igb_sgmii_active_82575(struct e1000_hw *);
  64static s32  igb_reset_init_script_82575(struct e1000_hw *);
  65static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  66static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  67static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  68static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  69static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  70static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  71static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  72static const u16 e1000_82580_rxpbs_table[] = {
  73        36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  74
  75/* Due to a hw errata, if the host tries to  configure the VFTA register
  76 * while performing queries from the BMC or DMA, then the VFTA in some
  77 * cases won't be written.
  78 */
  79
  80/**
  81 *  igb_write_vfta_i350 - Write value to VLAN filter table
  82 *  @hw: pointer to the HW structure
  83 *  @offset: register offset in VLAN filter table
  84 *  @value: register value written to VLAN filter table
  85 *
  86 *  Writes value at the given offset in the register array which stores
  87 *  the VLAN filter table.
  88 **/
  89static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  90{
  91        struct igb_adapter *adapter = hw->back;
  92        int i;
  93
  94        for (i = 10; i--;)
  95                array_wr32(E1000_VFTA, offset, value);
  96
  97        wrfl();
  98        adapter->shadow_vfta[offset] = value;
  99}
 100
 101/**
 102 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 103 *  @hw: pointer to the HW structure
 104 *
 105 *  Called to determine if the I2C pins are being used for I2C or as an
 106 *  external MDIO interface since the two options are mutually exclusive.
 107 **/
 108static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
 109{
 110        u32 reg = 0;
 111        bool ext_mdio = false;
 112
 113        switch (hw->mac.type) {
 114        case e1000_82575:
 115        case e1000_82576:
 116                reg = rd32(E1000_MDIC);
 117                ext_mdio = !!(reg & E1000_MDIC_DEST);
 118                break;
 119        case e1000_82580:
 120        case e1000_i350:
 121        case e1000_i354:
 122        case e1000_i210:
 123        case e1000_i211:
 124                reg = rd32(E1000_MDICNFG);
 125                ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 126                break;
 127        default:
 128                break;
 129        }
 130        return ext_mdio;
 131}
 132
 133/**
 134 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 135 *  @hw: pointer to the HW structure
 136 *
 137 *  Poll the M88E1112 interfaces to see which interface achieved link.
 138 */
 139static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 140{
 141        struct e1000_phy_info *phy = &hw->phy;
 142        s32 ret_val;
 143        u16 data;
 144        u8 port = 0;
 145
 146        /* Check the copper medium. */
 147        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 148        if (ret_val)
 149                return ret_val;
 150
 151        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 152        if (ret_val)
 153                return ret_val;
 154
 155        if (data & E1000_M88E1112_STATUS_LINK)
 156                port = E1000_MEDIA_PORT_COPPER;
 157
 158        /* Check the other medium. */
 159        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 160        if (ret_val)
 161                return ret_val;
 162
 163        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 164        if (ret_val)
 165                return ret_val;
 166
 167
 168        if (data & E1000_M88E1112_STATUS_LINK)
 169                port = E1000_MEDIA_PORT_OTHER;
 170
 171        /* Determine if a swap needs to happen. */
 172        if (port && (hw->dev_spec._82575.media_port != port)) {
 173                hw->dev_spec._82575.media_port = port;
 174                hw->dev_spec._82575.media_changed = true;
 175        }
 176
 177        if (port == E1000_MEDIA_PORT_COPPER) {
 178                /* reset page to 0 */
 179                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 180                if (ret_val)
 181                        return ret_val;
 182                igb_check_for_link_82575(hw);
 183        } else {
 184                igb_check_for_link_82575(hw);
 185                /* reset page to 0 */
 186                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 187                if (ret_val)
 188                        return ret_val;
 189        }
 190
 191        return 0;
 192}
 193
 194/**
 195 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 196 *  @hw: pointer to the HW structure
 197 **/
 198static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 199{
 200        struct e1000_phy_info *phy = &hw->phy;
 201        s32 ret_val = 0;
 202        u32 ctrl_ext;
 203
 204        if (hw->phy.media_type != e1000_media_type_copper) {
 205                phy->type = e1000_phy_none;
 206                goto out;
 207        }
 208
 209        phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 210        phy->reset_delay_us     = 100;
 211
 212        ctrl_ext = rd32(E1000_CTRL_EXT);
 213
 214        if (igb_sgmii_active_82575(hw)) {
 215                phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 216                ctrl_ext |= E1000_CTRL_I2C_ENA;
 217        } else {
 218                phy->ops.reset = igb_phy_hw_reset;
 219                ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 220        }
 221
 222        wr32(E1000_CTRL_EXT, ctrl_ext);
 223        igb_reset_mdicnfg_82580(hw);
 224
 225        if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 226                phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 227                phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 228        } else {
 229                switch (hw->mac.type) {
 230                case e1000_82580:
 231                case e1000_i350:
 232                case e1000_i354:
 233                case e1000_i210:
 234                case e1000_i211:
 235                        phy->ops.read_reg = igb_read_phy_reg_82580;
 236                        phy->ops.write_reg = igb_write_phy_reg_82580;
 237                        break;
 238                default:
 239                        phy->ops.read_reg = igb_read_phy_reg_igp;
 240                        phy->ops.write_reg = igb_write_phy_reg_igp;
 241                }
 242        }
 243
 244        /* set lan id */
 245        hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 246                        E1000_STATUS_FUNC_SHIFT;
 247
 248        /* Set phy->phy_addr and phy->id. */
 249        ret_val = igb_get_phy_id_82575(hw);
 250        if (ret_val)
 251                return ret_val;
 252
 253        /* Verify phy id and set remaining function pointers */
 254        switch (phy->id) {
 255        case M88E1543_E_PHY_ID:
 256        case M88E1512_E_PHY_ID:
 257        case I347AT4_E_PHY_ID:
 258        case M88E1112_E_PHY_ID:
 259        case M88E1111_I_PHY_ID:
 260                phy->type               = e1000_phy_m88;
 261                phy->ops.check_polarity = igb_check_polarity_m88;
 262                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 263                if (phy->id != M88E1111_I_PHY_ID)
 264                        phy->ops.get_cable_length =
 265                                         igb_get_cable_length_m88_gen2;
 266                else
 267                        phy->ops.get_cable_length = igb_get_cable_length_m88;
 268                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 269                /* Check if this PHY is configured for media swap. */
 270                if (phy->id == M88E1112_E_PHY_ID) {
 271                        u16 data;
 272
 273                        ret_val = phy->ops.write_reg(hw,
 274                                                     E1000_M88E1112_PAGE_ADDR,
 275                                                     2);
 276                        if (ret_val)
 277                                goto out;
 278
 279                        ret_val = phy->ops.read_reg(hw,
 280                                                    E1000_M88E1112_MAC_CTRL_1,
 281                                                    &data);
 282                        if (ret_val)
 283                                goto out;
 284
 285                        data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 286                               E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 287                        if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 288                            data == E1000_M88E1112_AUTO_COPPER_BASEX)
 289                                hw->mac.ops.check_for_link =
 290                                                igb_check_for_link_media_swap;
 291                }
 292                if (phy->id == M88E1512_E_PHY_ID) {
 293                        ret_val = igb_initialize_M88E1512_phy(hw);
 294                        if (ret_val)
 295                                goto out;
 296                }
 297                if (phy->id == M88E1543_E_PHY_ID) {
 298                        ret_val = igb_initialize_M88E1543_phy(hw);
 299                        if (ret_val)
 300                                goto out;
 301                }
 302                break;
 303        case IGP03E1000_E_PHY_ID:
 304                phy->type = e1000_phy_igp_3;
 305                phy->ops.get_phy_info = igb_get_phy_info_igp;
 306                phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 307                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 308                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 309                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 310                break;
 311        case I82580_I_PHY_ID:
 312        case I350_I_PHY_ID:
 313                phy->type = e1000_phy_82580;
 314                phy->ops.force_speed_duplex =
 315                                         igb_phy_force_speed_duplex_82580;
 316                phy->ops.get_cable_length = igb_get_cable_length_82580;
 317                phy->ops.get_phy_info = igb_get_phy_info_82580;
 318                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 319                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 320                break;
 321        case I210_I_PHY_ID:
 322                phy->type               = e1000_phy_i210;
 323                phy->ops.check_polarity = igb_check_polarity_m88;
 324                phy->ops.get_cfg_done   = igb_get_cfg_done_i210;
 325                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 326                phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 327                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 328                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 329                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 330                break;
 331        default:
 332                ret_val = -E1000_ERR_PHY;
 333                goto out;
 334        }
 335
 336out:
 337        return ret_val;
 338}
 339
 340/**
 341 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 342 *  @hw: pointer to the HW structure
 343 **/
 344static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 345{
 346        struct e1000_nvm_info *nvm = &hw->nvm;
 347        u32 eecd = rd32(E1000_EECD);
 348        u16 size;
 349
 350        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 351                     E1000_EECD_SIZE_EX_SHIFT);
 352
 353        /* Added to a constant, "size" becomes the left-shift value
 354         * for setting word_size.
 355         */
 356        size += NVM_WORD_SIZE_BASE_SHIFT;
 357
 358        /* Just in case size is out of range, cap it to the largest
 359         * EEPROM size supported
 360         */
 361        if (size > 15)
 362                size = 15;
 363
 364        nvm->word_size = 1 << size;
 365        nvm->opcode_bits = 8;
 366        nvm->delay_usec = 1;
 367
 368        switch (nvm->override) {
 369        case e1000_nvm_override_spi_large:
 370                nvm->page_size = 32;
 371                nvm->address_bits = 16;
 372                break;
 373        case e1000_nvm_override_spi_small:
 374                nvm->page_size = 8;
 375                nvm->address_bits = 8;
 376                break;
 377        default:
 378                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 379                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 380                                    16 : 8;
 381                break;
 382        }
 383        if (nvm->word_size == (1 << 15))
 384                nvm->page_size = 128;
 385
 386        nvm->type = e1000_nvm_eeprom_spi;
 387
 388        /* NVM Function Pointers */
 389        nvm->ops.acquire = igb_acquire_nvm_82575;
 390        nvm->ops.release = igb_release_nvm_82575;
 391        nvm->ops.write = igb_write_nvm_spi;
 392        nvm->ops.validate = igb_validate_nvm_checksum;
 393        nvm->ops.update = igb_update_nvm_checksum;
 394        if (nvm->word_size < (1 << 15))
 395                nvm->ops.read = igb_read_nvm_eerd;
 396        else
 397                nvm->ops.read = igb_read_nvm_spi;
 398
 399        /* override generic family function pointers for specific descendants */
 400        switch (hw->mac.type) {
 401        case e1000_82580:
 402                nvm->ops.validate = igb_validate_nvm_checksum_82580;
 403                nvm->ops.update = igb_update_nvm_checksum_82580;
 404                break;
 405        case e1000_i354:
 406        case e1000_i350:
 407                nvm->ops.validate = igb_validate_nvm_checksum_i350;
 408                nvm->ops.update = igb_update_nvm_checksum_i350;
 409                break;
 410        default:
 411                break;
 412        }
 413
 414        return 0;
 415}
 416
 417/**
 418 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 419 *  @hw: pointer to the HW structure
 420 **/
 421static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 422{
 423        struct e1000_mac_info *mac = &hw->mac;
 424        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 425
 426        /* Set mta register count */
 427        mac->mta_reg_count = 128;
 428        /* Set uta register count */
 429        mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 430        /* Set rar entry count */
 431        switch (mac->type) {
 432        case e1000_82576:
 433                mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 434                break;
 435        case e1000_82580:
 436                mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 437                break;
 438        case e1000_i350:
 439        case e1000_i354:
 440                mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 441                break;
 442        default:
 443                mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 444                break;
 445        }
 446        /* reset */
 447        if (mac->type >= e1000_82580)
 448                mac->ops.reset_hw = igb_reset_hw_82580;
 449        else
 450                mac->ops.reset_hw = igb_reset_hw_82575;
 451
 452        if (mac->type >= e1000_i210) {
 453                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 454                mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 455
 456        } else {
 457                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 458                mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 459        }
 460
 461        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 462                mac->ops.write_vfta = igb_write_vfta_i350;
 463        else
 464                mac->ops.write_vfta = igb_write_vfta;
 465
 466        /* Set if part includes ASF firmware */
 467        mac->asf_firmware_present = true;
 468        /* Set if manageability features are enabled. */
 469        mac->arc_subsystem_valid =
 470                (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 471                        ? true : false;
 472        /* enable EEE on i350 parts and later parts */
 473        if (mac->type >= e1000_i350)
 474                dev_spec->eee_disable = false;
 475        else
 476                dev_spec->eee_disable = true;
 477        /* Allow a single clear of the SW semaphore on I210 and newer */
 478        if (mac->type >= e1000_i210)
 479                dev_spec->clear_semaphore_once = true;
 480        /* physical interface link setup */
 481        mac->ops.setup_physical_interface =
 482                (hw->phy.media_type == e1000_media_type_copper)
 483                        ? igb_setup_copper_link_82575
 484                        : igb_setup_serdes_link_82575;
 485
 486        if (mac->type == e1000_82580) {
 487                switch (hw->device_id) {
 488                /* feature not supported on these id's */
 489                case E1000_DEV_ID_DH89XXCC_SGMII:
 490                case E1000_DEV_ID_DH89XXCC_SERDES:
 491                case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 492                case E1000_DEV_ID_DH89XXCC_SFP:
 493                        break;
 494                default:
 495                        hw->dev_spec._82575.mas_capable = true;
 496                        break;
 497                }
 498        }
 499        return 0;
 500}
 501
 502/**
 503 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 504 *  @hw: pointer to the HW structure
 505 *
 506 *  The media type is chosen based on SFP module.
 507 *  compatibility flags retrieved from SFP ID EEPROM.
 508 **/
 509static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 510{
 511        s32 ret_val = E1000_ERR_CONFIG;
 512        u32 ctrl_ext = 0;
 513        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 514        struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 515        u8 tranceiver_type = 0;
 516        s32 timeout = 3;
 517
 518        /* Turn I2C interface ON and power on sfp cage */
 519        ctrl_ext = rd32(E1000_CTRL_EXT);
 520        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 521        wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 522
 523        wrfl();
 524
 525        /* Read SFP module data */
 526        while (timeout) {
 527                ret_val = igb_read_sfp_data_byte(hw,
 528                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 529                        &tranceiver_type);
 530                if (ret_val == 0)
 531                        break;
 532                msleep(100);
 533                timeout--;
 534        }
 535        if (ret_val != 0)
 536                goto out;
 537
 538        ret_val = igb_read_sfp_data_byte(hw,
 539                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 540                        (u8 *)eth_flags);
 541        if (ret_val != 0)
 542                goto out;
 543
 544        /* Check if there is some SFP module plugged and powered */
 545        if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 546            (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 547                dev_spec->module_plugged = true;
 548                if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 549                        hw->phy.media_type = e1000_media_type_internal_serdes;
 550                } else if (eth_flags->e100_base_fx) {
 551                        dev_spec->sgmii_active = true;
 552                        hw->phy.media_type = e1000_media_type_internal_serdes;
 553                } else if (eth_flags->e1000_base_t) {
 554                        dev_spec->sgmii_active = true;
 555                        hw->phy.media_type = e1000_media_type_copper;
 556                } else {
 557                        hw->phy.media_type = e1000_media_type_unknown;
 558                        hw_dbg("PHY module has not been recognized\n");
 559                        goto out;
 560                }
 561        } else {
 562                hw->phy.media_type = e1000_media_type_unknown;
 563        }
 564        ret_val = 0;
 565out:
 566        /* Restore I2C interface setting */
 567        wr32(E1000_CTRL_EXT, ctrl_ext);
 568        return ret_val;
 569}
 570
 571static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 572{
 573        struct e1000_mac_info *mac = &hw->mac;
 574        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 575        s32 ret_val;
 576        u32 ctrl_ext = 0;
 577        u32 link_mode = 0;
 578
 579        switch (hw->device_id) {
 580        case E1000_DEV_ID_82575EB_COPPER:
 581        case E1000_DEV_ID_82575EB_FIBER_SERDES:
 582        case E1000_DEV_ID_82575GB_QUAD_COPPER:
 583                mac->type = e1000_82575;
 584                break;
 585        case E1000_DEV_ID_82576:
 586        case E1000_DEV_ID_82576_NS:
 587        case E1000_DEV_ID_82576_NS_SERDES:
 588        case E1000_DEV_ID_82576_FIBER:
 589        case E1000_DEV_ID_82576_SERDES:
 590        case E1000_DEV_ID_82576_QUAD_COPPER:
 591        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 592        case E1000_DEV_ID_82576_SERDES_QUAD:
 593                mac->type = e1000_82576;
 594                break;
 595        case E1000_DEV_ID_82580_COPPER:
 596        case E1000_DEV_ID_82580_FIBER:
 597        case E1000_DEV_ID_82580_QUAD_FIBER:
 598        case E1000_DEV_ID_82580_SERDES:
 599        case E1000_DEV_ID_82580_SGMII:
 600        case E1000_DEV_ID_82580_COPPER_DUAL:
 601        case E1000_DEV_ID_DH89XXCC_SGMII:
 602        case E1000_DEV_ID_DH89XXCC_SERDES:
 603        case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 604        case E1000_DEV_ID_DH89XXCC_SFP:
 605                mac->type = e1000_82580;
 606                break;
 607        case E1000_DEV_ID_I350_COPPER:
 608        case E1000_DEV_ID_I350_FIBER:
 609        case E1000_DEV_ID_I350_SERDES:
 610        case E1000_DEV_ID_I350_SGMII:
 611                mac->type = e1000_i350;
 612                break;
 613        case E1000_DEV_ID_I210_COPPER:
 614        case E1000_DEV_ID_I210_FIBER:
 615        case E1000_DEV_ID_I210_SERDES:
 616        case E1000_DEV_ID_I210_SGMII:
 617        case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 618        case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 619                mac->type = e1000_i210;
 620                break;
 621        case E1000_DEV_ID_I211_COPPER:
 622                mac->type = e1000_i211;
 623                break;
 624        case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 625        case E1000_DEV_ID_I354_SGMII:
 626        case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 627                mac->type = e1000_i354;
 628                break;
 629        default:
 630                return -E1000_ERR_MAC_INIT;
 631        }
 632
 633        /* Set media type */
 634        /* The 82575 uses bits 22:23 for link mode. The mode can be changed
 635         * based on the EEPROM. We cannot rely upon device ID. There
 636         * is no distinguishable difference between fiber and internal
 637         * SerDes mode on the 82575. There can be an external PHY attached
 638         * on the SGMII interface. For this, we'll set sgmii_active to true.
 639         */
 640        hw->phy.media_type = e1000_media_type_copper;
 641        dev_spec->sgmii_active = false;
 642        dev_spec->module_plugged = false;
 643
 644        ctrl_ext = rd32(E1000_CTRL_EXT);
 645
 646        link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 647        switch (link_mode) {
 648        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 649                hw->phy.media_type = e1000_media_type_internal_serdes;
 650                break;
 651        case E1000_CTRL_EXT_LINK_MODE_SGMII:
 652                /* Get phy control interface type set (MDIO vs. I2C)*/
 653                if (igb_sgmii_uses_mdio_82575(hw)) {
 654                        hw->phy.media_type = e1000_media_type_copper;
 655                        dev_spec->sgmii_active = true;
 656                        break;
 657                }
 658                /* fall through for I2C based SGMII */
 659        case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 660                /* read media type from SFP EEPROM */
 661                ret_val = igb_set_sfp_media_type_82575(hw);
 662                if ((ret_val != 0) ||
 663                    (hw->phy.media_type == e1000_media_type_unknown)) {
 664                        /* If media type was not identified then return media
 665                         * type defined by the CTRL_EXT settings.
 666                         */
 667                        hw->phy.media_type = e1000_media_type_internal_serdes;
 668
 669                        if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 670                                hw->phy.media_type = e1000_media_type_copper;
 671                                dev_spec->sgmii_active = true;
 672                        }
 673
 674                        break;
 675                }
 676
 677                /* do not change link mode for 100BaseFX */
 678                if (dev_spec->eth_flags.e100_base_fx)
 679                        break;
 680
 681                /* change current link mode setting */
 682                ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 683
 684                if (hw->phy.media_type == e1000_media_type_copper)
 685                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 686                else
 687                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 688
 689                wr32(E1000_CTRL_EXT, ctrl_ext);
 690
 691                break;
 692        default:
 693                break;
 694        }
 695
 696        /* mac initialization and operations */
 697        ret_val = igb_init_mac_params_82575(hw);
 698        if (ret_val)
 699                goto out;
 700
 701        /* NVM initialization */
 702        ret_val = igb_init_nvm_params_82575(hw);
 703        switch (hw->mac.type) {
 704        case e1000_i210:
 705        case e1000_i211:
 706                ret_val = igb_init_nvm_params_i210(hw);
 707                break;
 708        default:
 709                break;
 710        }
 711
 712        if (ret_val)
 713                goto out;
 714
 715        /* if part supports SR-IOV then initialize mailbox parameters */
 716        switch (mac->type) {
 717        case e1000_82576:
 718        case e1000_i350:
 719                igb_init_mbx_params_pf(hw);
 720                break;
 721        default:
 722                break;
 723        }
 724
 725        /* setup PHY parameters */
 726        ret_val = igb_init_phy_params_82575(hw);
 727
 728out:
 729        return ret_val;
 730}
 731
 732/**
 733 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 734 *  @hw: pointer to the HW structure
 735 *
 736 *  Acquire access rights to the correct PHY.  This is a
 737 *  function pointer entry point called by the api module.
 738 **/
 739static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 740{
 741        u16 mask = E1000_SWFW_PHY0_SM;
 742
 743        if (hw->bus.func == E1000_FUNC_1)
 744                mask = E1000_SWFW_PHY1_SM;
 745        else if (hw->bus.func == E1000_FUNC_2)
 746                mask = E1000_SWFW_PHY2_SM;
 747        else if (hw->bus.func == E1000_FUNC_3)
 748                mask = E1000_SWFW_PHY3_SM;
 749
 750        return hw->mac.ops.acquire_swfw_sync(hw, mask);
 751}
 752
 753/**
 754 *  igb_release_phy_82575 - Release rights to access PHY
 755 *  @hw: pointer to the HW structure
 756 *
 757 *  A wrapper to release access rights to the correct PHY.  This is a
 758 *  function pointer entry point called by the api module.
 759 **/
 760static void igb_release_phy_82575(struct e1000_hw *hw)
 761{
 762        u16 mask = E1000_SWFW_PHY0_SM;
 763
 764        if (hw->bus.func == E1000_FUNC_1)
 765                mask = E1000_SWFW_PHY1_SM;
 766        else if (hw->bus.func == E1000_FUNC_2)
 767                mask = E1000_SWFW_PHY2_SM;
 768        else if (hw->bus.func == E1000_FUNC_3)
 769                mask = E1000_SWFW_PHY3_SM;
 770
 771        hw->mac.ops.release_swfw_sync(hw, mask);
 772}
 773
 774/**
 775 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 776 *  @hw: pointer to the HW structure
 777 *  @offset: register offset to be read
 778 *  @data: pointer to the read data
 779 *
 780 *  Reads the PHY register at offset using the serial gigabit media independent
 781 *  interface and stores the retrieved information in data.
 782 **/
 783static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 784                                          u16 *data)
 785{
 786        s32 ret_val = -E1000_ERR_PARAM;
 787
 788        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 789                hw_dbg("PHY Address %u is out of range\n", offset);
 790                goto out;
 791        }
 792
 793        ret_val = hw->phy.ops.acquire(hw);
 794        if (ret_val)
 795                goto out;
 796
 797        ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 798
 799        hw->phy.ops.release(hw);
 800
 801out:
 802        return ret_val;
 803}
 804
 805/**
 806 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 807 *  @hw: pointer to the HW structure
 808 *  @offset: register offset to write to
 809 *  @data: data to write at register offset
 810 *
 811 *  Writes the data to PHY register at the offset using the serial gigabit
 812 *  media independent interface.
 813 **/
 814static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 815                                           u16 data)
 816{
 817        s32 ret_val = -E1000_ERR_PARAM;
 818
 819
 820        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 821                hw_dbg("PHY Address %d is out of range\n", offset);
 822                goto out;
 823        }
 824
 825        ret_val = hw->phy.ops.acquire(hw);
 826        if (ret_val)
 827                goto out;
 828
 829        ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 830
 831        hw->phy.ops.release(hw);
 832
 833out:
 834        return ret_val;
 835}
 836
 837/**
 838 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 839 *  @hw: pointer to the HW structure
 840 *
 841 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 842 *  sgmi interface.
 843 **/
 844static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 845{
 846        struct e1000_phy_info *phy = &hw->phy;
 847        s32  ret_val = 0;
 848        u16 phy_id;
 849        u32 ctrl_ext;
 850        u32 mdic;
 851
 852        /* Extra read required for some PHY's on i354 */
 853        if (hw->mac.type == e1000_i354)
 854                igb_get_phy_id(hw);
 855
 856        /* For SGMII PHYs, we try the list of possible addresses until
 857         * we find one that works.  For non-SGMII PHYs
 858         * (e.g. integrated copper PHYs), an address of 1 should
 859         * work.  The result of this function should mean phy->phy_addr
 860         * and phy->id are set correctly.
 861         */
 862        if (!(igb_sgmii_active_82575(hw))) {
 863                phy->addr = 1;
 864                ret_val = igb_get_phy_id(hw);
 865                goto out;
 866        }
 867
 868        if (igb_sgmii_uses_mdio_82575(hw)) {
 869                switch (hw->mac.type) {
 870                case e1000_82575:
 871                case e1000_82576:
 872                        mdic = rd32(E1000_MDIC);
 873                        mdic &= E1000_MDIC_PHY_MASK;
 874                        phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 875                        break;
 876                case e1000_82580:
 877                case e1000_i350:
 878                case e1000_i354:
 879                case e1000_i210:
 880                case e1000_i211:
 881                        mdic = rd32(E1000_MDICNFG);
 882                        mdic &= E1000_MDICNFG_PHY_MASK;
 883                        phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 884                        break;
 885                default:
 886                        ret_val = -E1000_ERR_PHY;
 887                        goto out;
 888                }
 889                ret_val = igb_get_phy_id(hw);
 890                goto out;
 891        }
 892
 893        /* Power on sgmii phy if it is disabled */
 894        ctrl_ext = rd32(E1000_CTRL_EXT);
 895        wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 896        wrfl();
 897        msleep(300);
 898
 899        /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 900         * Therefore, we need to test 1-7
 901         */
 902        for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 903                ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 904                if (ret_val == 0) {
 905                        hw_dbg("Vendor ID 0x%08X read at address %u\n",
 906                               phy_id, phy->addr);
 907                        /* At the time of this writing, The M88 part is
 908                         * the only supported SGMII PHY product.
 909                         */
 910                        if (phy_id == M88_VENDOR)
 911                                break;
 912                } else {
 913                        hw_dbg("PHY address %u was unreadable\n", phy->addr);
 914                }
 915        }
 916
 917        /* A valid PHY type couldn't be found. */
 918        if (phy->addr == 8) {
 919                phy->addr = 0;
 920                ret_val = -E1000_ERR_PHY;
 921                goto out;
 922        } else {
 923                ret_val = igb_get_phy_id(hw);
 924        }
 925
 926        /* restore previous sfp cage power state */
 927        wr32(E1000_CTRL_EXT, ctrl_ext);
 928
 929out:
 930        return ret_val;
 931}
 932
 933/**
 934 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 935 *  @hw: pointer to the HW structure
 936 *
 937 *  Resets the PHY using the serial gigabit media independent interface.
 938 **/
 939static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 940{
 941        struct e1000_phy_info *phy = &hw->phy;
 942        s32 ret_val;
 943
 944        /* This isn't a true "hard" reset, but is the only reset
 945         * available to us at this time.
 946         */
 947
 948        hw_dbg("Soft resetting SGMII attached PHY...\n");
 949
 950        /* SFP documentation requires the following to configure the SPF module
 951         * to work on SGMII.  No further documentation is given.
 952         */
 953        ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 954        if (ret_val)
 955                goto out;
 956
 957        ret_val = igb_phy_sw_reset(hw);
 958        if (ret_val)
 959                goto out;
 960
 961        if (phy->id == M88E1512_E_PHY_ID)
 962                ret_val = igb_initialize_M88E1512_phy(hw);
 963        if (phy->id == M88E1543_E_PHY_ID)
 964                ret_val = igb_initialize_M88E1543_phy(hw);
 965out:
 966        return ret_val;
 967}
 968
 969/**
 970 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 971 *  @hw: pointer to the HW structure
 972 *  @active: true to enable LPLU, false to disable
 973 *
 974 *  Sets the LPLU D0 state according to the active flag.  When
 975 *  activating LPLU this function also disables smart speed
 976 *  and vice versa.  LPLU will not be activated unless the
 977 *  device autonegotiation advertisement meets standards of
 978 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 979 *  This is a function pointer entry point only called by
 980 *  PHY setup routines.
 981 **/
 982static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 983{
 984        struct e1000_phy_info *phy = &hw->phy;
 985        s32 ret_val;
 986        u16 data;
 987
 988        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 989        if (ret_val)
 990                goto out;
 991
 992        if (active) {
 993                data |= IGP02E1000_PM_D0_LPLU;
 994                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 995                                                 data);
 996                if (ret_val)
 997                        goto out;
 998
 999                /* When LPLU is enabled, we should disable SmartSpeed */
1000                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1001                                                &data);
1002                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1003                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1004                                                 data);
1005                if (ret_val)
1006                        goto out;
1007        } else {
1008                data &= ~IGP02E1000_PM_D0_LPLU;
1009                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1010                                                 data);
1011                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1012                 * during Dx states where the power conservation is most
1013                 * important.  During driver activity we should enable
1014                 * SmartSpeed, so performance is maintained.
1015                 */
1016                if (phy->smart_speed == e1000_smart_speed_on) {
1017                        ret_val = phy->ops.read_reg(hw,
1018                                        IGP01E1000_PHY_PORT_CONFIG, &data);
1019                        if (ret_val)
1020                                goto out;
1021
1022                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1023                        ret_val = phy->ops.write_reg(hw,
1024                                        IGP01E1000_PHY_PORT_CONFIG, data);
1025                        if (ret_val)
1026                                goto out;
1027                } else if (phy->smart_speed == e1000_smart_speed_off) {
1028                        ret_val = phy->ops.read_reg(hw,
1029                                        IGP01E1000_PHY_PORT_CONFIG, &data);
1030                        if (ret_val)
1031                                goto out;
1032
1033                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1034                        ret_val = phy->ops.write_reg(hw,
1035                                        IGP01E1000_PHY_PORT_CONFIG, data);
1036                        if (ret_val)
1037                                goto out;
1038                }
1039        }
1040
1041out:
1042        return ret_val;
1043}
1044
1045/**
1046 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1047 *  @hw: pointer to the HW structure
1048 *  @active: true to enable LPLU, false to disable
1049 *
1050 *  Sets the LPLU D0 state according to the active flag.  When
1051 *  activating LPLU this function also disables smart speed
1052 *  and vice versa.  LPLU will not be activated unless the
1053 *  device autonegotiation advertisement meets standards of
1054 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1055 *  This is a function pointer entry point only called by
1056 *  PHY setup routines.
1057 **/
1058static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1059{
1060        struct e1000_phy_info *phy = &hw->phy;
1061        u16 data;
1062
1063        data = rd32(E1000_82580_PHY_POWER_MGMT);
1064
1065        if (active) {
1066                data |= E1000_82580_PM_D0_LPLU;
1067
1068                /* When LPLU is enabled, we should disable SmartSpeed */
1069                data &= ~E1000_82580_PM_SPD;
1070        } else {
1071                data &= ~E1000_82580_PM_D0_LPLU;
1072
1073                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1074                 * during Dx states where the power conservation is most
1075                 * important.  During driver activity we should enable
1076                 * SmartSpeed, so performance is maintained.
1077                 */
1078                if (phy->smart_speed == e1000_smart_speed_on)
1079                        data |= E1000_82580_PM_SPD;
1080                else if (phy->smart_speed == e1000_smart_speed_off)
1081                        data &= ~E1000_82580_PM_SPD; }
1082
1083        wr32(E1000_82580_PHY_POWER_MGMT, data);
1084        return 0;
1085}
1086
1087/**
1088 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1089 *  @hw: pointer to the HW structure
1090 *  @active: boolean used to enable/disable lplu
1091 *
1092 *  Success returns 0, Failure returns 1
1093 *
1094 *  The low power link up (lplu) state is set to the power management level D3
1095 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1096 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1097 *  is used during Dx states where the power conservation is most important.
1098 *  During driver activity, SmartSpeed should be enabled so performance is
1099 *  maintained.
1100 **/
1101static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1102{
1103        struct e1000_phy_info *phy = &hw->phy;
1104        u16 data;
1105
1106        data = rd32(E1000_82580_PHY_POWER_MGMT);
1107
1108        if (!active) {
1109                data &= ~E1000_82580_PM_D3_LPLU;
1110                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1111                 * during Dx states where the power conservation is most
1112                 * important.  During driver activity we should enable
1113                 * SmartSpeed, so performance is maintained.
1114                 */
1115                if (phy->smart_speed == e1000_smart_speed_on)
1116                        data |= E1000_82580_PM_SPD;
1117                else if (phy->smart_speed == e1000_smart_speed_off)
1118                        data &= ~E1000_82580_PM_SPD;
1119        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1120                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1121                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1122                data |= E1000_82580_PM_D3_LPLU;
1123                /* When LPLU is enabled, we should disable SmartSpeed */
1124                data &= ~E1000_82580_PM_SPD;
1125        }
1126
1127        wr32(E1000_82580_PHY_POWER_MGMT, data);
1128        return 0;
1129}
1130
1131/**
1132 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1133 *  @hw: pointer to the HW structure
1134 *
1135 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1136 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1137 *  Return successful if access grant bit set, else clear the request for
1138 *  EEPROM access and return -E1000_ERR_NVM (-1).
1139 **/
1140static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1141{
1142        s32 ret_val;
1143
1144        ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145        if (ret_val)
1146                goto out;
1147
1148        ret_val = igb_acquire_nvm(hw);
1149
1150        if (ret_val)
1151                hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1152
1153out:
1154        return ret_val;
1155}
1156
1157/**
1158 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1159 *  @hw: pointer to the HW structure
1160 *
1161 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1162 *  then release the semaphores acquired.
1163 **/
1164static void igb_release_nvm_82575(struct e1000_hw *hw)
1165{
1166        igb_release_nvm(hw);
1167        hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1168}
1169
1170/**
1171 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1172 *  @hw: pointer to the HW structure
1173 *  @mask: specifies which semaphore to acquire
1174 *
1175 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1176 *  will also specify which port we're acquiring the lock for.
1177 **/
1178static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1179{
1180        u32 swfw_sync;
1181        u32 swmask = mask;
1182        u32 fwmask = mask << 16;
1183        s32 ret_val = 0;
1184        s32 i = 0, timeout = 200;
1185
1186        while (i < timeout) {
1187                if (igb_get_hw_semaphore(hw)) {
1188                        ret_val = -E1000_ERR_SWFW_SYNC;
1189                        goto out;
1190                }
1191
1192                swfw_sync = rd32(E1000_SW_FW_SYNC);
1193                if (!(swfw_sync & (fwmask | swmask)))
1194                        break;
1195
1196                /* Firmware currently using resource (fwmask)
1197                 * or other software thread using resource (swmask)
1198                 */
1199                igb_put_hw_semaphore(hw);
1200                mdelay(5);
1201                i++;
1202        }
1203
1204        if (i == timeout) {
1205                hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1206                ret_val = -E1000_ERR_SWFW_SYNC;
1207                goto out;
1208        }
1209
1210        swfw_sync |= swmask;
1211        wr32(E1000_SW_FW_SYNC, swfw_sync);
1212
1213        igb_put_hw_semaphore(hw);
1214
1215out:
1216        return ret_val;
1217}
1218
1219/**
1220 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1221 *  @hw: pointer to the HW structure
1222 *  @mask: specifies which semaphore to acquire
1223 *
1224 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1225 *  will also specify which port we're releasing the lock for.
1226 **/
1227static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1228{
1229        u32 swfw_sync;
1230
1231        while (igb_get_hw_semaphore(hw) != 0)
1232                ; /* Empty */
1233
1234        swfw_sync = rd32(E1000_SW_FW_SYNC);
1235        swfw_sync &= ~mask;
1236        wr32(E1000_SW_FW_SYNC, swfw_sync);
1237
1238        igb_put_hw_semaphore(hw);
1239}
1240
1241/**
1242 *  igb_get_cfg_done_82575 - Read config done bit
1243 *  @hw: pointer to the HW structure
1244 *
1245 *  Read the management control register for the config done bit for
1246 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1247 *  to read the config done bit, so an error is *ONLY* logged and returns
1248 *  0.  If we were to return with error, EEPROM-less silicon
1249 *  would not be able to be reset or change link.
1250 **/
1251static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1252{
1253        s32 timeout = PHY_CFG_TIMEOUT;
1254        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1255
1256        if (hw->bus.func == 1)
1257                mask = E1000_NVM_CFG_DONE_PORT_1;
1258        else if (hw->bus.func == E1000_FUNC_2)
1259                mask = E1000_NVM_CFG_DONE_PORT_2;
1260        else if (hw->bus.func == E1000_FUNC_3)
1261                mask = E1000_NVM_CFG_DONE_PORT_3;
1262
1263        while (timeout) {
1264                if (rd32(E1000_EEMNGCTL) & mask)
1265                        break;
1266                usleep_range(1000, 2000);
1267                timeout--;
1268        }
1269        if (!timeout)
1270                hw_dbg("MNG configuration cycle has not completed.\n");
1271
1272        /* If EEPROM is not marked present, init the PHY manually */
1273        if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1274            (hw->phy.type == e1000_phy_igp_3))
1275                igb_phy_init_script_igp3(hw);
1276
1277        return 0;
1278}
1279
1280/**
1281 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1282 *  @hw: pointer to the HW structure
1283 *  @speed: stores the current speed
1284 *  @duplex: stores the current duplex
1285 *
1286 *  This is a wrapper function, if using the serial gigabit media independent
1287 *  interface, use PCS to retrieve the link speed and duplex information.
1288 *  Otherwise, use the generic function to get the link speed and duplex info.
1289 **/
1290static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1291                                        u16 *duplex)
1292{
1293        s32 ret_val;
1294
1295        if (hw->phy.media_type != e1000_media_type_copper)
1296                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1297                                                               duplex);
1298        else
1299                ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1300                                                                    duplex);
1301
1302        return ret_val;
1303}
1304
1305/**
1306 *  igb_check_for_link_82575 - Check for link
1307 *  @hw: pointer to the HW structure
1308 *
1309 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1310 *  use the generic interface for determining link.
1311 **/
1312static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1313{
1314        s32 ret_val;
1315        u16 speed, duplex;
1316
1317        if (hw->phy.media_type != e1000_media_type_copper) {
1318                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1319                                                             &duplex);
1320                /* Use this flag to determine if link needs to be checked or
1321                 * not.  If  we have link clear the flag so that we do not
1322                 * continue to check for link.
1323                 */
1324                hw->mac.get_link_status = !hw->mac.serdes_has_link;
1325
1326                /* Configure Flow Control now that Auto-Neg has completed.
1327                 * First, we need to restore the desired flow control
1328                 * settings because we may have had to re-autoneg with a
1329                 * different link partner.
1330                 */
1331                ret_val = igb_config_fc_after_link_up(hw);
1332                if (ret_val)
1333                        hw_dbg("Error configuring flow control\n");
1334        } else {
1335                ret_val = igb_check_for_copper_link(hw);
1336        }
1337
1338        return ret_val;
1339}
1340
1341/**
1342 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1343 *  @hw: pointer to the HW structure
1344 **/
1345void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1346{
1347        u32 reg;
1348
1349
1350        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1351            !igb_sgmii_active_82575(hw))
1352                return;
1353
1354        /* Enable PCS to turn on link */
1355        reg = rd32(E1000_PCS_CFG0);
1356        reg |= E1000_PCS_CFG_PCS_EN;
1357        wr32(E1000_PCS_CFG0, reg);
1358
1359        /* Power up the laser */
1360        reg = rd32(E1000_CTRL_EXT);
1361        reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1362        wr32(E1000_CTRL_EXT, reg);
1363
1364        /* flush the write to verify completion */
1365        wrfl();
1366        usleep_range(1000, 2000);
1367}
1368
1369/**
1370 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1371 *  @hw: pointer to the HW structure
1372 *  @speed: stores the current speed
1373 *  @duplex: stores the current duplex
1374 *
1375 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1376 *  duplex, then store the values in the pointers provided.
1377 **/
1378static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1379                                                u16 *duplex)
1380{
1381        struct e1000_mac_info *mac = &hw->mac;
1382        u32 pcs, status;
1383
1384        /* Set up defaults for the return values of this function */
1385        mac->serdes_has_link = false;
1386        *speed = 0;
1387        *duplex = 0;
1388
1389        /* Read the PCS Status register for link state. For non-copper mode,
1390         * the status register is not accurate. The PCS status register is
1391         * used instead.
1392         */
1393        pcs = rd32(E1000_PCS_LSTAT);
1394
1395        /* The link up bit determines when link is up on autoneg. The sync ok
1396         * gets set once both sides sync up and agree upon link. Stable link
1397         * can be determined by checking for both link up and link sync ok
1398         */
1399        if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1400                mac->serdes_has_link = true;
1401
1402                /* Detect and store PCS speed */
1403                if (pcs & E1000_PCS_LSTS_SPEED_1000)
1404                        *speed = SPEED_1000;
1405                else if (pcs & E1000_PCS_LSTS_SPEED_100)
1406                        *speed = SPEED_100;
1407                else
1408                        *speed = SPEED_10;
1409
1410                /* Detect and store PCS duplex */
1411                if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1412                        *duplex = FULL_DUPLEX;
1413                else
1414                        *duplex = HALF_DUPLEX;
1415
1416        /* Check if it is an I354 2.5Gb backplane connection. */
1417                if (mac->type == e1000_i354) {
1418                        status = rd32(E1000_STATUS);
1419                        if ((status & E1000_STATUS_2P5_SKU) &&
1420                            !(status & E1000_STATUS_2P5_SKU_OVER)) {
1421                                *speed = SPEED_2500;
1422                                *duplex = FULL_DUPLEX;
1423                                hw_dbg("2500 Mbs, ");
1424                                hw_dbg("Full Duplex\n");
1425                        }
1426                }
1427
1428        }
1429
1430        return 0;
1431}
1432
1433/**
1434 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1435 *  @hw: pointer to the HW structure
1436 *
1437 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1438 *  when management pass thru is not enabled.
1439 **/
1440void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1441{
1442        u32 reg;
1443
1444        if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1445            igb_sgmii_active_82575(hw))
1446                return;
1447
1448        if (!igb_enable_mng_pass_thru(hw)) {
1449                /* Disable PCS to turn off link */
1450                reg = rd32(E1000_PCS_CFG0);
1451                reg &= ~E1000_PCS_CFG_PCS_EN;
1452                wr32(E1000_PCS_CFG0, reg);
1453
1454                /* shutdown the laser */
1455                reg = rd32(E1000_CTRL_EXT);
1456                reg |= E1000_CTRL_EXT_SDP3_DATA;
1457                wr32(E1000_CTRL_EXT, reg);
1458
1459                /* flush the write to verify completion */
1460                wrfl();
1461                usleep_range(1000, 2000);
1462        }
1463}
1464
1465/**
1466 *  igb_reset_hw_82575 - Reset hardware
1467 *  @hw: pointer to the HW structure
1468 *
1469 *  This resets the hardware into a known state.  This is a
1470 *  function pointer entry point called by the api module.
1471 **/
1472static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1473{
1474        u32 ctrl;
1475        s32 ret_val;
1476
1477        /* Prevent the PCI-E bus from sticking if there is no TLP connection
1478         * on the last TLP read/write transaction when MAC is reset.
1479         */
1480        ret_val = igb_disable_pcie_master(hw);
1481        if (ret_val)
1482                hw_dbg("PCI-E Master disable polling has failed.\n");
1483
1484        /* set the completion timeout for interface */
1485        ret_val = igb_set_pcie_completion_timeout(hw);
1486        if (ret_val)
1487                hw_dbg("PCI-E Set completion timeout has failed.\n");
1488
1489        hw_dbg("Masking off all interrupts\n");
1490        wr32(E1000_IMC, 0xffffffff);
1491
1492        wr32(E1000_RCTL, 0);
1493        wr32(E1000_TCTL, E1000_TCTL_PSP);
1494        wrfl();
1495
1496        usleep_range(10000, 20000);
1497
1498        ctrl = rd32(E1000_CTRL);
1499
1500        hw_dbg("Issuing a global reset to MAC\n");
1501        wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1502
1503        ret_val = igb_get_auto_rd_done(hw);
1504        if (ret_val) {
1505                /* When auto config read does not complete, do not
1506                 * return with an error. This can happen in situations
1507                 * where there is no eeprom and prevents getting link.
1508                 */
1509                hw_dbg("Auto Read Done did not complete\n");
1510        }
1511
1512        /* If EEPROM is not present, run manual init scripts */
1513        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1514                igb_reset_init_script_82575(hw);
1515
1516        /* Clear any pending interrupt events. */
1517        wr32(E1000_IMC, 0xffffffff);
1518        rd32(E1000_ICR);
1519
1520        /* Install any alternate MAC address into RAR0 */
1521        ret_val = igb_check_alt_mac_addr(hw);
1522
1523        return ret_val;
1524}
1525
1526/**
1527 *  igb_init_hw_82575 - Initialize hardware
1528 *  @hw: pointer to the HW structure
1529 *
1530 *  This inits the hardware readying it for operation.
1531 **/
1532static s32 igb_init_hw_82575(struct e1000_hw *hw)
1533{
1534        struct e1000_mac_info *mac = &hw->mac;
1535        s32 ret_val;
1536        u16 i, rar_count = mac->rar_entry_count;
1537
1538        if ((hw->mac.type >= e1000_i210) &&
1539            !(igb_get_flash_presence_i210(hw))) {
1540                ret_val = igb_pll_workaround_i210(hw);
1541                if (ret_val)
1542                        return ret_val;
1543        }
1544
1545        /* Initialize identification LED */
1546        ret_val = igb_id_led_init(hw);
1547        if (ret_val) {
1548                hw_dbg("Error initializing identification LED\n");
1549                /* This is not fatal and we should not stop init due to this */
1550        }
1551
1552        /* Disabling VLAN filtering */
1553        hw_dbg("Initializing the IEEE VLAN\n");
1554        igb_clear_vfta(hw);
1555
1556        /* Setup the receive address */
1557        igb_init_rx_addrs(hw, rar_count);
1558
1559        /* Zero out the Multicast HASH table */
1560        hw_dbg("Zeroing the MTA\n");
1561        for (i = 0; i < mac->mta_reg_count; i++)
1562                array_wr32(E1000_MTA, i, 0);
1563
1564        /* Zero out the Unicast HASH table */
1565        hw_dbg("Zeroing the UTA\n");
1566        for (i = 0; i < mac->uta_reg_count; i++)
1567                array_wr32(E1000_UTA, i, 0);
1568
1569        /* Setup link and flow control */
1570        ret_val = igb_setup_link(hw);
1571
1572        /* Clear all of the statistics registers (clear on read).  It is
1573         * important that we do this after we have tried to establish link
1574         * because the symbol error count will increment wildly if there
1575         * is no link.
1576         */
1577        igb_clear_hw_cntrs_82575(hw);
1578        return ret_val;
1579}
1580
1581/**
1582 *  igb_setup_copper_link_82575 - Configure copper link settings
1583 *  @hw: pointer to the HW structure
1584 *
1585 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1586 *  for link, once link is established calls to configure collision distance
1587 *  and flow control are called.
1588 **/
1589static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1590{
1591        u32 ctrl;
1592        s32  ret_val;
1593        u32 phpm_reg;
1594
1595        ctrl = rd32(E1000_CTRL);
1596        ctrl |= E1000_CTRL_SLU;
1597        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1598        wr32(E1000_CTRL, ctrl);
1599
1600        /* Clear Go Link Disconnect bit on supported devices */
1601        switch (hw->mac.type) {
1602        case e1000_82580:
1603        case e1000_i350:
1604        case e1000_i210:
1605        case e1000_i211:
1606                phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1607                phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1608                wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1609                break;
1610        default:
1611                break;
1612        }
1613
1614        ret_val = igb_setup_serdes_link_82575(hw);
1615        if (ret_val)
1616                goto out;
1617
1618        if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1619                /* allow time for SFP cage time to power up phy */
1620                msleep(300);
1621
1622                ret_val = hw->phy.ops.reset(hw);
1623                if (ret_val) {
1624                        hw_dbg("Error resetting the PHY.\n");
1625                        goto out;
1626                }
1627        }
1628        switch (hw->phy.type) {
1629        case e1000_phy_i210:
1630        case e1000_phy_m88:
1631                switch (hw->phy.id) {
1632                case I347AT4_E_PHY_ID:
1633                case M88E1112_E_PHY_ID:
1634                case M88E1543_E_PHY_ID:
1635                case M88E1512_E_PHY_ID:
1636                case I210_I_PHY_ID:
1637                        ret_val = igb_copper_link_setup_m88_gen2(hw);
1638                        break;
1639                default:
1640                        ret_val = igb_copper_link_setup_m88(hw);
1641                        break;
1642                }
1643                break;
1644        case e1000_phy_igp_3:
1645                ret_val = igb_copper_link_setup_igp(hw);
1646                break;
1647        case e1000_phy_82580:
1648                ret_val = igb_copper_link_setup_82580(hw);
1649                break;
1650        default:
1651                ret_val = -E1000_ERR_PHY;
1652                break;
1653        }
1654
1655        if (ret_val)
1656                goto out;
1657
1658        ret_val = igb_setup_copper_link(hw);
1659out:
1660        return ret_val;
1661}
1662
1663/**
1664 *  igb_setup_serdes_link_82575 - Setup link for serdes
1665 *  @hw: pointer to the HW structure
1666 *
1667 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1668 *  used on copper connections where the serialized gigabit media independent
1669 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1670 *  for auto-negotiation or forces speed/duplex.
1671 **/
1672static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1673{
1674        u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1675        bool pcs_autoneg;
1676        s32 ret_val = 0;
1677        u16 data;
1678
1679        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1680            !igb_sgmii_active_82575(hw))
1681                return ret_val;
1682
1683
1684        /* On the 82575, SerDes loopback mode persists until it is
1685         * explicitly turned off or a power cycle is performed.  A read to
1686         * the register does not indicate its status.  Therefore, we ensure
1687         * loopback mode is disabled during initialization.
1688         */
1689        wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1690
1691        /* power on the sfp cage if present and turn on I2C */
1692        ctrl_ext = rd32(E1000_CTRL_EXT);
1693        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1694        ctrl_ext |= E1000_CTRL_I2C_ENA;
1695        wr32(E1000_CTRL_EXT, ctrl_ext);
1696
1697        ctrl_reg = rd32(E1000_CTRL);
1698        ctrl_reg |= E1000_CTRL_SLU;
1699
1700        if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1701                /* set both sw defined pins */
1702                ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1703
1704                /* Set switch control to serdes energy detect */
1705                reg = rd32(E1000_CONNSW);
1706                reg |= E1000_CONNSW_ENRGSRC;
1707                wr32(E1000_CONNSW, reg);
1708        }
1709
1710        reg = rd32(E1000_PCS_LCTL);
1711
1712        /* default pcs_autoneg to the same setting as mac autoneg */
1713        pcs_autoneg = hw->mac.autoneg;
1714
1715        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1716        case E1000_CTRL_EXT_LINK_MODE_SGMII:
1717                /* sgmii mode lets the phy handle forcing speed/duplex */
1718                pcs_autoneg = true;
1719                /* autoneg time out should be disabled for SGMII mode */
1720                reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1721                break;
1722        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1723                /* disable PCS autoneg and support parallel detect only */
1724                pcs_autoneg = false;
1725        default:
1726                if (hw->mac.type == e1000_82575 ||
1727                    hw->mac.type == e1000_82576) {
1728                        ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1729                        if (ret_val) {
1730                                hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1731                                return ret_val;
1732                        }
1733
1734                        if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1735                                pcs_autoneg = false;
1736                }
1737
1738                /* non-SGMII modes only supports a speed of 1000/Full for the
1739                 * link so it is best to just force the MAC and let the pcs
1740                 * link either autoneg or be forced to 1000/Full
1741                 */
1742                ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1743                                E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1744
1745                /* set speed of 1000/Full if speed/duplex is forced */
1746                reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1747                break;
1748        }
1749
1750        wr32(E1000_CTRL, ctrl_reg);
1751
1752        /* New SerDes mode allows for forcing speed or autonegotiating speed
1753         * at 1gb. Autoneg should be default set by most drivers. This is the
1754         * mode that will be compatible with older link partners and switches.
1755         * However, both are supported by the hardware and some drivers/tools.
1756         */
1757        reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1758                E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1759
1760        if (pcs_autoneg) {
1761                /* Set PCS register for autoneg */
1762                reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1763                       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1764
1765                /* Disable force flow control for autoneg */
1766                reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1767
1768                /* Configure flow control advertisement for autoneg */
1769                anadv_reg = rd32(E1000_PCS_ANADV);
1770                anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1771                switch (hw->fc.requested_mode) {
1772                case e1000_fc_full:
1773                case e1000_fc_rx_pause:
1774                        anadv_reg |= E1000_TXCW_ASM_DIR;
1775                        anadv_reg |= E1000_TXCW_PAUSE;
1776                        break;
1777                case e1000_fc_tx_pause:
1778                        anadv_reg |= E1000_TXCW_ASM_DIR;
1779                        break;
1780                default:
1781                        break;
1782                }
1783                wr32(E1000_PCS_ANADV, anadv_reg);
1784
1785                hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1786        } else {
1787                /* Set PCS register for forced link */
1788                reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1789
1790                /* Force flow control for forced link */
1791                reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1792
1793                hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1794        }
1795
1796        wr32(E1000_PCS_LCTL, reg);
1797
1798        if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1799                igb_force_mac_fc(hw);
1800
1801        return ret_val;
1802}
1803
1804/**
1805 *  igb_sgmii_active_82575 - Return sgmii state
1806 *  @hw: pointer to the HW structure
1807 *
1808 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1809 *  which can be enabled for use in the embedded applications.  Simply
1810 *  return the current state of the sgmii interface.
1811 **/
1812static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1813{
1814        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1815        return dev_spec->sgmii_active;
1816}
1817
1818/**
1819 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1820 *  @hw: pointer to the HW structure
1821 *
1822 *  Inits recommended HW defaults after a reset when there is no EEPROM
1823 *  detected. This is only for the 82575.
1824 **/
1825static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1826{
1827        if (hw->mac.type == e1000_82575) {
1828                hw_dbg("Running reset init script for 82575\n");
1829                /* SerDes configuration via SERDESCTRL */
1830                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1831                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1832                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1833                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1834
1835                /* CCM configuration via CCMCTL register */
1836                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1837                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1838
1839                /* PCIe lanes configuration */
1840                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1841                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1842                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1843                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1844
1845                /* PCIe PLL Configuration */
1846                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1847                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1848                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1849        }
1850
1851        return 0;
1852}
1853
1854/**
1855 *  igb_read_mac_addr_82575 - Read device MAC address
1856 *  @hw: pointer to the HW structure
1857 **/
1858static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1859{
1860        s32 ret_val = 0;
1861
1862        /* If there's an alternate MAC address place it in RAR0
1863         * so that it will override the Si installed default perm
1864         * address.
1865         */
1866        ret_val = igb_check_alt_mac_addr(hw);
1867        if (ret_val)
1868                goto out;
1869
1870        ret_val = igb_read_mac_addr(hw);
1871
1872out:
1873        return ret_val;
1874}
1875
1876/**
1877 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1878 * @hw: pointer to the HW structure
1879 *
1880 * In the case of a PHY power down to save power, or to turn off link during a
1881 * driver unload, or wake on lan is not enabled, remove the link.
1882 **/
1883void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1884{
1885        /* If the management interface is not enabled, then power down */
1886        if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1887                igb_power_down_phy_copper(hw);
1888}
1889
1890/**
1891 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1892 *  @hw: pointer to the HW structure
1893 *
1894 *  Clears the hardware counters by reading the counter registers.
1895 **/
1896static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1897{
1898        igb_clear_hw_cntrs_base(hw);
1899
1900        rd32(E1000_PRC64);
1901        rd32(E1000_PRC127);
1902        rd32(E1000_PRC255);
1903        rd32(E1000_PRC511);
1904        rd32(E1000_PRC1023);
1905        rd32(E1000_PRC1522);
1906        rd32(E1000_PTC64);
1907        rd32(E1000_PTC127);
1908        rd32(E1000_PTC255);
1909        rd32(E1000_PTC511);
1910        rd32(E1000_PTC1023);
1911        rd32(E1000_PTC1522);
1912
1913        rd32(E1000_ALGNERRC);
1914        rd32(E1000_RXERRC);
1915        rd32(E1000_TNCRS);
1916        rd32(E1000_CEXTERR);
1917        rd32(E1000_TSCTC);
1918        rd32(E1000_TSCTFC);
1919
1920        rd32(E1000_MGTPRC);
1921        rd32(E1000_MGTPDC);
1922        rd32(E1000_MGTPTC);
1923
1924        rd32(E1000_IAC);
1925        rd32(E1000_ICRXOC);
1926
1927        rd32(E1000_ICRXPTC);
1928        rd32(E1000_ICRXATC);
1929        rd32(E1000_ICTXPTC);
1930        rd32(E1000_ICTXATC);
1931        rd32(E1000_ICTXQEC);
1932        rd32(E1000_ICTXQMTC);
1933        rd32(E1000_ICRXDMTC);
1934
1935        rd32(E1000_CBTMPC);
1936        rd32(E1000_HTDPMC);
1937        rd32(E1000_CBRMPC);
1938        rd32(E1000_RPTHC);
1939        rd32(E1000_HGPTC);
1940        rd32(E1000_HTCBDPC);
1941        rd32(E1000_HGORCL);
1942        rd32(E1000_HGORCH);
1943        rd32(E1000_HGOTCL);
1944        rd32(E1000_HGOTCH);
1945        rd32(E1000_LENERRS);
1946
1947        /* This register should not be read in copper configurations */
1948        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1949            igb_sgmii_active_82575(hw))
1950                rd32(E1000_SCVPC);
1951}
1952
1953/**
1954 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1955 *  @hw: pointer to the HW structure
1956 *
1957 *  After rx enable if manageability is enabled then there is likely some
1958 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1959 *  function clears the fifos and flushes any packets that came in as rx was
1960 *  being enabled.
1961 **/
1962void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1963{
1964        u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1965        int i, ms_wait;
1966
1967        /* disable IPv6 options as per hardware errata */
1968        rfctl = rd32(E1000_RFCTL);
1969        rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1970        wr32(E1000_RFCTL, rfctl);
1971
1972        if (hw->mac.type != e1000_82575 ||
1973            !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1974                return;
1975
1976        /* Disable all RX queues */
1977        for (i = 0; i < 4; i++) {
1978                rxdctl[i] = rd32(E1000_RXDCTL(i));
1979                wr32(E1000_RXDCTL(i),
1980                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1981        }
1982        /* Poll all queues to verify they have shut down */
1983        for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1984                usleep_range(1000, 2000);
1985                rx_enabled = 0;
1986                for (i = 0; i < 4; i++)
1987                        rx_enabled |= rd32(E1000_RXDCTL(i));
1988                if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1989                        break;
1990        }
1991
1992        if (ms_wait == 10)
1993                hw_dbg("Queue disable timed out after 10ms\n");
1994
1995        /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1996         * incoming packets are rejected.  Set enable and wait 2ms so that
1997         * any packet that was coming in as RCTL.EN was set is flushed
1998         */
1999        wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2000
2001        rlpml = rd32(E1000_RLPML);
2002        wr32(E1000_RLPML, 0);
2003
2004        rctl = rd32(E1000_RCTL);
2005        temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2006        temp_rctl |= E1000_RCTL_LPE;
2007
2008        wr32(E1000_RCTL, temp_rctl);
2009        wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2010        wrfl();
2011        usleep_range(2000, 3000);
2012
2013        /* Enable RX queues that were previously enabled and restore our
2014         * previous state
2015         */
2016        for (i = 0; i < 4; i++)
2017                wr32(E1000_RXDCTL(i), rxdctl[i]);
2018        wr32(E1000_RCTL, rctl);
2019        wrfl();
2020
2021        wr32(E1000_RLPML, rlpml);
2022        wr32(E1000_RFCTL, rfctl);
2023
2024        /* Flush receive errors generated by workaround */
2025        rd32(E1000_ROC);
2026        rd32(E1000_RNBC);
2027        rd32(E1000_MPC);
2028}
2029
2030/**
2031 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2032 *  @hw: pointer to the HW structure
2033 *
2034 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2035 *  however the hardware default for these parts is 500us to 1ms which is less
2036 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2037 *  increase the value to either 10ms to 200ms for capability version 1 config,
2038 *  or 16ms to 55ms for version 2.
2039 **/
2040static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2041{
2042        u32 gcr = rd32(E1000_GCR);
2043        s32 ret_val = 0;
2044        u16 pcie_devctl2;
2045
2046        /* only take action if timeout value is defaulted to 0 */
2047        if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2048                goto out;
2049
2050        /* if capabilities version is type 1 we can write the
2051         * timeout of 10ms to 200ms through the GCR register
2052         */
2053        if (!(gcr & E1000_GCR_CAP_VER2)) {
2054                gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2055                goto out;
2056        }
2057
2058        /* for version 2 capabilities we need to write the config space
2059         * directly in order to set the completion timeout value for
2060         * 16ms to 55ms
2061         */
2062        ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2063                                        &pcie_devctl2);
2064        if (ret_val)
2065                goto out;
2066
2067        pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2068
2069        ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2070                                         &pcie_devctl2);
2071out:
2072        /* disable completion timeout resend */
2073        gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2074
2075        wr32(E1000_GCR, gcr);
2076        return ret_val;
2077}
2078
2079/**
2080 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2081 *  @hw: pointer to the hardware struct
2082 *  @enable: state to enter, either enabled or disabled
2083 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2084 *
2085 *  enables/disables L2 switch anti-spoofing functionality.
2086 **/
2087void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2088{
2089        u32 reg_val, reg_offset;
2090
2091        switch (hw->mac.type) {
2092        case e1000_82576:
2093                reg_offset = E1000_DTXSWC;
2094                break;
2095        case e1000_i350:
2096        case e1000_i354:
2097                reg_offset = E1000_TXSWC;
2098                break;
2099        default:
2100                return;
2101        }
2102
2103        reg_val = rd32(reg_offset);
2104        if (enable) {
2105                reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2106                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2107                /* The PF can spoof - it has to in order to
2108                 * support emulation mode NICs
2109                 */
2110                reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2111        } else {
2112                reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2113                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2114        }
2115        wr32(reg_offset, reg_val);
2116}
2117
2118/**
2119 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2120 *  @hw: pointer to the hardware struct
2121 *  @enable: state to enter, either enabled or disabled
2122 *
2123 *  enables/disables L2 switch loopback functionality.
2124 **/
2125void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2126{
2127        u32 dtxswc;
2128
2129        switch (hw->mac.type) {
2130        case e1000_82576:
2131                dtxswc = rd32(E1000_DTXSWC);
2132                if (enable)
2133                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2134                else
2135                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2136                wr32(E1000_DTXSWC, dtxswc);
2137                break;
2138        case e1000_i354:
2139        case e1000_i350:
2140                dtxswc = rd32(E1000_TXSWC);
2141                if (enable)
2142                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2143                else
2144                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2145                wr32(E1000_TXSWC, dtxswc);
2146                break;
2147        default:
2148                /* Currently no other hardware supports loopback */
2149                break;
2150        }
2151
2152}
2153
2154/**
2155 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2156 *  @hw: pointer to the hardware struct
2157 *  @enable: state to enter, either enabled or disabled
2158 *
2159 *  enables/disables replication of packets across multiple pools.
2160 **/
2161void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2162{
2163        u32 vt_ctl = rd32(E1000_VT_CTL);
2164
2165        if (enable)
2166                vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2167        else
2168                vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2169
2170        wr32(E1000_VT_CTL, vt_ctl);
2171}
2172
2173/**
2174 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2175 *  @hw: pointer to the HW structure
2176 *  @offset: register offset to be read
2177 *  @data: pointer to the read data
2178 *
2179 *  Reads the MDI control register in the PHY at offset and stores the
2180 *  information read to data.
2181 **/
2182s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2183{
2184        s32 ret_val;
2185
2186        ret_val = hw->phy.ops.acquire(hw);
2187        if (ret_val)
2188                goto out;
2189
2190        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2191
2192        hw->phy.ops.release(hw);
2193
2194out:
2195        return ret_val;
2196}
2197
2198/**
2199 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2200 *  @hw: pointer to the HW structure
2201 *  @offset: register offset to write to
2202 *  @data: data to write to register at offset
2203 *
2204 *  Writes data to MDI control register in the PHY at offset.
2205 **/
2206s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2207{
2208        s32 ret_val;
2209
2210
2211        ret_val = hw->phy.ops.acquire(hw);
2212        if (ret_val)
2213                goto out;
2214
2215        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2216
2217        hw->phy.ops.release(hw);
2218
2219out:
2220        return ret_val;
2221}
2222
2223/**
2224 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2225 *  @hw: pointer to the HW structure
2226 *
2227 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2228 *  the values found in the EEPROM.  This addresses an issue in which these
2229 *  bits are not restored from EEPROM after reset.
2230 **/
2231static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2232{
2233        s32 ret_val = 0;
2234        u32 mdicnfg;
2235        u16 nvm_data = 0;
2236
2237        if (hw->mac.type != e1000_82580)
2238                goto out;
2239        if (!igb_sgmii_active_82575(hw))
2240                goto out;
2241
2242        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2243                                   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2244                                   &nvm_data);
2245        if (ret_val) {
2246                hw_dbg("NVM Read Error\n");
2247                goto out;
2248        }
2249
2250        mdicnfg = rd32(E1000_MDICNFG);
2251        if (nvm_data & NVM_WORD24_EXT_MDIO)
2252                mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2253        if (nvm_data & NVM_WORD24_COM_MDIO)
2254                mdicnfg |= E1000_MDICNFG_COM_MDIO;
2255        wr32(E1000_MDICNFG, mdicnfg);
2256out:
2257        return ret_val;
2258}
2259
2260/**
2261 *  igb_reset_hw_82580 - Reset hardware
2262 *  @hw: pointer to the HW structure
2263 *
2264 *  This resets function or entire device (all ports, etc.)
2265 *  to a known state.
2266 **/
2267static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2268{
2269        s32 ret_val = 0;
2270        /* BH SW mailbox bit in SW_FW_SYNC */
2271        u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2272        u32 ctrl;
2273        bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2274
2275        hw->dev_spec._82575.global_device_reset = false;
2276
2277        /* due to hw errata, global device reset doesn't always
2278         * work on 82580
2279         */
2280        if (hw->mac.type == e1000_82580)
2281                global_device_reset = false;
2282
2283        /* Get current control state. */
2284        ctrl = rd32(E1000_CTRL);
2285
2286        /* Prevent the PCI-E bus from sticking if there is no TLP connection
2287         * on the last TLP read/write transaction when MAC is reset.
2288         */
2289        ret_val = igb_disable_pcie_master(hw);
2290        if (ret_val)
2291                hw_dbg("PCI-E Master disable polling has failed.\n");
2292
2293        hw_dbg("Masking off all interrupts\n");
2294        wr32(E1000_IMC, 0xffffffff);
2295        wr32(E1000_RCTL, 0);
2296        wr32(E1000_TCTL, E1000_TCTL_PSP);
2297        wrfl();
2298
2299        usleep_range(10000, 11000);
2300
2301        /* Determine whether or not a global dev reset is requested */
2302        if (global_device_reset &&
2303                hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2304                        global_device_reset = false;
2305
2306        if (global_device_reset &&
2307                !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2308                ctrl |= E1000_CTRL_DEV_RST;
2309        else
2310                ctrl |= E1000_CTRL_RST;
2311
2312        wr32(E1000_CTRL, ctrl);
2313        wrfl();
2314
2315        /* Add delay to insure DEV_RST has time to complete */
2316        if (global_device_reset)
2317                usleep_range(5000, 6000);
2318
2319        ret_val = igb_get_auto_rd_done(hw);
2320        if (ret_val) {
2321                /* When auto config read does not complete, do not
2322                 * return with an error. This can happen in situations
2323                 * where there is no eeprom and prevents getting link.
2324                 */
2325                hw_dbg("Auto Read Done did not complete\n");
2326        }
2327
2328        /* clear global device reset status bit */
2329        wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2330
2331        /* Clear any pending interrupt events. */
2332        wr32(E1000_IMC, 0xffffffff);
2333        rd32(E1000_ICR);
2334
2335        ret_val = igb_reset_mdicnfg_82580(hw);
2336        if (ret_val)
2337                hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2338
2339        /* Install any alternate MAC address into RAR0 */
2340        ret_val = igb_check_alt_mac_addr(hw);
2341
2342        /* Release semaphore */
2343        if (global_device_reset)
2344                hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2345
2346        return ret_val;
2347}
2348
2349/**
2350 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2351 *  @data: data received by reading RXPBS register
2352 *
2353 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2354 *  This function converts the retrieved value into the correct table value
2355 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2356 *  0x0 36  72 144   1   2   4   8  16
2357 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2358 */
2359u16 igb_rxpbs_adjust_82580(u32 data)
2360{
2361        u16 ret_val = 0;
2362
2363        if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2364                ret_val = e1000_82580_rxpbs_table[data];
2365
2366        return ret_val;
2367}
2368
2369/**
2370 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2371 *  checksum
2372 *  @hw: pointer to the HW structure
2373 *  @offset: offset in words of the checksum protected region
2374 *
2375 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2376 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2377 **/
2378static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2379                                                 u16 offset)
2380{
2381        s32 ret_val = 0;
2382        u16 checksum = 0;
2383        u16 i, nvm_data;
2384
2385        for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2386                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2387                if (ret_val) {
2388                        hw_dbg("NVM Read Error\n");
2389                        goto out;
2390                }
2391                checksum += nvm_data;
2392        }
2393
2394        if (checksum != (u16) NVM_SUM) {
2395                hw_dbg("NVM Checksum Invalid\n");
2396                ret_val = -E1000_ERR_NVM;
2397                goto out;
2398        }
2399
2400out:
2401        return ret_val;
2402}
2403
2404/**
2405 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2406 *  checksum
2407 *  @hw: pointer to the HW structure
2408 *  @offset: offset in words of the checksum protected region
2409 *
2410 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2411 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2412 *  value to the EEPROM.
2413 **/
2414static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2415{
2416        s32 ret_val;
2417        u16 checksum = 0;
2418        u16 i, nvm_data;
2419
2420        for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2421                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2422                if (ret_val) {
2423                        hw_dbg("NVM Read Error while updating checksum.\n");
2424                        goto out;
2425                }
2426                checksum += nvm_data;
2427        }
2428        checksum = (u16) NVM_SUM - checksum;
2429        ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2430                                &checksum);
2431        if (ret_val)
2432                hw_dbg("NVM Write Error while updating checksum.\n");
2433
2434out:
2435        return ret_val;
2436}
2437
2438/**
2439 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2440 *  @hw: pointer to the HW structure
2441 *
2442 *  Calculates the EEPROM section checksum by reading/adding each word of
2443 *  the EEPROM and then verifies that the sum of the EEPROM is
2444 *  equal to 0xBABA.
2445 **/
2446static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2447{
2448        s32 ret_val = 0;
2449        u16 eeprom_regions_count = 1;
2450        u16 j, nvm_data;
2451        u16 nvm_offset;
2452
2453        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2454        if (ret_val) {
2455                hw_dbg("NVM Read Error\n");
2456                goto out;
2457        }
2458
2459        if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2460                /* if checksums compatibility bit is set validate checksums
2461                 * for all 4 ports.
2462                 */
2463                eeprom_regions_count = 4;
2464        }
2465
2466        for (j = 0; j < eeprom_regions_count; j++) {
2467                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2468                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2469                                                                nvm_offset);
2470                if (ret_val != 0)
2471                        goto out;
2472        }
2473
2474out:
2475        return ret_val;
2476}
2477
2478/**
2479 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2480 *  @hw: pointer to the HW structure
2481 *
2482 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2483 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2484 *  checksum and writes the value to the EEPROM.
2485 **/
2486static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2487{
2488        s32 ret_val;
2489        u16 j, nvm_data;
2490        u16 nvm_offset;
2491
2492        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2493        if (ret_val) {
2494                hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2495                goto out;
2496        }
2497
2498        if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2499                /* set compatibility bit to validate checksums appropriately */
2500                nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2501                ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2502                                        &nvm_data);
2503                if (ret_val) {
2504                        hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2505                        goto out;
2506                }
2507        }
2508
2509        for (j = 0; j < 4; j++) {
2510                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2511                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2512                if (ret_val)
2513                        goto out;
2514        }
2515
2516out:
2517        return ret_val;
2518}
2519
2520/**
2521 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2522 *  @hw: pointer to the HW structure
2523 *
2524 *  Calculates the EEPROM section checksum by reading/adding each word of
2525 *  the EEPROM and then verifies that the sum of the EEPROM is
2526 *  equal to 0xBABA.
2527 **/
2528static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2529{
2530        s32 ret_val = 0;
2531        u16 j;
2532        u16 nvm_offset;
2533
2534        for (j = 0; j < 4; j++) {
2535                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2536                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2537                                                                nvm_offset);
2538                if (ret_val != 0)
2539                        goto out;
2540        }
2541
2542out:
2543        return ret_val;
2544}
2545
2546/**
2547 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2548 *  @hw: pointer to the HW structure
2549 *
2550 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2551 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2552 *  checksum and writes the value to the EEPROM.
2553 **/
2554static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2555{
2556        s32 ret_val = 0;
2557        u16 j;
2558        u16 nvm_offset;
2559
2560        for (j = 0; j < 4; j++) {
2561                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2562                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2563                if (ret_val != 0)
2564                        goto out;
2565        }
2566
2567out:
2568        return ret_val;
2569}
2570
2571/**
2572 *  __igb_access_emi_reg - Read/write EMI register
2573 *  @hw: pointer to the HW structure
2574 *  @addr: EMI address to program
2575 *  @data: pointer to value to read/write from/to the EMI address
2576 *  @read: boolean flag to indicate read or write
2577 **/
2578static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2579                                  u16 *data, bool read)
2580{
2581        s32 ret_val = 0;
2582
2583        ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2584        if (ret_val)
2585                return ret_val;
2586
2587        if (read)
2588                ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2589        else
2590                ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2591
2592        return ret_val;
2593}
2594
2595/**
2596 *  igb_read_emi_reg - Read Extended Management Interface register
2597 *  @hw: pointer to the HW structure
2598 *  @addr: EMI address to program
2599 *  @data: value to be read from the EMI address
2600 **/
2601s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2602{
2603        return __igb_access_emi_reg(hw, addr, data, true);
2604}
2605
2606/**
2607 *  igb_set_eee_i350 - Enable/disable EEE support
2608 *  @hw: pointer to the HW structure
2609 *  @adv1G: boolean flag enabling 1G EEE advertisement
2610 *  @adv100m: boolean flag enabling 100M EEE advertisement
2611 *
2612 *  Enable/disable EEE based on setting in dev_spec structure.
2613 *
2614 **/
2615s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2616{
2617        u32 ipcnfg, eeer;
2618
2619        if ((hw->mac.type < e1000_i350) ||
2620            (hw->phy.media_type != e1000_media_type_copper))
2621                goto out;
2622        ipcnfg = rd32(E1000_IPCNFG);
2623        eeer = rd32(E1000_EEER);
2624
2625        /* enable or disable per user setting */
2626        if (!(hw->dev_spec._82575.eee_disable)) {
2627                u32 eee_su = rd32(E1000_EEE_SU);
2628
2629                if (adv100M)
2630                        ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2631                else
2632                        ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2633
2634                if (adv1G)
2635                        ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2636                else
2637                        ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2638
2639                eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2640                        E1000_EEER_LPI_FC);
2641
2642                /* This bit should not be set in normal operation. */
2643                if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2644                        hw_dbg("LPI Clock Stop Bit should not be set!\n");
2645
2646        } else {
2647                ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2648                        E1000_IPCNFG_EEE_100M_AN);
2649                eeer &= ~(E1000_EEER_TX_LPI_EN |
2650                        E1000_EEER_RX_LPI_EN |
2651                        E1000_EEER_LPI_FC);
2652        }
2653        wr32(E1000_IPCNFG, ipcnfg);
2654        wr32(E1000_EEER, eeer);
2655        rd32(E1000_IPCNFG);
2656        rd32(E1000_EEER);
2657out:
2658
2659        return 0;
2660}
2661
2662/**
2663 *  igb_set_eee_i354 - Enable/disable EEE support
2664 *  @hw: pointer to the HW structure
2665 *  @adv1G: boolean flag enabling 1G EEE advertisement
2666 *  @adv100m: boolean flag enabling 100M EEE advertisement
2667 *
2668 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2669 *
2670 **/
2671s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2672{
2673        struct e1000_phy_info *phy = &hw->phy;
2674        s32 ret_val = 0;
2675        u16 phy_data;
2676
2677        if ((hw->phy.media_type != e1000_media_type_copper) ||
2678            ((phy->id != M88E1543_E_PHY_ID) &&
2679             (phy->id != M88E1512_E_PHY_ID)))
2680                goto out;
2681
2682        if (!hw->dev_spec._82575.eee_disable) {
2683                /* Switch to PHY page 18. */
2684                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2685                if (ret_val)
2686                        goto out;
2687
2688                ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2689                                            &phy_data);
2690                if (ret_val)
2691                        goto out;
2692
2693                phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2694                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2695                                             phy_data);
2696                if (ret_val)
2697                        goto out;
2698
2699                /* Return the PHY to page 0. */
2700                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2701                if (ret_val)
2702                        goto out;
2703
2704                /* Turn on EEE advertisement. */
2705                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2706                                             E1000_EEE_ADV_DEV_I354,
2707                                             &phy_data);
2708                if (ret_val)
2709                        goto out;
2710
2711                if (adv100M)
2712                        phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2713                else
2714                        phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2715
2716                if (adv1G)
2717                        phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2718                else
2719                        phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2720
2721                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722                                                E1000_EEE_ADV_DEV_I354,
2723                                                phy_data);
2724        } else {
2725                /* Turn off EEE advertisement. */
2726                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2727                                             E1000_EEE_ADV_DEV_I354,
2728                                             &phy_data);
2729                if (ret_val)
2730                        goto out;
2731
2732                phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2733                              E1000_EEE_ADV_1000_SUPPORTED);
2734                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2735                                              E1000_EEE_ADV_DEV_I354,
2736                                              phy_data);
2737        }
2738
2739out:
2740        return ret_val;
2741}
2742
2743/**
2744 *  igb_get_eee_status_i354 - Get EEE status
2745 *  @hw: pointer to the HW structure
2746 *  @status: EEE status
2747 *
2748 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2749 *  been received.
2750 **/
2751s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2752{
2753        struct e1000_phy_info *phy = &hw->phy;
2754        s32 ret_val = 0;
2755        u16 phy_data;
2756
2757        /* Check if EEE is supported on this device. */
2758        if ((hw->phy.media_type != e1000_media_type_copper) ||
2759            ((phy->id != M88E1543_E_PHY_ID) &&
2760             (phy->id != M88E1512_E_PHY_ID)))
2761                goto out;
2762
2763        ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2764                                     E1000_PCS_STATUS_DEV_I354,
2765                                     &phy_data);
2766        if (ret_val)
2767                goto out;
2768
2769        *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2770                              E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2771
2772out:
2773        return ret_val;
2774}
2775
2776static const u8 e1000_emc_temp_data[4] = {
2777        E1000_EMC_INTERNAL_DATA,
2778        E1000_EMC_DIODE1_DATA,
2779        E1000_EMC_DIODE2_DATA,
2780        E1000_EMC_DIODE3_DATA
2781};
2782static const u8 e1000_emc_therm_limit[4] = {
2783        E1000_EMC_INTERNAL_THERM_LIMIT,
2784        E1000_EMC_DIODE1_THERM_LIMIT,
2785        E1000_EMC_DIODE2_THERM_LIMIT,
2786        E1000_EMC_DIODE3_THERM_LIMIT
2787};
2788
2789#ifdef CONFIG_IGB_HWMON
2790/**
2791 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2792 *  @hw: pointer to hardware structure
2793 *
2794 *  Updates the temperatures in mac.thermal_sensor_data
2795 **/
2796static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2797{
2798        u16 ets_offset;
2799        u16 ets_cfg;
2800        u16 ets_sensor;
2801        u8  num_sensors;
2802        u8  sensor_index;
2803        u8  sensor_location;
2804        u8  i;
2805        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2806
2807        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2808                return E1000_NOT_IMPLEMENTED;
2809
2810        data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2811
2812        /* Return the internal sensor only if ETS is unsupported */
2813        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2814        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2815                return 0;
2816
2817        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2818        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2819            != NVM_ETS_TYPE_EMC)
2820                return E1000_NOT_IMPLEMENTED;
2821
2822        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2823        if (num_sensors > E1000_MAX_SENSORS)
2824                num_sensors = E1000_MAX_SENSORS;
2825
2826        for (i = 1; i < num_sensors; i++) {
2827                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2828                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2829                                NVM_ETS_DATA_INDEX_SHIFT);
2830                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2831                                   NVM_ETS_DATA_LOC_SHIFT);
2832
2833                if (sensor_location != 0)
2834                        hw->phy.ops.read_i2c_byte(hw,
2835                                        e1000_emc_temp_data[sensor_index],
2836                                        E1000_I2C_THERMAL_SENSOR_ADDR,
2837                                        &data->sensor[i].temp);
2838        }
2839        return 0;
2840}
2841
2842/**
2843 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2844 *  @hw: pointer to hardware structure
2845 *
2846 *  Sets the thermal sensor thresholds according to the NVM map
2847 *  and save off the threshold and location values into mac.thermal_sensor_data
2848 **/
2849static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2850{
2851        u16 ets_offset;
2852        u16 ets_cfg;
2853        u16 ets_sensor;
2854        u8  low_thresh_delta;
2855        u8  num_sensors;
2856        u8  sensor_index;
2857        u8  sensor_location;
2858        u8  therm_limit;
2859        u8  i;
2860        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2861
2862        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2863                return E1000_NOT_IMPLEMENTED;
2864
2865        memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2866
2867        data->sensor[0].location = 0x1;
2868        data->sensor[0].caution_thresh =
2869                (rd32(E1000_THHIGHTC) & 0xFF);
2870        data->sensor[0].max_op_thresh =
2871                (rd32(E1000_THLOWTC) & 0xFF);
2872
2873        /* Return the internal sensor only if ETS is unsupported */
2874        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2875        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2876                return 0;
2877
2878        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2879        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2880            != NVM_ETS_TYPE_EMC)
2881                return E1000_NOT_IMPLEMENTED;
2882
2883        low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2884                            NVM_ETS_LTHRES_DELTA_SHIFT);
2885        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2886
2887        for (i = 1; i <= num_sensors; i++) {
2888                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2889                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2890                                NVM_ETS_DATA_INDEX_SHIFT);
2891                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2892                                   NVM_ETS_DATA_LOC_SHIFT);
2893                therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2894
2895                hw->phy.ops.write_i2c_byte(hw,
2896                        e1000_emc_therm_limit[sensor_index],
2897                        E1000_I2C_THERMAL_SENSOR_ADDR,
2898                        therm_limit);
2899
2900                if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2901                        data->sensor[i].location = sensor_location;
2902                        data->sensor[i].caution_thresh = therm_limit;
2903                        data->sensor[i].max_op_thresh = therm_limit -
2904                                                        low_thresh_delta;
2905                }
2906        }
2907        return 0;
2908}
2909
2910#endif
2911static struct e1000_mac_operations e1000_mac_ops_82575 = {
2912        .init_hw              = igb_init_hw_82575,
2913        .check_for_link       = igb_check_for_link_82575,
2914        .rar_set              = igb_rar_set,
2915        .read_mac_addr        = igb_read_mac_addr_82575,
2916        .get_speed_and_duplex = igb_get_link_up_info_82575,
2917#ifdef CONFIG_IGB_HWMON
2918        .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2919        .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2920#endif
2921};
2922
2923static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2924        .acquire              = igb_acquire_phy_82575,
2925        .get_cfg_done         = igb_get_cfg_done_82575,
2926        .release              = igb_release_phy_82575,
2927        .write_i2c_byte       = igb_write_i2c_byte,
2928        .read_i2c_byte        = igb_read_i2c_byte,
2929};
2930
2931static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2932        .acquire              = igb_acquire_nvm_82575,
2933        .read                 = igb_read_nvm_eerd,
2934        .release              = igb_release_nvm_82575,
2935        .write                = igb_write_nvm_spi,
2936};
2937
2938const struct e1000_info e1000_82575_info = {
2939        .get_invariants = igb_get_invariants_82575,
2940        .mac_ops = &e1000_mac_ops_82575,
2941        .phy_ops = &e1000_phy_ops_82575,
2942        .nvm_ops = &e1000_nvm_ops_82575,
2943};
2944
2945