linux/drivers/net/ethernet/intel/igb/igb_main.c
<<
>>
Prefs
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/module.h>
  27#include <linux/types.h>
  28#include <linux/init.h>
  29#include <linux/bitops.h>
  30#include <linux/vmalloc.h>
  31#include <linux/pagemap.h>
  32#include <linux/netdevice.h>
  33#include <linux/ipv6.h>
  34#include <linux/slab.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37#include <linux/net_tstamp.h>
  38#include <linux/mii.h>
  39#include <linux/ethtool.h>
  40#include <linux/if.h>
  41#include <linux/if_vlan.h>
  42#include <linux/pci.h>
  43#include <linux/pci-aspm.h>
  44#include <linux/delay.h>
  45#include <linux/interrupt.h>
  46#include <linux/ip.h>
  47#include <linux/tcp.h>
  48#include <linux/sctp.h>
  49#include <linux/if_ether.h>
  50#include <linux/aer.h>
  51#include <linux/prefetch.h>
  52#include <linux/pm_runtime.h>
  53#ifdef CONFIG_IGB_DCA
  54#include <linux/dca.h>
  55#endif
  56#include <linux/i2c.h>
  57#include "igb.h"
  58
  59#define MAJ 5
  60#define MIN 3
  61#define BUILD 0
  62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  63__stringify(BUILD) "-k"
  64char igb_driver_name[] = "igb";
  65char igb_driver_version[] = DRV_VERSION;
  66static const char igb_driver_string[] =
  67                                "Intel(R) Gigabit Ethernet Network Driver";
  68static const char igb_copyright[] =
  69                                "Copyright (c) 2007-2014 Intel Corporation.";
  70
  71static const struct e1000_info *igb_info_tbl[] = {
  72        [board_82575] = &e1000_82575_info,
  73};
  74
  75static const struct pci_device_id igb_pci_tbl[] = {
  76        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  77        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  78        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  79        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  80        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  81        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  82        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  83        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  84        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  85        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  86        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  87        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  88        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  89        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  90        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  91        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  92        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  93        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  94        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  95        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  96        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  97        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  98        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  99        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
 100        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
 101        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
 102        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
 103        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
 104        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
 105        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
 106        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 107        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 108        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 109        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 110        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 111        /* required last entry */
 112        {0, }
 113};
 114
 115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 116
 117static int igb_setup_all_tx_resources(struct igb_adapter *);
 118static int igb_setup_all_rx_resources(struct igb_adapter *);
 119static void igb_free_all_tx_resources(struct igb_adapter *);
 120static void igb_free_all_rx_resources(struct igb_adapter *);
 121static void igb_setup_mrqc(struct igb_adapter *);
 122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 123static void igb_remove(struct pci_dev *pdev);
 124static int igb_sw_init(struct igb_adapter *);
 125int igb_open(struct net_device *);
 126int igb_close(struct net_device *);
 127static void igb_configure(struct igb_adapter *);
 128static void igb_configure_tx(struct igb_adapter *);
 129static void igb_configure_rx(struct igb_adapter *);
 130static void igb_clean_all_tx_rings(struct igb_adapter *);
 131static void igb_clean_all_rx_rings(struct igb_adapter *);
 132static void igb_clean_tx_ring(struct igb_ring *);
 133static void igb_clean_rx_ring(struct igb_ring *);
 134static void igb_set_rx_mode(struct net_device *);
 135static void igb_update_phy_info(unsigned long);
 136static void igb_watchdog(unsigned long);
 137static void igb_watchdog_task(struct work_struct *);
 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
 140                                          struct rtnl_link_stats64 *stats);
 141static int igb_change_mtu(struct net_device *, int);
 142static int igb_set_mac(struct net_device *, void *);
 143static void igb_set_uta(struct igb_adapter *adapter, bool set);
 144static irqreturn_t igb_intr(int irq, void *);
 145static irqreturn_t igb_intr_msi(int irq, void *);
 146static irqreturn_t igb_msix_other(int irq, void *);
 147static irqreturn_t igb_msix_ring(int irq, void *);
 148#ifdef CONFIG_IGB_DCA
 149static void igb_update_dca(struct igb_q_vector *);
 150static void igb_setup_dca(struct igb_adapter *);
 151#endif /* CONFIG_IGB_DCA */
 152static int igb_poll(struct napi_struct *, int);
 153static bool igb_clean_tx_irq(struct igb_q_vector *);
 154static int igb_clean_rx_irq(struct igb_q_vector *, int);
 155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 156static void igb_tx_timeout(struct net_device *);
 157static void igb_reset_task(struct work_struct *);
 158static void igb_vlan_mode(struct net_device *netdev,
 159                          netdev_features_t features);
 160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 162static void igb_restore_vlan(struct igb_adapter *);
 163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
 164static void igb_ping_all_vfs(struct igb_adapter *);
 165static void igb_msg_task(struct igb_adapter *);
 166static void igb_vmm_control(struct igb_adapter *);
 167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 171                               int vf, u16 vlan, u8 qos);
 172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 174                                   bool setting);
 175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 176                                 struct ifla_vf_info *ivi);
 177static void igb_check_vf_rate_limit(struct igb_adapter *);
 178
 179#ifdef CONFIG_PCI_IOV
 180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 182static int igb_disable_sriov(struct pci_dev *dev);
 183static int igb_pci_disable_sriov(struct pci_dev *dev);
 184#endif
 185
 186#ifdef CONFIG_PM
 187#ifdef CONFIG_PM_SLEEP
 188static int igb_suspend(struct device *);
 189#endif
 190static int igb_resume(struct device *);
 191static int igb_runtime_suspend(struct device *dev);
 192static int igb_runtime_resume(struct device *dev);
 193static int igb_runtime_idle(struct device *dev);
 194static const struct dev_pm_ops igb_pm_ops = {
 195        SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 196        SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 197                        igb_runtime_idle)
 198};
 199#endif
 200static void igb_shutdown(struct pci_dev *);
 201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 202#ifdef CONFIG_IGB_DCA
 203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 204static struct notifier_block dca_notifier = {
 205        .notifier_call  = igb_notify_dca,
 206        .next           = NULL,
 207        .priority       = 0
 208};
 209#endif
 210#ifdef CONFIG_NET_POLL_CONTROLLER
 211/* for netdump / net console */
 212static void igb_netpoll(struct net_device *);
 213#endif
 214#ifdef CONFIG_PCI_IOV
 215static unsigned int max_vfs;
 216module_param(max_vfs, uint, 0);
 217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 218#endif /* CONFIG_PCI_IOV */
 219
 220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 221                     pci_channel_state_t);
 222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 223static void igb_io_resume(struct pci_dev *);
 224
 225static const struct pci_error_handlers igb_err_handler = {
 226        .error_detected = igb_io_error_detected,
 227        .slot_reset = igb_io_slot_reset,
 228        .resume = igb_io_resume,
 229};
 230
 231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 232
 233static struct pci_driver igb_driver = {
 234        .name     = igb_driver_name,
 235        .id_table = igb_pci_tbl,
 236        .probe    = igb_probe,
 237        .remove   = igb_remove,
 238#ifdef CONFIG_PM
 239        .driver.pm = &igb_pm_ops,
 240#endif
 241        .shutdown = igb_shutdown,
 242        .sriov_configure = igb_pci_sriov_configure,
 243        .err_handler = &igb_err_handler
 244};
 245
 246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 248MODULE_LICENSE("GPL");
 249MODULE_VERSION(DRV_VERSION);
 250
 251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 252static int debug = -1;
 253module_param(debug, int, 0);
 254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 255
 256struct igb_reg_info {
 257        u32 ofs;
 258        char *name;
 259};
 260
 261static const struct igb_reg_info igb_reg_info_tbl[] = {
 262
 263        /* General Registers */
 264        {E1000_CTRL, "CTRL"},
 265        {E1000_STATUS, "STATUS"},
 266        {E1000_CTRL_EXT, "CTRL_EXT"},
 267
 268        /* Interrupt Registers */
 269        {E1000_ICR, "ICR"},
 270
 271        /* RX Registers */
 272        {E1000_RCTL, "RCTL"},
 273        {E1000_RDLEN(0), "RDLEN"},
 274        {E1000_RDH(0), "RDH"},
 275        {E1000_RDT(0), "RDT"},
 276        {E1000_RXDCTL(0), "RXDCTL"},
 277        {E1000_RDBAL(0), "RDBAL"},
 278        {E1000_RDBAH(0), "RDBAH"},
 279
 280        /* TX Registers */
 281        {E1000_TCTL, "TCTL"},
 282        {E1000_TDBAL(0), "TDBAL"},
 283        {E1000_TDBAH(0), "TDBAH"},
 284        {E1000_TDLEN(0), "TDLEN"},
 285        {E1000_TDH(0), "TDH"},
 286        {E1000_TDT(0), "TDT"},
 287        {E1000_TXDCTL(0), "TXDCTL"},
 288        {E1000_TDFH, "TDFH"},
 289        {E1000_TDFT, "TDFT"},
 290        {E1000_TDFHS, "TDFHS"},
 291        {E1000_TDFPC, "TDFPC"},
 292
 293        /* List Terminator */
 294        {}
 295};
 296
 297/* igb_regdump - register printout routine */
 298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 299{
 300        int n = 0;
 301        char rname[16];
 302        u32 regs[8];
 303
 304        switch (reginfo->ofs) {
 305        case E1000_RDLEN(0):
 306                for (n = 0; n < 4; n++)
 307                        regs[n] = rd32(E1000_RDLEN(n));
 308                break;
 309        case E1000_RDH(0):
 310                for (n = 0; n < 4; n++)
 311                        regs[n] = rd32(E1000_RDH(n));
 312                break;
 313        case E1000_RDT(0):
 314                for (n = 0; n < 4; n++)
 315                        regs[n] = rd32(E1000_RDT(n));
 316                break;
 317        case E1000_RXDCTL(0):
 318                for (n = 0; n < 4; n++)
 319                        regs[n] = rd32(E1000_RXDCTL(n));
 320                break;
 321        case E1000_RDBAL(0):
 322                for (n = 0; n < 4; n++)
 323                        regs[n] = rd32(E1000_RDBAL(n));
 324                break;
 325        case E1000_RDBAH(0):
 326                for (n = 0; n < 4; n++)
 327                        regs[n] = rd32(E1000_RDBAH(n));
 328                break;
 329        case E1000_TDBAL(0):
 330                for (n = 0; n < 4; n++)
 331                        regs[n] = rd32(E1000_RDBAL(n));
 332                break;
 333        case E1000_TDBAH(0):
 334                for (n = 0; n < 4; n++)
 335                        regs[n] = rd32(E1000_TDBAH(n));
 336                break;
 337        case E1000_TDLEN(0):
 338                for (n = 0; n < 4; n++)
 339                        regs[n] = rd32(E1000_TDLEN(n));
 340                break;
 341        case E1000_TDH(0):
 342                for (n = 0; n < 4; n++)
 343                        regs[n] = rd32(E1000_TDH(n));
 344                break;
 345        case E1000_TDT(0):
 346                for (n = 0; n < 4; n++)
 347                        regs[n] = rd32(E1000_TDT(n));
 348                break;
 349        case E1000_TXDCTL(0):
 350                for (n = 0; n < 4; n++)
 351                        regs[n] = rd32(E1000_TXDCTL(n));
 352                break;
 353        default:
 354                pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 355                return;
 356        }
 357
 358        snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 359        pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 360                regs[2], regs[3]);
 361}
 362
 363/* igb_dump - Print registers, Tx-rings and Rx-rings */
 364static void igb_dump(struct igb_adapter *adapter)
 365{
 366        struct net_device *netdev = adapter->netdev;
 367        struct e1000_hw *hw = &adapter->hw;
 368        struct igb_reg_info *reginfo;
 369        struct igb_ring *tx_ring;
 370        union e1000_adv_tx_desc *tx_desc;
 371        struct my_u0 { u64 a; u64 b; } *u0;
 372        struct igb_ring *rx_ring;
 373        union e1000_adv_rx_desc *rx_desc;
 374        u32 staterr;
 375        u16 i, n;
 376
 377        if (!netif_msg_hw(adapter))
 378                return;
 379
 380        /* Print netdevice Info */
 381        if (netdev) {
 382                dev_info(&adapter->pdev->dev, "Net device Info\n");
 383                pr_info("Device Name     state            trans_start      last_rx\n");
 384                pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 385                        netdev->state, netdev->trans_start, netdev->last_rx);
 386        }
 387
 388        /* Print Registers */
 389        dev_info(&adapter->pdev->dev, "Register Dump\n");
 390        pr_info(" Register Name   Value\n");
 391        for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 392             reginfo->name; reginfo++) {
 393                igb_regdump(hw, reginfo);
 394        }
 395
 396        /* Print TX Ring Summary */
 397        if (!netdev || !netif_running(netdev))
 398                goto exit;
 399
 400        dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 401        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 402        for (n = 0; n < adapter->num_tx_queues; n++) {
 403                struct igb_tx_buffer *buffer_info;
 404                tx_ring = adapter->tx_ring[n];
 405                buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 406                pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 407                        n, tx_ring->next_to_use, tx_ring->next_to_clean,
 408                        (u64)dma_unmap_addr(buffer_info, dma),
 409                        dma_unmap_len(buffer_info, len),
 410                        buffer_info->next_to_watch,
 411                        (u64)buffer_info->time_stamp);
 412        }
 413
 414        /* Print TX Rings */
 415        if (!netif_msg_tx_done(adapter))
 416                goto rx_ring_summary;
 417
 418        dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 419
 420        /* Transmit Descriptor Formats
 421         *
 422         * Advanced Transmit Descriptor
 423         *   +--------------------------------------------------------------+
 424         * 0 |         Buffer Address [63:0]                                |
 425         *   +--------------------------------------------------------------+
 426         * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 427         *   +--------------------------------------------------------------+
 428         *   63      46 45    40 39 38 36 35 32 31   24             15       0
 429         */
 430
 431        for (n = 0; n < adapter->num_tx_queues; n++) {
 432                tx_ring = adapter->tx_ring[n];
 433                pr_info("------------------------------------\n");
 434                pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 435                pr_info("------------------------------------\n");
 436                pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 437
 438                for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 439                        const char *next_desc;
 440                        struct igb_tx_buffer *buffer_info;
 441                        tx_desc = IGB_TX_DESC(tx_ring, i);
 442                        buffer_info = &tx_ring->tx_buffer_info[i];
 443                        u0 = (struct my_u0 *)tx_desc;
 444                        if (i == tx_ring->next_to_use &&
 445                            i == tx_ring->next_to_clean)
 446                                next_desc = " NTC/U";
 447                        else if (i == tx_ring->next_to_use)
 448                                next_desc = " NTU";
 449                        else if (i == tx_ring->next_to_clean)
 450                                next_desc = " NTC";
 451                        else
 452                                next_desc = "";
 453
 454                        pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 455                                i, le64_to_cpu(u0->a),
 456                                le64_to_cpu(u0->b),
 457                                (u64)dma_unmap_addr(buffer_info, dma),
 458                                dma_unmap_len(buffer_info, len),
 459                                buffer_info->next_to_watch,
 460                                (u64)buffer_info->time_stamp,
 461                                buffer_info->skb, next_desc);
 462
 463                        if (netif_msg_pktdata(adapter) && buffer_info->skb)
 464                                print_hex_dump(KERN_INFO, "",
 465                                        DUMP_PREFIX_ADDRESS,
 466                                        16, 1, buffer_info->skb->data,
 467                                        dma_unmap_len(buffer_info, len),
 468                                        true);
 469                }
 470        }
 471
 472        /* Print RX Rings Summary */
 473rx_ring_summary:
 474        dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 475        pr_info("Queue [NTU] [NTC]\n");
 476        for (n = 0; n < adapter->num_rx_queues; n++) {
 477                rx_ring = adapter->rx_ring[n];
 478                pr_info(" %5d %5X %5X\n",
 479                        n, rx_ring->next_to_use, rx_ring->next_to_clean);
 480        }
 481
 482        /* Print RX Rings */
 483        if (!netif_msg_rx_status(adapter))
 484                goto exit;
 485
 486        dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 487
 488        /* Advanced Receive Descriptor (Read) Format
 489         *    63                                           1        0
 490         *    +-----------------------------------------------------+
 491         *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 492         *    +----------------------------------------------+------+
 493         *  8 |       Header Buffer Address [63:1]           |  DD  |
 494         *    +-----------------------------------------------------+
 495         *
 496         *
 497         * Advanced Receive Descriptor (Write-Back) Format
 498         *
 499         *   63       48 47    32 31  30      21 20 17 16   4 3     0
 500         *   +------------------------------------------------------+
 501         * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 502         *   | Checksum   Ident  |   |           |    | Type | Type |
 503         *   +------------------------------------------------------+
 504         * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 505         *   +------------------------------------------------------+
 506         *   63       48 47    32 31            20 19               0
 507         */
 508
 509        for (n = 0; n < adapter->num_rx_queues; n++) {
 510                rx_ring = adapter->rx_ring[n];
 511                pr_info("------------------------------------\n");
 512                pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 513                pr_info("------------------------------------\n");
 514                pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 515                pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 516
 517                for (i = 0; i < rx_ring->count; i++) {
 518                        const char *next_desc;
 519                        struct igb_rx_buffer *buffer_info;
 520                        buffer_info = &rx_ring->rx_buffer_info[i];
 521                        rx_desc = IGB_RX_DESC(rx_ring, i);
 522                        u0 = (struct my_u0 *)rx_desc;
 523                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 524
 525                        if (i == rx_ring->next_to_use)
 526                                next_desc = " NTU";
 527                        else if (i == rx_ring->next_to_clean)
 528                                next_desc = " NTC";
 529                        else
 530                                next_desc = "";
 531
 532                        if (staterr & E1000_RXD_STAT_DD) {
 533                                /* Descriptor Done */
 534                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 535                                        "RWB", i,
 536                                        le64_to_cpu(u0->a),
 537                                        le64_to_cpu(u0->b),
 538                                        next_desc);
 539                        } else {
 540                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 541                                        "R  ", i,
 542                                        le64_to_cpu(u0->a),
 543                                        le64_to_cpu(u0->b),
 544                                        (u64)buffer_info->dma,
 545                                        next_desc);
 546
 547                                if (netif_msg_pktdata(adapter) &&
 548                                    buffer_info->dma && buffer_info->page) {
 549                                        print_hex_dump(KERN_INFO, "",
 550                                          DUMP_PREFIX_ADDRESS,
 551                                          16, 1,
 552                                          page_address(buffer_info->page) +
 553                                                      buffer_info->page_offset,
 554                                          IGB_RX_BUFSZ, true);
 555                                }
 556                        }
 557                }
 558        }
 559
 560exit:
 561        return;
 562}
 563
 564/**
 565 *  igb_get_i2c_data - Reads the I2C SDA data bit
 566 *  @hw: pointer to hardware structure
 567 *  @i2cctl: Current value of I2CCTL register
 568 *
 569 *  Returns the I2C data bit value
 570 **/
 571static int igb_get_i2c_data(void *data)
 572{
 573        struct igb_adapter *adapter = (struct igb_adapter *)data;
 574        struct e1000_hw *hw = &adapter->hw;
 575        s32 i2cctl = rd32(E1000_I2CPARAMS);
 576
 577        return !!(i2cctl & E1000_I2C_DATA_IN);
 578}
 579
 580/**
 581 *  igb_set_i2c_data - Sets the I2C data bit
 582 *  @data: pointer to hardware structure
 583 *  @state: I2C data value (0 or 1) to set
 584 *
 585 *  Sets the I2C data bit
 586 **/
 587static void igb_set_i2c_data(void *data, int state)
 588{
 589        struct igb_adapter *adapter = (struct igb_adapter *)data;
 590        struct e1000_hw *hw = &adapter->hw;
 591        s32 i2cctl = rd32(E1000_I2CPARAMS);
 592
 593        if (state)
 594                i2cctl |= E1000_I2C_DATA_OUT;
 595        else
 596                i2cctl &= ~E1000_I2C_DATA_OUT;
 597
 598        i2cctl &= ~E1000_I2C_DATA_OE_N;
 599        i2cctl |= E1000_I2C_CLK_OE_N;
 600        wr32(E1000_I2CPARAMS, i2cctl);
 601        wrfl();
 602
 603}
 604
 605/**
 606 *  igb_set_i2c_clk - Sets the I2C SCL clock
 607 *  @data: pointer to hardware structure
 608 *  @state: state to set clock
 609 *
 610 *  Sets the I2C clock line to state
 611 **/
 612static void igb_set_i2c_clk(void *data, int state)
 613{
 614        struct igb_adapter *adapter = (struct igb_adapter *)data;
 615        struct e1000_hw *hw = &adapter->hw;
 616        s32 i2cctl = rd32(E1000_I2CPARAMS);
 617
 618        if (state) {
 619                i2cctl |= E1000_I2C_CLK_OUT;
 620                i2cctl &= ~E1000_I2C_CLK_OE_N;
 621        } else {
 622                i2cctl &= ~E1000_I2C_CLK_OUT;
 623                i2cctl &= ~E1000_I2C_CLK_OE_N;
 624        }
 625        wr32(E1000_I2CPARAMS, i2cctl);
 626        wrfl();
 627}
 628
 629/**
 630 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 631 *  @data: pointer to hardware structure
 632 *
 633 *  Gets the I2C clock state
 634 **/
 635static int igb_get_i2c_clk(void *data)
 636{
 637        struct igb_adapter *adapter = (struct igb_adapter *)data;
 638        struct e1000_hw *hw = &adapter->hw;
 639        s32 i2cctl = rd32(E1000_I2CPARAMS);
 640
 641        return !!(i2cctl & E1000_I2C_CLK_IN);
 642}
 643
 644static const struct i2c_algo_bit_data igb_i2c_algo = {
 645        .setsda         = igb_set_i2c_data,
 646        .setscl         = igb_set_i2c_clk,
 647        .getsda         = igb_get_i2c_data,
 648        .getscl         = igb_get_i2c_clk,
 649        .udelay         = 5,
 650        .timeout        = 20,
 651};
 652
 653/**
 654 *  igb_get_hw_dev - return device
 655 *  @hw: pointer to hardware structure
 656 *
 657 *  used by hardware layer to print debugging information
 658 **/
 659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 660{
 661        struct igb_adapter *adapter = hw->back;
 662        return adapter->netdev;
 663}
 664
 665/**
 666 *  igb_init_module - Driver Registration Routine
 667 *
 668 *  igb_init_module is the first routine called when the driver is
 669 *  loaded. All it does is register with the PCI subsystem.
 670 **/
 671static int __init igb_init_module(void)
 672{
 673        int ret;
 674
 675        pr_info("%s - version %s\n",
 676               igb_driver_string, igb_driver_version);
 677        pr_info("%s\n", igb_copyright);
 678
 679#ifdef CONFIG_IGB_DCA
 680        dca_register_notify(&dca_notifier);
 681#endif
 682        ret = pci_register_driver(&igb_driver);
 683        return ret;
 684}
 685
 686module_init(igb_init_module);
 687
 688/**
 689 *  igb_exit_module - Driver Exit Cleanup Routine
 690 *
 691 *  igb_exit_module is called just before the driver is removed
 692 *  from memory.
 693 **/
 694static void __exit igb_exit_module(void)
 695{
 696#ifdef CONFIG_IGB_DCA
 697        dca_unregister_notify(&dca_notifier);
 698#endif
 699        pci_unregister_driver(&igb_driver);
 700}
 701
 702module_exit(igb_exit_module);
 703
 704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 705/**
 706 *  igb_cache_ring_register - Descriptor ring to register mapping
 707 *  @adapter: board private structure to initialize
 708 *
 709 *  Once we know the feature-set enabled for the device, we'll cache
 710 *  the register offset the descriptor ring is assigned to.
 711 **/
 712static void igb_cache_ring_register(struct igb_adapter *adapter)
 713{
 714        int i = 0, j = 0;
 715        u32 rbase_offset = adapter->vfs_allocated_count;
 716
 717        switch (adapter->hw.mac.type) {
 718        case e1000_82576:
 719                /* The queues are allocated for virtualization such that VF 0
 720                 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 721                 * In order to avoid collision we start at the first free queue
 722                 * and continue consuming queues in the same sequence
 723                 */
 724                if (adapter->vfs_allocated_count) {
 725                        for (; i < adapter->rss_queues; i++)
 726                                adapter->rx_ring[i]->reg_idx = rbase_offset +
 727                                                               Q_IDX_82576(i);
 728                }
 729                /* Fall through */
 730        case e1000_82575:
 731        case e1000_82580:
 732        case e1000_i350:
 733        case e1000_i354:
 734        case e1000_i210:
 735        case e1000_i211:
 736                /* Fall through */
 737        default:
 738                for (; i < adapter->num_rx_queues; i++)
 739                        adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 740                for (; j < adapter->num_tx_queues; j++)
 741                        adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 742                break;
 743        }
 744}
 745
 746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 747{
 748        struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 749        u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
 750        u32 value = 0;
 751
 752        if (E1000_REMOVED(hw_addr))
 753                return ~value;
 754
 755        value = readl(&hw_addr[reg]);
 756
 757        /* reads should not return all F's */
 758        if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 759                struct net_device *netdev = igb->netdev;
 760                hw->hw_addr = NULL;
 761                netif_device_detach(netdev);
 762                netdev_err(netdev, "PCIe link lost, device now detached\n");
 763        }
 764
 765        return value;
 766}
 767
 768/**
 769 *  igb_write_ivar - configure ivar for given MSI-X vector
 770 *  @hw: pointer to the HW structure
 771 *  @msix_vector: vector number we are allocating to a given ring
 772 *  @index: row index of IVAR register to write within IVAR table
 773 *  @offset: column offset of in IVAR, should be multiple of 8
 774 *
 775 *  This function is intended to handle the writing of the IVAR register
 776 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 777 *  each containing an cause allocation for an Rx and Tx ring, and a
 778 *  variable number of rows depending on the number of queues supported.
 779 **/
 780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 781                           int index, int offset)
 782{
 783        u32 ivar = array_rd32(E1000_IVAR0, index);
 784
 785        /* clear any bits that are currently set */
 786        ivar &= ~((u32)0xFF << offset);
 787
 788        /* write vector and valid bit */
 789        ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 790
 791        array_wr32(E1000_IVAR0, index, ivar);
 792}
 793
 794#define IGB_N0_QUEUE -1
 795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 796{
 797        struct igb_adapter *adapter = q_vector->adapter;
 798        struct e1000_hw *hw = &adapter->hw;
 799        int rx_queue = IGB_N0_QUEUE;
 800        int tx_queue = IGB_N0_QUEUE;
 801        u32 msixbm = 0;
 802
 803        if (q_vector->rx.ring)
 804                rx_queue = q_vector->rx.ring->reg_idx;
 805        if (q_vector->tx.ring)
 806                tx_queue = q_vector->tx.ring->reg_idx;
 807
 808        switch (hw->mac.type) {
 809        case e1000_82575:
 810                /* The 82575 assigns vectors using a bitmask, which matches the
 811                 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 812                 * or more queues to a vector, we write the appropriate bits
 813                 * into the MSIXBM register for that vector.
 814                 */
 815                if (rx_queue > IGB_N0_QUEUE)
 816                        msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 817                if (tx_queue > IGB_N0_QUEUE)
 818                        msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 819                if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 820                        msixbm |= E1000_EIMS_OTHER;
 821                array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 822                q_vector->eims_value = msixbm;
 823                break;
 824        case e1000_82576:
 825                /* 82576 uses a table that essentially consists of 2 columns
 826                 * with 8 rows.  The ordering is column-major so we use the
 827                 * lower 3 bits as the row index, and the 4th bit as the
 828                 * column offset.
 829                 */
 830                if (rx_queue > IGB_N0_QUEUE)
 831                        igb_write_ivar(hw, msix_vector,
 832                                       rx_queue & 0x7,
 833                                       (rx_queue & 0x8) << 1);
 834                if (tx_queue > IGB_N0_QUEUE)
 835                        igb_write_ivar(hw, msix_vector,
 836                                       tx_queue & 0x7,
 837                                       ((tx_queue & 0x8) << 1) + 8);
 838                q_vector->eims_value = 1 << msix_vector;
 839                break;
 840        case e1000_82580:
 841        case e1000_i350:
 842        case e1000_i354:
 843        case e1000_i210:
 844        case e1000_i211:
 845                /* On 82580 and newer adapters the scheme is similar to 82576
 846                 * however instead of ordering column-major we have things
 847                 * ordered row-major.  So we traverse the table by using
 848                 * bit 0 as the column offset, and the remaining bits as the
 849                 * row index.
 850                 */
 851                if (rx_queue > IGB_N0_QUEUE)
 852                        igb_write_ivar(hw, msix_vector,
 853                                       rx_queue >> 1,
 854                                       (rx_queue & 0x1) << 4);
 855                if (tx_queue > IGB_N0_QUEUE)
 856                        igb_write_ivar(hw, msix_vector,
 857                                       tx_queue >> 1,
 858                                       ((tx_queue & 0x1) << 4) + 8);
 859                q_vector->eims_value = 1 << msix_vector;
 860                break;
 861        default:
 862                BUG();
 863                break;
 864        }
 865
 866        /* add q_vector eims value to global eims_enable_mask */
 867        adapter->eims_enable_mask |= q_vector->eims_value;
 868
 869        /* configure q_vector to set itr on first interrupt */
 870        q_vector->set_itr = 1;
 871}
 872
 873/**
 874 *  igb_configure_msix - Configure MSI-X hardware
 875 *  @adapter: board private structure to initialize
 876 *
 877 *  igb_configure_msix sets up the hardware to properly
 878 *  generate MSI-X interrupts.
 879 **/
 880static void igb_configure_msix(struct igb_adapter *adapter)
 881{
 882        u32 tmp;
 883        int i, vector = 0;
 884        struct e1000_hw *hw = &adapter->hw;
 885
 886        adapter->eims_enable_mask = 0;
 887
 888        /* set vector for other causes, i.e. link changes */
 889        switch (hw->mac.type) {
 890        case e1000_82575:
 891                tmp = rd32(E1000_CTRL_EXT);
 892                /* enable MSI-X PBA support*/
 893                tmp |= E1000_CTRL_EXT_PBA_CLR;
 894
 895                /* Auto-Mask interrupts upon ICR read. */
 896                tmp |= E1000_CTRL_EXT_EIAME;
 897                tmp |= E1000_CTRL_EXT_IRCA;
 898
 899                wr32(E1000_CTRL_EXT, tmp);
 900
 901                /* enable msix_other interrupt */
 902                array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 903                adapter->eims_other = E1000_EIMS_OTHER;
 904
 905                break;
 906
 907        case e1000_82576:
 908        case e1000_82580:
 909        case e1000_i350:
 910        case e1000_i354:
 911        case e1000_i210:
 912        case e1000_i211:
 913                /* Turn on MSI-X capability first, or our settings
 914                 * won't stick.  And it will take days to debug.
 915                 */
 916                wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 917                     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 918                     E1000_GPIE_NSICR);
 919
 920                /* enable msix_other interrupt */
 921                adapter->eims_other = 1 << vector;
 922                tmp = (vector++ | E1000_IVAR_VALID) << 8;
 923
 924                wr32(E1000_IVAR_MISC, tmp);
 925                break;
 926        default:
 927                /* do nothing, since nothing else supports MSI-X */
 928                break;
 929        } /* switch (hw->mac.type) */
 930
 931        adapter->eims_enable_mask |= adapter->eims_other;
 932
 933        for (i = 0; i < adapter->num_q_vectors; i++)
 934                igb_assign_vector(adapter->q_vector[i], vector++);
 935
 936        wrfl();
 937}
 938
 939/**
 940 *  igb_request_msix - Initialize MSI-X interrupts
 941 *  @adapter: board private structure to initialize
 942 *
 943 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 944 *  kernel.
 945 **/
 946static int igb_request_msix(struct igb_adapter *adapter)
 947{
 948        struct net_device *netdev = adapter->netdev;
 949        int i, err = 0, vector = 0, free_vector = 0;
 950
 951        err = request_irq(adapter->msix_entries[vector].vector,
 952                          igb_msix_other, 0, netdev->name, adapter);
 953        if (err)
 954                goto err_out;
 955
 956        for (i = 0; i < adapter->num_q_vectors; i++) {
 957                struct igb_q_vector *q_vector = adapter->q_vector[i];
 958
 959                vector++;
 960
 961                q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 962
 963                if (q_vector->rx.ring && q_vector->tx.ring)
 964                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 965                                q_vector->rx.ring->queue_index);
 966                else if (q_vector->tx.ring)
 967                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 968                                q_vector->tx.ring->queue_index);
 969                else if (q_vector->rx.ring)
 970                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 971                                q_vector->rx.ring->queue_index);
 972                else
 973                        sprintf(q_vector->name, "%s-unused", netdev->name);
 974
 975                err = request_irq(adapter->msix_entries[vector].vector,
 976                                  igb_msix_ring, 0, q_vector->name,
 977                                  q_vector);
 978                if (err)
 979                        goto err_free;
 980        }
 981
 982        igb_configure_msix(adapter);
 983        return 0;
 984
 985err_free:
 986        /* free already assigned IRQs */
 987        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 988
 989        vector--;
 990        for (i = 0; i < vector; i++) {
 991                free_irq(adapter->msix_entries[free_vector++].vector,
 992                         adapter->q_vector[i]);
 993        }
 994err_out:
 995        return err;
 996}
 997
 998/**
 999 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1000 *  @adapter: board private structure to initialize
1001 *  @v_idx: Index of vector to be freed
1002 *
1003 *  This function frees the memory allocated to the q_vector.
1004 **/
1005static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006{
1007        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009        adapter->q_vector[v_idx] = NULL;
1010
1011        /* igb_get_stats64() might access the rings on this vector,
1012         * we must wait a grace period before freeing it.
1013         */
1014        if (q_vector)
1015                kfree_rcu(q_vector, rcu);
1016}
1017
1018/**
1019 *  igb_reset_q_vector - Reset config for interrupt vector
1020 *  @adapter: board private structure to initialize
1021 *  @v_idx: Index of vector to be reset
1022 *
1023 *  If NAPI is enabled it will delete any references to the
1024 *  NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027{
1028        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030        /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031         * allocated. So, q_vector is NULL so we should stop here.
1032         */
1033        if (!q_vector)
1034                return;
1035
1036        if (q_vector->tx.ring)
1037                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039        if (q_vector->rx.ring)
1040                adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042        netif_napi_del(&q_vector->napi);
1043
1044}
1045
1046static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047{
1048        int v_idx = adapter->num_q_vectors;
1049
1050        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051                pci_disable_msix(adapter->pdev);
1052        else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053                pci_disable_msi(adapter->pdev);
1054
1055        while (v_idx--)
1056                igb_reset_q_vector(adapter, v_idx);
1057}
1058
1059/**
1060 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 *  @adapter: board private structure to initialize
1062 *
1063 *  This function frees the memory allocated to the q_vectors.  In addition if
1064 *  NAPI is enabled it will delete any references to the NAPI struct prior
1065 *  to freeing the q_vector.
1066 **/
1067static void igb_free_q_vectors(struct igb_adapter *adapter)
1068{
1069        int v_idx = adapter->num_q_vectors;
1070
1071        adapter->num_tx_queues = 0;
1072        adapter->num_rx_queues = 0;
1073        adapter->num_q_vectors = 0;
1074
1075        while (v_idx--) {
1076                igb_reset_q_vector(adapter, v_idx);
1077                igb_free_q_vector(adapter, v_idx);
1078        }
1079}
1080
1081/**
1082 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 *  @adapter: board private structure to initialize
1084 *
1085 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 *  MSI-X interrupts allocated.
1087 */
1088static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089{
1090        igb_free_q_vectors(adapter);
1091        igb_reset_interrupt_capability(adapter);
1092}
1093
1094/**
1095 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 *  @adapter: board private structure to initialize
1097 *  @msix: boolean value of MSIX capability
1098 *
1099 *  Attempt to configure interrupts using the best available
1100 *  capabilities of the hardware and kernel.
1101 **/
1102static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103{
1104        int err;
1105        int numvecs, i;
1106
1107        if (!msix)
1108                goto msi_only;
1109        adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111        /* Number of supported queues. */
1112        adapter->num_rx_queues = adapter->rss_queues;
1113        if (adapter->vfs_allocated_count)
1114                adapter->num_tx_queues = 1;
1115        else
1116                adapter->num_tx_queues = adapter->rss_queues;
1117
1118        /* start with one vector for every Rx queue */
1119        numvecs = adapter->num_rx_queues;
1120
1121        /* if Tx handler is separate add 1 for every Tx queue */
1122        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123                numvecs += adapter->num_tx_queues;
1124
1125        /* store the number of vectors reserved for queues */
1126        adapter->num_q_vectors = numvecs;
1127
1128        /* add 1 vector for link status interrupts */
1129        numvecs++;
1130        for (i = 0; i < numvecs; i++)
1131                adapter->msix_entries[i].entry = i;
1132
1133        err = pci_enable_msix_range(adapter->pdev,
1134                                    adapter->msix_entries,
1135                                    numvecs,
1136                                    numvecs);
1137        if (err > 0)
1138                return;
1139
1140        igb_reset_interrupt_capability(adapter);
1141
1142        /* If we can't do MSI-X, try MSI */
1143msi_only:
1144        adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145#ifdef CONFIG_PCI_IOV
1146        /* disable SR-IOV for non MSI-X configurations */
1147        if (adapter->vf_data) {
1148                struct e1000_hw *hw = &adapter->hw;
1149                /* disable iov and allow time for transactions to clear */
1150                pci_disable_sriov(adapter->pdev);
1151                msleep(500);
1152
1153                kfree(adapter->vf_data);
1154                adapter->vf_data = NULL;
1155                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156                wrfl();
1157                msleep(100);
1158                dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159        }
1160#endif
1161        adapter->vfs_allocated_count = 0;
1162        adapter->rss_queues = 1;
1163        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164        adapter->num_rx_queues = 1;
1165        adapter->num_tx_queues = 1;
1166        adapter->num_q_vectors = 1;
1167        if (!pci_enable_msi(adapter->pdev))
1168                adapter->flags |= IGB_FLAG_HAS_MSI;
1169}
1170
1171static void igb_add_ring(struct igb_ring *ring,
1172                         struct igb_ring_container *head)
1173{
1174        head->ring = ring;
1175        head->count++;
1176}
1177
1178/**
1179 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 *  @adapter: board private structure to initialize
1181 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 *  @v_idx: index of vector in adapter struct
1183 *  @txr_count: total number of Tx rings to allocate
1184 *  @txr_idx: index of first Tx ring to allocate
1185 *  @rxr_count: total number of Rx rings to allocate
1186 *  @rxr_idx: index of first Rx ring to allocate
1187 *
1188 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189 **/
1190static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191                              int v_count, int v_idx,
1192                              int txr_count, int txr_idx,
1193                              int rxr_count, int rxr_idx)
1194{
1195        struct igb_q_vector *q_vector;
1196        struct igb_ring *ring;
1197        int ring_count, size;
1198
1199        /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200        if (txr_count > 1 || rxr_count > 1)
1201                return -ENOMEM;
1202
1203        ring_count = txr_count + rxr_count;
1204        size = sizeof(struct igb_q_vector) +
1205               (sizeof(struct igb_ring) * ring_count);
1206
1207        /* allocate q_vector and rings */
1208        q_vector = adapter->q_vector[v_idx];
1209        if (!q_vector) {
1210                q_vector = kzalloc(size, GFP_KERNEL);
1211        } else if (size > ksize(q_vector)) {
1212                kfree_rcu(q_vector, rcu);
1213                q_vector = kzalloc(size, GFP_KERNEL);
1214        } else {
1215                memset(q_vector, 0, size);
1216        }
1217        if (!q_vector)
1218                return -ENOMEM;
1219
1220        /* initialize NAPI */
1221        netif_napi_add(adapter->netdev, &q_vector->napi,
1222                       igb_poll, 64);
1223
1224        /* tie q_vector and adapter together */
1225        adapter->q_vector[v_idx] = q_vector;
1226        q_vector->adapter = adapter;
1227
1228        /* initialize work limits */
1229        q_vector->tx.work_limit = adapter->tx_work_limit;
1230
1231        /* initialize ITR configuration */
1232        q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1233        q_vector->itr_val = IGB_START_ITR;
1234
1235        /* initialize pointer to rings */
1236        ring = q_vector->ring;
1237
1238        /* intialize ITR */
1239        if (rxr_count) {
1240                /* rx or rx/tx vector */
1241                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242                        q_vector->itr_val = adapter->rx_itr_setting;
1243        } else {
1244                /* tx only vector */
1245                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246                        q_vector->itr_val = adapter->tx_itr_setting;
1247        }
1248
1249        if (txr_count) {
1250                /* assign generic ring traits */
1251                ring->dev = &adapter->pdev->dev;
1252                ring->netdev = adapter->netdev;
1253
1254                /* configure backlink on ring */
1255                ring->q_vector = q_vector;
1256
1257                /* update q_vector Tx values */
1258                igb_add_ring(ring, &q_vector->tx);
1259
1260                /* For 82575, context index must be unique per ring. */
1261                if (adapter->hw.mac.type == e1000_82575)
1262                        set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263
1264                /* apply Tx specific ring traits */
1265                ring->count = adapter->tx_ring_count;
1266                ring->queue_index = txr_idx;
1267
1268                u64_stats_init(&ring->tx_syncp);
1269                u64_stats_init(&ring->tx_syncp2);
1270
1271                /* assign ring to adapter */
1272                adapter->tx_ring[txr_idx] = ring;
1273
1274                /* push pointer to next ring */
1275                ring++;
1276        }
1277
1278        if (rxr_count) {
1279                /* assign generic ring traits */
1280                ring->dev = &adapter->pdev->dev;
1281                ring->netdev = adapter->netdev;
1282
1283                /* configure backlink on ring */
1284                ring->q_vector = q_vector;
1285
1286                /* update q_vector Rx values */
1287                igb_add_ring(ring, &q_vector->rx);
1288
1289                /* set flag indicating ring supports SCTP checksum offload */
1290                if (adapter->hw.mac.type >= e1000_82576)
1291                        set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292
1293                /* On i350, i354, i210, and i211, loopback VLAN packets
1294                 * have the tag byte-swapped.
1295                 */
1296                if (adapter->hw.mac.type >= e1000_i350)
1297                        set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298
1299                /* apply Rx specific ring traits */
1300                ring->count = adapter->rx_ring_count;
1301                ring->queue_index = rxr_idx;
1302
1303                u64_stats_init(&ring->rx_syncp);
1304
1305                /* assign ring to adapter */
1306                adapter->rx_ring[rxr_idx] = ring;
1307        }
1308
1309        return 0;
1310}
1311
1312
1313/**
1314 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315 *  @adapter: board private structure to initialize
1316 *
1317 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318 *  return -ENOMEM.
1319 **/
1320static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321{
1322        int q_vectors = adapter->num_q_vectors;
1323        int rxr_remaining = adapter->num_rx_queues;
1324        int txr_remaining = adapter->num_tx_queues;
1325        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326        int err;
1327
1328        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329                for (; rxr_remaining; v_idx++) {
1330                        err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331                                                 0, 0, 1, rxr_idx);
1332
1333                        if (err)
1334                                goto err_out;
1335
1336                        /* update counts and index */
1337                        rxr_remaining--;
1338                        rxr_idx++;
1339                }
1340        }
1341
1342        for (; v_idx < q_vectors; v_idx++) {
1343                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345
1346                err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347                                         tqpv, txr_idx, rqpv, rxr_idx);
1348
1349                if (err)
1350                        goto err_out;
1351
1352                /* update counts and index */
1353                rxr_remaining -= rqpv;
1354                txr_remaining -= tqpv;
1355                rxr_idx++;
1356                txr_idx++;
1357        }
1358
1359        return 0;
1360
1361err_out:
1362        adapter->num_tx_queues = 0;
1363        adapter->num_rx_queues = 0;
1364        adapter->num_q_vectors = 0;
1365
1366        while (v_idx--)
1367                igb_free_q_vector(adapter, v_idx);
1368
1369        return -ENOMEM;
1370}
1371
1372/**
1373 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374 *  @adapter: board private structure to initialize
1375 *  @msix: boolean value of MSIX capability
1376 *
1377 *  This function initializes the interrupts and allocates all of the queues.
1378 **/
1379static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380{
1381        struct pci_dev *pdev = adapter->pdev;
1382        int err;
1383
1384        igb_set_interrupt_capability(adapter, msix);
1385
1386        err = igb_alloc_q_vectors(adapter);
1387        if (err) {
1388                dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389                goto err_alloc_q_vectors;
1390        }
1391
1392        igb_cache_ring_register(adapter);
1393
1394        return 0;
1395
1396err_alloc_q_vectors:
1397        igb_reset_interrupt_capability(adapter);
1398        return err;
1399}
1400
1401/**
1402 *  igb_request_irq - initialize interrupts
1403 *  @adapter: board private structure to initialize
1404 *
1405 *  Attempts to configure interrupts using the best available
1406 *  capabilities of the hardware and kernel.
1407 **/
1408static int igb_request_irq(struct igb_adapter *adapter)
1409{
1410        struct net_device *netdev = adapter->netdev;
1411        struct pci_dev *pdev = adapter->pdev;
1412        int err = 0;
1413
1414        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415                err = igb_request_msix(adapter);
1416                if (!err)
1417                        goto request_done;
1418                /* fall back to MSI */
1419                igb_free_all_tx_resources(adapter);
1420                igb_free_all_rx_resources(adapter);
1421
1422                igb_clear_interrupt_scheme(adapter);
1423                err = igb_init_interrupt_scheme(adapter, false);
1424                if (err)
1425                        goto request_done;
1426
1427                igb_setup_all_tx_resources(adapter);
1428                igb_setup_all_rx_resources(adapter);
1429                igb_configure(adapter);
1430        }
1431
1432        igb_assign_vector(adapter->q_vector[0], 0);
1433
1434        if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435                err = request_irq(pdev->irq, igb_intr_msi, 0,
1436                                  netdev->name, adapter);
1437                if (!err)
1438                        goto request_done;
1439
1440                /* fall back to legacy interrupts */
1441                igb_reset_interrupt_capability(adapter);
1442                adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443        }
1444
1445        err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446                          netdev->name, adapter);
1447
1448        if (err)
1449                dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450                        err);
1451
1452request_done:
1453        return err;
1454}
1455
1456static void igb_free_irq(struct igb_adapter *adapter)
1457{
1458        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459                int vector = 0, i;
1460
1461                free_irq(adapter->msix_entries[vector++].vector, adapter);
1462
1463                for (i = 0; i < adapter->num_q_vectors; i++)
1464                        free_irq(adapter->msix_entries[vector++].vector,
1465                                 adapter->q_vector[i]);
1466        } else {
1467                free_irq(adapter->pdev->irq, adapter);
1468        }
1469}
1470
1471/**
1472 *  igb_irq_disable - Mask off interrupt generation on the NIC
1473 *  @adapter: board private structure
1474 **/
1475static void igb_irq_disable(struct igb_adapter *adapter)
1476{
1477        struct e1000_hw *hw = &adapter->hw;
1478
1479        /* we need to be careful when disabling interrupts.  The VFs are also
1480         * mapped into these registers and so clearing the bits can cause
1481         * issues on the VF drivers so we only need to clear what we set
1482         */
1483        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484                u32 regval = rd32(E1000_EIAM);
1485
1486                wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487                wr32(E1000_EIMC, adapter->eims_enable_mask);
1488                regval = rd32(E1000_EIAC);
1489                wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490        }
1491
1492        wr32(E1000_IAM, 0);
1493        wr32(E1000_IMC, ~0);
1494        wrfl();
1495        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496                int i;
1497
1498                for (i = 0; i < adapter->num_q_vectors; i++)
1499                        synchronize_irq(adapter->msix_entries[i].vector);
1500        } else {
1501                synchronize_irq(adapter->pdev->irq);
1502        }
1503}
1504
1505/**
1506 *  igb_irq_enable - Enable default interrupt generation settings
1507 *  @adapter: board private structure
1508 **/
1509static void igb_irq_enable(struct igb_adapter *adapter)
1510{
1511        struct e1000_hw *hw = &adapter->hw;
1512
1513        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514                u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515                u32 regval = rd32(E1000_EIAC);
1516
1517                wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518                regval = rd32(E1000_EIAM);
1519                wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520                wr32(E1000_EIMS, adapter->eims_enable_mask);
1521                if (adapter->vfs_allocated_count) {
1522                        wr32(E1000_MBVFIMR, 0xFF);
1523                        ims |= E1000_IMS_VMMB;
1524                }
1525                wr32(E1000_IMS, ims);
1526        } else {
1527                wr32(E1000_IMS, IMS_ENABLE_MASK |
1528                                E1000_IMS_DRSTA);
1529                wr32(E1000_IAM, IMS_ENABLE_MASK |
1530                                E1000_IMS_DRSTA);
1531        }
1532}
1533
1534static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535{
1536        struct e1000_hw *hw = &adapter->hw;
1537        u16 pf_id = adapter->vfs_allocated_count;
1538        u16 vid = adapter->hw.mng_cookie.vlan_id;
1539        u16 old_vid = adapter->mng_vlan_id;
1540
1541        if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542                /* add VID to filter table */
1543                igb_vfta_set(hw, vid, pf_id, true, true);
1544                adapter->mng_vlan_id = vid;
1545        } else {
1546                adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547        }
1548
1549        if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550            (vid != old_vid) &&
1551            !test_bit(old_vid, adapter->active_vlans)) {
1552                /* remove VID from filter table */
1553                igb_vfta_set(hw, vid, pf_id, false, true);
1554        }
1555}
1556
1557/**
1558 *  igb_release_hw_control - release control of the h/w to f/w
1559 *  @adapter: address of board private structure
1560 *
1561 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562 *  For ASF and Pass Through versions of f/w this means that the
1563 *  driver is no longer loaded.
1564 **/
1565static void igb_release_hw_control(struct igb_adapter *adapter)
1566{
1567        struct e1000_hw *hw = &adapter->hw;
1568        u32 ctrl_ext;
1569
1570        /* Let firmware take over control of h/w */
1571        ctrl_ext = rd32(E1000_CTRL_EXT);
1572        wr32(E1000_CTRL_EXT,
1573                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574}
1575
1576/**
1577 *  igb_get_hw_control - get control of the h/w from f/w
1578 *  @adapter: address of board private structure
1579 *
1580 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581 *  For ASF and Pass Through versions of f/w this means that
1582 *  the driver is loaded.
1583 **/
1584static void igb_get_hw_control(struct igb_adapter *adapter)
1585{
1586        struct e1000_hw *hw = &adapter->hw;
1587        u32 ctrl_ext;
1588
1589        /* Let firmware know the driver has taken over */
1590        ctrl_ext = rd32(E1000_CTRL_EXT);
1591        wr32(E1000_CTRL_EXT,
1592                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593}
1594
1595/**
1596 *  igb_configure - configure the hardware for RX and TX
1597 *  @adapter: private board structure
1598 **/
1599static void igb_configure(struct igb_adapter *adapter)
1600{
1601        struct net_device *netdev = adapter->netdev;
1602        int i;
1603
1604        igb_get_hw_control(adapter);
1605        igb_set_rx_mode(netdev);
1606
1607        igb_restore_vlan(adapter);
1608
1609        igb_setup_tctl(adapter);
1610        igb_setup_mrqc(adapter);
1611        igb_setup_rctl(adapter);
1612
1613        igb_configure_tx(adapter);
1614        igb_configure_rx(adapter);
1615
1616        igb_rx_fifo_flush_82575(&adapter->hw);
1617
1618        /* call igb_desc_unused which always leaves
1619         * at least 1 descriptor unused to make sure
1620         * next_to_use != next_to_clean
1621         */
1622        for (i = 0; i < adapter->num_rx_queues; i++) {
1623                struct igb_ring *ring = adapter->rx_ring[i];
1624                igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1625        }
1626}
1627
1628/**
1629 *  igb_power_up_link - Power up the phy/serdes link
1630 *  @adapter: address of board private structure
1631 **/
1632void igb_power_up_link(struct igb_adapter *adapter)
1633{
1634        igb_reset_phy(&adapter->hw);
1635
1636        if (adapter->hw.phy.media_type == e1000_media_type_copper)
1637                igb_power_up_phy_copper(&adapter->hw);
1638        else
1639                igb_power_up_serdes_link_82575(&adapter->hw);
1640
1641        igb_setup_link(&adapter->hw);
1642}
1643
1644/**
1645 *  igb_power_down_link - Power down the phy/serdes link
1646 *  @adapter: address of board private structure
1647 */
1648static void igb_power_down_link(struct igb_adapter *adapter)
1649{
1650        if (adapter->hw.phy.media_type == e1000_media_type_copper)
1651                igb_power_down_phy_copper_82575(&adapter->hw);
1652        else
1653                igb_shutdown_serdes_link_82575(&adapter->hw);
1654}
1655
1656/**
1657 * Detect and switch function for Media Auto Sense
1658 * @adapter: address of the board private structure
1659 **/
1660static void igb_check_swap_media(struct igb_adapter *adapter)
1661{
1662        struct e1000_hw *hw = &adapter->hw;
1663        u32 ctrl_ext, connsw;
1664        bool swap_now = false;
1665
1666        ctrl_ext = rd32(E1000_CTRL_EXT);
1667        connsw = rd32(E1000_CONNSW);
1668
1669        /* need to live swap if current media is copper and we have fiber/serdes
1670         * to go to.
1671         */
1672
1673        if ((hw->phy.media_type == e1000_media_type_copper) &&
1674            (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1675                swap_now = true;
1676        } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1677                /* copper signal takes time to appear */
1678                if (adapter->copper_tries < 4) {
1679                        adapter->copper_tries++;
1680                        connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1681                        wr32(E1000_CONNSW, connsw);
1682                        return;
1683                } else {
1684                        adapter->copper_tries = 0;
1685                        if ((connsw & E1000_CONNSW_PHYSD) &&
1686                            (!(connsw & E1000_CONNSW_PHY_PDN))) {
1687                                swap_now = true;
1688                                connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1689                                wr32(E1000_CONNSW, connsw);
1690                        }
1691                }
1692        }
1693
1694        if (!swap_now)
1695                return;
1696
1697        switch (hw->phy.media_type) {
1698        case e1000_media_type_copper:
1699                netdev_info(adapter->netdev,
1700                        "MAS: changing media to fiber/serdes\n");
1701                ctrl_ext |=
1702                        E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703                adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704                adapter->copper_tries = 0;
1705                break;
1706        case e1000_media_type_internal_serdes:
1707        case e1000_media_type_fiber:
1708                netdev_info(adapter->netdev,
1709                        "MAS: changing media to copper\n");
1710                ctrl_ext &=
1711                        ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1712                adapter->flags |= IGB_FLAG_MEDIA_RESET;
1713                break;
1714        default:
1715                /* shouldn't get here during regular operation */
1716                netdev_err(adapter->netdev,
1717                        "AMS: Invalid media type found, returning\n");
1718                break;
1719        }
1720        wr32(E1000_CTRL_EXT, ctrl_ext);
1721}
1722
1723/**
1724 *  igb_up - Open the interface and prepare it to handle traffic
1725 *  @adapter: board private structure
1726 **/
1727int igb_up(struct igb_adapter *adapter)
1728{
1729        struct e1000_hw *hw = &adapter->hw;
1730        int i;
1731
1732        /* hardware has been reset, we need to reload some things */
1733        igb_configure(adapter);
1734
1735        clear_bit(__IGB_DOWN, &adapter->state);
1736
1737        for (i = 0; i < adapter->num_q_vectors; i++)
1738                napi_enable(&(adapter->q_vector[i]->napi));
1739
1740        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1741                igb_configure_msix(adapter);
1742        else
1743                igb_assign_vector(adapter->q_vector[0], 0);
1744
1745        /* Clear any pending interrupts. */
1746        rd32(E1000_ICR);
1747        igb_irq_enable(adapter);
1748
1749        /* notify VFs that reset has been completed */
1750        if (adapter->vfs_allocated_count) {
1751                u32 reg_data = rd32(E1000_CTRL_EXT);
1752
1753                reg_data |= E1000_CTRL_EXT_PFRSTD;
1754                wr32(E1000_CTRL_EXT, reg_data);
1755        }
1756
1757        netif_tx_start_all_queues(adapter->netdev);
1758
1759        /* start the watchdog. */
1760        hw->mac.get_link_status = 1;
1761        schedule_work(&adapter->watchdog_task);
1762
1763        if ((adapter->flags & IGB_FLAG_EEE) &&
1764            (!hw->dev_spec._82575.eee_disable))
1765                adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1766
1767        return 0;
1768}
1769
1770void igb_down(struct igb_adapter *adapter)
1771{
1772        struct net_device *netdev = adapter->netdev;
1773        struct e1000_hw *hw = &adapter->hw;
1774        u32 tctl, rctl;
1775        int i;
1776
1777        /* signal that we're down so the interrupt handler does not
1778         * reschedule our watchdog timer
1779         */
1780        set_bit(__IGB_DOWN, &adapter->state);
1781
1782        /* disable receives in the hardware */
1783        rctl = rd32(E1000_RCTL);
1784        wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1785        /* flush and sleep below */
1786
1787        netif_carrier_off(netdev);
1788        netif_tx_stop_all_queues(netdev);
1789
1790        /* disable transmits in the hardware */
1791        tctl = rd32(E1000_TCTL);
1792        tctl &= ~E1000_TCTL_EN;
1793        wr32(E1000_TCTL, tctl);
1794        /* flush both disables and wait for them to finish */
1795        wrfl();
1796        usleep_range(10000, 11000);
1797
1798        igb_irq_disable(adapter);
1799
1800        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1801
1802        for (i = 0; i < adapter->num_q_vectors; i++) {
1803                if (adapter->q_vector[i]) {
1804                        napi_synchronize(&adapter->q_vector[i]->napi);
1805                        napi_disable(&adapter->q_vector[i]->napi);
1806                }
1807        }
1808
1809        del_timer_sync(&adapter->watchdog_timer);
1810        del_timer_sync(&adapter->phy_info_timer);
1811
1812        /* record the stats before reset*/
1813        spin_lock(&adapter->stats64_lock);
1814        igb_update_stats(adapter, &adapter->stats64);
1815        spin_unlock(&adapter->stats64_lock);
1816
1817        adapter->link_speed = 0;
1818        adapter->link_duplex = 0;
1819
1820        if (!pci_channel_offline(adapter->pdev))
1821                igb_reset(adapter);
1822
1823        /* clear VLAN promisc flag so VFTA will be updated if necessary */
1824        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1825
1826        igb_clean_all_tx_rings(adapter);
1827        igb_clean_all_rx_rings(adapter);
1828#ifdef CONFIG_IGB_DCA
1829
1830        /* since we reset the hardware DCA settings were cleared */
1831        igb_setup_dca(adapter);
1832#endif
1833}
1834
1835void igb_reinit_locked(struct igb_adapter *adapter)
1836{
1837        WARN_ON(in_interrupt());
1838        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1839                usleep_range(1000, 2000);
1840        igb_down(adapter);
1841        igb_up(adapter);
1842        clear_bit(__IGB_RESETTING, &adapter->state);
1843}
1844
1845/** igb_enable_mas - Media Autosense re-enable after swap
1846 *
1847 * @adapter: adapter struct
1848 **/
1849static void igb_enable_mas(struct igb_adapter *adapter)
1850{
1851        struct e1000_hw *hw = &adapter->hw;
1852        u32 connsw = rd32(E1000_CONNSW);
1853
1854        /* configure for SerDes media detect */
1855        if ((hw->phy.media_type == e1000_media_type_copper) &&
1856            (!(connsw & E1000_CONNSW_SERDESD))) {
1857                connsw |= E1000_CONNSW_ENRGSRC;
1858                connsw |= E1000_CONNSW_AUTOSENSE_EN;
1859                wr32(E1000_CONNSW, connsw);
1860                wrfl();
1861        }
1862}
1863
1864void igb_reset(struct igb_adapter *adapter)
1865{
1866        struct pci_dev *pdev = adapter->pdev;
1867        struct e1000_hw *hw = &adapter->hw;
1868        struct e1000_mac_info *mac = &hw->mac;
1869        struct e1000_fc_info *fc = &hw->fc;
1870        u32 pba, hwm;
1871
1872        /* Repartition Pba for greater than 9k mtu
1873         * To take effect CTRL.RST is required.
1874         */
1875        switch (mac->type) {
1876        case e1000_i350:
1877        case e1000_i354:
1878        case e1000_82580:
1879                pba = rd32(E1000_RXPBS);
1880                pba = igb_rxpbs_adjust_82580(pba);
1881                break;
1882        case e1000_82576:
1883                pba = rd32(E1000_RXPBS);
1884                pba &= E1000_RXPBS_SIZE_MASK_82576;
1885                break;
1886        case e1000_82575:
1887        case e1000_i210:
1888        case e1000_i211:
1889        default:
1890                pba = E1000_PBA_34K;
1891                break;
1892        }
1893
1894        if (mac->type == e1000_82575) {
1895                u32 min_rx_space, min_tx_space, needed_tx_space;
1896
1897                /* write Rx PBA so that hardware can report correct Tx PBA */
1898                wr32(E1000_PBA, pba);
1899
1900                /* To maintain wire speed transmits, the Tx FIFO should be
1901                 * large enough to accommodate two full transmit packets,
1902                 * rounded up to the next 1KB and expressed in KB.  Likewise,
1903                 * the Rx FIFO should be large enough to accommodate at least
1904                 * one full receive packet and is similarly rounded up and
1905                 * expressed in KB.
1906                 */
1907                min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1908
1909                /* The Tx FIFO also stores 16 bytes of information about the Tx
1910                 * but don't include Ethernet FCS because hardware appends it.
1911                 * We only need to round down to the nearest 512 byte block
1912                 * count since the value we care about is 2 frames, not 1.
1913                 */
1914                min_tx_space = adapter->max_frame_size;
1915                min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1916                min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1917
1918                /* upper 16 bits has Tx packet buffer allocation size in KB */
1919                needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1920
1921                /* If current Tx allocation is less than the min Tx FIFO size,
1922                 * and the min Tx FIFO size is less than the current Rx FIFO
1923                 * allocation, take space away from current Rx allocation.
1924                 */
1925                if (needed_tx_space < pba) {
1926                        pba -= needed_tx_space;
1927
1928                        /* if short on Rx space, Rx wins and must trump Tx
1929                         * adjustment
1930                         */
1931                        if (pba < min_rx_space)
1932                                pba = min_rx_space;
1933                }
1934
1935                /* adjust PBA for jumbo frames */
1936                wr32(E1000_PBA, pba);
1937        }
1938
1939        /* flow control settings
1940         * The high water mark must be low enough to fit one full frame
1941         * after transmitting the pause frame.  As such we must have enough
1942         * space to allow for us to complete our current transmit and then
1943         * receive the frame that is in progress from the link partner.
1944         * Set it to:
1945         * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1946         */
1947        hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1948
1949        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1950        fc->low_water = fc->high_water - 16;
1951        fc->pause_time = 0xFFFF;
1952        fc->send_xon = 1;
1953        fc->current_mode = fc->requested_mode;
1954
1955        /* disable receive for all VFs and wait one second */
1956        if (adapter->vfs_allocated_count) {
1957                int i;
1958
1959                for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1960                        adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1961
1962                /* ping all the active vfs to let them know we are going down */
1963                igb_ping_all_vfs(adapter);
1964
1965                /* disable transmits and receives */
1966                wr32(E1000_VFRE, 0);
1967                wr32(E1000_VFTE, 0);
1968        }
1969
1970        /* Allow time for pending master requests to run */
1971        hw->mac.ops.reset_hw(hw);
1972        wr32(E1000_WUC, 0);
1973
1974        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1975                /* need to resetup here after media swap */
1976                adapter->ei.get_invariants(hw);
1977                adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1978        }
1979        if ((mac->type == e1000_82575) &&
1980            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1981                igb_enable_mas(adapter);
1982        }
1983        if (hw->mac.ops.init_hw(hw))
1984                dev_err(&pdev->dev, "Hardware Error\n");
1985
1986        /* Flow control settings reset on hardware reset, so guarantee flow
1987         * control is off when forcing speed.
1988         */
1989        if (!hw->mac.autoneg)
1990                igb_force_mac_fc(hw);
1991
1992        igb_init_dmac(adapter, pba);
1993#ifdef CONFIG_IGB_HWMON
1994        /* Re-initialize the thermal sensor on i350 devices. */
1995        if (!test_bit(__IGB_DOWN, &adapter->state)) {
1996                if (mac->type == e1000_i350 && hw->bus.func == 0) {
1997                        /* If present, re-initialize the external thermal sensor
1998                         * interface.
1999                         */
2000                        if (adapter->ets)
2001                                mac->ops.init_thermal_sensor_thresh(hw);
2002                }
2003        }
2004#endif
2005        /* Re-establish EEE setting */
2006        if (hw->phy.media_type == e1000_media_type_copper) {
2007                switch (mac->type) {
2008                case e1000_i350:
2009                case e1000_i210:
2010                case e1000_i211:
2011                        igb_set_eee_i350(hw, true, true);
2012                        break;
2013                case e1000_i354:
2014                        igb_set_eee_i354(hw, true, true);
2015                        break;
2016                default:
2017                        break;
2018                }
2019        }
2020        if (!netif_running(adapter->netdev))
2021                igb_power_down_link(adapter);
2022
2023        igb_update_mng_vlan(adapter);
2024
2025        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2026        wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2027
2028        /* Re-enable PTP, where applicable. */
2029        igb_ptp_reset(adapter);
2030
2031        igb_get_phy_info(hw);
2032}
2033
2034static netdev_features_t igb_fix_features(struct net_device *netdev,
2035        netdev_features_t features)
2036{
2037        /* Since there is no support for separate Rx/Tx vlan accel
2038         * enable/disable make sure Tx flag is always in same state as Rx.
2039         */
2040        if (features & NETIF_F_HW_VLAN_CTAG_RX)
2041                features |= NETIF_F_HW_VLAN_CTAG_TX;
2042        else
2043                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2044
2045        return features;
2046}
2047
2048static int igb_set_features(struct net_device *netdev,
2049        netdev_features_t features)
2050{
2051        netdev_features_t changed = netdev->features ^ features;
2052        struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2055                igb_vlan_mode(netdev, features);
2056
2057        if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2058                return 0;
2059
2060        netdev->features = features;
2061
2062        if (netif_running(netdev))
2063                igb_reinit_locked(adapter);
2064        else
2065                igb_reset(adapter);
2066
2067        return 0;
2068}
2069
2070static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2071                           struct net_device *dev,
2072                           const unsigned char *addr, u16 vid,
2073                           u16 flags)
2074{
2075        /* guarantee we can provide a unique filter for the unicast address */
2076        if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2077                struct igb_adapter *adapter = netdev_priv(dev);
2078                struct e1000_hw *hw = &adapter->hw;
2079                int vfn = adapter->vfs_allocated_count;
2080                int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2081
2082                if (netdev_uc_count(dev) >= rar_entries)
2083                        return -ENOMEM;
2084        }
2085
2086        return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2087}
2088
2089static const struct net_device_ops igb_netdev_ops = {
2090        .ndo_open               = igb_open,
2091        .ndo_stop               = igb_close,
2092        .ndo_start_xmit         = igb_xmit_frame,
2093        .ndo_get_stats64        = igb_get_stats64,
2094        .ndo_set_rx_mode        = igb_set_rx_mode,
2095        .ndo_set_mac_address    = igb_set_mac,
2096        .ndo_change_mtu         = igb_change_mtu,
2097        .ndo_do_ioctl           = igb_ioctl,
2098        .ndo_tx_timeout         = igb_tx_timeout,
2099        .ndo_validate_addr      = eth_validate_addr,
2100        .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2101        .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2102        .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2103        .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2104        .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2105        .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2106        .ndo_get_vf_config      = igb_ndo_get_vf_config,
2107#ifdef CONFIG_NET_POLL_CONTROLLER
2108        .ndo_poll_controller    = igb_netpoll,
2109#endif
2110        .ndo_fix_features       = igb_fix_features,
2111        .ndo_set_features       = igb_set_features,
2112        .ndo_fdb_add            = igb_ndo_fdb_add,
2113        .ndo_features_check     = passthru_features_check,
2114};
2115
2116/**
2117 * igb_set_fw_version - Configure version string for ethtool
2118 * @adapter: adapter struct
2119 **/
2120void igb_set_fw_version(struct igb_adapter *adapter)
2121{
2122        struct e1000_hw *hw = &adapter->hw;
2123        struct e1000_fw_version fw;
2124
2125        igb_get_fw_version(hw, &fw);
2126
2127        switch (hw->mac.type) {
2128        case e1000_i210:
2129        case e1000_i211:
2130                if (!(igb_get_flash_presence_i210(hw))) {
2131                        snprintf(adapter->fw_version,
2132                                 sizeof(adapter->fw_version),
2133                                 "%2d.%2d-%d",
2134                                 fw.invm_major, fw.invm_minor,
2135                                 fw.invm_img_type);
2136                        break;
2137                }
2138                /* fall through */
2139        default:
2140                /* if option is rom valid, display its version too */
2141                if (fw.or_valid) {
2142                        snprintf(adapter->fw_version,
2143                                 sizeof(adapter->fw_version),
2144                                 "%d.%d, 0x%08x, %d.%d.%d",
2145                                 fw.eep_major, fw.eep_minor, fw.etrack_id,
2146                                 fw.or_major, fw.or_build, fw.or_patch);
2147                /* no option rom */
2148                } else if (fw.etrack_id != 0X0000) {
2149                        snprintf(adapter->fw_version,
2150                            sizeof(adapter->fw_version),
2151                            "%d.%d, 0x%08x",
2152                            fw.eep_major, fw.eep_minor, fw.etrack_id);
2153                } else {
2154                snprintf(adapter->fw_version,
2155                    sizeof(adapter->fw_version),
2156                    "%d.%d.%d",
2157                    fw.eep_major, fw.eep_minor, fw.eep_build);
2158                }
2159                break;
2160        }
2161}
2162
2163/**
2164 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2165 *
2166 * @adapter: adapter struct
2167 **/
2168static void igb_init_mas(struct igb_adapter *adapter)
2169{
2170        struct e1000_hw *hw = &adapter->hw;
2171        u16 eeprom_data;
2172
2173        hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2174        switch (hw->bus.func) {
2175        case E1000_FUNC_0:
2176                if (eeprom_data & IGB_MAS_ENABLE_0) {
2177                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178                        netdev_info(adapter->netdev,
2179                                "MAS: Enabling Media Autosense for port %d\n",
2180                                hw->bus.func);
2181                }
2182                break;
2183        case E1000_FUNC_1:
2184                if (eeprom_data & IGB_MAS_ENABLE_1) {
2185                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186                        netdev_info(adapter->netdev,
2187                                "MAS: Enabling Media Autosense for port %d\n",
2188                                hw->bus.func);
2189                }
2190                break;
2191        case E1000_FUNC_2:
2192                if (eeprom_data & IGB_MAS_ENABLE_2) {
2193                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2194                        netdev_info(adapter->netdev,
2195                                "MAS: Enabling Media Autosense for port %d\n",
2196                                hw->bus.func);
2197                }
2198                break;
2199        case E1000_FUNC_3:
2200                if (eeprom_data & IGB_MAS_ENABLE_3) {
2201                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
2202                        netdev_info(adapter->netdev,
2203                                "MAS: Enabling Media Autosense for port %d\n",
2204                                hw->bus.func);
2205                }
2206                break;
2207        default:
2208                /* Shouldn't get here */
2209                netdev_err(adapter->netdev,
2210                        "MAS: Invalid port configuration, returning\n");
2211                break;
2212        }
2213}
2214
2215/**
2216 *  igb_init_i2c - Init I2C interface
2217 *  @adapter: pointer to adapter structure
2218 **/
2219static s32 igb_init_i2c(struct igb_adapter *adapter)
2220{
2221        s32 status = 0;
2222
2223        /* I2C interface supported on i350 devices */
2224        if (adapter->hw.mac.type != e1000_i350)
2225                return 0;
2226
2227        /* Initialize the i2c bus which is controlled by the registers.
2228         * This bus will use the i2c_algo_bit structue that implements
2229         * the protocol through toggling of the 4 bits in the register.
2230         */
2231        adapter->i2c_adap.owner = THIS_MODULE;
2232        adapter->i2c_algo = igb_i2c_algo;
2233        adapter->i2c_algo.data = adapter;
2234        adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2235        adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2236        strlcpy(adapter->i2c_adap.name, "igb BB",
2237                sizeof(adapter->i2c_adap.name));
2238        status = i2c_bit_add_bus(&adapter->i2c_adap);
2239        return status;
2240}
2241
2242/**
2243 *  igb_probe - Device Initialization Routine
2244 *  @pdev: PCI device information struct
2245 *  @ent: entry in igb_pci_tbl
2246 *
2247 *  Returns 0 on success, negative on failure
2248 *
2249 *  igb_probe initializes an adapter identified by a pci_dev structure.
2250 *  The OS initialization, configuring of the adapter private structure,
2251 *  and a hardware reset occur.
2252 **/
2253static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2254{
2255        struct net_device *netdev;
2256        struct igb_adapter *adapter;
2257        struct e1000_hw *hw;
2258        u16 eeprom_data = 0;
2259        s32 ret_val;
2260        static int global_quad_port_a; /* global quad port a indication */
2261        const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2262        int err, pci_using_dac;
2263        u8 part_str[E1000_PBANUM_LENGTH];
2264
2265        /* Catch broken hardware that put the wrong VF device ID in
2266         * the PCIe SR-IOV capability.
2267         */
2268        if (pdev->is_virtfn) {
2269                WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2270                        pci_name(pdev), pdev->vendor, pdev->device);
2271                return -EINVAL;
2272        }
2273
2274        err = pci_enable_device_mem(pdev);
2275        if (err)
2276                return err;
2277
2278        pci_using_dac = 0;
2279        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2280        if (!err) {
2281                pci_using_dac = 1;
2282        } else {
2283                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2284                if (err) {
2285                        dev_err(&pdev->dev,
2286                                "No usable DMA configuration, aborting\n");
2287                        goto err_dma;
2288                }
2289        }
2290
2291        err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2292                                           IORESOURCE_MEM),
2293                                           igb_driver_name);
2294        if (err)
2295                goto err_pci_reg;
2296
2297        pci_enable_pcie_error_reporting(pdev);
2298
2299        pci_set_master(pdev);
2300        pci_save_state(pdev);
2301
2302        err = -ENOMEM;
2303        netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2304                                   IGB_MAX_TX_QUEUES);
2305        if (!netdev)
2306                goto err_alloc_etherdev;
2307
2308        SET_NETDEV_DEV(netdev, &pdev->dev);
2309
2310        pci_set_drvdata(pdev, netdev);
2311        adapter = netdev_priv(netdev);
2312        adapter->netdev = netdev;
2313        adapter->pdev = pdev;
2314        hw = &adapter->hw;
2315        hw->back = adapter;
2316        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2317
2318        err = -EIO;
2319        adapter->io_addr = pci_iomap(pdev, 0, 0);
2320        if (!adapter->io_addr)
2321                goto err_ioremap;
2322        /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2323        hw->hw_addr = adapter->io_addr;
2324
2325        netdev->netdev_ops = &igb_netdev_ops;
2326        igb_set_ethtool_ops(netdev);
2327        netdev->watchdog_timeo = 5 * HZ;
2328
2329        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2330
2331        netdev->mem_start = pci_resource_start(pdev, 0);
2332        netdev->mem_end = pci_resource_end(pdev, 0);
2333
2334        /* PCI config space info */
2335        hw->vendor_id = pdev->vendor;
2336        hw->device_id = pdev->device;
2337        hw->revision_id = pdev->revision;
2338        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2339        hw->subsystem_device_id = pdev->subsystem_device;
2340
2341        /* Copy the default MAC, PHY and NVM function pointers */
2342        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2343        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2344        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2345        /* Initialize skew-specific constants */
2346        err = ei->get_invariants(hw);
2347        if (err)
2348                goto err_sw_init;
2349
2350        /* setup the private structure */
2351        err = igb_sw_init(adapter);
2352        if (err)
2353                goto err_sw_init;
2354
2355        igb_get_bus_info_pcie(hw);
2356
2357        hw->phy.autoneg_wait_to_complete = false;
2358
2359        /* Copper options */
2360        if (hw->phy.media_type == e1000_media_type_copper) {
2361                hw->phy.mdix = AUTO_ALL_MODES;
2362                hw->phy.disable_polarity_correction = false;
2363                hw->phy.ms_type = e1000_ms_hw_default;
2364        }
2365
2366        if (igb_check_reset_block(hw))
2367                dev_info(&pdev->dev,
2368                        "PHY reset is blocked due to SOL/IDER session.\n");
2369
2370        /* features is initialized to 0 in allocation, it might have bits
2371         * set by igb_sw_init so we should use an or instead of an
2372         * assignment.
2373         */
2374        netdev->features |= NETIF_F_SG |
2375                            NETIF_F_TSO |
2376                            NETIF_F_TSO6 |
2377                            NETIF_F_RXHASH |
2378                            NETIF_F_RXCSUM |
2379                            NETIF_F_HW_CSUM |
2380                            NETIF_F_HW_VLAN_CTAG_RX |
2381                            NETIF_F_HW_VLAN_CTAG_TX;
2382
2383        if (hw->mac.type >= e1000_82576)
2384                netdev->features |= NETIF_F_SCTP_CRC;
2385
2386        /* copy netdev features into list of user selectable features */
2387        netdev->hw_features |= netdev->features;
2388        netdev->hw_features |= NETIF_F_RXALL;
2389
2390        if (hw->mac.type >= e1000_i350)
2391                netdev->hw_features |= NETIF_F_NTUPLE;
2392
2393        /* set this bit last since it cannot be part of hw_features */
2394        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2395
2396        netdev->vlan_features |= NETIF_F_SG |
2397                                 NETIF_F_TSO |
2398                                 NETIF_F_TSO6 |
2399                                 NETIF_F_HW_CSUM |
2400                                 NETIF_F_SCTP_CRC;
2401
2402        netdev->mpls_features |= NETIF_F_HW_CSUM;
2403        netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2404
2405        netdev->priv_flags |= IFF_SUPP_NOFCS;
2406
2407        if (pci_using_dac) {
2408                netdev->features |= NETIF_F_HIGHDMA;
2409                netdev->vlan_features |= NETIF_F_HIGHDMA;
2410        }
2411
2412        netdev->priv_flags |= IFF_UNICAST_FLT;
2413
2414        adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2415
2416        /* before reading the NVM, reset the controller to put the device in a
2417         * known good starting state
2418         */
2419        hw->mac.ops.reset_hw(hw);
2420
2421        /* make sure the NVM is good , i211/i210 parts can have special NVM
2422         * that doesn't contain a checksum
2423         */
2424        switch (hw->mac.type) {
2425        case e1000_i210:
2426        case e1000_i211:
2427                if (igb_get_flash_presence_i210(hw)) {
2428                        if (hw->nvm.ops.validate(hw) < 0) {
2429                                dev_err(&pdev->dev,
2430                                        "The NVM Checksum Is Not Valid\n");
2431                                err = -EIO;
2432                                goto err_eeprom;
2433                        }
2434                }
2435                break;
2436        default:
2437                if (hw->nvm.ops.validate(hw) < 0) {
2438                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2439                        err = -EIO;
2440                        goto err_eeprom;
2441                }
2442                break;
2443        }
2444
2445        /* copy the MAC address out of the NVM */
2446        if (hw->mac.ops.read_mac_addr(hw))
2447                dev_err(&pdev->dev, "NVM Read Error\n");
2448
2449        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2450
2451        if (!is_valid_ether_addr(netdev->dev_addr)) {
2452                dev_err(&pdev->dev, "Invalid MAC Address\n");
2453                err = -EIO;
2454                goto err_eeprom;
2455        }
2456
2457        /* get firmware version for ethtool -i */
2458        igb_set_fw_version(adapter);
2459
2460        /* configure RXPBSIZE and TXPBSIZE */
2461        if (hw->mac.type == e1000_i210) {
2462                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2463                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2464        }
2465
2466        setup_timer(&adapter->watchdog_timer, igb_watchdog,
2467                    (unsigned long) adapter);
2468        setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2469                    (unsigned long) adapter);
2470
2471        INIT_WORK(&adapter->reset_task, igb_reset_task);
2472        INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2473
2474        /* Initialize link properties that are user-changeable */
2475        adapter->fc_autoneg = true;
2476        hw->mac.autoneg = true;
2477        hw->phy.autoneg_advertised = 0x2f;
2478
2479        hw->fc.requested_mode = e1000_fc_default;
2480        hw->fc.current_mode = e1000_fc_default;
2481
2482        igb_validate_mdi_setting(hw);
2483
2484        /* By default, support wake on port A */
2485        if (hw->bus.func == 0)
2486                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2487
2488        /* Check the NVM for wake support on non-port A ports */
2489        if (hw->mac.type >= e1000_82580)
2490                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2491                                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2492                                 &eeprom_data);
2493        else if (hw->bus.func == 1)
2494                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2495
2496        if (eeprom_data & IGB_EEPROM_APME)
2497                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2498
2499        /* now that we have the eeprom settings, apply the special cases where
2500         * the eeprom may be wrong or the board simply won't support wake on
2501         * lan on a particular port
2502         */
2503        switch (pdev->device) {
2504        case E1000_DEV_ID_82575GB_QUAD_COPPER:
2505                adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2506                break;
2507        case E1000_DEV_ID_82575EB_FIBER_SERDES:
2508        case E1000_DEV_ID_82576_FIBER:
2509        case E1000_DEV_ID_82576_SERDES:
2510                /* Wake events only supported on port A for dual fiber
2511                 * regardless of eeprom setting
2512                 */
2513                if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2514                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2515                break;
2516        case E1000_DEV_ID_82576_QUAD_COPPER:
2517        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2518                /* if quad port adapter, disable WoL on all but port A */
2519                if (global_quad_port_a != 0)
2520                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2521                else
2522                        adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2523                /* Reset for multiple quad port adapters */
2524                if (++global_quad_port_a == 4)
2525                        global_quad_port_a = 0;
2526                break;
2527        default:
2528                /* If the device can't wake, don't set software support */
2529                if (!device_can_wakeup(&adapter->pdev->dev))
2530                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2531        }
2532
2533        /* initialize the wol settings based on the eeprom settings */
2534        if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2535                adapter->wol |= E1000_WUFC_MAG;
2536
2537        /* Some vendors want WoL disabled by default, but still supported */
2538        if ((hw->mac.type == e1000_i350) &&
2539            (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2540                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2541                adapter->wol = 0;
2542        }
2543
2544        /* Some vendors want the ability to Use the EEPROM setting as
2545         * enable/disable only, and not for capability
2546         */
2547        if (((hw->mac.type == e1000_i350) ||
2548             (hw->mac.type == e1000_i354)) &&
2549            (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2550                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2551                adapter->wol = 0;
2552        }
2553        if (hw->mac.type == e1000_i350) {
2554                if (((pdev->subsystem_device == 0x5001) ||
2555                     (pdev->subsystem_device == 0x5002)) &&
2556                                (hw->bus.func == 0)) {
2557                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2558                        adapter->wol = 0;
2559                }
2560                if (pdev->subsystem_device == 0x1F52)
2561                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2562        }
2563
2564        device_set_wakeup_enable(&adapter->pdev->dev,
2565                                 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2566
2567        /* reset the hardware with the new settings */
2568        igb_reset(adapter);
2569
2570        /* Init the I2C interface */
2571        err = igb_init_i2c(adapter);
2572        if (err) {
2573                dev_err(&pdev->dev, "failed to init i2c interface\n");
2574                goto err_eeprom;
2575        }
2576
2577        /* let the f/w know that the h/w is now under the control of the
2578         * driver.
2579         */
2580        igb_get_hw_control(adapter);
2581
2582        strcpy(netdev->name, "eth%d");
2583        err = register_netdev(netdev);
2584        if (err)
2585                goto err_register;
2586
2587        /* carrier off reporting is important to ethtool even BEFORE open */
2588        netif_carrier_off(netdev);
2589
2590#ifdef CONFIG_IGB_DCA
2591        if (dca_add_requester(&pdev->dev) == 0) {
2592                adapter->flags |= IGB_FLAG_DCA_ENABLED;
2593                dev_info(&pdev->dev, "DCA enabled\n");
2594                igb_setup_dca(adapter);
2595        }
2596
2597#endif
2598#ifdef CONFIG_IGB_HWMON
2599        /* Initialize the thermal sensor on i350 devices. */
2600        if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2601                u16 ets_word;
2602
2603                /* Read the NVM to determine if this i350 device supports an
2604                 * external thermal sensor.
2605                 */
2606                hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2607                if (ets_word != 0x0000 && ets_word != 0xFFFF)
2608                        adapter->ets = true;
2609                else
2610                        adapter->ets = false;
2611                if (igb_sysfs_init(adapter))
2612                        dev_err(&pdev->dev,
2613                                "failed to allocate sysfs resources\n");
2614        } else {
2615                adapter->ets = false;
2616        }
2617#endif
2618        /* Check if Media Autosense is enabled */
2619        adapter->ei = *ei;
2620        if (hw->dev_spec._82575.mas_capable)
2621                igb_init_mas(adapter);
2622
2623        /* do hw tstamp init after resetting */
2624        igb_ptp_init(adapter);
2625
2626        dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2627        /* print bus type/speed/width info, not applicable to i354 */
2628        if (hw->mac.type != e1000_i354) {
2629                dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2630                         netdev->name,
2631                         ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2632                          (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2633                           "unknown"),
2634                         ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2635                          "Width x4" :
2636                          (hw->bus.width == e1000_bus_width_pcie_x2) ?
2637                          "Width x2" :
2638                          (hw->bus.width == e1000_bus_width_pcie_x1) ?
2639                          "Width x1" : "unknown"), netdev->dev_addr);
2640        }
2641
2642        if ((hw->mac.type >= e1000_i210 ||
2643             igb_get_flash_presence_i210(hw))) {
2644                ret_val = igb_read_part_string(hw, part_str,
2645                                               E1000_PBANUM_LENGTH);
2646        } else {
2647                ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2648        }
2649
2650        if (ret_val)
2651                strcpy(part_str, "Unknown");
2652        dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2653        dev_info(&pdev->dev,
2654                "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2655                (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2656                (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2657                adapter->num_rx_queues, adapter->num_tx_queues);
2658        if (hw->phy.media_type == e1000_media_type_copper) {
2659                switch (hw->mac.type) {
2660                case e1000_i350:
2661                case e1000_i210:
2662                case e1000_i211:
2663                        /* Enable EEE for internal copper PHY devices */
2664                        err = igb_set_eee_i350(hw, true, true);
2665                        if ((!err) &&
2666                            (!hw->dev_spec._82575.eee_disable)) {
2667                                adapter->eee_advert =
2668                                        MDIO_EEE_100TX | MDIO_EEE_1000T;
2669                                adapter->flags |= IGB_FLAG_EEE;
2670                        }
2671                        break;
2672                case e1000_i354:
2673                        if ((rd32(E1000_CTRL_EXT) &
2674                            E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2675                                err = igb_set_eee_i354(hw, true, true);
2676                                if ((!err) &&
2677                                        (!hw->dev_spec._82575.eee_disable)) {
2678                                        adapter->eee_advert =
2679                                           MDIO_EEE_100TX | MDIO_EEE_1000T;
2680                                        adapter->flags |= IGB_FLAG_EEE;
2681                                }
2682                        }
2683                        break;
2684                default:
2685                        break;
2686                }
2687        }
2688        pm_runtime_put_noidle(&pdev->dev);
2689        return 0;
2690
2691err_register:
2692        igb_release_hw_control(adapter);
2693        memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2694err_eeprom:
2695        if (!igb_check_reset_block(hw))
2696                igb_reset_phy(hw);
2697
2698        if (hw->flash_address)
2699                iounmap(hw->flash_address);
2700err_sw_init:
2701        kfree(adapter->shadow_vfta);
2702        igb_clear_interrupt_scheme(adapter);
2703#ifdef CONFIG_PCI_IOV
2704        igb_disable_sriov(pdev);
2705#endif
2706        pci_iounmap(pdev, adapter->io_addr);
2707err_ioremap:
2708        free_netdev(netdev);
2709err_alloc_etherdev:
2710        pci_release_selected_regions(pdev,
2711                                     pci_select_bars(pdev, IORESOURCE_MEM));
2712err_pci_reg:
2713err_dma:
2714        pci_disable_device(pdev);
2715        return err;
2716}
2717
2718#ifdef CONFIG_PCI_IOV
2719static int igb_disable_sriov(struct pci_dev *pdev)
2720{
2721        struct net_device *netdev = pci_get_drvdata(pdev);
2722        struct igb_adapter *adapter = netdev_priv(netdev);
2723        struct e1000_hw *hw = &adapter->hw;
2724
2725        /* reclaim resources allocated to VFs */
2726        if (adapter->vf_data) {
2727                /* disable iov and allow time for transactions to clear */
2728                if (pci_vfs_assigned(pdev)) {
2729                        dev_warn(&pdev->dev,
2730                                 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2731                        return -EPERM;
2732                } else {
2733                        pci_disable_sriov(pdev);
2734                        msleep(500);
2735                }
2736
2737                kfree(adapter->vf_data);
2738                adapter->vf_data = NULL;
2739                adapter->vfs_allocated_count = 0;
2740                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2741                wrfl();
2742                msleep(100);
2743                dev_info(&pdev->dev, "IOV Disabled\n");
2744
2745                /* Re-enable DMA Coalescing flag since IOV is turned off */
2746                adapter->flags |= IGB_FLAG_DMAC;
2747        }
2748
2749        return 0;
2750}
2751
2752static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2753{
2754        struct net_device *netdev = pci_get_drvdata(pdev);
2755        struct igb_adapter *adapter = netdev_priv(netdev);
2756        int old_vfs = pci_num_vf(pdev);
2757        int err = 0;
2758        int i;
2759
2760        if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2761                err = -EPERM;
2762                goto out;
2763        }
2764        if (!num_vfs)
2765                goto out;
2766
2767        if (old_vfs) {
2768                dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2769                         old_vfs, max_vfs);
2770                adapter->vfs_allocated_count = old_vfs;
2771        } else
2772                adapter->vfs_allocated_count = num_vfs;
2773
2774        adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2775                                sizeof(struct vf_data_storage), GFP_KERNEL);
2776
2777        /* if allocation failed then we do not support SR-IOV */
2778        if (!adapter->vf_data) {
2779                adapter->vfs_allocated_count = 0;
2780                dev_err(&pdev->dev,
2781                        "Unable to allocate memory for VF Data Storage\n");
2782                err = -ENOMEM;
2783                goto out;
2784        }
2785
2786        /* only call pci_enable_sriov() if no VFs are allocated already */
2787        if (!old_vfs) {
2788                err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2789                if (err)
2790                        goto err_out;
2791        }
2792        dev_info(&pdev->dev, "%d VFs allocated\n",
2793                 adapter->vfs_allocated_count);
2794        for (i = 0; i < adapter->vfs_allocated_count; i++)
2795                igb_vf_configure(adapter, i);
2796
2797        /* DMA Coalescing is not supported in IOV mode. */
2798        adapter->flags &= ~IGB_FLAG_DMAC;
2799        goto out;
2800
2801err_out:
2802        kfree(adapter->vf_data);
2803        adapter->vf_data = NULL;
2804        adapter->vfs_allocated_count = 0;
2805out:
2806        return err;
2807}
2808
2809#endif
2810/**
2811 *  igb_remove_i2c - Cleanup  I2C interface
2812 *  @adapter: pointer to adapter structure
2813 **/
2814static void igb_remove_i2c(struct igb_adapter *adapter)
2815{
2816        /* free the adapter bus structure */
2817        i2c_del_adapter(&adapter->i2c_adap);
2818}
2819
2820/**
2821 *  igb_remove - Device Removal Routine
2822 *  @pdev: PCI device information struct
2823 *
2824 *  igb_remove is called by the PCI subsystem to alert the driver
2825 *  that it should release a PCI device.  The could be caused by a
2826 *  Hot-Plug event, or because the driver is going to be removed from
2827 *  memory.
2828 **/
2829static void igb_remove(struct pci_dev *pdev)
2830{
2831        struct net_device *netdev = pci_get_drvdata(pdev);
2832        struct igb_adapter *adapter = netdev_priv(netdev);
2833        struct e1000_hw *hw = &adapter->hw;
2834
2835        pm_runtime_get_noresume(&pdev->dev);
2836#ifdef CONFIG_IGB_HWMON
2837        igb_sysfs_exit(adapter);
2838#endif
2839        igb_remove_i2c(adapter);
2840        igb_ptp_stop(adapter);
2841        /* The watchdog timer may be rescheduled, so explicitly
2842         * disable watchdog from being rescheduled.
2843         */
2844        set_bit(__IGB_DOWN, &adapter->state);
2845        del_timer_sync(&adapter->watchdog_timer);
2846        del_timer_sync(&adapter->phy_info_timer);
2847
2848        cancel_work_sync(&adapter->reset_task);
2849        cancel_work_sync(&adapter->watchdog_task);
2850
2851#ifdef CONFIG_IGB_DCA
2852        if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2853                dev_info(&pdev->dev, "DCA disabled\n");
2854                dca_remove_requester(&pdev->dev);
2855                adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2856                wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2857        }
2858#endif
2859
2860        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2861         * would have already happened in close and is redundant.
2862         */
2863        igb_release_hw_control(adapter);
2864
2865#ifdef CONFIG_PCI_IOV
2866        igb_disable_sriov(pdev);
2867#endif
2868
2869        unregister_netdev(netdev);
2870
2871        igb_clear_interrupt_scheme(adapter);
2872
2873        pci_iounmap(pdev, adapter->io_addr);
2874        if (hw->flash_address)
2875                iounmap(hw->flash_address);
2876        pci_release_selected_regions(pdev,
2877                                     pci_select_bars(pdev, IORESOURCE_MEM));
2878
2879        kfree(adapter->shadow_vfta);
2880        free_netdev(netdev);
2881
2882        pci_disable_pcie_error_reporting(pdev);
2883
2884        pci_disable_device(pdev);
2885}
2886
2887/**
2888 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2889 *  @adapter: board private structure to initialize
2890 *
2891 *  This function initializes the vf specific data storage and then attempts to
2892 *  allocate the VFs.  The reason for ordering it this way is because it is much
2893 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2894 *  the memory for the VFs.
2895 **/
2896static void igb_probe_vfs(struct igb_adapter *adapter)
2897{
2898#ifdef CONFIG_PCI_IOV
2899        struct pci_dev *pdev = adapter->pdev;
2900        struct e1000_hw *hw = &adapter->hw;
2901
2902        /* Virtualization features not supported on i210 family. */
2903        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2904                return;
2905
2906        /* Of the below we really only want the effect of getting
2907         * IGB_FLAG_HAS_MSIX set (if available), without which
2908         * igb_enable_sriov() has no effect.
2909         */
2910        igb_set_interrupt_capability(adapter, true);
2911        igb_reset_interrupt_capability(adapter);
2912
2913        pci_sriov_set_totalvfs(pdev, 7);
2914        igb_enable_sriov(pdev, max_vfs);
2915
2916#endif /* CONFIG_PCI_IOV */
2917}
2918
2919static void igb_init_queue_configuration(struct igb_adapter *adapter)
2920{
2921        struct e1000_hw *hw = &adapter->hw;
2922        u32 max_rss_queues;
2923
2924        /* Determine the maximum number of RSS queues supported. */
2925        switch (hw->mac.type) {
2926        case e1000_i211:
2927                max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2928                break;
2929        case e1000_82575:
2930        case e1000_i210:
2931                max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2932                break;
2933        case e1000_i350:
2934                /* I350 cannot do RSS and SR-IOV at the same time */
2935                if (!!adapter->vfs_allocated_count) {
2936                        max_rss_queues = 1;
2937                        break;
2938                }
2939                /* fall through */
2940        case e1000_82576:
2941                if (!!adapter->vfs_allocated_count) {
2942                        max_rss_queues = 2;
2943                        break;
2944                }
2945                /* fall through */
2946        case e1000_82580:
2947        case e1000_i354:
2948        default:
2949                max_rss_queues = IGB_MAX_RX_QUEUES;
2950                break;
2951        }
2952
2953        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2954
2955        igb_set_flag_queue_pairs(adapter, max_rss_queues);
2956}
2957
2958void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2959                              const u32 max_rss_queues)
2960{
2961        struct e1000_hw *hw = &adapter->hw;
2962
2963        /* Determine if we need to pair queues. */
2964        switch (hw->mac.type) {
2965        case e1000_82575:
2966        case e1000_i211:
2967                /* Device supports enough interrupts without queue pairing. */
2968                break;
2969        case e1000_82576:
2970        case e1000_82580:
2971        case e1000_i350:
2972        case e1000_i354:
2973        case e1000_i210:
2974        default:
2975                /* If rss_queues > half of max_rss_queues, pair the queues in
2976                 * order to conserve interrupts due to limited supply.
2977                 */
2978                if (adapter->rss_queues > (max_rss_queues / 2))
2979                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2980                else
2981                        adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
2982                break;
2983        }
2984}
2985
2986/**
2987 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2988 *  @adapter: board private structure to initialize
2989 *
2990 *  igb_sw_init initializes the Adapter private data structure.
2991 *  Fields are initialized based on PCI device information and
2992 *  OS network device settings (MTU size).
2993 **/
2994static int igb_sw_init(struct igb_adapter *adapter)
2995{
2996        struct e1000_hw *hw = &adapter->hw;
2997        struct net_device *netdev = adapter->netdev;
2998        struct pci_dev *pdev = adapter->pdev;
2999
3000        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3001
3002        /* set default ring sizes */
3003        adapter->tx_ring_count = IGB_DEFAULT_TXD;
3004        adapter->rx_ring_count = IGB_DEFAULT_RXD;
3005
3006        /* set default ITR values */
3007        adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3008        adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3009
3010        /* set default work limits */
3011        adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3012
3013        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3014                                  VLAN_HLEN;
3015        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3016
3017        spin_lock_init(&adapter->stats64_lock);
3018#ifdef CONFIG_PCI_IOV
3019        switch (hw->mac.type) {
3020        case e1000_82576:
3021        case e1000_i350:
3022                if (max_vfs > 7) {
3023                        dev_warn(&pdev->dev,
3024                                 "Maximum of 7 VFs per PF, using max\n");
3025                        max_vfs = adapter->vfs_allocated_count = 7;
3026                } else
3027                        adapter->vfs_allocated_count = max_vfs;
3028                if (adapter->vfs_allocated_count)
3029                        dev_warn(&pdev->dev,
3030                                 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3031                break;
3032        default:
3033                break;
3034        }
3035#endif /* CONFIG_PCI_IOV */
3036
3037        /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3038        adapter->flags |= IGB_FLAG_HAS_MSIX;
3039
3040        igb_probe_vfs(adapter);
3041
3042        igb_init_queue_configuration(adapter);
3043
3044        /* Setup and initialize a copy of the hw vlan table array */
3045        adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3046                                       GFP_ATOMIC);
3047
3048        /* This call may decrease the number of queues */
3049        if (igb_init_interrupt_scheme(adapter, true)) {
3050                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3051                return -ENOMEM;
3052        }
3053
3054        /* Explicitly disable IRQ since the NIC can be in any state. */
3055        igb_irq_disable(adapter);
3056
3057        if (hw->mac.type >= e1000_i350)
3058                adapter->flags &= ~IGB_FLAG_DMAC;
3059
3060        set_bit(__IGB_DOWN, &adapter->state);
3061        return 0;
3062}
3063
3064/**
3065 *  igb_open - Called when a network interface is made active
3066 *  @netdev: network interface device structure
3067 *
3068 *  Returns 0 on success, negative value on failure
3069 *
3070 *  The open entry point is called when a network interface is made
3071 *  active by the system (IFF_UP).  At this point all resources needed
3072 *  for transmit and receive operations are allocated, the interrupt
3073 *  handler is registered with the OS, the watchdog timer is started,
3074 *  and the stack is notified that the interface is ready.
3075 **/
3076static int __igb_open(struct net_device *netdev, bool resuming)
3077{
3078        struct igb_adapter *adapter = netdev_priv(netdev);
3079        struct e1000_hw *hw = &adapter->hw;
3080        struct pci_dev *pdev = adapter->pdev;
3081        int err;
3082        int i;
3083
3084        /* disallow open during test */
3085        if (test_bit(__IGB_TESTING, &adapter->state)) {
3086                WARN_ON(resuming);
3087                return -EBUSY;
3088        }
3089
3090        if (!resuming)
3091                pm_runtime_get_sync(&pdev->dev);
3092
3093        netif_carrier_off(netdev);
3094
3095        /* allocate transmit descriptors */
3096        err = igb_setup_all_tx_resources(adapter);
3097        if (err)
3098                goto err_setup_tx;
3099
3100        /* allocate receive descriptors */
3101        err = igb_setup_all_rx_resources(adapter);
3102        if (err)
3103                goto err_setup_rx;
3104
3105        igb_power_up_link(adapter);
3106
3107        /* before we allocate an interrupt, we must be ready to handle it.
3108         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3109         * as soon as we call pci_request_irq, so we have to setup our
3110         * clean_rx handler before we do so.
3111         */
3112        igb_configure(adapter);
3113
3114        err = igb_request_irq(adapter);
3115        if (err)
3116                goto err_req_irq;
3117
3118        /* Notify the stack of the actual queue counts. */
3119        err = netif_set_real_num_tx_queues(adapter->netdev,
3120                                           adapter->num_tx_queues);
3121        if (err)
3122                goto err_set_queues;
3123
3124        err = netif_set_real_num_rx_queues(adapter->netdev,
3125                                           adapter->num_rx_queues);
3126        if (err)
3127                goto err_set_queues;
3128
3129        /* From here on the code is the same as igb_up() */
3130        clear_bit(__IGB_DOWN, &adapter->state);
3131
3132        for (i = 0; i < adapter->num_q_vectors; i++)
3133                napi_enable(&(adapter->q_vector[i]->napi));
3134
3135        /* Clear any pending interrupts. */
3136        rd32(E1000_ICR);
3137
3138        igb_irq_enable(adapter);
3139
3140        /* notify VFs that reset has been completed */
3141        if (adapter->vfs_allocated_count) {
3142                u32 reg_data = rd32(E1000_CTRL_EXT);
3143
3144                reg_data |= E1000_CTRL_EXT_PFRSTD;
3145                wr32(E1000_CTRL_EXT, reg_data);
3146        }
3147
3148        netif_tx_start_all_queues(netdev);
3149
3150        if (!resuming)
3151                pm_runtime_put(&pdev->dev);
3152
3153        /* start the watchdog. */
3154        hw->mac.get_link_status = 1;
3155        schedule_work(&adapter->watchdog_task);
3156
3157        return 0;
3158
3159err_set_queues:
3160        igb_free_irq(adapter);
3161err_req_irq:
3162        igb_release_hw_control(adapter);
3163        igb_power_down_link(adapter);
3164        igb_free_all_rx_resources(adapter);
3165err_setup_rx:
3166        igb_free_all_tx_resources(adapter);
3167err_setup_tx:
3168        igb_reset(adapter);
3169        if (!resuming)
3170                pm_runtime_put(&pdev->dev);
3171
3172        return err;
3173}
3174
3175int igb_open(struct net_device *netdev)
3176{
3177        return __igb_open(netdev, false);
3178}
3179
3180/**
3181 *  igb_close - Disables a network interface
3182 *  @netdev: network interface device structure
3183 *
3184 *  Returns 0, this is not allowed to fail
3185 *
3186 *  The close entry point is called when an interface is de-activated
3187 *  by the OS.  The hardware is still under the driver's control, but
3188 *  needs to be disabled.  A global MAC reset is issued to stop the
3189 *  hardware, and all transmit and receive resources are freed.
3190 **/
3191static int __igb_close(struct net_device *netdev, bool suspending)
3192{
3193        struct igb_adapter *adapter = netdev_priv(netdev);
3194        struct pci_dev *pdev = adapter->pdev;
3195
3196        WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3197
3198        if (!suspending)
3199                pm_runtime_get_sync(&pdev->dev);
3200
3201        igb_down(adapter);
3202        igb_free_irq(adapter);
3203
3204        igb_free_all_tx_resources(adapter);
3205        igb_free_all_rx_resources(adapter);
3206
3207        if (!suspending)
3208                pm_runtime_put_sync(&pdev->dev);
3209        return 0;
3210}
3211
3212int igb_close(struct net_device *netdev)
3213{
3214        return __igb_close(netdev, false);
3215}
3216
3217/**
3218 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3219 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3220 *
3221 *  Return 0 on success, negative on failure
3222 **/
3223int igb_setup_tx_resources(struct igb_ring *tx_ring)
3224{
3225        struct device *dev = tx_ring->dev;
3226        int size;
3227
3228        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3229
3230        tx_ring->tx_buffer_info = vzalloc(size);
3231        if (!tx_ring->tx_buffer_info)
3232                goto err;
3233
3234        /* round up to nearest 4K */
3235        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3236        tx_ring->size = ALIGN(tx_ring->size, 4096);
3237
3238        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3239                                           &tx_ring->dma, GFP_KERNEL);
3240        if (!tx_ring->desc)
3241                goto err;
3242
3243        tx_ring->next_to_use = 0;
3244        tx_ring->next_to_clean = 0;
3245
3246        return 0;
3247
3248err:
3249        vfree(tx_ring->tx_buffer_info);
3250        tx_ring->tx_buffer_info = NULL;
3251        dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3252        return -ENOMEM;
3253}
3254
3255/**
3256 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3257 *                               (Descriptors) for all queues
3258 *  @adapter: board private structure
3259 *
3260 *  Return 0 on success, negative on failure
3261 **/
3262static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3263{
3264        struct pci_dev *pdev = adapter->pdev;
3265        int i, err = 0;
3266
3267        for (i = 0; i < adapter->num_tx_queues; i++) {
3268                err = igb_setup_tx_resources(adapter->tx_ring[i]);
3269                if (err) {
3270                        dev_err(&pdev->dev,
3271                                "Allocation for Tx Queue %u failed\n", i);
3272                        for (i--; i >= 0; i--)
3273                                igb_free_tx_resources(adapter->tx_ring[i]);
3274                        break;
3275                }
3276        }
3277
3278        return err;
3279}
3280
3281/**
3282 *  igb_setup_tctl - configure the transmit control registers
3283 *  @adapter: Board private structure
3284 **/
3285void igb_setup_tctl(struct igb_adapter *adapter)
3286{
3287        struct e1000_hw *hw = &adapter->hw;
3288        u32 tctl;
3289
3290        /* disable queue 0 which is enabled by default on 82575 and 82576 */
3291        wr32(E1000_TXDCTL(0), 0);
3292
3293        /* Program the Transmit Control Register */
3294        tctl = rd32(E1000_TCTL);
3295        tctl &= ~E1000_TCTL_CT;
3296        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3297                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3298
3299        igb_config_collision_dist(hw);
3300
3301        /* Enable transmits */
3302        tctl |= E1000_TCTL_EN;
3303
3304        wr32(E1000_TCTL, tctl);
3305}
3306
3307/**
3308 *  igb_configure_tx_ring - Configure transmit ring after Reset
3309 *  @adapter: board private structure
3310 *  @ring: tx ring to configure
3311 *
3312 *  Configure a transmit ring after a reset.
3313 **/
3314void igb_configure_tx_ring(struct igb_adapter *adapter,
3315                           struct igb_ring *ring)
3316{
3317        struct e1000_hw *hw = &adapter->hw;
3318        u32 txdctl = 0;
3319        u64 tdba = ring->dma;
3320        int reg_idx = ring->reg_idx;
3321
3322        /* disable the queue */
3323        wr32(E1000_TXDCTL(reg_idx), 0);
3324        wrfl();
3325        mdelay(10);
3326
3327        wr32(E1000_TDLEN(reg_idx),
3328             ring->count * sizeof(union e1000_adv_tx_desc));
3329        wr32(E1000_TDBAL(reg_idx),
3330             tdba & 0x00000000ffffffffULL);
3331        wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3332
3333        ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3334        wr32(E1000_TDH(reg_idx), 0);
3335        writel(0, ring->tail);
3336
3337        txdctl |= IGB_TX_PTHRESH;
3338        txdctl |= IGB_TX_HTHRESH << 8;
3339        txdctl |= IGB_TX_WTHRESH << 16;
3340
3341        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3342        wr32(E1000_TXDCTL(reg_idx), txdctl);
3343}
3344
3345/**
3346 *  igb_configure_tx - Configure transmit Unit after Reset
3347 *  @adapter: board private structure
3348 *
3349 *  Configure the Tx unit of the MAC after a reset.
3350 **/
3351static void igb_configure_tx(struct igb_adapter *adapter)
3352{
3353        int i;
3354
3355        for (i = 0; i < adapter->num_tx_queues; i++)
3356                igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3357}
3358
3359/**
3360 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3361 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3362 *
3363 *  Returns 0 on success, negative on failure
3364 **/
3365int igb_setup_rx_resources(struct igb_ring *rx_ring)
3366{
3367        struct device *dev = rx_ring->dev;
3368        int size;
3369
3370        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3371
3372        rx_ring->rx_buffer_info = vzalloc(size);
3373        if (!rx_ring->rx_buffer_info)
3374                goto err;
3375
3376        /* Round up to nearest 4K */
3377        rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3378        rx_ring->size = ALIGN(rx_ring->size, 4096);
3379
3380        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3381                                           &rx_ring->dma, GFP_KERNEL);
3382        if (!rx_ring->desc)
3383                goto err;
3384
3385        rx_ring->next_to_alloc = 0;
3386        rx_ring->next_to_clean = 0;
3387        rx_ring->next_to_use = 0;
3388
3389        return 0;
3390
3391err:
3392        vfree(rx_ring->rx_buffer_info);
3393        rx_ring->rx_buffer_info = NULL;
3394        dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3395        return -ENOMEM;
3396}
3397
3398/**
3399 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3400 *                               (Descriptors) for all queues
3401 *  @adapter: board private structure
3402 *
3403 *  Return 0 on success, negative on failure
3404 **/
3405static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3406{
3407        struct pci_dev *pdev = adapter->pdev;
3408        int i, err = 0;
3409
3410        for (i = 0; i < adapter->num_rx_queues; i++) {
3411                err = igb_setup_rx_resources(adapter->rx_ring[i]);
3412                if (err) {
3413                        dev_err(&pdev->dev,
3414                                "Allocation for Rx Queue %u failed\n", i);
3415                        for (i--; i >= 0; i--)
3416                                igb_free_rx_resources(adapter->rx_ring[i]);
3417                        break;
3418                }
3419        }
3420
3421        return err;
3422}
3423
3424/**
3425 *  igb_setup_mrqc - configure the multiple receive queue control registers
3426 *  @adapter: Board private structure
3427 **/
3428static void igb_setup_mrqc(struct igb_adapter *adapter)
3429{
3430        struct e1000_hw *hw = &adapter->hw;
3431        u32 mrqc, rxcsum;
3432        u32 j, num_rx_queues;
3433        u32 rss_key[10];
3434
3435        netdev_rss_key_fill(rss_key, sizeof(rss_key));
3436        for (j = 0; j < 10; j++)
3437                wr32(E1000_RSSRK(j), rss_key[j]);
3438
3439        num_rx_queues = adapter->rss_queues;
3440
3441        switch (hw->mac.type) {
3442        case e1000_82576:
3443                /* 82576 supports 2 RSS queues for SR-IOV */
3444                if (adapter->vfs_allocated_count)
3445                        num_rx_queues = 2;
3446                break;
3447        default:
3448                break;
3449        }
3450
3451        if (adapter->rss_indir_tbl_init != num_rx_queues) {
3452                for (j = 0; j < IGB_RETA_SIZE; j++)
3453                        adapter->rss_indir_tbl[j] =
3454                        (j * num_rx_queues) / IGB_RETA_SIZE;
3455                adapter->rss_indir_tbl_init = num_rx_queues;
3456        }
3457        igb_write_rss_indir_tbl(adapter);
3458
3459        /* Disable raw packet checksumming so that RSS hash is placed in
3460         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3461         * offloads as they are enabled by default
3462         */
3463        rxcsum = rd32(E1000_RXCSUM);
3464        rxcsum |= E1000_RXCSUM_PCSD;
3465
3466        if (adapter->hw.mac.type >= e1000_82576)
3467                /* Enable Receive Checksum Offload for SCTP */
3468                rxcsum |= E1000_RXCSUM_CRCOFL;
3469
3470        /* Don't need to set TUOFL or IPOFL, they default to 1 */
3471        wr32(E1000_RXCSUM, rxcsum);
3472
3473        /* Generate RSS hash based on packet types, TCP/UDP
3474         * port numbers and/or IPv4/v6 src and dst addresses
3475         */
3476        mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3477               E1000_MRQC_RSS_FIELD_IPV4_TCP |
3478               E1000_MRQC_RSS_FIELD_IPV6 |
3479               E1000_MRQC_RSS_FIELD_IPV6_TCP |
3480               E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3481
3482        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3483                mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3484        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3485                mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3486
3487        /* If VMDq is enabled then we set the appropriate mode for that, else
3488         * we default to RSS so that an RSS hash is calculated per packet even
3489         * if we are only using one queue
3490         */
3491        if (adapter->vfs_allocated_count) {
3492                if (hw->mac.type > e1000_82575) {
3493                        /* Set the default pool for the PF's first queue */
3494                        u32 vtctl = rd32(E1000_VT_CTL);
3495
3496                        vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3497                                   E1000_VT_CTL_DISABLE_DEF_POOL);
3498                        vtctl |= adapter->vfs_allocated_count <<
3499                                E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3500                        wr32(E1000_VT_CTL, vtctl);
3501                }
3502                if (adapter->rss_queues > 1)
3503                        mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3504                else
3505                        mrqc |= E1000_MRQC_ENABLE_VMDQ;
3506        } else {
3507                if (hw->mac.type != e1000_i211)
3508                        mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3509        }
3510        igb_vmm_control(adapter);
3511
3512        wr32(E1000_MRQC, mrqc);
3513}
3514
3515/**
3516 *  igb_setup_rctl - configure the receive control registers
3517 *  @adapter: Board private structure
3518 **/
3519void igb_setup_rctl(struct igb_adapter *adapter)
3520{
3521        struct e1000_hw *hw = &adapter->hw;
3522        u32 rctl;
3523
3524        rctl = rd32(E1000_RCTL);
3525
3526        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3527        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3528
3529        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3530                (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3531
3532        /* enable stripping of CRC. It's unlikely this will break BMC
3533         * redirection as it did with e1000. Newer features require
3534         * that the HW strips the CRC.
3535         */
3536        rctl |= E1000_RCTL_SECRC;
3537
3538        /* disable store bad packets and clear size bits. */
3539        rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3540
3541        /* enable LPE to allow for reception of jumbo frames */
3542        rctl |= E1000_RCTL_LPE;
3543
3544        /* disable queue 0 to prevent tail write w/o re-config */
3545        wr32(E1000_RXDCTL(0), 0);
3546
3547        /* Attention!!!  For SR-IOV PF driver operations you must enable
3548         * queue drop for all VF and PF queues to prevent head of line blocking
3549         * if an un-trusted VF does not provide descriptors to hardware.
3550         */
3551        if (adapter->vfs_allocated_count) {
3552                /* set all queue drop enable bits */
3553                wr32(E1000_QDE, ALL_QUEUES);
3554        }
3555
3556        /* This is useful for sniffing bad packets. */
3557        if (adapter->netdev->features & NETIF_F_RXALL) {
3558                /* UPE and MPE will be handled by normal PROMISC logic
3559                 * in e1000e_set_rx_mode
3560                 */
3561                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3562                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
3563                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3564
3565                rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3566                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3567                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3568                 * and that breaks VLANs.
3569                 */
3570        }
3571
3572        wr32(E1000_RCTL, rctl);
3573}
3574
3575static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3576                                   int vfn)
3577{
3578        struct e1000_hw *hw = &adapter->hw;
3579        u32 vmolr;
3580
3581        if (size > MAX_JUMBO_FRAME_SIZE)
3582                size = MAX_JUMBO_FRAME_SIZE;
3583
3584        vmolr = rd32(E1000_VMOLR(vfn));
3585        vmolr &= ~E1000_VMOLR_RLPML_MASK;
3586        vmolr |= size | E1000_VMOLR_LPE;
3587        wr32(E1000_VMOLR(vfn), vmolr);
3588
3589        return 0;
3590}
3591
3592static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3593                                         int vfn, bool enable)
3594{
3595        struct e1000_hw *hw = &adapter->hw;
3596        u32 val, reg;
3597
3598        if (hw->mac.type < e1000_82576)
3599                return;
3600
3601        if (hw->mac.type == e1000_i350)
3602                reg = E1000_DVMOLR(vfn);
3603        else
3604                reg = E1000_VMOLR(vfn);
3605
3606        val = rd32(reg);
3607        if (enable)
3608                val |= E1000_VMOLR_STRVLAN;
3609        else
3610                val &= ~(E1000_VMOLR_STRVLAN);
3611        wr32(reg, val);
3612}
3613
3614static inline void igb_set_vmolr(struct igb_adapter *adapter,
3615                                 int vfn, bool aupe)
3616{
3617        struct e1000_hw *hw = &adapter->hw;
3618        u32 vmolr;
3619
3620        /* This register exists only on 82576 and newer so if we are older then
3621         * we should exit and do nothing
3622         */
3623        if (hw->mac.type < e1000_82576)
3624                return;
3625
3626        vmolr = rd32(E1000_VMOLR(vfn));
3627        if (aupe)
3628                vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3629        else
3630                vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3631
3632        /* clear all bits that might not be set */
3633        vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3634
3635        if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3636                vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3637        /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3638         * multicast packets
3639         */
3640        if (vfn <= adapter->vfs_allocated_count)
3641                vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3642
3643        wr32(E1000_VMOLR(vfn), vmolr);
3644}
3645
3646/**
3647 *  igb_configure_rx_ring - Configure a receive ring after Reset
3648 *  @adapter: board private structure
3649 *  @ring: receive ring to be configured
3650 *
3651 *  Configure the Rx unit of the MAC after a reset.
3652 **/
3653void igb_configure_rx_ring(struct igb_adapter *adapter,
3654                           struct igb_ring *ring)
3655{
3656        struct e1000_hw *hw = &adapter->hw;
3657        u64 rdba = ring->dma;
3658        int reg_idx = ring->reg_idx;
3659        u32 srrctl = 0, rxdctl = 0;
3660
3661        /* disable the queue */
3662        wr32(E1000_RXDCTL(reg_idx), 0);
3663
3664        /* Set DMA base address registers */
3665        wr32(E1000_RDBAL(reg_idx),
3666             rdba & 0x00000000ffffffffULL);
3667        wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3668        wr32(E1000_RDLEN(reg_idx),
3669             ring->count * sizeof(union e1000_adv_rx_desc));
3670
3671        /* initialize head and tail */
3672        ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3673        wr32(E1000_RDH(reg_idx), 0);
3674        writel(0, ring->tail);
3675
3676        /* set descriptor configuration */
3677        srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3678        srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3679        srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3680        if (hw->mac.type >= e1000_82580)
3681                srrctl |= E1000_SRRCTL_TIMESTAMP;
3682        /* Only set Drop Enable if we are supporting multiple queues */
3683        if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3684                srrctl |= E1000_SRRCTL_DROP_EN;
3685
3686        wr32(E1000_SRRCTL(reg_idx), srrctl);
3687
3688        /* set filtering for VMDQ pools */
3689        igb_set_vmolr(adapter, reg_idx & 0x7, true);
3690
3691        rxdctl |= IGB_RX_PTHRESH;
3692        rxdctl |= IGB_RX_HTHRESH << 8;
3693        rxdctl |= IGB_RX_WTHRESH << 16;
3694
3695        /* enable receive descriptor fetching */
3696        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3697        wr32(E1000_RXDCTL(reg_idx), rxdctl);
3698}
3699
3700/**
3701 *  igb_configure_rx - Configure receive Unit after Reset
3702 *  @adapter: board private structure
3703 *
3704 *  Configure the Rx unit of the MAC after a reset.
3705 **/
3706static void igb_configure_rx(struct igb_adapter *adapter)
3707{
3708        int i;
3709
3710        /* set the correct pool for the PF default MAC address in entry 0 */
3711        igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3712                         adapter->vfs_allocated_count);
3713
3714        /* Setup the HW Rx Head and Tail Descriptor Pointers and
3715         * the Base and Length of the Rx Descriptor Ring
3716         */
3717        for (i = 0; i < adapter->num_rx_queues; i++)
3718                igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3719}
3720
3721/**
3722 *  igb_free_tx_resources - Free Tx Resources per Queue
3723 *  @tx_ring: Tx descriptor ring for a specific queue
3724 *
3725 *  Free all transmit software resources
3726 **/
3727void igb_free_tx_resources(struct igb_ring *tx_ring)
3728{
3729        igb_clean_tx_ring(tx_ring);
3730
3731        vfree(tx_ring->tx_buffer_info);
3732        tx_ring->tx_buffer_info = NULL;
3733
3734        /* if not set, then don't free */
3735        if (!tx_ring->desc)
3736                return;
3737
3738        dma_free_coherent(tx_ring->dev, tx_ring->size,
3739                          tx_ring->desc, tx_ring->dma);
3740
3741        tx_ring->desc = NULL;
3742}
3743
3744/**
3745 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3746 *  @adapter: board private structure
3747 *
3748 *  Free all transmit software resources
3749 **/
3750static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3751{
3752        int i;
3753
3754        for (i = 0; i < adapter->num_tx_queues; i++)
3755                if (adapter->tx_ring[i])
3756                        igb_free_tx_resources(adapter->tx_ring[i]);
3757}
3758
3759void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3760                                    struct igb_tx_buffer *tx_buffer)
3761{
3762        if (tx_buffer->skb) {
3763                dev_kfree_skb_any(tx_buffer->skb);
3764                if (dma_unmap_len(tx_buffer, len))
3765                        dma_unmap_single(ring->dev,
3766                                         dma_unmap_addr(tx_buffer, dma),
3767                                         dma_unmap_len(tx_buffer, len),
3768                                         DMA_TO_DEVICE);
3769        } else if (dma_unmap_len(tx_buffer, len)) {
3770                dma_unmap_page(ring->dev,
3771                               dma_unmap_addr(tx_buffer, dma),
3772                               dma_unmap_len(tx_buffer, len),
3773                               DMA_TO_DEVICE);
3774        }
3775        tx_buffer->next_to_watch = NULL;
3776        tx_buffer->skb = NULL;
3777        dma_unmap_len_set(tx_buffer, len, 0);
3778        /* buffer_info must be completely set up in the transmit path */
3779}
3780
3781/**
3782 *  igb_clean_tx_ring - Free Tx Buffers
3783 *  @tx_ring: ring to be cleaned
3784 **/
3785static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3786{
3787        struct igb_tx_buffer *buffer_info;
3788        unsigned long size;
3789        u16 i;
3790
3791        if (!tx_ring->tx_buffer_info)
3792                return;
3793        /* Free all the Tx ring sk_buffs */
3794
3795        for (i = 0; i < tx_ring->count; i++) {
3796                buffer_info = &tx_ring->tx_buffer_info[i];
3797                igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3798        }
3799
3800        netdev_tx_reset_queue(txring_txq(tx_ring));
3801
3802        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3803        memset(tx_ring->tx_buffer_info, 0, size);
3804
3805        /* Zero out the descriptor ring */
3806        memset(tx_ring->desc, 0, tx_ring->size);
3807
3808        tx_ring->next_to_use = 0;
3809        tx_ring->next_to_clean = 0;
3810}
3811
3812/**
3813 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3814 *  @adapter: board private structure
3815 **/
3816static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3817{
3818        int i;
3819
3820        for (i = 0; i < adapter->num_tx_queues; i++)
3821                if (adapter->tx_ring[i])
3822                        igb_clean_tx_ring(adapter->tx_ring[i]);
3823}
3824
3825/**
3826 *  igb_free_rx_resources - Free Rx Resources
3827 *  @rx_ring: ring to clean the resources from
3828 *
3829 *  Free all receive software resources
3830 **/
3831void igb_free_rx_resources(struct igb_ring *rx_ring)
3832{
3833        igb_clean_rx_ring(rx_ring);
3834
3835        vfree(rx_ring->rx_buffer_info);
3836        rx_ring->rx_buffer_info = NULL;
3837
3838        /* if not set, then don't free */
3839        if (!rx_ring->desc)
3840                return;
3841
3842        dma_free_coherent(rx_ring->dev, rx_ring->size,
3843                          rx_ring->desc, rx_ring->dma);
3844
3845        rx_ring->desc = NULL;
3846}
3847
3848/**
3849 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3850 *  @adapter: board private structure
3851 *
3852 *  Free all receive software resources
3853 **/
3854static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3855{
3856        int i;
3857
3858        for (i = 0; i < adapter->num_rx_queues; i++)
3859                if (adapter->rx_ring[i])
3860                        igb_free_rx_resources(adapter->rx_ring[i]);
3861}
3862
3863/**
3864 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3865 *  @rx_ring: ring to free buffers from
3866 **/
3867static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3868{
3869        unsigned long size;
3870        u16 i;
3871
3872        if (rx_ring->skb)
3873                dev_kfree_skb(rx_ring->skb);
3874        rx_ring->skb = NULL;
3875
3876        if (!rx_ring->rx_buffer_info)
3877                return;
3878
3879        /* Free all the Rx ring sk_buffs */
3880        for (i = 0; i < rx_ring->count; i++) {
3881                struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3882
3883                if (!buffer_info->page)
3884                        continue;
3885
3886                dma_unmap_page(rx_ring->dev,
3887                               buffer_info->dma,
3888                               PAGE_SIZE,
3889                               DMA_FROM_DEVICE);
3890                __free_page(buffer_info->page);
3891
3892                buffer_info->page = NULL;
3893        }
3894
3895        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3896        memset(rx_ring->rx_buffer_info, 0, size);
3897
3898        /* Zero out the descriptor ring */
3899        memset(rx_ring->desc, 0, rx_ring->size);
3900
3901        rx_ring->next_to_alloc = 0;
3902        rx_ring->next_to_clean = 0;
3903        rx_ring->next_to_use = 0;
3904}
3905
3906/**
3907 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3908 *  @adapter: board private structure
3909 **/
3910static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3911{
3912        int i;
3913
3914        for (i = 0; i < adapter->num_rx_queues; i++)
3915                if (adapter->rx_ring[i])
3916                        igb_clean_rx_ring(adapter->rx_ring[i]);
3917}
3918
3919/**
3920 *  igb_set_mac - Change the Ethernet Address of the NIC
3921 *  @netdev: network interface device structure
3922 *  @p: pointer to an address structure
3923 *
3924 *  Returns 0 on success, negative on failure
3925 **/
3926static int igb_set_mac(struct net_device *netdev, void *p)
3927{
3928        struct igb_adapter *adapter = netdev_priv(netdev);
3929        struct e1000_hw *hw = &adapter->hw;
3930        struct sockaddr *addr = p;
3931
3932        if (!is_valid_ether_addr(addr->sa_data))
3933                return -EADDRNOTAVAIL;
3934
3935        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3936        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3937
3938        /* set the correct pool for the new PF MAC address in entry 0 */
3939        igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3940                         adapter->vfs_allocated_count);
3941
3942        return 0;
3943}
3944
3945/**
3946 *  igb_write_mc_addr_list - write multicast addresses to MTA
3947 *  @netdev: network interface device structure
3948 *
3949 *  Writes multicast address list to the MTA hash table.
3950 *  Returns: -ENOMEM on failure
3951 *           0 on no addresses written
3952 *           X on writing X addresses to MTA
3953 **/
3954static int igb_write_mc_addr_list(struct net_device *netdev)
3955{
3956        struct igb_adapter *adapter = netdev_priv(netdev);
3957        struct e1000_hw *hw = &adapter->hw;
3958        struct netdev_hw_addr *ha;
3959        u8  *mta_list;
3960        int i;
3961
3962        if (netdev_mc_empty(netdev)) {
3963                /* nothing to program, so clear mc list */
3964                igb_update_mc_addr_list(hw, NULL, 0);
3965                igb_restore_vf_multicasts(adapter);
3966                return 0;
3967        }
3968
3969        mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3970        if (!mta_list)
3971                return -ENOMEM;
3972
3973        /* The shared function expects a packed array of only addresses. */
3974        i = 0;
3975        netdev_for_each_mc_addr(ha, netdev)
3976                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3977
3978        igb_update_mc_addr_list(hw, mta_list, i);
3979        kfree(mta_list);
3980
3981        return netdev_mc_count(netdev);
3982}
3983
3984/**
3985 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3986 *  @netdev: network interface device structure
3987 *
3988 *  Writes unicast address list to the RAR table.
3989 *  Returns: -ENOMEM on failure/insufficient address space
3990 *           0 on no addresses written
3991 *           X on writing X addresses to the RAR table
3992 **/
3993static int igb_write_uc_addr_list(struct net_device *netdev)
3994{
3995        struct igb_adapter *adapter = netdev_priv(netdev);
3996        struct e1000_hw *hw = &adapter->hw;
3997        unsigned int vfn = adapter->vfs_allocated_count;
3998        unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3999        int count = 0;
4000
4001        /* return ENOMEM indicating insufficient memory for addresses */
4002        if (netdev_uc_count(netdev) > rar_entries)
4003                return -ENOMEM;
4004
4005        if (!netdev_uc_empty(netdev) && rar_entries) {
4006                struct netdev_hw_addr *ha;
4007
4008                netdev_for_each_uc_addr(ha, netdev) {
4009                        if (!rar_entries)
4010                                break;
4011                        igb_rar_set_qsel(adapter, ha->addr,
4012                                         rar_entries--,
4013                                         vfn);
4014                        count++;
4015                }
4016        }
4017        /* write the addresses in reverse order to avoid write combining */
4018        for (; rar_entries > 0 ; rar_entries--) {
4019                wr32(E1000_RAH(rar_entries), 0);
4020                wr32(E1000_RAL(rar_entries), 0);
4021        }
4022        wrfl();
4023
4024        return count;
4025}
4026
4027static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4028{
4029        struct e1000_hw *hw = &adapter->hw;
4030        u32 i, pf_id;
4031
4032        switch (hw->mac.type) {
4033        case e1000_i210:
4034        case e1000_i211:
4035        case e1000_i350:
4036                /* VLAN filtering needed for VLAN prio filter */
4037                if (adapter->netdev->features & NETIF_F_NTUPLE)
4038                        break;
4039                /* fall through */
4040        case e1000_82576:
4041        case e1000_82580:
4042        case e1000_i354:
4043                /* VLAN filtering needed for pool filtering */
4044                if (adapter->vfs_allocated_count)
4045                        break;
4046                /* fall through */
4047        default:
4048                return 1;
4049        }
4050
4051        /* We are already in VLAN promisc, nothing to do */
4052        if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4053                return 0;
4054
4055        if (!adapter->vfs_allocated_count)
4056                goto set_vfta;
4057
4058        /* Add PF to all active pools */
4059        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4060
4061        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4062                u32 vlvf = rd32(E1000_VLVF(i));
4063
4064                vlvf |= 1 << pf_id;
4065                wr32(E1000_VLVF(i), vlvf);
4066        }
4067
4068set_vfta:
4069        /* Set all bits in the VLAN filter table array */
4070        for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4071                hw->mac.ops.write_vfta(hw, i, ~0U);
4072
4073        /* Set flag so we don't redo unnecessary work */
4074        adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4075
4076        return 0;
4077}
4078
4079#define VFTA_BLOCK_SIZE 8
4080static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4081{
4082        struct e1000_hw *hw = &adapter->hw;
4083        u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4084        u32 vid_start = vfta_offset * 32;
4085        u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4086        u32 i, vid, word, bits, pf_id;
4087
4088        /* guarantee that we don't scrub out management VLAN */
4089        vid = adapter->mng_vlan_id;
4090        if (vid >= vid_start && vid < vid_end)
4091                vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4092
4093        if (!adapter->vfs_allocated_count)
4094                goto set_vfta;
4095
4096        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4097
4098        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4099                u32 vlvf = rd32(E1000_VLVF(i));
4100
4101                /* pull VLAN ID from VLVF */
4102                vid = vlvf & VLAN_VID_MASK;
4103
4104                /* only concern ourselves with a certain range */
4105                if (vid < vid_start || vid >= vid_end)
4106                        continue;
4107
4108                if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4109                        /* record VLAN ID in VFTA */
4110                        vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4111
4112                        /* if PF is part of this then continue */
4113                        if (test_bit(vid, adapter->active_vlans))
4114                                continue;
4115                }
4116
4117                /* remove PF from the pool */
4118                bits = ~(1 << pf_id);
4119                bits &= rd32(E1000_VLVF(i));
4120                wr32(E1000_VLVF(i), bits);
4121        }
4122
4123set_vfta:
4124        /* extract values from active_vlans and write back to VFTA */
4125        for (i = VFTA_BLOCK_SIZE; i--;) {
4126                vid = (vfta_offset + i) * 32;
4127                word = vid / BITS_PER_LONG;
4128                bits = vid % BITS_PER_LONG;
4129
4130                vfta[i] |= adapter->active_vlans[word] >> bits;
4131
4132                hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4133        }
4134}
4135
4136static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4137{
4138        u32 i;
4139
4140        /* We are not in VLAN promisc, nothing to do */
4141        if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4142                return;
4143
4144        /* Set flag so we don't redo unnecessary work */
4145        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4146
4147        for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4148                igb_scrub_vfta(adapter, i);
4149}
4150
4151/**
4152 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4153 *  @netdev: network interface device structure
4154 *
4155 *  The set_rx_mode entry point is called whenever the unicast or multicast
4156 *  address lists or the network interface flags are updated.  This routine is
4157 *  responsible for configuring the hardware for proper unicast, multicast,
4158 *  promiscuous mode, and all-multi behavior.
4159 **/
4160static void igb_set_rx_mode(struct net_device *netdev)
4161{
4162        struct igb_adapter *adapter = netdev_priv(netdev);
4163        struct e1000_hw *hw = &adapter->hw;
4164        unsigned int vfn = adapter->vfs_allocated_count;
4165        u32 rctl = 0, vmolr = 0;
4166        int count;
4167
4168        /* Check for Promiscuous and All Multicast modes */
4169        if (netdev->flags & IFF_PROMISC) {
4170                rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4171                vmolr |= E1000_VMOLR_MPME;
4172
4173                /* enable use of UTA filter to force packets to default pool */
4174                if (hw->mac.type == e1000_82576)
4175                        vmolr |= E1000_VMOLR_ROPE;
4176        } else {
4177                if (netdev->flags & IFF_ALLMULTI) {
4178                        rctl |= E1000_RCTL_MPE;
4179                        vmolr |= E1000_VMOLR_MPME;
4180                } else {
4181                        /* Write addresses to the MTA, if the attempt fails
4182                         * then we should just turn on promiscuous mode so
4183                         * that we can at least receive multicast traffic
4184                         */
4185                        count = igb_write_mc_addr_list(netdev);
4186                        if (count < 0) {
4187                                rctl |= E1000_RCTL_MPE;
4188                                vmolr |= E1000_VMOLR_MPME;
4189                        } else if (count) {
4190                                vmolr |= E1000_VMOLR_ROMPE;
4191                        }
4192                }
4193        }
4194
4195        /* Write addresses to available RAR registers, if there is not
4196         * sufficient space to store all the addresses then enable
4197         * unicast promiscuous mode
4198         */
4199        count = igb_write_uc_addr_list(netdev);
4200        if (count < 0) {
4201                rctl |= E1000_RCTL_UPE;
4202                vmolr |= E1000_VMOLR_ROPE;
4203        }
4204
4205        /* enable VLAN filtering by default */
4206        rctl |= E1000_RCTL_VFE;
4207
4208        /* disable VLAN filtering for modes that require it */
4209        if ((netdev->flags & IFF_PROMISC) ||
4210            (netdev->features & NETIF_F_RXALL)) {
4211                /* if we fail to set all rules then just clear VFE */
4212                if (igb_vlan_promisc_enable(adapter))
4213                        rctl &= ~E1000_RCTL_VFE;
4214        } else {
4215                igb_vlan_promisc_disable(adapter);
4216        }
4217
4218        /* update state of unicast, multicast, and VLAN filtering modes */
4219        rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4220                                     E1000_RCTL_VFE);
4221        wr32(E1000_RCTL, rctl);
4222
4223        /* In order to support SR-IOV and eventually VMDq it is necessary to set
4224         * the VMOLR to enable the appropriate modes.  Without this workaround
4225         * we will have issues with VLAN tag stripping not being done for frames
4226         * that are only arriving because we are the default pool
4227         */
4228        if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4229                return;
4230
4231        /* set UTA to appropriate mode */
4232        igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4233
4234        vmolr |= rd32(E1000_VMOLR(vfn)) &
4235                 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4236
4237        /* enable Rx jumbo frames, no need for restriction */
4238        vmolr &= ~E1000_VMOLR_RLPML_MASK;
4239        vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4240
4241        wr32(E1000_VMOLR(vfn), vmolr);
4242        wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4243
4244        igb_restore_vf_multicasts(adapter);
4245}
4246
4247static void igb_check_wvbr(struct igb_adapter *adapter)
4248{
4249        struct e1000_hw *hw = &adapter->hw;
4250        u32 wvbr = 0;
4251
4252        switch (hw->mac.type) {
4253        case e1000_82576:
4254        case e1000_i350:
4255                wvbr = rd32(E1000_WVBR);
4256                if (!wvbr)
4257                        return;
4258                break;
4259        default:
4260                break;
4261        }
4262
4263        adapter->wvbr |= wvbr;
4264}
4265
4266#define IGB_STAGGERED_QUEUE_OFFSET 8
4267
4268static void igb_spoof_check(struct igb_adapter *adapter)
4269{
4270        int j;
4271
4272        if (!adapter->wvbr)
4273                return;
4274
4275        for (j = 0; j < adapter->vfs_allocated_count; j++) {
4276                if (adapter->wvbr & (1 << j) ||
4277                    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4278                        dev_warn(&adapter->pdev->dev,
4279                                "Spoof event(s) detected on VF %d\n", j);
4280                        adapter->wvbr &=
4281                                ~((1 << j) |
4282                                  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4283                }
4284        }
4285}
4286
4287/* Need to wait a few seconds after link up to get diagnostic information from
4288 * the phy
4289 */
4290static void igb_update_phy_info(unsigned long data)
4291{
4292        struct igb_adapter *adapter = (struct igb_adapter *) data;
4293        igb_get_phy_info(&adapter->hw);
4294}
4295
4296/**
4297 *  igb_has_link - check shared code for link and determine up/down
4298 *  @adapter: pointer to driver private info
4299 **/
4300bool igb_has_link(struct igb_adapter *adapter)
4301{
4302        struct e1000_hw *hw = &adapter->hw;
4303        bool link_active = false;
4304
4305        /* get_link_status is set on LSC (link status) interrupt or
4306         * rx sequence error interrupt.  get_link_status will stay
4307         * false until the e1000_check_for_link establishes link
4308         * for copper adapters ONLY
4309         */
4310        switch (hw->phy.media_type) {
4311        case e1000_media_type_copper:
4312                if (!hw->mac.get_link_status)
4313                        return true;
4314        case e1000_media_type_internal_serdes:
4315                hw->mac.ops.check_for_link(hw);
4316                link_active = !hw->mac.get_link_status;
4317                break;
4318        default:
4319        case e1000_media_type_unknown:
4320                break;
4321        }
4322
4323        if (((hw->mac.type == e1000_i210) ||
4324             (hw->mac.type == e1000_i211)) &&
4325             (hw->phy.id == I210_I_PHY_ID)) {
4326                if (!netif_carrier_ok(adapter->netdev)) {
4327                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4328                } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4329                        adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4330                        adapter->link_check_timeout = jiffies;
4331                }
4332        }
4333
4334        return link_active;
4335}
4336
4337static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4338{
4339        bool ret = false;
4340        u32 ctrl_ext, thstat;
4341
4342        /* check for thermal sensor event on i350 copper only */
4343        if (hw->mac.type == e1000_i350) {
4344                thstat = rd32(E1000_THSTAT);
4345                ctrl_ext = rd32(E1000_CTRL_EXT);
4346
4347                if ((hw->phy.media_type == e1000_media_type_copper) &&
4348                    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4349                        ret = !!(thstat & event);
4350        }
4351
4352        return ret;
4353}
4354
4355/**
4356 *  igb_check_lvmmc - check for malformed packets received
4357 *  and indicated in LVMMC register
4358 *  @adapter: pointer to adapter
4359 **/
4360static void igb_check_lvmmc(struct igb_adapter *adapter)
4361{
4362        struct e1000_hw *hw = &adapter->hw;
4363        u32 lvmmc;
4364
4365        lvmmc = rd32(E1000_LVMMC);
4366        if (lvmmc) {
4367                if (unlikely(net_ratelimit())) {
4368                        netdev_warn(adapter->netdev,
4369                                    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4370                                    lvmmc);
4371                }
4372        }
4373}
4374
4375/**
4376 *  igb_watchdog - Timer Call-back
4377 *  @data: pointer to adapter cast into an unsigned long
4378 **/
4379static void igb_watchdog(unsigned long data)
4380{
4381        struct igb_adapter *adapter = (struct igb_adapter *)data;
4382        /* Do the rest outside of interrupt context */
4383        schedule_work(&adapter->watchdog_task);
4384}
4385
4386static void igb_watchdog_task(struct work_struct *work)
4387{
4388        struct igb_adapter *adapter = container_of(work,
4389                                                   struct igb_adapter,
4390                                                   watchdog_task);
4391        struct e1000_hw *hw = &adapter->hw;
4392        struct e1000_phy_info *phy = &hw->phy;
4393        struct net_device *netdev = adapter->netdev;
4394        u32 link;
4395        int i;
4396        u32 connsw;
4397        u16 phy_data, retry_count = 20;
4398
4399        link = igb_has_link(adapter);
4400
4401        if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4402                if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4403                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4404                else
4405                        link = false;
4406        }
4407
4408        /* Force link down if we have fiber to swap to */
4409        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4410                if (hw->phy.media_type == e1000_media_type_copper) {
4411                        connsw = rd32(E1000_CONNSW);
4412                        if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4413                                link = 0;
4414                }
4415        }
4416        if (link) {
4417                /* Perform a reset if the media type changed. */
4418                if (hw->dev_spec._82575.media_changed) {
4419                        hw->dev_spec._82575.media_changed = false;
4420                        adapter->flags |= IGB_FLAG_MEDIA_RESET;
4421                        igb_reset(adapter);
4422                }
4423                /* Cancel scheduled suspend requests. */
4424                pm_runtime_resume(netdev->dev.parent);
4425
4426                if (!netif_carrier_ok(netdev)) {
4427                        u32 ctrl;
4428
4429                        hw->mac.ops.get_speed_and_duplex(hw,
4430                                                         &adapter->link_speed,
4431                                                         &adapter->link_duplex);
4432
4433                        ctrl = rd32(E1000_CTRL);
4434                        /* Links status message must follow this format */
4435                        netdev_info(netdev,
4436                               "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4437                               netdev->name,
4438                               adapter->link_speed,
4439                               adapter->link_duplex == FULL_DUPLEX ?
4440                               "Full" : "Half",
4441                               (ctrl & E1000_CTRL_TFCE) &&
4442                               (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4443                               (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4444                               (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4445
4446                        /* disable EEE if enabled */
4447                        if ((adapter->flags & IGB_FLAG_EEE) &&
4448                                (adapter->link_duplex == HALF_DUPLEX)) {
4449                                dev_info(&adapter->pdev->dev,
4450                                "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4451                                adapter->hw.dev_spec._82575.eee_disable = true;
4452                                adapter->flags &= ~IGB_FLAG_EEE;
4453                        }
4454
4455                        /* check if SmartSpeed worked */
4456                        igb_check_downshift(hw);
4457                        if (phy->speed_downgraded)
4458                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4459
4460                        /* check for thermal sensor event */
4461                        if (igb_thermal_sensor_event(hw,
4462                            E1000_THSTAT_LINK_THROTTLE))
4463                                netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4464
4465                        /* adjust timeout factor according to speed/duplex */
4466                        adapter->tx_timeout_factor = 1;
4467                        switch (adapter->link_speed) {
4468                        case SPEED_10:
4469                                adapter->tx_timeout_factor = 14;
4470                                break;
4471                        case SPEED_100:
4472                                /* maybe add some timeout factor ? */
4473                                break;
4474                        }
4475
4476                        if (adapter->link_speed != SPEED_1000)
4477                                goto no_wait;
4478
4479                        /* wait for Remote receiver status OK */
4480retry_read_status:
4481                        if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4482                                              &phy_data)) {
4483                                if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4484                                    retry_count) {
4485                                        msleep(100);
4486                                        retry_count--;
4487                                        goto retry_read_status;
4488                                } else if (!retry_count) {
4489                                        dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4490                                }
4491                        } else {
4492                                dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4493                        }
4494no_wait:
4495                        netif_carrier_on(netdev);
4496
4497                        igb_ping_all_vfs(adapter);
4498                        igb_check_vf_rate_limit(adapter);
4499
4500                        /* link state has changed, schedule phy info update */
4501                        if (!test_bit(__IGB_DOWN, &adapter->state))
4502                                mod_timer(&adapter->phy_info_timer,
4503                                          round_jiffies(jiffies + 2 * HZ));
4504                }
4505        } else {
4506                if (netif_carrier_ok(netdev)) {
4507                        adapter->link_speed = 0;
4508                        adapter->link_duplex = 0;
4509
4510                        /* check for thermal sensor event */
4511                        if (igb_thermal_sensor_event(hw,
4512                            E1000_THSTAT_PWR_DOWN)) {
4513                                netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4514                        }
4515
4516                        /* Links status message must follow this format */
4517                        netdev_info(netdev, "igb: %s NIC Link is Down\n",
4518                               netdev->name);
4519                        netif_carrier_off(netdev);
4520
4521                        igb_ping_all_vfs(adapter);
4522
4523                        /* link state has changed, schedule phy info update */
4524                        if (!test_bit(__IGB_DOWN, &adapter->state))
4525                                mod_timer(&adapter->phy_info_timer,
4526                                          round_jiffies(jiffies + 2 * HZ));
4527
4528                        /* link is down, time to check for alternate media */
4529                        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4530                                igb_check_swap_media(adapter);
4531                                if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4532                                        schedule_work(&adapter->reset_task);
4533                                        /* return immediately */
4534                                        return;
4535                                }
4536                        }
4537                        pm_schedule_suspend(netdev->dev.parent,
4538                                            MSEC_PER_SEC * 5);
4539
4540                /* also check for alternate media here */
4541                } else if (!netif_carrier_ok(netdev) &&
4542                           (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4543                        igb_check_swap_media(adapter);
4544                        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4545                                schedule_work(&adapter->reset_task);
4546                                /* return immediately */
4547                                return;
4548                        }
4549                }
4550        }
4551
4552        spin_lock(&adapter->stats64_lock);
4553        igb_update_stats(adapter, &adapter->stats64);
4554        spin_unlock(&adapter->stats64_lock);
4555
4556        for (i = 0; i < adapter->num_tx_queues; i++) {
4557                struct igb_ring *tx_ring = adapter->tx_ring[i];
4558                if (!netif_carrier_ok(netdev)) {
4559                        /* We've lost link, so the controller stops DMA,
4560                         * but we've got queued Tx work that's never going
4561                         * to get done, so reset controller to flush Tx.
4562                         * (Do the reset outside of interrupt context).
4563                         */
4564                        if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4565                                adapter->tx_timeout_count++;
4566                                schedule_work(&adapter->reset_task);
4567                                /* return immediately since reset is imminent */
4568                                return;
4569                        }
4570                }
4571
4572                /* Force detection of hung controller every watchdog period */
4573                set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4574        }
4575
4576        /* Cause software interrupt to ensure Rx ring is cleaned */
4577        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4578                u32 eics = 0;
4579
4580                for (i = 0; i < adapter->num_q_vectors; i++)
4581                        eics |= adapter->q_vector[i]->eims_value;
4582                wr32(E1000_EICS, eics);
4583        } else {
4584                wr32(E1000_ICS, E1000_ICS_RXDMT0);
4585        }
4586
4587        igb_spoof_check(adapter);
4588        igb_ptp_rx_hang(adapter);
4589
4590        /* Check LVMMC register on i350/i354 only */
4591        if ((adapter->hw.mac.type == e1000_i350) ||
4592            (adapter->hw.mac.type == e1000_i354))
4593                igb_check_lvmmc(adapter);
4594
4595        /* Reset the timer */
4596        if (!test_bit(__IGB_DOWN, &adapter->state)) {
4597                if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4598                        mod_timer(&adapter->watchdog_timer,
4599                                  round_jiffies(jiffies +  HZ));
4600                else
4601                        mod_timer(&adapter->watchdog_timer,
4602                                  round_jiffies(jiffies + 2 * HZ));
4603        }
4604}
4605
4606enum latency_range {
4607        lowest_latency = 0,
4608        low_latency = 1,
4609        bulk_latency = 2,
4610        latency_invalid = 255
4611};
4612
4613/**
4614 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4615 *  @q_vector: pointer to q_vector
4616 *
4617 *  Stores a new ITR value based on strictly on packet size.  This
4618 *  algorithm is less sophisticated than that used in igb_update_itr,
4619 *  due to the difficulty of synchronizing statistics across multiple
4620 *  receive rings.  The divisors and thresholds used by this function
4621 *  were determined based on theoretical maximum wire speed and testing
4622 *  data, in order to minimize response time while increasing bulk
4623 *  throughput.
4624 *  This functionality is controlled by ethtool's coalescing settings.
4625 *  NOTE:  This function is called only when operating in a multiqueue
4626 *         receive environment.
4627 **/
4628static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4629{
4630        int new_val = q_vector->itr_val;
4631        int avg_wire_size = 0;
4632        struct igb_adapter *adapter = q_vector->adapter;
4633        unsigned int packets;
4634
4635        /* For non-gigabit speeds, just fix the interrupt rate at 4000
4636         * ints/sec - ITR timer value of 120 ticks.
4637         */
4638        if (adapter->link_speed != SPEED_1000) {
4639                new_val = IGB_4K_ITR;
4640                goto set_itr_val;
4641        }
4642
4643        packets = q_vector->rx.total_packets;
4644        if (packets)
4645                avg_wire_size = q_vector->rx.total_bytes / packets;
4646
4647        packets = q_vector->tx.total_packets;
4648        if (packets)
4649                avg_wire_size = max_t(u32, avg_wire_size,
4650                                      q_vector->tx.total_bytes / packets);
4651
4652        /* if avg_wire_size isn't set no work was done */
4653        if (!avg_wire_size)
4654                goto clear_counts;
4655
4656        /* Add 24 bytes to size to account for CRC, preamble, and gap */
4657        avg_wire_size += 24;
4658
4659        /* Don't starve jumbo frames */
4660        avg_wire_size = min(avg_wire_size, 3000);
4661
4662        /* Give a little boost to mid-size frames */
4663        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4664                new_val = avg_wire_size / 3;
4665        else
4666                new_val = avg_wire_size / 2;
4667
4668        /* conservative mode (itr 3) eliminates the lowest_latency setting */
4669        if (new_val < IGB_20K_ITR &&
4670            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4671             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4672                new_val = IGB_20K_ITR;
4673
4674set_itr_val:
4675        if (new_val != q_vector->itr_val) {
4676                q_vector->itr_val = new_val;
4677                q_vector->set_itr = 1;
4678        }
4679clear_counts:
4680        q_vector->rx.total_bytes = 0;
4681        q_vector->rx.total_packets = 0;
4682        q_vector->tx.total_bytes = 0;
4683        q_vector->tx.total_packets = 0;
4684}
4685
4686/**
4687 *  igb_update_itr - update the dynamic ITR value based on statistics
4688 *  @q_vector: pointer to q_vector
4689 *  @ring_container: ring info to update the itr for
4690 *
4691 *  Stores a new ITR value based on packets and byte
4692 *  counts during the last interrupt.  The advantage of per interrupt
4693 *  computation is faster updates and more accurate ITR for the current
4694 *  traffic pattern.  Constants in this function were computed
4695 *  based on theoretical maximum wire speed and thresholds were set based
4696 *  on testing data as well as attempting to minimize response time
4697 *  while increasing bulk throughput.
4698 *  This functionality is controlled by ethtool's coalescing settings.
4699 *  NOTE:  These calculations are only valid when operating in a single-
4700 *         queue environment.
4701 **/
4702static void igb_update_itr(struct igb_q_vector *q_vector,
4703                           struct igb_ring_container *ring_container)
4704{
4705        unsigned int packets = ring_container->total_packets;
4706        unsigned int bytes = ring_container->total_bytes;
4707        u8 itrval = ring_container->itr;
4708
4709        /* no packets, exit with status unchanged */
4710        if (packets == 0)
4711                return;
4712
4713        switch (itrval) {
4714        case lowest_latency:
4715                /* handle TSO and jumbo frames */
4716                if (bytes/packets > 8000)
4717                        itrval = bulk_latency;
4718                else if ((packets < 5) && (bytes > 512))
4719                        itrval = low_latency;
4720                break;
4721        case low_latency:  /* 50 usec aka 20000 ints/s */
4722                if (bytes > 10000) {
4723                        /* this if handles the TSO accounting */
4724                        if (bytes/packets > 8000)
4725                                itrval = bulk_latency;
4726                        else if ((packets < 10) || ((bytes/packets) > 1200))
4727                                itrval = bulk_latency;
4728                        else if ((packets > 35))
4729                                itrval = lowest_latency;
4730                } else if (bytes/packets > 2000) {
4731                        itrval = bulk_latency;
4732                } else if (packets <= 2 && bytes < 512) {
4733                        itrval = lowest_latency;
4734                }
4735                break;
4736        case bulk_latency: /* 250 usec aka 4000 ints/s */
4737                if (bytes > 25000) {
4738                        if (packets > 35)
4739                                itrval = low_latency;
4740                } else if (bytes < 1500) {
4741                        itrval = low_latency;
4742                }
4743                break;
4744        }
4745
4746        /* clear work counters since we have the values we need */
4747        ring_container->total_bytes = 0;
4748        ring_container->total_packets = 0;
4749
4750        /* write updated itr to ring container */
4751        ring_container->itr = itrval;
4752}
4753
4754static void igb_set_itr(struct igb_q_vector *q_vector)
4755{
4756        struct igb_adapter *adapter = q_vector->adapter;
4757        u32 new_itr = q_vector->itr_val;
4758        u8 current_itr = 0;
4759
4760        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4761        if (adapter->link_speed != SPEED_1000) {
4762                current_itr = 0;
4763                new_itr = IGB_4K_ITR;
4764                goto set_itr_now;
4765        }
4766
4767        igb_update_itr(q_vector, &q_vector->tx);
4768        igb_update_itr(q_vector, &q_vector->rx);
4769
4770        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4771
4772        /* conservative mode (itr 3) eliminates the lowest_latency setting */
4773        if (current_itr == lowest_latency &&
4774            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4775             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4776                current_itr = low_latency;
4777
4778        switch (current_itr) {
4779        /* counts and packets in update_itr are dependent on these numbers */
4780        case lowest_latency:
4781                new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4782                break;
4783        case low_latency:
4784                new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4785                break;
4786        case bulk_latency:
4787                new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4788                break;
4789        default:
4790                break;
4791        }
4792
4793set_itr_now:
4794        if (new_itr != q_vector->itr_val) {
4795                /* this attempts to bias the interrupt rate towards Bulk
4796                 * by adding intermediate steps when interrupt rate is
4797                 * increasing
4798                 */
4799                new_itr = new_itr > q_vector->itr_val ?
4800                          max((new_itr * q_vector->itr_val) /
4801                          (new_itr + (q_vector->itr_val >> 2)),
4802                          new_itr) : new_itr;
4803                /* Don't write the value here; it resets the adapter's
4804                 * internal timer, and causes us to delay far longer than
4805                 * we should between interrupts.  Instead, we write the ITR
4806                 * value at the beginning of the next interrupt so the timing
4807                 * ends up being correct.
4808                 */
4809                q_vector->itr_val = new_itr;
4810                q_vector->set_itr = 1;
4811        }
4812}
4813
4814static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4815                            u32 type_tucmd, u32 mss_l4len_idx)
4816{
4817        struct e1000_adv_tx_context_desc *context_desc;
4818        u16 i = tx_ring->next_to_use;
4819
4820        context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4821
4822        i++;
4823        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4824
4825        /* set bits to identify this as an advanced context descriptor */
4826        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4827
4828        /* For 82575, context index must be unique per ring. */
4829        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4830                mss_l4len_idx |= tx_ring->reg_idx << 4;
4831
4832        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4833        context_desc->seqnum_seed       = 0;
4834        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4835        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4836}
4837
4838static int igb_tso(struct igb_ring *tx_ring,
4839                   struct igb_tx_buffer *first,
4840                   u8 *hdr_len)
4841{
4842        struct sk_buff *skb = first->skb;
4843        u32 vlan_macip_lens, type_tucmd;
4844        u32 mss_l4len_idx, l4len;
4845        int err;
4846
4847        if (skb->ip_summed != CHECKSUM_PARTIAL)
4848                return 0;
4849
4850        if (!skb_is_gso(skb))
4851                return 0;
4852
4853        err = skb_cow_head(skb, 0);
4854        if (err < 0)
4855                return err;
4856
4857        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4858        type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4859
4860        if (first->protocol == htons(ETH_P_IP)) {
4861                struct iphdr *iph = ip_hdr(skb);
4862                iph->tot_len = 0;
4863                iph->check = 0;
4864                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4865                                                         iph->daddr, 0,
4866                                                         IPPROTO_TCP,
4867                                                         0);
4868                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4869                first->tx_flags |= IGB_TX_FLAGS_TSO |
4870                                   IGB_TX_FLAGS_CSUM |
4871                                   IGB_TX_FLAGS_IPV4;
4872        } else if (skb_is_gso_v6(skb)) {
4873                ipv6_hdr(skb)->payload_len = 0;
4874                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4875                                                       &ipv6_hdr(skb)->daddr,
4876                                                       0, IPPROTO_TCP, 0);
4877                first->tx_flags |= IGB_TX_FLAGS_TSO |
4878                                   IGB_TX_FLAGS_CSUM;
4879        }
4880
4881        /* compute header lengths */
4882        l4len = tcp_hdrlen(skb);
4883        *hdr_len = skb_transport_offset(skb) + l4len;
4884
4885        /* update gso size and bytecount with header size */
4886        first->gso_segs = skb_shinfo(skb)->gso_segs;
4887        first->bytecount += (first->gso_segs - 1) * *hdr_len;
4888
4889        /* MSS L4LEN IDX */
4890        mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4891        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4892
4893        /* VLAN MACLEN IPLEN */
4894        vlan_macip_lens = skb_network_header_len(skb);
4895        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4896        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4897
4898        igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4899
4900        return 1;
4901}
4902
4903static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4904{
4905        unsigned int offset = 0;
4906
4907        ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4908
4909        return offset == skb_checksum_start_offset(skb);
4910}
4911
4912static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4913{
4914        struct sk_buff *skb = first->skb;
4915        u32 vlan_macip_lens = 0;
4916        u32 type_tucmd = 0;
4917
4918        if (skb->ip_summed != CHECKSUM_PARTIAL) {
4919csum_failed:
4920                if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4921                        return;
4922                goto no_csum;
4923        }
4924
4925        switch (skb->csum_offset) {
4926        case offsetof(struct tcphdr, check):
4927                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4928                /* fall through */
4929        case offsetof(struct udphdr, check):
4930                break;
4931        case offsetof(struct sctphdr, checksum):
4932                /* validate that this is actually an SCTP request */
4933                if (((first->protocol == htons(ETH_P_IP)) &&
4934                     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4935                    ((first->protocol == htons(ETH_P_IPV6)) &&
4936                     igb_ipv6_csum_is_sctp(skb))) {
4937                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4938                        break;
4939                }
4940        default:
4941                skb_checksum_help(skb);
4942                goto csum_failed;
4943        }
4944
4945        /* update TX checksum flag */
4946        first->tx_flags |= IGB_TX_FLAGS_CSUM;
4947        vlan_macip_lens = skb_checksum_start_offset(skb) -
4948                          skb_network_offset(skb);
4949no_csum:
4950        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4951        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4952
4953        igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
4954}
4955
4956#define IGB_SET_FLAG(_input, _flag, _result) \
4957        ((_flag <= _result) ? \
4958         ((u32)(_input & _flag) * (_result / _flag)) : \
4959         ((u32)(_input & _flag) / (_flag / _result)))
4960
4961static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4962{
4963        /* set type for advanced descriptor with frame checksum insertion */
4964        u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4965                       E1000_ADVTXD_DCMD_DEXT |
4966                       E1000_ADVTXD_DCMD_IFCS;
4967
4968        /* set HW vlan bit if vlan is present */
4969        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4970                                 (E1000_ADVTXD_DCMD_VLE));
4971
4972        /* set segmentation bits for TSO */
4973        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4974                                 (E1000_ADVTXD_DCMD_TSE));
4975
4976        /* set timestamp bit if present */
4977        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4978                                 (E1000_ADVTXD_MAC_TSTAMP));
4979
4980        /* insert frame checksum */
4981        cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4982
4983        return cmd_type;
4984}
4985
4986static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4987                                 union e1000_adv_tx_desc *tx_desc,
4988                                 u32 tx_flags, unsigned int paylen)
4989{
4990        u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4991
4992        /* 82575 requires a unique index per ring */
4993        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4994                olinfo_status |= tx_ring->reg_idx << 4;
4995
4996        /* insert L4 checksum */
4997        olinfo_status |= IGB_SET_FLAG(tx_flags,
4998                                      IGB_TX_FLAGS_CSUM,
4999                                      (E1000_TXD_POPTS_TXSM << 8));
5000
5001        /* insert IPv4 checksum */
5002        olinfo_status |= IGB_SET_FLAG(tx_flags,
5003                                      IGB_TX_FLAGS_IPV4,
5004                                      (E1000_TXD_POPTS_IXSM << 8));
5005
5006        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5007}
5008
5009static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5010{
5011        struct net_device *netdev = tx_ring->netdev;
5012
5013        netif_stop_subqueue(netdev, tx_ring->queue_index);
5014
5015        /* Herbert's original patch had:
5016         *  smp_mb__after_netif_stop_queue();
5017         * but since that doesn't exist yet, just open code it.
5018         */
5019        smp_mb();
5020
5021        /* We need to check again in a case another CPU has just
5022         * made room available.
5023         */
5024        if (igb_desc_unused(tx_ring) < size)
5025                return -EBUSY;
5026
5027        /* A reprieve! */
5028        netif_wake_subqueue(netdev, tx_ring->queue_index);
5029
5030        u64_stats_update_begin(&tx_ring->tx_syncp2);
5031        tx_ring->tx_stats.restart_queue2++;
5032        u64_stats_update_end(&tx_ring->tx_syncp2);
5033
5034        return 0;
5035}
5036
5037static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5038{
5039        if (igb_desc_unused(tx_ring) >= size)
5040                return 0;
5041        return __igb_maybe_stop_tx(tx_ring, size);
5042}
5043
5044static void igb_tx_map(struct igb_ring *tx_ring,
5045                       struct igb_tx_buffer *first,
5046                       const u8 hdr_len)
5047{
5048        struct sk_buff *skb = first->skb;
5049        struct igb_tx_buffer *tx_buffer;
5050        union e1000_adv_tx_desc *tx_desc;
5051        struct skb_frag_struct *frag;
5052        dma_addr_t dma;
5053        unsigned int data_len, size;
5054        u32 tx_flags = first->tx_flags;
5055        u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5056        u16 i = tx_ring->next_to_use;
5057
5058        tx_desc = IGB_TX_DESC(tx_ring, i);
5059
5060        igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5061
5062        size = skb_headlen(skb);
5063        data_len = skb->data_len;
5064
5065        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5066
5067        tx_buffer = first;
5068
5069        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5070                if (dma_mapping_error(tx_ring->dev, dma))
5071                        goto dma_error;
5072
5073                /* record length, and DMA address */
5074                dma_unmap_len_set(tx_buffer, len, size);
5075                dma_unmap_addr_set(tx_buffer, dma, dma);
5076
5077                tx_desc->read.buffer_addr = cpu_to_le64(dma);
5078
5079                while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5080                        tx_desc->read.cmd_type_len =
5081                                cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5082
5083                        i++;
5084                        tx_desc++;
5085                        if (i == tx_ring->count) {
5086                                tx_desc = IGB_TX_DESC(tx_ring, 0);
5087                                i = 0;
5088                        }
5089                        tx_desc->read.olinfo_status = 0;
5090
5091                        dma += IGB_MAX_DATA_PER_TXD;
5092                        size -= IGB_MAX_DATA_PER_TXD;
5093
5094                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
5095                }
5096
5097                if (likely(!data_len))
5098                        break;
5099
5100                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5101
5102                i++;
5103                tx_desc++;
5104                if (i == tx_ring->count) {
5105                        tx_desc = IGB_TX_DESC(tx_ring, 0);
5106                        i = 0;
5107                }
5108                tx_desc->read.olinfo_status = 0;
5109
5110                size = skb_frag_size(frag);
5111                data_len -= size;
5112
5113                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5114                                       size, DMA_TO_DEVICE);
5115
5116                tx_buffer = &tx_ring->tx_buffer_info[i];
5117        }
5118
5119        /* write last descriptor with RS and EOP bits */
5120        cmd_type |= size | IGB_TXD_DCMD;
5121        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5122
5123        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5124
5125        /* set the timestamp */
5126        first->time_stamp = jiffies;
5127
5128        /* Force memory writes to complete before letting h/w know there
5129         * are new descriptors to fetch.  (Only applicable for weak-ordered
5130         * memory model archs, such as IA-64).
5131         *
5132         * We also need this memory barrier to make certain all of the
5133         * status bits have been updated before next_to_watch is written.
5134         */
5135        wmb();
5136
5137        /* set next_to_watch value indicating a packet is present */
5138        first->next_to_watch = tx_desc;
5139
5140        i++;
5141        if (i == tx_ring->count)
5142                i = 0;
5143
5144        tx_ring->next_to_use = i;
5145
5146        /* Make sure there is space in the ring for the next send. */
5147        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5148
5149        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5150                writel(i, tx_ring->tail);
5151
5152                /* we need this if more than one processor can write to our tail
5153                 * at a time, it synchronizes IO on IA64/Altix systems
5154                 */
5155                mmiowb();
5156        }
5157        return;
5158
5159dma_error:
5160        dev_err(tx_ring->dev, "TX DMA map failed\n");
5161
5162        /* clear dma mappings for failed tx_buffer_info map */
5163        for (;;) {
5164                tx_buffer = &tx_ring->tx_buffer_info[i];
5165                igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5166                if (tx_buffer == first)
5167                        break;
5168                if (i == 0)
5169                        i = tx_ring->count;
5170                i--;
5171        }
5172
5173        tx_ring->next_to_use = i;
5174}
5175
5176netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5177                                struct igb_ring *tx_ring)
5178{
5179        struct igb_tx_buffer *first;
5180        int tso;
5181        u32 tx_flags = 0;
5182        unsigned short f;
5183        u16 count = TXD_USE_COUNT(skb_headlen(skb));
5184        __be16 protocol = vlan_get_protocol(skb);
5185        u8 hdr_len = 0;
5186
5187        /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5188         *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5189         *       + 2 desc gap to keep tail from touching head,
5190         *       + 1 desc for context descriptor,
5191         * otherwise try next time
5192         */
5193        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5194                count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5195
5196        if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5197                /* this is a hard error */
5198                return NETDEV_TX_BUSY;
5199        }
5200
5201        /* record the location of the first descriptor for this packet */
5202        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5203        first->skb = skb;
5204        first->bytecount = skb->len;
5205        first->gso_segs = 1;
5206
5207        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5208                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5209
5210                if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5211                                           &adapter->state)) {
5212                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5213                        tx_flags |= IGB_TX_FLAGS_TSTAMP;
5214
5215                        adapter->ptp_tx_skb = skb_get(skb);
5216                        adapter->ptp_tx_start = jiffies;
5217                        if (adapter->hw.mac.type == e1000_82576)
5218                                schedule_work(&adapter->ptp_tx_work);
5219                }
5220        }
5221
5222        skb_tx_timestamp(skb);
5223
5224        if (skb_vlan_tag_present(skb)) {
5225                tx_flags |= IGB_TX_FLAGS_VLAN;
5226                tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5227        }
5228
5229        /* record initial flags and protocol */
5230        first->tx_flags = tx_flags;
5231        first->protocol = protocol;
5232
5233        tso = igb_tso(tx_ring, first, &hdr_len);
5234        if (tso < 0)
5235                goto out_drop;
5236        else if (!tso)
5237                igb_tx_csum(tx_ring, first);
5238
5239        igb_tx_map(tx_ring, first, hdr_len);
5240
5241        return NETDEV_TX_OK;
5242
5243out_drop:
5244        igb_unmap_and_free_tx_resource(tx_ring, first);
5245
5246        return NETDEV_TX_OK;
5247}
5248
5249static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5250                                                    struct sk_buff *skb)
5251{
5252        unsigned int r_idx = skb->queue_mapping;
5253
5254        if (r_idx >= adapter->num_tx_queues)
5255                r_idx = r_idx % adapter->num_tx_queues;
5256
5257        return adapter->tx_ring[r_idx];
5258}
5259
5260static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5261                                  struct net_device *netdev)
5262{
5263        struct igb_adapter *adapter = netdev_priv(netdev);
5264
5265        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5266         * in order to meet this minimum size requirement.
5267         */
5268        if (skb_put_padto(skb, 17))
5269                return NETDEV_TX_OK;
5270
5271        return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5272}
5273
5274/**
5275 *  igb_tx_timeout - Respond to a Tx Hang
5276 *  @netdev: network interface device structure
5277 **/
5278static void igb_tx_timeout(struct net_device *netdev)
5279{
5280        struct igb_adapter *adapter = netdev_priv(netdev);
5281        struct e1000_hw *hw = &adapter->hw;
5282
5283        /* Do the reset outside of interrupt context */
5284        adapter->tx_timeout_count++;
5285
5286        if (hw->mac.type >= e1000_82580)
5287                hw->dev_spec._82575.global_device_reset = true;
5288
5289        schedule_work(&adapter->reset_task);
5290        wr32(E1000_EICS,
5291             (adapter->eims_enable_mask & ~adapter->eims_other));
5292}
5293
5294static void igb_reset_task(struct work_struct *work)
5295{
5296        struct igb_adapter *adapter;
5297        adapter = container_of(work, struct igb_adapter, reset_task);
5298
5299        igb_dump(adapter);
5300        netdev_err(adapter->netdev, "Reset adapter\n");
5301        igb_reinit_locked(adapter);
5302}
5303
5304/**
5305 *  igb_get_stats64 - Get System Network Statistics
5306 *  @netdev: network interface device structure
5307 *  @stats: rtnl_link_stats64 pointer
5308 **/
5309static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5310                                                struct rtnl_link_stats64 *stats)
5311{
5312        struct igb_adapter *adapter = netdev_priv(netdev);
5313
5314        spin_lock(&adapter->stats64_lock);
5315        igb_update_stats(adapter, &adapter->stats64);
5316        memcpy(stats, &adapter->stats64, sizeof(*stats));
5317        spin_unlock(&adapter->stats64_lock);
5318
5319        return stats;
5320}
5321
5322/**
5323 *  igb_change_mtu - Change the Maximum Transfer Unit
5324 *  @netdev: network interface device structure
5325 *  @new_mtu: new value for maximum frame size
5326 *
5327 *  Returns 0 on success, negative on failure
5328 **/
5329static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5330{
5331        struct igb_adapter *adapter = netdev_priv(netdev);
5332        struct pci_dev *pdev = adapter->pdev;
5333        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5334
5335        if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5336                dev_err(&pdev->dev, "Invalid MTU setting\n");
5337                return -EINVAL;
5338        }
5339
5340#define MAX_STD_JUMBO_FRAME_SIZE 9238
5341        if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5342                dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5343                return -EINVAL;
5344        }
5345
5346        /* adjust max frame to be at least the size of a standard frame */
5347        if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5348                max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5349
5350        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5351                usleep_range(1000, 2000);
5352
5353        /* igb_down has a dependency on max_frame_size */
5354        adapter->max_frame_size = max_frame;
5355
5356        if (netif_running(netdev))
5357                igb_down(adapter);
5358
5359        dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5360                 netdev->mtu, new_mtu);
5361        netdev->mtu = new_mtu;
5362
5363        if (netif_running(netdev))
5364                igb_up(adapter);
5365        else
5366                igb_reset(adapter);
5367
5368        clear_bit(__IGB_RESETTING, &adapter->state);
5369
5370        return 0;
5371}
5372
5373/**
5374 *  igb_update_stats - Update the board statistics counters
5375 *  @adapter: board private structure
5376 **/
5377void igb_update_stats(struct igb_adapter *adapter,
5378                      struct rtnl_link_stats64 *net_stats)
5379{
5380        struct e1000_hw *hw = &adapter->hw;
5381        struct pci_dev *pdev = adapter->pdev;
5382        u32 reg, mpc;
5383        int i;
5384        u64 bytes, packets;
5385        unsigned int start;
5386        u64 _bytes, _packets;
5387
5388        /* Prevent stats update while adapter is being reset, or if the pci
5389         * connection is down.
5390         */
5391        if (adapter->link_speed == 0)
5392                return;
5393        if (pci_channel_offline(pdev))
5394                return;
5395
5396        bytes = 0;
5397        packets = 0;
5398
5399        rcu_read_lock();
5400        for (i = 0; i < adapter->num_rx_queues; i++) {
5401                struct igb_ring *ring = adapter->rx_ring[i];
5402                u32 rqdpc = rd32(E1000_RQDPC(i));
5403                if (hw->mac.type >= e1000_i210)
5404                        wr32(E1000_RQDPC(i), 0);
5405
5406                if (rqdpc) {
5407                        ring->rx_stats.drops += rqdpc;
5408                        net_stats->rx_fifo_errors += rqdpc;
5409                }
5410
5411                do {
5412                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5413                        _bytes = ring->rx_stats.bytes;
5414                        _packets = ring->rx_stats.packets;
5415                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5416                bytes += _bytes;
5417                packets += _packets;
5418        }
5419
5420        net_stats->rx_bytes = bytes;
5421        net_stats->rx_packets = packets;
5422
5423        bytes = 0;
5424        packets = 0;
5425        for (i = 0; i < adapter->num_tx_queues; i++) {
5426                struct igb_ring *ring = adapter->tx_ring[i];
5427                do {
5428                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5429                        _bytes = ring->tx_stats.bytes;
5430                        _packets = ring->tx_stats.packets;
5431                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5432                bytes += _bytes;
5433                packets += _packets;
5434        }
5435        net_stats->tx_bytes = bytes;
5436        net_stats->tx_packets = packets;
5437        rcu_read_unlock();
5438
5439        /* read stats registers */
5440        adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5441        adapter->stats.gprc += rd32(E1000_GPRC);
5442        adapter->stats.gorc += rd32(E1000_GORCL);
5443        rd32(E1000_GORCH); /* clear GORCL */
5444        adapter->stats.bprc += rd32(E1000_BPRC);
5445        adapter->stats.mprc += rd32(E1000_MPRC);
5446        adapter->stats.roc += rd32(E1000_ROC);
5447
5448        adapter->stats.prc64 += rd32(E1000_PRC64);
5449        adapter->stats.prc127 += rd32(E1000_PRC127);
5450        adapter->stats.prc255 += rd32(E1000_PRC255);
5451        adapter->stats.prc511 += rd32(E1000_PRC511);
5452        adapter->stats.prc1023 += rd32(E1000_PRC1023);
5453        adapter->stats.prc1522 += rd32(E1000_PRC1522);
5454        adapter->stats.symerrs += rd32(E1000_SYMERRS);
5455        adapter->stats.sec += rd32(E1000_SEC);
5456
5457        mpc = rd32(E1000_MPC);
5458        adapter->stats.mpc += mpc;
5459        net_stats->rx_fifo_errors += mpc;
5460        adapter->stats.scc += rd32(E1000_SCC);
5461        adapter->stats.ecol += rd32(E1000_ECOL);
5462        adapter->stats.mcc += rd32(E1000_MCC);
5463        adapter->stats.latecol += rd32(E1000_LATECOL);
5464        adapter->stats.dc += rd32(E1000_DC);
5465        adapter->stats.rlec += rd32(E1000_RLEC);
5466        adapter->stats.xonrxc += rd32(E1000_XONRXC);
5467        adapter->stats.xontxc += rd32(E1000_XONTXC);
5468        adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5469        adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5470        adapter->stats.fcruc += rd32(E1000_FCRUC);
5471        adapter->stats.gptc += rd32(E1000_GPTC);
5472        adapter->stats.gotc += rd32(E1000_GOTCL);
5473        rd32(E1000_GOTCH); /* clear GOTCL */
5474        adapter->stats.rnbc += rd32(E1000_RNBC);
5475        adapter->stats.ruc += rd32(E1000_RUC);
5476        adapter->stats.rfc += rd32(E1000_RFC);
5477        adapter->stats.rjc += rd32(E1000_RJC);
5478        adapter->stats.tor += rd32(E1000_TORH);
5479        adapter->stats.tot += rd32(E1000_TOTH);
5480        adapter->stats.tpr += rd32(E1000_TPR);
5481
5482        adapter->stats.ptc64 += rd32(E1000_PTC64);
5483        adapter->stats.ptc127 += rd32(E1000_PTC127);
5484        adapter->stats.ptc255 += rd32(E1000_PTC255);
5485        adapter->stats.ptc511 += rd32(E1000_PTC511);
5486        adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5487        adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5488
5489        adapter->stats.mptc += rd32(E1000_MPTC);
5490        adapter->stats.bptc += rd32(E1000_BPTC);
5491
5492        adapter->stats.tpt += rd32(E1000_TPT);
5493        adapter->stats.colc += rd32(E1000_COLC);
5494
5495        adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5496        /* read internal phy specific stats */
5497        reg = rd32(E1000_CTRL_EXT);
5498        if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5499                adapter->stats.rxerrc += rd32(E1000_RXERRC);
5500
5501                /* this stat has invalid values on i210/i211 */
5502                if ((hw->mac.type != e1000_i210) &&
5503                    (hw->mac.type != e1000_i211))
5504                        adapter->stats.tncrs += rd32(E1000_TNCRS);
5505        }
5506
5507        adapter->stats.tsctc += rd32(E1000_TSCTC);
5508        adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5509
5510        adapter->stats.iac += rd32(E1000_IAC);
5511        adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5512        adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5513        adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5514        adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5515        adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5516        adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5517        adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5518        adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5519
5520        /* Fill out the OS statistics structure */
5521        net_stats->multicast = adapter->stats.mprc;
5522        net_stats->collisions = adapter->stats.colc;
5523
5524        /* Rx Errors */
5525
5526        /* RLEC on some newer hardware can be incorrect so build
5527         * our own version based on RUC and ROC
5528         */
5529        net_stats->rx_errors = adapter->stats.rxerrc +
5530                adapter->stats.crcerrs + adapter->stats.algnerrc +
5531                adapter->stats.ruc + adapter->stats.roc +
5532                adapter->stats.cexterr;
5533        net_stats->rx_length_errors = adapter->stats.ruc +
5534                                      adapter->stats.roc;
5535        net_stats->rx_crc_errors = adapter->stats.crcerrs;
5536        net_stats->rx_frame_errors = adapter->stats.algnerrc;
5537        net_stats->rx_missed_errors = adapter->stats.mpc;
5538
5539        /* Tx Errors */
5540        net_stats->tx_errors = adapter->stats.ecol +
5541                               adapter->stats.latecol;
5542        net_stats->tx_aborted_errors = adapter->stats.ecol;
5543        net_stats->tx_window_errors = adapter->stats.latecol;
5544        net_stats->tx_carrier_errors = adapter->stats.tncrs;
5545
5546        /* Tx Dropped needs to be maintained elsewhere */
5547
5548        /* Management Stats */
5549        adapter->stats.mgptc += rd32(E1000_MGTPTC);
5550        adapter->stats.mgprc += rd32(E1000_MGTPRC);
5551        adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5552
5553        /* OS2BMC Stats */
5554        reg = rd32(E1000_MANC);
5555        if (reg & E1000_MANC_EN_BMC2OS) {
5556                adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5557                adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5558                adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5559                adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5560        }
5561}
5562
5563static void igb_tsync_interrupt(struct igb_adapter *adapter)
5564{
5565        struct e1000_hw *hw = &adapter->hw;
5566        struct ptp_clock_event event;
5567        struct timespec64 ts;
5568        u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5569
5570        if (tsicr & TSINTR_SYS_WRAP) {
5571                event.type = PTP_CLOCK_PPS;
5572                if (adapter->ptp_caps.pps)
5573                        ptp_clock_event(adapter->ptp_clock, &event);
5574                else
5575                        dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5576                ack |= TSINTR_SYS_WRAP;
5577        }
5578
5579        if (tsicr & E1000_TSICR_TXTS) {
5580                /* retrieve hardware timestamp */
5581                schedule_work(&adapter->ptp_tx_work);
5582                ack |= E1000_TSICR_TXTS;
5583        }
5584
5585        if (tsicr & TSINTR_TT0) {
5586                spin_lock(&adapter->tmreg_lock);
5587                ts = timespec64_add(adapter->perout[0].start,
5588                                    adapter->perout[0].period);
5589                /* u32 conversion of tv_sec is safe until y2106 */
5590                wr32(E1000_TRGTTIML0, ts.tv_nsec);
5591                wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5592                tsauxc = rd32(E1000_TSAUXC);
5593                tsauxc |= TSAUXC_EN_TT0;
5594                wr32(E1000_TSAUXC, tsauxc);
5595                adapter->perout[0].start = ts;
5596                spin_unlock(&adapter->tmreg_lock);
5597                ack |= TSINTR_TT0;
5598        }
5599
5600        if (tsicr & TSINTR_TT1) {
5601                spin_lock(&adapter->tmreg_lock);
5602                ts = timespec64_add(adapter->perout[1].start,
5603                                    adapter->perout[1].period);
5604                wr32(E1000_TRGTTIML1, ts.tv_nsec);
5605                wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5606                tsauxc = rd32(E1000_TSAUXC);
5607                tsauxc |= TSAUXC_EN_TT1;
5608                wr32(E1000_TSAUXC, tsauxc);
5609                adapter->perout[1].start = ts;
5610                spin_unlock(&adapter->tmreg_lock);
5611                ack |= TSINTR_TT1;
5612        }
5613
5614        if (tsicr & TSINTR_AUTT0) {
5615                nsec = rd32(E1000_AUXSTMPL0);
5616                sec  = rd32(E1000_AUXSTMPH0);
5617                event.type = PTP_CLOCK_EXTTS;
5618                event.index = 0;
5619                event.timestamp = sec * 1000000000ULL + nsec;
5620                ptp_clock_event(adapter->ptp_clock, &event);
5621                ack |= TSINTR_AUTT0;
5622        }
5623
5624        if (tsicr & TSINTR_AUTT1) {
5625                nsec = rd32(E1000_AUXSTMPL1);
5626                sec  = rd32(E1000_AUXSTMPH1);
5627                event.type = PTP_CLOCK_EXTTS;
5628                event.index = 1;
5629                event.timestamp = sec * 1000000000ULL + nsec;
5630                ptp_clock_event(adapter->ptp_clock, &event);
5631                ack |= TSINTR_AUTT1;
5632        }
5633
5634        /* acknowledge the interrupts */
5635        wr32(E1000_TSICR, ack);
5636}
5637
5638static irqreturn_t igb_msix_other(int irq, void *data)
5639{
5640        struct igb_adapter *adapter = data;
5641        struct e1000_hw *hw = &adapter->hw;
5642        u32 icr = rd32(E1000_ICR);
5643        /* reading ICR causes bit 31 of EICR to be cleared */
5644
5645        if (icr & E1000_ICR_DRSTA)
5646                schedule_work(&adapter->reset_task);
5647
5648        if (icr & E1000_ICR_DOUTSYNC) {
5649                /* HW is reporting DMA is out of sync */
5650                adapter->stats.doosync++;
5651                /* The DMA Out of Sync is also indication of a spoof event
5652                 * in IOV mode. Check the Wrong VM Behavior register to
5653                 * see if it is really a spoof event.
5654                 */
5655                igb_check_wvbr(adapter);
5656        }
5657
5658        /* Check for a mailbox event */
5659        if (icr & E1000_ICR_VMMB)
5660                igb_msg_task(adapter);
5661
5662        if (icr & E1000_ICR_LSC) {
5663                hw->mac.get_link_status = 1;
5664                /* guard against interrupt when we're going down */
5665                if (!test_bit(__IGB_DOWN, &adapter->state))
5666                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
5667        }
5668
5669        if (icr & E1000_ICR_TS)
5670                igb_tsync_interrupt(adapter);
5671
5672        wr32(E1000_EIMS, adapter->eims_other);
5673
5674        return IRQ_HANDLED;
5675}
5676
5677static void igb_write_itr(struct igb_q_vector *q_vector)
5678{
5679        struct igb_adapter *adapter = q_vector->adapter;
5680        u32 itr_val = q_vector->itr_val & 0x7FFC;
5681
5682        if (!q_vector->set_itr)
5683                return;
5684
5685        if (!itr_val)
5686                itr_val = 0x4;
5687
5688        if (adapter->hw.mac.type == e1000_82575)
5689                itr_val |= itr_val << 16;
5690        else
5691                itr_val |= E1000_EITR_CNT_IGNR;
5692
5693        writel(itr_val, q_vector->itr_register);
5694        q_vector->set_itr = 0;
5695}
5696
5697static irqreturn_t igb_msix_ring(int irq, void *data)
5698{
5699        struct igb_q_vector *q_vector = data;
5700
5701        /* Write the ITR value calculated from the previous interrupt. */
5702        igb_write_itr(q_vector);
5703
5704        napi_schedule(&q_vector->napi);
5705
5706        return IRQ_HANDLED;
5707}
5708
5709#ifdef CONFIG_IGB_DCA
5710static void igb_update_tx_dca(struct igb_adapter *adapter,
5711                              struct igb_ring *tx_ring,
5712                              int cpu)
5713{
5714        struct e1000_hw *hw = &adapter->hw;
5715        u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5716
5717        if (hw->mac.type != e1000_82575)
5718                txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5719
5720        /* We can enable relaxed ordering for reads, but not writes when
5721         * DCA is enabled.  This is due to a known issue in some chipsets
5722         * which will cause the DCA tag to be cleared.
5723         */
5724        txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5725                  E1000_DCA_TXCTRL_DATA_RRO_EN |
5726                  E1000_DCA_TXCTRL_DESC_DCA_EN;
5727
5728        wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5729}
5730
5731static void igb_update_rx_dca(struct igb_adapter *adapter,
5732                              struct igb_ring *rx_ring,
5733                              int cpu)
5734{
5735        struct e1000_hw *hw = &adapter->hw;
5736        u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5737
5738        if (hw->mac.type != e1000_82575)
5739                rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5740
5741        /* We can enable relaxed ordering for reads, but not writes when
5742         * DCA is enabled.  This is due to a known issue in some chipsets
5743         * which will cause the DCA tag to be cleared.
5744         */
5745        rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5746                  E1000_DCA_RXCTRL_DESC_DCA_EN;
5747
5748        wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5749}
5750
5751static void igb_update_dca(struct igb_q_vector *q_vector)
5752{
5753        struct igb_adapter *adapter = q_vector->adapter;
5754        int cpu = get_cpu();
5755
5756        if (q_vector->cpu == cpu)
5757                goto out_no_update;
5758
5759        if (q_vector->tx.ring)
5760                igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5761
5762        if (q_vector->rx.ring)
5763                igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5764
5765        q_vector->cpu = cpu;
5766out_no_update:
5767        put_cpu();
5768}
5769
5770static void igb_setup_dca(struct igb_adapter *adapter)
5771{
5772        struct e1000_hw *hw = &adapter->hw;
5773        int i;
5774
5775        if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5776                return;
5777
5778        /* Always use CB2 mode, difference is masked in the CB driver. */
5779        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5780
5781        for (i = 0; i < adapter->num_q_vectors; i++) {
5782                adapter->q_vector[i]->cpu = -1;
5783                igb_update_dca(adapter->q_vector[i]);
5784        }
5785}
5786
5787static int __igb_notify_dca(struct device *dev, void *data)
5788{
5789        struct net_device *netdev = dev_get_drvdata(dev);
5790        struct igb_adapter *adapter = netdev_priv(netdev);
5791        struct pci_dev *pdev = adapter->pdev;
5792        struct e1000_hw *hw = &adapter->hw;
5793        unsigned long event = *(unsigned long *)data;
5794
5795        switch (event) {
5796        case DCA_PROVIDER_ADD:
5797                /* if already enabled, don't do it again */
5798                if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5799                        break;
5800                if (dca_add_requester(dev) == 0) {
5801                        adapter->flags |= IGB_FLAG_DCA_ENABLED;
5802                        dev_info(&pdev->dev, "DCA enabled\n");
5803                        igb_setup_dca(adapter);
5804                        break;
5805                }
5806                /* Fall Through since DCA is disabled. */
5807        case DCA_PROVIDER_REMOVE:
5808                if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5809                        /* without this a class_device is left
5810                         * hanging around in the sysfs model
5811                         */
5812                        dca_remove_requester(dev);
5813                        dev_info(&pdev->dev, "DCA disabled\n");
5814                        adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5815                        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5816                }
5817                break;
5818        }
5819
5820        return 0;
5821}
5822
5823static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5824                          void *p)
5825{
5826        int ret_val;
5827
5828        ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5829                                         __igb_notify_dca);
5830
5831        return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5832}
5833#endif /* CONFIG_IGB_DCA */
5834
5835#ifdef CONFIG_PCI_IOV
5836static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5837{
5838        unsigned char mac_addr[ETH_ALEN];
5839
5840        eth_zero_addr(mac_addr);
5841        igb_set_vf_mac(adapter, vf, mac_addr);
5842
5843        /* By default spoof check is enabled for all VFs */
5844        adapter->vf_data[vf].spoofchk_enabled = true;
5845
5846        return 0;
5847}
5848
5849#endif
5850static void igb_ping_all_vfs(struct igb_adapter *adapter)
5851{
5852        struct e1000_hw *hw = &adapter->hw;
5853        u32 ping;
5854        int i;
5855
5856        for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5857                ping = E1000_PF_CONTROL_MSG;
5858                if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5859                        ping |= E1000_VT_MSGTYPE_CTS;
5860                igb_write_mbx(hw, &ping, 1, i);
5861        }
5862}
5863
5864static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5865{
5866        struct e1000_hw *hw = &adapter->hw;
5867        u32 vmolr = rd32(E1000_VMOLR(vf));
5868        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5869
5870        vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5871                            IGB_VF_FLAG_MULTI_PROMISC);
5872        vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5873
5874        if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5875                vmolr |= E1000_VMOLR_MPME;
5876                vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5877                *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5878        } else {
5879                /* if we have hashes and we are clearing a multicast promisc
5880                 * flag we need to write the hashes to the MTA as this step
5881                 * was previously skipped
5882                 */
5883                if (vf_data->num_vf_mc_hashes > 30) {
5884                        vmolr |= E1000_VMOLR_MPME;
5885                } else if (vf_data->num_vf_mc_hashes) {
5886                        int j;
5887
5888                        vmolr |= E1000_VMOLR_ROMPE;
5889                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5890                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5891                }
5892        }
5893
5894        wr32(E1000_VMOLR(vf), vmolr);
5895
5896        /* there are flags left unprocessed, likely not supported */
5897        if (*msgbuf & E1000_VT_MSGINFO_MASK)
5898                return -EINVAL;
5899
5900        return 0;
5901}
5902
5903static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5904                                  u32 *msgbuf, u32 vf)
5905{
5906        int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5907        u16 *hash_list = (u16 *)&msgbuf[1];
5908        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5909        int i;
5910
5911        /* salt away the number of multicast addresses assigned
5912         * to this VF for later use to restore when the PF multi cast
5913         * list changes
5914         */
5915        vf_data->num_vf_mc_hashes = n;
5916
5917        /* only up to 30 hash values supported */
5918        if (n > 30)
5919                n = 30;
5920
5921        /* store the hashes for later use */
5922        for (i = 0; i < n; i++)
5923                vf_data->vf_mc_hashes[i] = hash_list[i];
5924
5925        /* Flush and reset the mta with the new values */
5926        igb_set_rx_mode(adapter->netdev);
5927
5928        return 0;
5929}
5930
5931static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5932{
5933        struct e1000_hw *hw = &adapter->hw;
5934        struct vf_data_storage *vf_data;
5935        int i, j;
5936
5937        for (i = 0; i < adapter->vfs_allocated_count; i++) {
5938                u32 vmolr = rd32(E1000_VMOLR(i));
5939
5940                vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5941
5942                vf_data = &adapter->vf_data[i];
5943
5944                if ((vf_data->num_vf_mc_hashes > 30) ||
5945                    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5946                        vmolr |= E1000_VMOLR_MPME;
5947                } else if (vf_data->num_vf_mc_hashes) {
5948                        vmolr |= E1000_VMOLR_ROMPE;
5949                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5950                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5951                }
5952                wr32(E1000_VMOLR(i), vmolr);
5953        }
5954}
5955
5956static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5957{
5958        struct e1000_hw *hw = &adapter->hw;
5959        u32 pool_mask, vlvf_mask, i;
5960
5961        /* create mask for VF and other pools */
5962        pool_mask = E1000_VLVF_POOLSEL_MASK;
5963        vlvf_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5964
5965        /* drop PF from pool bits */
5966        pool_mask &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT +
5967                             adapter->vfs_allocated_count));
5968
5969        /* Find the vlan filter for this id */
5970        for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
5971                u32 vlvf = rd32(E1000_VLVF(i));
5972                u32 vfta_mask, vid, vfta;
5973
5974                /* remove the vf from the pool */
5975                if (!(vlvf & vlvf_mask))
5976                        continue;
5977
5978                /* clear out bit from VLVF */
5979                vlvf ^= vlvf_mask;
5980
5981                /* if other pools are present, just remove ourselves */
5982                if (vlvf & pool_mask)
5983                        goto update_vlvfb;
5984
5985                /* if PF is present, leave VFTA */
5986                if (vlvf & E1000_VLVF_POOLSEL_MASK)
5987                        goto update_vlvf;
5988
5989                vid = vlvf & E1000_VLVF_VLANID_MASK;
5990                vfta_mask = 1 << (vid % 32);
5991
5992                /* clear bit from VFTA */
5993                vfta = adapter->shadow_vfta[vid / 32];
5994                if (vfta & vfta_mask)
5995                        hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
5996update_vlvf:
5997                /* clear pool selection enable */
5998                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5999                        vlvf &= E1000_VLVF_POOLSEL_MASK;
6000                else
6001                        vlvf = 0;
6002update_vlvfb:
6003                /* clear pool bits */
6004                wr32(E1000_VLVF(i), vlvf);
6005        }
6006}
6007
6008static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6009{
6010        u32 vlvf;
6011        int idx;
6012
6013        /* short cut the special case */
6014        if (vlan == 0)
6015                return 0;
6016
6017        /* Search for the VLAN id in the VLVF entries */
6018        for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6019                vlvf = rd32(E1000_VLVF(idx));
6020                if ((vlvf & VLAN_VID_MASK) == vlan)
6021                        break;
6022        }
6023
6024        return idx;
6025}
6026
6027void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6028{
6029        struct e1000_hw *hw = &adapter->hw;
6030        u32 bits, pf_id;
6031        int idx;
6032
6033        idx = igb_find_vlvf_entry(hw, vid);
6034        if (!idx)
6035                return;
6036
6037        /* See if any other pools are set for this VLAN filter
6038         * entry other than the PF.
6039         */
6040        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6041        bits = ~(1 << pf_id) & E1000_VLVF_POOLSEL_MASK;
6042        bits &= rd32(E1000_VLVF(idx));
6043
6044        /* Disable the filter so this falls into the default pool. */
6045        if (!bits) {
6046                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6047                        wr32(E1000_VLVF(idx), 1 << pf_id);
6048                else
6049                        wr32(E1000_VLVF(idx), 0);
6050        }
6051}
6052
6053static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6054                           bool add, u32 vf)
6055{
6056        int pf_id = adapter->vfs_allocated_count;
6057        struct e1000_hw *hw = &adapter->hw;
6058        int err;
6059
6060        /* If VLAN overlaps with one the PF is currently monitoring make
6061         * sure that we are able to allocate a VLVF entry.  This may be
6062         * redundant but it guarantees PF will maintain visibility to
6063         * the VLAN.
6064         */
6065        if (add && test_bit(vid, adapter->active_vlans)) {
6066                err = igb_vfta_set(hw, vid, pf_id, true, false);
6067                if (err)
6068                        return err;
6069        }
6070
6071        err = igb_vfta_set(hw, vid, vf, add, false);
6072
6073        if (add && !err)
6074                return err;
6075
6076        /* If we failed to add the VF VLAN or we are removing the VF VLAN
6077         * we may need to drop the PF pool bit in order to allow us to free
6078         * up the VLVF resources.
6079         */
6080        if (test_bit(vid, adapter->active_vlans) ||
6081            (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6082                igb_update_pf_vlvf(adapter, vid);
6083
6084        return err;
6085}
6086
6087static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6088{
6089        struct e1000_hw *hw = &adapter->hw;
6090
6091        if (vid)
6092                wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6093        else
6094                wr32(E1000_VMVIR(vf), 0);
6095}
6096
6097static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6098                                u16 vlan, u8 qos)
6099{
6100        int err;
6101
6102        err = igb_set_vf_vlan(adapter, vlan, true, vf);
6103        if (err)
6104                return err;
6105
6106        igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6107        igb_set_vmolr(adapter, vf, !vlan);
6108
6109        /* revoke access to previous VLAN */
6110        if (vlan != adapter->vf_data[vf].pf_vlan)
6111                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6112                                false, vf);
6113
6114        adapter->vf_data[vf].pf_vlan = vlan;
6115        adapter->vf_data[vf].pf_qos = qos;
6116        igb_set_vf_vlan_strip(adapter, vf, true);
6117        dev_info(&adapter->pdev->dev,
6118                 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6119        if (test_bit(__IGB_DOWN, &adapter->state)) {
6120                dev_warn(&adapter->pdev->dev,
6121                         "The VF VLAN has been set, but the PF device is not up.\n");
6122                dev_warn(&adapter->pdev->dev,
6123                         "Bring the PF device up before attempting to use the VF device.\n");
6124        }
6125
6126        return err;
6127}
6128
6129static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6130{
6131        /* Restore tagless access via VLAN 0 */
6132        igb_set_vf_vlan(adapter, 0, true, vf);
6133
6134        igb_set_vmvir(adapter, 0, vf);
6135        igb_set_vmolr(adapter, vf, true);
6136
6137        /* Remove any PF assigned VLAN */
6138        if (adapter->vf_data[vf].pf_vlan)
6139                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6140                                false, vf);
6141
6142        adapter->vf_data[vf].pf_vlan = 0;
6143        adapter->vf_data[vf].pf_qos = 0;
6144        igb_set_vf_vlan_strip(adapter, vf, false);
6145
6146        return 0;
6147}
6148
6149static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6150                               int vf, u16 vlan, u8 qos)
6151{
6152        struct igb_adapter *adapter = netdev_priv(netdev);
6153
6154        if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6155                return -EINVAL;
6156
6157        return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6158                               igb_disable_port_vlan(adapter, vf);
6159}
6160
6161static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6162{
6163        int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6164        int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6165        int ret;
6166
6167        if (adapter->vf_data[vf].pf_vlan)
6168                return -1;
6169
6170        /* VLAN 0 is a special case, don't allow it to be removed */
6171        if (!vid && !add)
6172                return 0;
6173
6174        ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6175        if (!ret)
6176                igb_set_vf_vlan_strip(adapter, vf, !!vid);
6177        return ret;
6178}
6179
6180static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6181{
6182        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6183
6184        /* clear flags - except flag that indicates PF has set the MAC */
6185        vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6186        vf_data->last_nack = jiffies;
6187
6188        /* reset vlans for device */
6189        igb_clear_vf_vfta(adapter, vf);
6190        igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6191        igb_set_vmvir(adapter, vf_data->pf_vlan |
6192                               (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6193        igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6194        igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6195
6196        /* reset multicast table array for vf */
6197        adapter->vf_data[vf].num_vf_mc_hashes = 0;
6198
6199        /* Flush and reset the mta with the new values */
6200        igb_set_rx_mode(adapter->netdev);
6201}
6202
6203static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6204{
6205        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6206
6207        /* clear mac address as we were hotplug removed/added */
6208        if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6209                eth_zero_addr(vf_mac);
6210
6211        /* process remaining reset events */
6212        igb_vf_reset(adapter, vf);
6213}
6214
6215static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6216{
6217        struct e1000_hw *hw = &adapter->hw;
6218        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6219        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6220        u32 reg, msgbuf[3];
6221        u8 *addr = (u8 *)(&msgbuf[1]);
6222
6223        /* process all the same items cleared in a function level reset */
6224        igb_vf_reset(adapter, vf);
6225
6226        /* set vf mac address */
6227        igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6228
6229        /* enable transmit and receive for vf */
6230        reg = rd32(E1000_VFTE);
6231        wr32(E1000_VFTE, reg | (1 << vf));
6232        reg = rd32(E1000_VFRE);
6233        wr32(E1000_VFRE, reg | (1 << vf));
6234
6235        adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6236
6237        /* reply to reset with ack and vf mac address */
6238        if (!is_zero_ether_addr(vf_mac)) {
6239                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6240                memcpy(addr, vf_mac, ETH_ALEN);
6241        } else {
6242                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6243        }
6244        igb_write_mbx(hw, msgbuf, 3, vf);
6245}
6246
6247static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6248{
6249        /* The VF MAC Address is stored in a packed array of bytes
6250         * starting at the second 32 bit word of the msg array
6251         */
6252        unsigned char *addr = (char *)&msg[1];
6253        int err = -1;
6254
6255        if (is_valid_ether_addr(addr))
6256                err = igb_set_vf_mac(adapter, vf, addr);
6257
6258        return err;
6259}
6260
6261static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6262{
6263        struct e1000_hw *hw = &adapter->hw;
6264        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6265        u32 msg = E1000_VT_MSGTYPE_NACK;
6266
6267        /* if device isn't clear to send it shouldn't be reading either */
6268        if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6269            time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6270                igb_write_mbx(hw, &msg, 1, vf);
6271                vf_data->last_nack = jiffies;
6272        }
6273}
6274
6275static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6276{
6277        struct pci_dev *pdev = adapter->pdev;
6278        u32 msgbuf[E1000_VFMAILBOX_SIZE];
6279        struct e1000_hw *hw = &adapter->hw;
6280        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6281        s32 retval;
6282
6283        retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6284
6285        if (retval) {
6286                /* if receive failed revoke VF CTS stats and restart init */
6287                dev_err(&pdev->dev, "Error receiving message from VF\n");
6288                vf_data->flags &= ~IGB_VF_FLAG_CTS;
6289                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6290                        return;
6291                goto out;
6292        }
6293
6294        /* this is a message we already processed, do nothing */
6295        if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6296                return;
6297
6298        /* until the vf completes a reset it should not be
6299         * allowed to start any configuration.
6300         */
6301        if (msgbuf[0] == E1000_VF_RESET) {
6302                igb_vf_reset_msg(adapter, vf);
6303                return;
6304        }
6305
6306        if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6307                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6308                        return;
6309                retval = -1;
6310                goto out;
6311        }
6312
6313        switch ((msgbuf[0] & 0xFFFF)) {
6314        case E1000_VF_SET_MAC_ADDR:
6315                retval = -EINVAL;
6316                if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6317                        retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6318                else
6319                        dev_warn(&pdev->dev,
6320                                 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6321                                 vf);
6322                break;
6323        case E1000_VF_SET_PROMISC:
6324                retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6325                break;
6326        case E1000_VF_SET_MULTICAST:
6327                retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6328                break;
6329        case E1000_VF_SET_LPE:
6330                retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6331                break;
6332        case E1000_VF_SET_VLAN:
6333                retval = -1;
6334                if (vf_data->pf_vlan)
6335                        dev_warn(&pdev->dev,
6336                                 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6337                                 vf);
6338                else
6339                        retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6340                break;
6341        default:
6342                dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6343                retval = -1;
6344                break;
6345        }
6346
6347        msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6348out:
6349        /* notify the VF of the results of what it sent us */
6350        if (retval)
6351                msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6352        else
6353                msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6354
6355        igb_write_mbx(hw, msgbuf, 1, vf);
6356}
6357
6358static void igb_msg_task(struct igb_adapter *adapter)
6359{
6360        struct e1000_hw *hw = &adapter->hw;
6361        u32 vf;
6362
6363        for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6364                /* process any reset requests */
6365                if (!igb_check_for_rst(hw, vf))
6366                        igb_vf_reset_event(adapter, vf);
6367
6368                /* process any messages pending */
6369                if (!igb_check_for_msg(hw, vf))
6370                        igb_rcv_msg_from_vf(adapter, vf);
6371
6372                /* process any acks */
6373                if (!igb_check_for_ack(hw, vf))
6374                        igb_rcv_ack_from_vf(adapter, vf);
6375        }
6376}
6377
6378/**
6379 *  igb_set_uta - Set unicast filter table address
6380 *  @adapter: board private structure
6381 *  @set: boolean indicating if we are setting or clearing bits
6382 *
6383 *  The unicast table address is a register array of 32-bit registers.
6384 *  The table is meant to be used in a way similar to how the MTA is used
6385 *  however due to certain limitations in the hardware it is necessary to
6386 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6387 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6388 **/
6389static void igb_set_uta(struct igb_adapter *adapter, bool set)
6390{
6391        struct e1000_hw *hw = &adapter->hw;
6392        u32 uta = set ? ~0 : 0;
6393        int i;
6394
6395        /* we only need to do this if VMDq is enabled */
6396        if (!adapter->vfs_allocated_count)
6397                return;
6398
6399        for (i = hw->mac.uta_reg_count; i--;)
6400                array_wr32(E1000_UTA, i, uta);
6401}
6402
6403/**
6404 *  igb_intr_msi - Interrupt Handler
6405 *  @irq: interrupt number
6406 *  @data: pointer to a network interface device structure
6407 **/
6408static irqreturn_t igb_intr_msi(int irq, void *data)
6409{
6410        struct igb_adapter *adapter = data;
6411        struct igb_q_vector *q_vector = adapter->q_vector[0];
6412        struct e1000_hw *hw = &adapter->hw;
6413        /* read ICR disables interrupts using IAM */
6414        u32 icr = rd32(E1000_ICR);
6415
6416        igb_write_itr(q_vector);
6417
6418        if (icr & E1000_ICR_DRSTA)
6419                schedule_work(&adapter->reset_task);
6420
6421        if (icr & E1000_ICR_DOUTSYNC) {
6422                /* HW is reporting DMA is out of sync */
6423                adapter->stats.doosync++;
6424        }
6425
6426        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6427                hw->mac.get_link_status = 1;
6428                if (!test_bit(__IGB_DOWN, &adapter->state))
6429                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6430        }
6431
6432        if (icr & E1000_ICR_TS)
6433                igb_tsync_interrupt(adapter);
6434
6435        napi_schedule(&q_vector->napi);
6436
6437        return IRQ_HANDLED;
6438}
6439
6440/**
6441 *  igb_intr - Legacy Interrupt Handler
6442 *  @irq: interrupt number
6443 *  @data: pointer to a network interface device structure
6444 **/
6445static irqreturn_t igb_intr(int irq, void *data)
6446{
6447        struct igb_adapter *adapter = data;
6448        struct igb_q_vector *q_vector = adapter->q_vector[0];
6449        struct e1000_hw *hw = &adapter->hw;
6450        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6451         * need for the IMC write
6452         */
6453        u32 icr = rd32(E1000_ICR);
6454
6455        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6456         * not set, then the adapter didn't send an interrupt
6457         */
6458        if (!(icr & E1000_ICR_INT_ASSERTED))
6459                return IRQ_NONE;
6460
6461        igb_write_itr(q_vector);
6462
6463        if (icr & E1000_ICR_DRSTA)
6464                schedule_work(&adapter->reset_task);
6465
6466        if (icr & E1000_ICR_DOUTSYNC) {
6467                /* HW is reporting DMA is out of sync */
6468                adapter->stats.doosync++;
6469        }
6470
6471        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6472                hw->mac.get_link_status = 1;
6473                /* guard against interrupt when we're going down */
6474                if (!test_bit(__IGB_DOWN, &adapter->state))
6475                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6476        }
6477
6478        if (icr & E1000_ICR_TS)
6479                igb_tsync_interrupt(adapter);
6480
6481        napi_schedule(&q_vector->napi);
6482
6483        return IRQ_HANDLED;
6484}
6485
6486static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6487{
6488        struct igb_adapter *adapter = q_vector->adapter;
6489        struct e1000_hw *hw = &adapter->hw;
6490
6491        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6492            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6493                if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6494                        igb_set_itr(q_vector);
6495                else
6496                        igb_update_ring_itr(q_vector);
6497        }
6498
6499        if (!test_bit(__IGB_DOWN, &adapter->state)) {
6500                if (adapter->flags & IGB_FLAG_HAS_MSIX)
6501                        wr32(E1000_EIMS, q_vector->eims_value);
6502                else
6503                        igb_irq_enable(adapter);
6504        }
6505}
6506
6507/**
6508 *  igb_poll - NAPI Rx polling callback
6509 *  @napi: napi polling structure
6510 *  @budget: count of how many packets we should handle
6511 **/
6512static int igb_poll(struct napi_struct *napi, int budget)
6513{
6514        struct igb_q_vector *q_vector = container_of(napi,
6515                                                     struct igb_q_vector,
6516                                                     napi);
6517        bool clean_complete = true;
6518        int work_done = 0;
6519
6520#ifdef CONFIG_IGB_DCA
6521        if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6522                igb_update_dca(q_vector);
6523#endif
6524        if (q_vector->tx.ring)
6525                clean_complete = igb_clean_tx_irq(q_vector);
6526
6527        if (q_vector->rx.ring) {
6528                int cleaned = igb_clean_rx_irq(q_vector, budget);
6529
6530                work_done += cleaned;
6531                clean_complete &= (cleaned < budget);
6532        }
6533
6534        /* If all work not completed, return budget and keep polling */
6535        if (!clean_complete)
6536                return budget;
6537
6538        /* If not enough Rx work done, exit the polling mode */
6539        napi_complete_done(napi, work_done);
6540        igb_ring_irq_enable(q_vector);
6541
6542        return 0;
6543}
6544
6545/**
6546 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6547 *  @q_vector: pointer to q_vector containing needed info
6548 *
6549 *  returns true if ring is completely cleaned
6550 **/
6551static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6552{
6553        struct igb_adapter *adapter = q_vector->adapter;
6554        struct igb_ring *tx_ring = q_vector->tx.ring;
6555        struct igb_tx_buffer *tx_buffer;
6556        union e1000_adv_tx_desc *tx_desc;
6557        unsigned int total_bytes = 0, total_packets = 0;
6558        unsigned int budget = q_vector->tx.work_limit;
6559        unsigned int i = tx_ring->next_to_clean;
6560
6561        if (test_bit(__IGB_DOWN, &adapter->state))
6562                return true;
6563
6564        tx_buffer = &tx_ring->tx_buffer_info[i];
6565        tx_desc = IGB_TX_DESC(tx_ring, i);
6566        i -= tx_ring->count;
6567
6568        do {
6569                union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6570
6571                /* if next_to_watch is not set then there is no work pending */
6572                if (!eop_desc)
6573                        break;
6574
6575                /* prevent any other reads prior to eop_desc */
6576                read_barrier_depends();
6577
6578                /* if DD is not set pending work has not been completed */
6579                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6580                        break;
6581
6582                /* clear next_to_watch to prevent false hangs */
6583                tx_buffer->next_to_watch = NULL;
6584
6585                /* update the statistics for this packet */
6586                total_bytes += tx_buffer->bytecount;
6587                total_packets += tx_buffer->gso_segs;
6588
6589                /* free the skb */
6590                dev_consume_skb_any(tx_buffer->skb);
6591
6592                /* unmap skb header data */
6593                dma_unmap_single(tx_ring->dev,
6594                                 dma_unmap_addr(tx_buffer, dma),
6595                                 dma_unmap_len(tx_buffer, len),
6596                                 DMA_TO_DEVICE);
6597
6598                /* clear tx_buffer data */
6599                tx_buffer->skb = NULL;
6600                dma_unmap_len_set(tx_buffer, len, 0);
6601
6602                /* clear last DMA location and unmap remaining buffers */
6603                while (tx_desc != eop_desc) {
6604                        tx_buffer++;
6605                        tx_desc++;
6606                        i++;
6607                        if (unlikely(!i)) {
6608                                i -= tx_ring->count;
6609                                tx_buffer = tx_ring->tx_buffer_info;
6610                                tx_desc = IGB_TX_DESC(tx_ring, 0);
6611                        }
6612
6613                        /* unmap any remaining paged data */
6614                        if (dma_unmap_len(tx_buffer, len)) {
6615                                dma_unmap_page(tx_ring->dev,
6616                                               dma_unmap_addr(tx_buffer, dma),
6617                                               dma_unmap_len(tx_buffer, len),
6618                                               DMA_TO_DEVICE);
6619                                dma_unmap_len_set(tx_buffer, len, 0);
6620                        }
6621                }
6622
6623                /* move us one more past the eop_desc for start of next pkt */
6624                tx_buffer++;
6625                tx_desc++;
6626                i++;
6627                if (unlikely(!i)) {
6628                        i -= tx_ring->count;
6629                        tx_buffer = tx_ring->tx_buffer_info;
6630                        tx_desc = IGB_TX_DESC(tx_ring, 0);
6631                }
6632
6633                /* issue prefetch for next Tx descriptor */
6634                prefetch(tx_desc);
6635
6636                /* update budget accounting */
6637                budget--;
6638        } while (likely(budget));
6639
6640        netdev_tx_completed_queue(txring_txq(tx_ring),
6641                                  total_packets, total_bytes);
6642        i += tx_ring->count;
6643        tx_ring->next_to_clean = i;
6644        u64_stats_update_begin(&tx_ring->tx_syncp);
6645        tx_ring->tx_stats.bytes += total_bytes;
6646        tx_ring->tx_stats.packets += total_packets;
6647        u64_stats_update_end(&tx_ring->tx_syncp);
6648        q_vector->tx.total_bytes += total_bytes;
6649        q_vector->tx.total_packets += total_packets;
6650
6651        if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6652                struct e1000_hw *hw = &adapter->hw;
6653
6654                /* Detect a transmit hang in hardware, this serializes the
6655                 * check with the clearing of time_stamp and movement of i
6656                 */
6657                clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6658                if (tx_buffer->next_to_watch &&
6659                    time_after(jiffies, tx_buffer->time_stamp +
6660                               (adapter->tx_timeout_factor * HZ)) &&
6661                    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6662
6663                        /* detected Tx unit hang */
6664                        dev_err(tx_ring->dev,
6665                                "Detected Tx Unit Hang\n"
6666                                "  Tx Queue             <%d>\n"
6667                                "  TDH                  <%x>\n"
6668                                "  TDT                  <%x>\n"
6669                                "  next_to_use          <%x>\n"
6670                                "  next_to_clean        <%x>\n"
6671                                "buffer_info[next_to_clean]\n"
6672                                "  time_stamp           <%lx>\n"
6673                                "  next_to_watch        <%p>\n"
6674                                "  jiffies              <%lx>\n"
6675                                "  desc.status          <%x>\n",
6676                                tx_ring->queue_index,
6677                                rd32(E1000_TDH(tx_ring->reg_idx)),
6678                                readl(tx_ring->tail),
6679                                tx_ring->next_to_use,
6680                                tx_ring->next_to_clean,
6681                                tx_buffer->time_stamp,
6682                                tx_buffer->next_to_watch,
6683                                jiffies,
6684                                tx_buffer->next_to_watch->wb.status);
6685                        netif_stop_subqueue(tx_ring->netdev,
6686                                            tx_ring->queue_index);
6687
6688                        /* we are about to reset, no point in enabling stuff */
6689                        return true;
6690                }
6691        }
6692
6693#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6694        if (unlikely(total_packets &&
6695            netif_carrier_ok(tx_ring->netdev) &&
6696            igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6697                /* Make sure that anybody stopping the queue after this
6698                 * sees the new next_to_clean.
6699                 */
6700                smp_mb();
6701                if (__netif_subqueue_stopped(tx_ring->netdev,
6702                                             tx_ring->queue_index) &&
6703                    !(test_bit(__IGB_DOWN, &adapter->state))) {
6704                        netif_wake_subqueue(tx_ring->netdev,
6705                                            tx_ring->queue_index);
6706
6707                        u64_stats_update_begin(&tx_ring->tx_syncp);
6708                        tx_ring->tx_stats.restart_queue++;
6709                        u64_stats_update_end(&tx_ring->tx_syncp);
6710                }
6711        }
6712
6713        return !!budget;
6714}
6715
6716/**
6717 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6718 *  @rx_ring: rx descriptor ring to store buffers on
6719 *  @old_buff: donor buffer to have page reused
6720 *
6721 *  Synchronizes page for reuse by the adapter
6722 **/
6723static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6724                              struct igb_rx_buffer *old_buff)
6725{
6726        struct igb_rx_buffer *new_buff;
6727        u16 nta = rx_ring->next_to_alloc;
6728
6729        new_buff = &rx_ring->rx_buffer_info[nta];
6730
6731        /* update, and store next to alloc */
6732        nta++;
6733        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6734
6735        /* transfer page from old buffer to new buffer */
6736        *new_buff = *old_buff;
6737
6738        /* sync the buffer for use by the device */
6739        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6740                                         old_buff->page_offset,
6741                                         IGB_RX_BUFSZ,
6742                                         DMA_FROM_DEVICE);
6743}
6744
6745static inline bool igb_page_is_reserved(struct page *page)
6746{
6747        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6748}
6749
6750static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6751                                  struct page *page,
6752                                  unsigned int truesize)
6753{
6754        /* avoid re-using remote pages */
6755        if (unlikely(igb_page_is_reserved(page)))
6756                return false;
6757
6758#if (PAGE_SIZE < 8192)
6759        /* if we are only owner of page we can reuse it */
6760        if (unlikely(page_count(page) != 1))
6761                return false;
6762
6763        /* flip page offset to other buffer */
6764        rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6765#else
6766        /* move offset up to the next cache line */
6767        rx_buffer->page_offset += truesize;
6768
6769        if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6770                return false;
6771#endif
6772
6773        /* Even if we own the page, we are not allowed to use atomic_set()
6774         * This would break get_page_unless_zero() users.
6775         */
6776        page_ref_inc(page);
6777
6778        return true;
6779}
6780
6781/**
6782 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6783 *  @rx_ring: rx descriptor ring to transact packets on
6784 *  @rx_buffer: buffer containing page to add
6785 *  @rx_desc: descriptor containing length of buffer written by hardware
6786 *  @skb: sk_buff to place the data into
6787 *
6788 *  This function will add the data contained in rx_buffer->page to the skb.
6789 *  This is done either through a direct copy if the data in the buffer is
6790 *  less than the skb header size, otherwise it will just attach the page as
6791 *  a frag to the skb.
6792 *
6793 *  The function will then update the page offset if necessary and return
6794 *  true if the buffer can be reused by the adapter.
6795 **/
6796static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6797                            struct igb_rx_buffer *rx_buffer,
6798                            union e1000_adv_rx_desc *rx_desc,
6799                            struct sk_buff *skb)
6800{
6801        struct page *page = rx_buffer->page;
6802        unsigned char *va = page_address(page) + rx_buffer->page_offset;
6803        unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6804#if (PAGE_SIZE < 8192)
6805        unsigned int truesize = IGB_RX_BUFSZ;
6806#else
6807        unsigned int truesize = SKB_DATA_ALIGN(size);
6808#endif
6809        unsigned int pull_len;
6810
6811        if (unlikely(skb_is_nonlinear(skb)))
6812                goto add_tail_frag;
6813
6814        if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6815                igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6816                va += IGB_TS_HDR_LEN;
6817                size -= IGB_TS_HDR_LEN;
6818        }
6819
6820        if (likely(size <= IGB_RX_HDR_LEN)) {
6821                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6822
6823                /* page is not reserved, we can reuse buffer as-is */
6824                if (likely(!igb_page_is_reserved(page)))
6825                        return true;
6826
6827                /* this page cannot be reused so discard it */
6828                __free_page(page);
6829                return false;
6830        }
6831
6832        /* we need the header to contain the greater of either ETH_HLEN or
6833         * 60 bytes if the skb->len is less than 60 for skb_pad.
6834         */
6835        pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6836
6837        /* align pull length to size of long to optimize memcpy performance */
6838        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6839
6840        /* update all of the pointers */
6841        va += pull_len;
6842        size -= pull_len;
6843
6844add_tail_frag:
6845        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6846                        (unsigned long)va & ~PAGE_MASK, size, truesize);
6847
6848        return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6849}
6850
6851static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6852                                           union e1000_adv_rx_desc *rx_desc,
6853                                           struct sk_buff *skb)
6854{
6855        struct igb_rx_buffer *rx_buffer;
6856        struct page *page;
6857
6858        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6859        page = rx_buffer->page;
6860        prefetchw(page);
6861
6862        if (likely(!skb)) {
6863                void *page_addr = page_address(page) +
6864                                  rx_buffer->page_offset;
6865
6866                /* prefetch first cache line of first page */
6867                prefetch(page_addr);
6868#if L1_CACHE_BYTES < 128
6869                prefetch(page_addr + L1_CACHE_BYTES);
6870#endif
6871
6872                /* allocate a skb to store the frags */
6873                skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6874                if (unlikely(!skb)) {
6875                        rx_ring->rx_stats.alloc_failed++;
6876                        return NULL;
6877                }
6878
6879                /* we will be copying header into skb->data in
6880                 * pskb_may_pull so it is in our interest to prefetch
6881                 * it now to avoid a possible cache miss
6882                 */
6883                prefetchw(skb->data);
6884        }
6885
6886        /* we are reusing so sync this buffer for CPU use */
6887        dma_sync_single_range_for_cpu(rx_ring->dev,
6888                                      rx_buffer->dma,
6889                                      rx_buffer->page_offset,
6890                                      IGB_RX_BUFSZ,
6891                                      DMA_FROM_DEVICE);
6892
6893        /* pull page into skb */
6894        if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6895                /* hand second half of page back to the ring */
6896                igb_reuse_rx_page(rx_ring, rx_buffer);
6897        } else {
6898                /* we are not reusing the buffer so unmap it */
6899                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6900                               PAGE_SIZE, DMA_FROM_DEVICE);
6901        }
6902
6903        /* clear contents of rx_buffer */
6904        rx_buffer->page = NULL;
6905
6906        return skb;
6907}
6908
6909static inline void igb_rx_checksum(struct igb_ring *ring,
6910                                   union e1000_adv_rx_desc *rx_desc,
6911                                   struct sk_buff *skb)
6912{
6913        skb_checksum_none_assert(skb);
6914
6915        /* Ignore Checksum bit is set */
6916        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6917                return;
6918
6919        /* Rx checksum disabled via ethtool */
6920        if (!(ring->netdev->features & NETIF_F_RXCSUM))
6921                return;
6922
6923        /* TCP/UDP checksum error bit is set */
6924        if (igb_test_staterr(rx_desc,
6925                             E1000_RXDEXT_STATERR_TCPE |
6926                             E1000_RXDEXT_STATERR_IPE)) {
6927                /* work around errata with sctp packets where the TCPE aka
6928                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6929                 * packets, (aka let the stack check the crc32c)
6930                 */
6931                if (!((skb->len == 60) &&
6932                      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6933                        u64_stats_update_begin(&ring->rx_syncp);
6934                        ring->rx_stats.csum_err++;
6935                        u64_stats_update_end(&ring->rx_syncp);
6936                }
6937                /* let the stack verify checksum errors */
6938                return;
6939        }
6940        /* It must be a TCP or UDP packet with a valid checksum */
6941        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6942                                      E1000_RXD_STAT_UDPCS))
6943                skb->ip_summed = CHECKSUM_UNNECESSARY;
6944
6945        dev_dbg(ring->dev, "cksum success: bits %08X\n",
6946                le32_to_cpu(rx_desc->wb.upper.status_error));
6947}
6948
6949static inline void igb_rx_hash(struct igb_ring *ring,
6950                               union e1000_adv_rx_desc *rx_desc,
6951                               struct sk_buff *skb)
6952{
6953        if (ring->netdev->features & NETIF_F_RXHASH)
6954                skb_set_hash(skb,
6955                             le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6956                             PKT_HASH_TYPE_L3);
6957}
6958
6959/**
6960 *  igb_is_non_eop - process handling of non-EOP buffers
6961 *  @rx_ring: Rx ring being processed
6962 *  @rx_desc: Rx descriptor for current buffer
6963 *  @skb: current socket buffer containing buffer in progress
6964 *
6965 *  This function updates next to clean.  If the buffer is an EOP buffer
6966 *  this function exits returning false, otherwise it will place the
6967 *  sk_buff in the next buffer to be chained and return true indicating
6968 *  that this is in fact a non-EOP buffer.
6969 **/
6970static bool igb_is_non_eop(struct igb_ring *rx_ring,
6971                           union e1000_adv_rx_desc *rx_desc)
6972{
6973        u32 ntc = rx_ring->next_to_clean + 1;
6974
6975        /* fetch, update, and store next to clean */
6976        ntc = (ntc < rx_ring->count) ? ntc : 0;
6977        rx_ring->next_to_clean = ntc;
6978
6979        prefetch(IGB_RX_DESC(rx_ring, ntc));
6980
6981        if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6982                return false;
6983
6984        return true;
6985}
6986
6987/**
6988 *  igb_cleanup_headers - Correct corrupted or empty headers
6989 *  @rx_ring: rx descriptor ring packet is being transacted on
6990 *  @rx_desc: pointer to the EOP Rx descriptor
6991 *  @skb: pointer to current skb being fixed
6992 *
6993 *  Address the case where we are pulling data in on pages only
6994 *  and as such no data is present in the skb header.
6995 *
6996 *  In addition if skb is not at least 60 bytes we need to pad it so that
6997 *  it is large enough to qualify as a valid Ethernet frame.
6998 *
6999 *  Returns true if an error was encountered and skb was freed.
7000 **/
7001static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7002                                union e1000_adv_rx_desc *rx_desc,
7003                                struct sk_buff *skb)
7004{
7005        if (unlikely((igb_test_staterr(rx_desc,
7006                                       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7007                struct net_device *netdev = rx_ring->netdev;
7008                if (!(netdev->features & NETIF_F_RXALL)) {
7009                        dev_kfree_skb_any(skb);
7010                        return true;
7011                }
7012        }
7013
7014        /* if eth_skb_pad returns an error the skb was freed */
7015        if (eth_skb_pad(skb))
7016                return true;
7017
7018        return false;
7019}
7020
7021/**
7022 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7023 *  @rx_ring: rx descriptor ring packet is being transacted on
7024 *  @rx_desc: pointer to the EOP Rx descriptor
7025 *  @skb: pointer to current skb being populated
7026 *
7027 *  This function checks the ring, descriptor, and packet information in
7028 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7029 *  other fields within the skb.
7030 **/
7031static void igb_process_skb_fields(struct igb_ring *rx_ring,
7032                                   union e1000_adv_rx_desc *rx_desc,
7033                                   struct sk_buff *skb)
7034{
7035        struct net_device *dev = rx_ring->netdev;
7036
7037        igb_rx_hash(rx_ring, rx_desc, skb);
7038
7039        igb_rx_checksum(rx_ring, rx_desc, skb);
7040
7041        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7042            !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7043                igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7044
7045        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7046            igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7047                u16 vid;
7048
7049                if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7050                    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7051                        vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7052                else
7053                        vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7054
7055                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7056        }
7057
7058        skb_record_rx_queue(skb, rx_ring->queue_index);
7059
7060        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7061}
7062
7063static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7064{
7065        struct igb_ring *rx_ring = q_vector->rx.ring;
7066        struct sk_buff *skb = rx_ring->skb;
7067        unsigned int total_bytes = 0, total_packets = 0;
7068        u16 cleaned_count = igb_desc_unused(rx_ring);
7069
7070        while (likely(total_packets < budget)) {
7071                union e1000_adv_rx_desc *rx_desc;
7072
7073                /* return some buffers to hardware, one at a time is too slow */
7074                if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7075                        igb_alloc_rx_buffers(rx_ring, cleaned_count);
7076                        cleaned_count = 0;
7077                }
7078
7079                rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7080
7081                if (!rx_desc->wb.upper.status_error)
7082                        break;
7083
7084                /* This memory barrier is needed to keep us from reading
7085                 * any other fields out of the rx_desc until we know the
7086                 * descriptor has been written back
7087                 */
7088                dma_rmb();
7089
7090                /* retrieve a buffer from the ring */
7091                skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7092
7093                /* exit if we failed to retrieve a buffer */
7094                if (!skb)
7095                        break;
7096
7097                cleaned_count++;
7098
7099                /* fetch next buffer in frame if non-eop */
7100                if (igb_is_non_eop(rx_ring, rx_desc))
7101                        continue;
7102
7103                /* verify the packet layout is correct */
7104                if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7105                        skb = NULL;
7106                        continue;
7107                }
7108
7109                /* probably a little skewed due to removing CRC */
7110                total_bytes += skb->len;
7111
7112                /* populate checksum, timestamp, VLAN, and protocol */
7113                igb_process_skb_fields(rx_ring, rx_desc, skb);
7114
7115                napi_gro_receive(&q_vector->napi, skb);
7116
7117                /* reset skb pointer */
7118                skb = NULL;
7119
7120                /* update budget accounting */
7121                total_packets++;
7122        }
7123
7124        /* place incomplete frames back on ring for completion */
7125        rx_ring->skb = skb;
7126
7127        u64_stats_update_begin(&rx_ring->rx_syncp);
7128        rx_ring->rx_stats.packets += total_packets;
7129        rx_ring->rx_stats.bytes += total_bytes;
7130        u64_stats_update_end(&rx_ring->rx_syncp);
7131        q_vector->rx.total_packets += total_packets;
7132        q_vector->rx.total_bytes += total_bytes;
7133
7134        if (cleaned_count)
7135                igb_alloc_rx_buffers(rx_ring, cleaned_count);
7136
7137        return total_packets;
7138}
7139
7140static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7141                                  struct igb_rx_buffer *bi)
7142{
7143        struct page *page = bi->page;
7144        dma_addr_t dma;
7145
7146        /* since we are recycling buffers we should seldom need to alloc */
7147        if (likely(page))
7148                return true;
7149
7150        /* alloc new page for storage */
7151        page = dev_alloc_page();
7152        if (unlikely(!page)) {
7153                rx_ring->rx_stats.alloc_failed++;
7154                return false;
7155        }
7156
7157        /* map page for use */
7158        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7159
7160        /* if mapping failed free memory back to system since
7161         * there isn't much point in holding memory we can't use
7162         */
7163        if (dma_mapping_error(rx_ring->dev, dma)) {
7164                __free_page(page);
7165
7166                rx_ring->rx_stats.alloc_failed++;
7167                return false;
7168        }
7169
7170        bi->dma = dma;
7171        bi->page = page;
7172        bi->page_offset = 0;
7173
7174        return true;
7175}
7176
7177/**
7178 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7179 *  @adapter: address of board private structure
7180 **/
7181void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7182{
7183        union e1000_adv_rx_desc *rx_desc;
7184        struct igb_rx_buffer *bi;
7185        u16 i = rx_ring->next_to_use;
7186
7187        /* nothing to do */
7188        if (!cleaned_count)
7189                return;
7190
7191        rx_desc = IGB_RX_DESC(rx_ring, i);
7192        bi = &rx_ring->rx_buffer_info[i];
7193        i -= rx_ring->count;
7194
7195        do {
7196                if (!igb_alloc_mapped_page(rx_ring, bi))
7197                        break;
7198
7199                /* Refresh the desc even if buffer_addrs didn't change
7200                 * because each write-back erases this info.
7201                 */
7202                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7203
7204                rx_desc++;
7205                bi++;
7206                i++;
7207                if (unlikely(!i)) {
7208                        rx_desc = IGB_RX_DESC(rx_ring, 0);
7209                        bi = rx_ring->rx_buffer_info;
7210                        i -= rx_ring->count;
7211                }
7212
7213                /* clear the status bits for the next_to_use descriptor */
7214                rx_desc->wb.upper.status_error = 0;
7215
7216                cleaned_count--;
7217        } while (cleaned_count);
7218
7219        i += rx_ring->count;
7220
7221        if (rx_ring->next_to_use != i) {
7222                /* record the next descriptor to use */
7223                rx_ring->next_to_use = i;
7224
7225                /* update next to alloc since we have filled the ring */
7226                rx_ring->next_to_alloc = i;
7227
7228                /* Force memory writes to complete before letting h/w
7229                 * know there are new descriptors to fetch.  (Only
7230                 * applicable for weak-ordered memory model archs,
7231                 * such as IA-64).
7232                 */
7233                wmb();
7234                writel(i, rx_ring->tail);
7235        }
7236}
7237
7238/**
7239 * igb_mii_ioctl -
7240 * @netdev:
7241 * @ifreq:
7242 * @cmd:
7243 **/
7244static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7245{
7246        struct igb_adapter *adapter = netdev_priv(netdev);
7247        struct mii_ioctl_data *data = if_mii(ifr);
7248
7249        if (adapter->hw.phy.media_type != e1000_media_type_copper)
7250                return -EOPNOTSUPP;
7251
7252        switch (cmd) {
7253        case SIOCGMIIPHY:
7254                data->phy_id = adapter->hw.phy.addr;
7255                break;
7256        case SIOCGMIIREG:
7257                if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7258                                     &data->val_out))
7259                        return -EIO;
7260                break;
7261        case SIOCSMIIREG:
7262        default:
7263                return -EOPNOTSUPP;
7264        }
7265        return 0;
7266}
7267
7268/**
7269 * igb_ioctl -
7270 * @netdev:
7271 * @ifreq:
7272 * @cmd:
7273 **/
7274static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7275{
7276        switch (cmd) {
7277        case SIOCGMIIPHY:
7278        case SIOCGMIIREG:
7279        case SIOCSMIIREG:
7280                return igb_mii_ioctl(netdev, ifr, cmd);
7281        case SIOCGHWTSTAMP:
7282                return igb_ptp_get_ts_config(netdev, ifr);
7283        case SIOCSHWTSTAMP:
7284                return igb_ptp_set_ts_config(netdev, ifr);
7285        default:
7286                return -EOPNOTSUPP;
7287        }
7288}
7289
7290void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7291{
7292        struct igb_adapter *adapter = hw->back;
7293
7294        pci_read_config_word(adapter->pdev, reg, value);
7295}
7296
7297void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7298{
7299        struct igb_adapter *adapter = hw->back;
7300
7301        pci_write_config_word(adapter->pdev, reg, *value);
7302}
7303
7304s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7305{
7306        struct igb_adapter *adapter = hw->back;
7307
7308        if (pcie_capability_read_word(adapter->pdev, reg, value))
7309                return -E1000_ERR_CONFIG;
7310
7311        return 0;
7312}
7313
7314s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7315{
7316        struct igb_adapter *adapter = hw->back;
7317
7318        if (pcie_capability_write_word(adapter->pdev, reg, *value))
7319                return -E1000_ERR_CONFIG;
7320
7321        return 0;
7322}
7323
7324static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7325{
7326        struct igb_adapter *adapter = netdev_priv(netdev);
7327        struct e1000_hw *hw = &adapter->hw;
7328        u32 ctrl, rctl;
7329        bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7330
7331        if (enable) {
7332                /* enable VLAN tag insert/strip */
7333                ctrl = rd32(E1000_CTRL);
7334                ctrl |= E1000_CTRL_VME;
7335                wr32(E1000_CTRL, ctrl);
7336
7337                /* Disable CFI check */
7338                rctl = rd32(E1000_RCTL);
7339                rctl &= ~E1000_RCTL_CFIEN;
7340                wr32(E1000_RCTL, rctl);
7341        } else {
7342                /* disable VLAN tag insert/strip */
7343                ctrl = rd32(E1000_CTRL);
7344                ctrl &= ~E1000_CTRL_VME;
7345                wr32(E1000_CTRL, ctrl);
7346        }
7347
7348        igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7349}
7350
7351static int igb_vlan_rx_add_vid(struct net_device *netdev,
7352                               __be16 proto, u16 vid)
7353{
7354        struct igb_adapter *adapter = netdev_priv(netdev);
7355        struct e1000_hw *hw = &adapter->hw;
7356        int pf_id = adapter->vfs_allocated_count;
7357
7358        /* add the filter since PF can receive vlans w/o entry in vlvf */
7359        if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7360                igb_vfta_set(hw, vid, pf_id, true, !!vid);
7361
7362        set_bit(vid, adapter->active_vlans);
7363
7364        return 0;
7365}
7366
7367static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7368                                __be16 proto, u16 vid)
7369{
7370        struct igb_adapter *adapter = netdev_priv(netdev);
7371        int pf_id = adapter->vfs_allocated_count;
7372        struct e1000_hw *hw = &adapter->hw;
7373
7374        /* remove VID from filter table */
7375        if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7376                igb_vfta_set(hw, vid, pf_id, false, true);
7377
7378        clear_bit(vid, adapter->active_vlans);
7379
7380        return 0;
7381}
7382
7383static void igb_restore_vlan(struct igb_adapter *adapter)
7384{
7385        u16 vid = 1;
7386
7387        igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7388        igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7389
7390        for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7391                igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7392}
7393
7394int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7395{
7396        struct pci_dev *pdev = adapter->pdev;
7397        struct e1000_mac_info *mac = &adapter->hw.mac;
7398
7399        mac->autoneg = 0;
7400
7401        /* Make sure dplx is at most 1 bit and lsb of speed is not set
7402         * for the switch() below to work
7403         */
7404        if ((spd & 1) || (dplx & ~1))
7405                goto err_inval;
7406
7407        /* Fiber NIC's only allow 1000 gbps Full duplex
7408         * and 100Mbps Full duplex for 100baseFx sfp
7409         */
7410        if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7411                switch (spd + dplx) {
7412                case SPEED_10 + DUPLEX_HALF:
7413                case SPEED_10 + DUPLEX_FULL:
7414                case SPEED_100 + DUPLEX_HALF:
7415                        goto err_inval;
7416                default:
7417                        break;
7418                }
7419        }
7420
7421        switch (spd + dplx) {
7422        case SPEED_10 + DUPLEX_HALF:
7423                mac->forced_speed_duplex = ADVERTISE_10_HALF;
7424                break;
7425        case SPEED_10 + DUPLEX_FULL:
7426                mac->forced_speed_duplex = ADVERTISE_10_FULL;
7427                break;
7428        case SPEED_100 + DUPLEX_HALF:
7429                mac->forced_speed_duplex = ADVERTISE_100_HALF;
7430                break;
7431        case SPEED_100 + DUPLEX_FULL:
7432                mac->forced_speed_duplex = ADVERTISE_100_FULL;
7433                break;
7434        case SPEED_1000 + DUPLEX_FULL:
7435                mac->autoneg = 1;
7436                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7437                break;
7438        case SPEED_1000 + DUPLEX_HALF: /* not supported */
7439        default:
7440                goto err_inval;
7441        }
7442
7443        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7444        adapter->hw.phy.mdix = AUTO_ALL_MODES;
7445
7446        return 0;
7447
7448err_inval:
7449        dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7450        return -EINVAL;
7451}
7452
7453static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7454                          bool runtime)
7455{
7456        struct net_device *netdev = pci_get_drvdata(pdev);
7457        struct igb_adapter *adapter = netdev_priv(netdev);
7458        struct e1000_hw *hw = &adapter->hw;
7459        u32 ctrl, rctl, status;
7460        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7461#ifdef CONFIG_PM
7462        int retval = 0;
7463#endif
7464
7465        netif_device_detach(netdev);
7466
7467        if (netif_running(netdev))
7468                __igb_close(netdev, true);
7469
7470        igb_clear_interrupt_scheme(adapter);
7471
7472#ifdef CONFIG_PM
7473        retval = pci_save_state(pdev);
7474        if (retval)
7475                return retval;
7476#endif
7477
7478        status = rd32(E1000_STATUS);
7479        if (status & E1000_STATUS_LU)
7480                wufc &= ~E1000_WUFC_LNKC;
7481
7482        if (wufc) {
7483                igb_setup_rctl(adapter);
7484                igb_set_rx_mode(netdev);
7485
7486                /* turn on all-multi mode if wake on multicast is enabled */
7487                if (wufc & E1000_WUFC_MC) {
7488                        rctl = rd32(E1000_RCTL);
7489                        rctl |= E1000_RCTL_MPE;
7490                        wr32(E1000_RCTL, rctl);
7491                }
7492
7493                ctrl = rd32(E1000_CTRL);
7494                /* advertise wake from D3Cold */
7495                #define E1000_CTRL_ADVD3WUC 0x00100000
7496                /* phy power management enable */
7497                #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7498                ctrl |= E1000_CTRL_ADVD3WUC;
7499                wr32(E1000_CTRL, ctrl);
7500
7501                /* Allow time for pending master requests to run */
7502                igb_disable_pcie_master(hw);
7503
7504                wr32(E1000_WUC, E1000_WUC_PME_EN);
7505                wr32(E1000_WUFC, wufc);
7506        } else {
7507                wr32(E1000_WUC, 0);
7508                wr32(E1000_WUFC, 0);
7509        }
7510
7511        *enable_wake = wufc || adapter->en_mng_pt;
7512        if (!*enable_wake)
7513                igb_power_down_link(adapter);
7514        else
7515                igb_power_up_link(adapter);
7516
7517        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7518         * would have already happened in close and is redundant.
7519         */
7520        igb_release_hw_control(adapter);
7521
7522        pci_disable_device(pdev);
7523
7524        return 0;
7525}
7526
7527#ifdef CONFIG_PM
7528#ifdef CONFIG_PM_SLEEP
7529static int igb_suspend(struct device *dev)
7530{
7531        int retval;
7532        bool wake;
7533        struct pci_dev *pdev = to_pci_dev(dev);
7534
7535        retval = __igb_shutdown(pdev, &wake, 0);
7536        if (retval)
7537                return retval;
7538
7539        if (wake) {
7540                pci_prepare_to_sleep(pdev);
7541        } else {
7542                pci_wake_from_d3(pdev, false);
7543                pci_set_power_state(pdev, PCI_D3hot);
7544        }
7545
7546        return 0;
7547}
7548#endif /* CONFIG_PM_SLEEP */
7549
7550static int igb_resume(struct device *dev)
7551{
7552        struct pci_dev *pdev = to_pci_dev(dev);
7553        struct net_device *netdev = pci_get_drvdata(pdev);
7554        struct igb_adapter *adapter = netdev_priv(netdev);
7555        struct e1000_hw *hw = &adapter->hw;
7556        u32 err;
7557
7558        pci_set_power_state(pdev, PCI_D0);
7559        pci_restore_state(pdev);
7560        pci_save_state(pdev);
7561
7562        if (!pci_device_is_present(pdev))
7563                return -ENODEV;
7564        err = pci_enable_device_mem(pdev);
7565        if (err) {
7566                dev_err(&pdev->dev,
7567                        "igb: Cannot enable PCI device from suspend\n");
7568                return err;
7569        }
7570        pci_set_master(pdev);
7571
7572        pci_enable_wake(pdev, PCI_D3hot, 0);
7573        pci_enable_wake(pdev, PCI_D3cold, 0);
7574
7575        if (igb_init_interrupt_scheme(adapter, true)) {
7576                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7577                rtnl_unlock();
7578                return -ENOMEM;
7579        }
7580
7581        igb_reset(adapter);
7582
7583        /* let the f/w know that the h/w is now under the control of the
7584         * driver.
7585         */
7586        igb_get_hw_control(adapter);
7587
7588        wr32(E1000_WUS, ~0);
7589
7590        if (netdev->flags & IFF_UP) {
7591                rtnl_lock();
7592                err = __igb_open(netdev, true);
7593                rtnl_unlock();
7594                if (err)
7595                        return err;
7596        }
7597
7598        netif_device_attach(netdev);
7599        return 0;
7600}
7601
7602static int igb_runtime_idle(struct device *dev)
7603{
7604        struct pci_dev *pdev = to_pci_dev(dev);
7605        struct net_device *netdev = pci_get_drvdata(pdev);
7606        struct igb_adapter *adapter = netdev_priv(netdev);
7607
7608        if (!igb_has_link(adapter))
7609                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7610
7611        return -EBUSY;
7612}
7613
7614static int igb_runtime_suspend(struct device *dev)
7615{
7616        struct pci_dev *pdev = to_pci_dev(dev);
7617        int retval;
7618        bool wake;
7619
7620        retval = __igb_shutdown(pdev, &wake, 1);
7621        if (retval)
7622                return retval;
7623
7624        if (wake) {
7625                pci_prepare_to_sleep(pdev);
7626        } else {
7627                pci_wake_from_d3(pdev, false);
7628                pci_set_power_state(pdev, PCI_D3hot);
7629        }
7630
7631        return 0;
7632}
7633
7634static int igb_runtime_resume(struct device *dev)
7635{
7636        return igb_resume(dev);
7637}
7638#endif /* CONFIG_PM */
7639
7640static void igb_shutdown(struct pci_dev *pdev)
7641{
7642        bool wake;
7643
7644        __igb_shutdown(pdev, &wake, 0);
7645
7646        if (system_state == SYSTEM_POWER_OFF) {
7647                pci_wake_from_d3(pdev, wake);
7648                pci_set_power_state(pdev, PCI_D3hot);
7649        }
7650}
7651
7652#ifdef CONFIG_PCI_IOV
7653static int igb_sriov_reinit(struct pci_dev *dev)
7654{
7655        struct net_device *netdev = pci_get_drvdata(dev);
7656        struct igb_adapter *adapter = netdev_priv(netdev);
7657        struct pci_dev *pdev = adapter->pdev;
7658
7659        rtnl_lock();
7660
7661        if (netif_running(netdev))
7662                igb_close(netdev);
7663        else
7664                igb_reset(adapter);
7665
7666        igb_clear_interrupt_scheme(adapter);
7667
7668        igb_init_queue_configuration(adapter);
7669
7670        if (igb_init_interrupt_scheme(adapter, true)) {
7671                rtnl_unlock();
7672                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7673                return -ENOMEM;
7674        }
7675
7676        if (netif_running(netdev))
7677                igb_open(netdev);
7678
7679        rtnl_unlock();
7680
7681        return 0;
7682}
7683
7684static int igb_pci_disable_sriov(struct pci_dev *dev)
7685{
7686        int err = igb_disable_sriov(dev);
7687
7688        if (!err)
7689                err = igb_sriov_reinit(dev);
7690
7691        return err;
7692}
7693
7694static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7695{
7696        int err = igb_enable_sriov(dev, num_vfs);
7697
7698        if (err)
7699                goto out;
7700
7701        err = igb_sriov_reinit(dev);
7702        if (!err)
7703                return num_vfs;
7704
7705out:
7706        return err;
7707}
7708
7709#endif
7710static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7711{
7712#ifdef CONFIG_PCI_IOV
7713        if (num_vfs == 0)
7714                return igb_pci_disable_sriov(dev);
7715        else
7716                return igb_pci_enable_sriov(dev, num_vfs);
7717#endif
7718        return 0;
7719}
7720
7721#ifdef CONFIG_NET_POLL_CONTROLLER
7722/* Polling 'interrupt' - used by things like netconsole to send skbs
7723 * without having to re-enable interrupts. It's not called while
7724 * the interrupt routine is executing.
7725 */
7726static void igb_netpoll(struct net_device *netdev)
7727{
7728        struct igb_adapter *adapter = netdev_priv(netdev);
7729        struct e1000_hw *hw = &adapter->hw;
7730        struct igb_q_vector *q_vector;
7731        int i;
7732
7733        for (i = 0; i < adapter->num_q_vectors; i++) {
7734                q_vector = adapter->q_vector[i];
7735                if (adapter->flags & IGB_FLAG_HAS_MSIX)
7736                        wr32(E1000_EIMC, q_vector->eims_value);
7737                else
7738                        igb_irq_disable(adapter);
7739                napi_schedule(&q_vector->napi);
7740        }
7741}
7742#endif /* CONFIG_NET_POLL_CONTROLLER */
7743
7744/**
7745 *  igb_io_error_detected - called when PCI error is detected
7746 *  @pdev: Pointer to PCI device
7747 *  @state: The current pci connection state
7748 *
7749 *  This function is called after a PCI bus error affecting
7750 *  this device has been detected.
7751 **/
7752static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7753                                              pci_channel_state_t state)
7754{
7755        struct net_device *netdev = pci_get_drvdata(pdev);
7756        struct igb_adapter *adapter = netdev_priv(netdev);
7757
7758        netif_device_detach(netdev);
7759
7760        if (state == pci_channel_io_perm_failure)
7761                return PCI_ERS_RESULT_DISCONNECT;
7762
7763        if (netif_running(netdev))
7764                igb_down(adapter);
7765        pci_disable_device(pdev);
7766
7767        /* Request a slot slot reset. */
7768        return PCI_ERS_RESULT_NEED_RESET;
7769}
7770
7771/**
7772 *  igb_io_slot_reset - called after the pci bus has been reset.
7773 *  @pdev: Pointer to PCI device
7774 *
7775 *  Restart the card from scratch, as if from a cold-boot. Implementation
7776 *  resembles the first-half of the igb_resume routine.
7777 **/
7778static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7779{
7780        struct net_device *netdev = pci_get_drvdata(pdev);
7781        struct igb_adapter *adapter = netdev_priv(netdev);
7782        struct e1000_hw *hw = &adapter->hw;
7783        pci_ers_result_t result;
7784        int err;
7785
7786        if (pci_enable_device_mem(pdev)) {
7787                dev_err(&pdev->dev,
7788                        "Cannot re-enable PCI device after reset.\n");
7789                result = PCI_ERS_RESULT_DISCONNECT;
7790        } else {
7791                pci_set_master(pdev);
7792                pci_restore_state(pdev);
7793                pci_save_state(pdev);
7794
7795                pci_enable_wake(pdev, PCI_D3hot, 0);
7796                pci_enable_wake(pdev, PCI_D3cold, 0);
7797
7798                igb_reset(adapter);
7799                wr32(E1000_WUS, ~0);
7800                result = PCI_ERS_RESULT_RECOVERED;
7801        }
7802
7803        err = pci_cleanup_aer_uncorrect_error_status(pdev);
7804        if (err) {
7805                dev_err(&pdev->dev,
7806                        "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7807                        err);
7808                /* non-fatal, continue */
7809        }
7810
7811        return result;
7812}
7813
7814/**
7815 *  igb_io_resume - called when traffic can start flowing again.
7816 *  @pdev: Pointer to PCI device
7817 *
7818 *  This callback is called when the error recovery driver tells us that
7819 *  its OK to resume normal operation. Implementation resembles the
7820 *  second-half of the igb_resume routine.
7821 */
7822static void igb_io_resume(struct pci_dev *pdev)
7823{
7824        struct net_device *netdev = pci_get_drvdata(pdev);
7825        struct igb_adapter *adapter = netdev_priv(netdev);
7826
7827        if (netif_running(netdev)) {
7828                if (igb_up(adapter)) {
7829                        dev_err(&pdev->dev, "igb_up failed after reset\n");
7830                        return;
7831                }
7832        }
7833
7834        netif_device_attach(netdev);
7835
7836        /* let the f/w know that the h/w is now under the control of the
7837         * driver.
7838         */
7839        igb_get_hw_control(adapter);
7840}
7841
7842static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7843                             u8 qsel)
7844{
7845        struct e1000_hw *hw = &adapter->hw;
7846        u32 rar_low, rar_high;
7847
7848        /* HW expects these in little endian so we reverse the byte order
7849         * from network order (big endian) to CPU endian
7850         */
7851        rar_low = le32_to_cpup((__be32 *)(addr));
7852        rar_high = le16_to_cpup((__be16 *)(addr + 4));
7853
7854        /* Indicate to hardware the Address is Valid. */
7855        rar_high |= E1000_RAH_AV;
7856
7857        if (hw->mac.type == e1000_82575)
7858                rar_high |= E1000_RAH_POOL_1 * qsel;
7859        else
7860                rar_high |= E1000_RAH_POOL_1 << qsel;
7861
7862        wr32(E1000_RAL(index), rar_low);
7863        wrfl();
7864        wr32(E1000_RAH(index), rar_high);
7865        wrfl();
7866}
7867
7868static int igb_set_vf_mac(struct igb_adapter *adapter,
7869                          int vf, unsigned char *mac_addr)
7870{
7871        struct e1000_hw *hw = &adapter->hw;
7872        /* VF MAC addresses start at end of receive addresses and moves
7873         * towards the first, as a result a collision should not be possible
7874         */
7875        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7876
7877        memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7878
7879        igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7880
7881        return 0;
7882}
7883
7884static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7885{
7886        struct igb_adapter *adapter = netdev_priv(netdev);
7887        if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7888                return -EINVAL;
7889        adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7890        dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7891        dev_info(&adapter->pdev->dev,
7892                 "Reload the VF driver to make this change effective.");
7893        if (test_bit(__IGB_DOWN, &adapter->state)) {
7894                dev_warn(&adapter->pdev->dev,
7895                         "The VF MAC address has been set, but the PF device is not up.\n");
7896                dev_warn(&adapter->pdev->dev,
7897                         "Bring the PF device up before attempting to use the VF device.\n");
7898        }
7899        return igb_set_vf_mac(adapter, vf, mac);
7900}
7901
7902static int igb_link_mbps(int internal_link_speed)
7903{
7904        switch (internal_link_speed) {
7905        case SPEED_100:
7906                return 100;
7907        case SPEED_1000:
7908                return 1000;
7909        default:
7910                return 0;
7911        }
7912}
7913
7914static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7915                                  int link_speed)
7916{
7917        int rf_dec, rf_int;
7918        u32 bcnrc_val;
7919
7920        if (tx_rate != 0) {
7921                /* Calculate the rate factor values to set */
7922                rf_int = link_speed / tx_rate;
7923                rf_dec = (link_speed - (rf_int * tx_rate));
7924                rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7925                         tx_rate;
7926
7927                bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7928                bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7929                              E1000_RTTBCNRC_RF_INT_MASK);
7930                bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7931        } else {
7932                bcnrc_val = 0;
7933        }
7934
7935        wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7936        /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7937         * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7938         */
7939        wr32(E1000_RTTBCNRM, 0x14);
7940        wr32(E1000_RTTBCNRC, bcnrc_val);
7941}
7942
7943static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7944{
7945        int actual_link_speed, i;
7946        bool reset_rate = false;
7947
7948        /* VF TX rate limit was not set or not supported */
7949        if ((adapter->vf_rate_link_speed == 0) ||
7950            (adapter->hw.mac.type != e1000_82576))
7951                return;
7952
7953        actual_link_speed = igb_link_mbps(adapter->link_speed);
7954        if (actual_link_speed != adapter->vf_rate_link_speed) {
7955                reset_rate = true;
7956                adapter->vf_rate_link_speed = 0;
7957                dev_info(&adapter->pdev->dev,
7958                         "Link speed has been changed. VF Transmit rate is disabled\n");
7959        }
7960
7961        for (i = 0; i < adapter->vfs_allocated_count; i++) {
7962                if (reset_rate)
7963                        adapter->vf_data[i].tx_rate = 0;
7964
7965                igb_set_vf_rate_limit(&adapter->hw, i,
7966                                      adapter->vf_data[i].tx_rate,
7967                                      actual_link_speed);
7968        }
7969}
7970
7971static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7972                             int min_tx_rate, int max_tx_rate)
7973{
7974        struct igb_adapter *adapter = netdev_priv(netdev);
7975        struct e1000_hw *hw = &adapter->hw;
7976        int actual_link_speed;
7977
7978        if (hw->mac.type != e1000_82576)
7979                return -EOPNOTSUPP;
7980
7981        if (min_tx_rate)
7982                return -EINVAL;
7983
7984        actual_link_speed = igb_link_mbps(adapter->link_speed);
7985        if ((vf >= adapter->vfs_allocated_count) ||
7986            (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7987            (max_tx_rate < 0) ||
7988            (max_tx_rate > actual_link_speed))
7989                return -EINVAL;
7990
7991        adapter->vf_rate_link_speed = actual_link_speed;
7992        adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7993        igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7994
7995        return 0;
7996}
7997
7998static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7999                                   bool setting)
8000{
8001        struct igb_adapter *adapter = netdev_priv(netdev);
8002        struct e1000_hw *hw = &adapter->hw;
8003        u32 reg_val, reg_offset;
8004
8005        if (!adapter->vfs_allocated_count)
8006                return -EOPNOTSUPP;
8007
8008        if (vf >= adapter->vfs_allocated_count)
8009                return -EINVAL;
8010
8011        reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8012        reg_val = rd32(reg_offset);
8013        if (setting)
8014                reg_val |= ((1 << vf) |
8015                            (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8016        else
8017                reg_val &= ~((1 << vf) |
8018                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8019        wr32(reg_offset, reg_val);
8020
8021        adapter->vf_data[vf].spoofchk_enabled = setting;
8022        return 0;
8023}
8024
8025static int igb_ndo_get_vf_config(struct net_device *netdev,
8026                                 int vf, struct ifla_vf_info *ivi)
8027{
8028        struct igb_adapter *adapter = netdev_priv(netdev);
8029        if (vf >= adapter->vfs_allocated_count)
8030                return -EINVAL;
8031        ivi->vf = vf;
8032        memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8033        ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8034        ivi->min_tx_rate = 0;
8035        ivi->vlan = adapter->vf_data[vf].pf_vlan;
8036        ivi->qos = adapter->vf_data[vf].pf_qos;
8037        ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8038        return 0;
8039}
8040
8041static void igb_vmm_control(struct igb_adapter *adapter)
8042{
8043        struct e1000_hw *hw = &adapter->hw;
8044        u32 reg;
8045
8046        switch (hw->mac.type) {
8047        case e1000_82575:
8048        case e1000_i210:
8049        case e1000_i211:
8050        case e1000_i354:
8051        default:
8052                /* replication is not supported for 82575 */
8053                return;
8054        case e1000_82576:
8055                /* notify HW that the MAC is adding vlan tags */
8056                reg = rd32(E1000_DTXCTL);
8057                reg |= E1000_DTXCTL_VLAN_ADDED;
8058                wr32(E1000_DTXCTL, reg);
8059                /* Fall through */
8060        case e1000_82580:
8061                /* enable replication vlan tag stripping */
8062                reg = rd32(E1000_RPLOLR);
8063                reg |= E1000_RPLOLR_STRVLAN;
8064                wr32(E1000_RPLOLR, reg);
8065                /* Fall through */
8066        case e1000_i350:
8067                /* none of the above registers are supported by i350 */
8068                break;
8069        }
8070
8071        if (adapter->vfs_allocated_count) {
8072                igb_vmdq_set_loopback_pf(hw, true);
8073                igb_vmdq_set_replication_pf(hw, true);
8074                igb_vmdq_set_anti_spoofing_pf(hw, true,
8075                                              adapter->vfs_allocated_count);
8076        } else {
8077                igb_vmdq_set_loopback_pf(hw, false);
8078                igb_vmdq_set_replication_pf(hw, false);
8079        }
8080}
8081
8082static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8083{
8084        struct e1000_hw *hw = &adapter->hw;
8085        u32 dmac_thr;
8086        u16 hwm;
8087
8088        if (hw->mac.type > e1000_82580) {
8089                if (adapter->flags & IGB_FLAG_DMAC) {
8090                        u32 reg;
8091
8092                        /* force threshold to 0. */
8093                        wr32(E1000_DMCTXTH, 0);
8094
8095                        /* DMA Coalescing high water mark needs to be greater
8096                         * than the Rx threshold. Set hwm to PBA - max frame
8097                         * size in 16B units, capping it at PBA - 6KB.
8098                         */
8099                        hwm = 64 * (pba - 6);
8100                        reg = rd32(E1000_FCRTC);
8101                        reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8102                        reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8103                                & E1000_FCRTC_RTH_COAL_MASK);
8104                        wr32(E1000_FCRTC, reg);
8105
8106                        /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8107                         * frame size, capping it at PBA - 10KB.
8108                         */
8109                        dmac_thr = pba - 10;
8110                        reg = rd32(E1000_DMACR);
8111                        reg &= ~E1000_DMACR_DMACTHR_MASK;
8112                        reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8113                                & E1000_DMACR_DMACTHR_MASK);
8114
8115                        /* transition to L0x or L1 if available..*/
8116                        reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8117
8118                        /* watchdog timer= +-1000 usec in 32usec intervals */
8119                        reg |= (1000 >> 5);
8120
8121                        /* Disable BMC-to-OS Watchdog Enable */
8122                        if (hw->mac.type != e1000_i354)
8123                                reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8124
8125                        wr32(E1000_DMACR, reg);
8126
8127                        /* no lower threshold to disable
8128                         * coalescing(smart fifb)-UTRESH=0
8129                         */
8130                        wr32(E1000_DMCRTRH, 0);
8131
8132                        reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8133
8134                        wr32(E1000_DMCTLX, reg);
8135
8136                        /* free space in tx packet buffer to wake from
8137                         * DMA coal
8138                         */
8139                        wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8140                             (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8141
8142                        /* make low power state decision controlled
8143                         * by DMA coal
8144                         */
8145                        reg = rd32(E1000_PCIEMISC);
8146                        reg &= ~E1000_PCIEMISC_LX_DECISION;
8147                        wr32(E1000_PCIEMISC, reg);
8148                } /* endif adapter->dmac is not disabled */
8149        } else if (hw->mac.type == e1000_82580) {
8150                u32 reg = rd32(E1000_PCIEMISC);
8151
8152                wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8153                wr32(E1000_DMACR, 0);
8154        }
8155}
8156
8157/**
8158 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8159 *  @hw: pointer to hardware structure
8160 *  @byte_offset: byte offset to read
8161 *  @dev_addr: device address
8162 *  @data: value read
8163 *
8164 *  Performs byte read operation over I2C interface at
8165 *  a specified device address.
8166 **/
8167s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8168                      u8 dev_addr, u8 *data)
8169{
8170        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8171        struct i2c_client *this_client = adapter->i2c_client;
8172        s32 status;
8173        u16 swfw_mask = 0;
8174
8175        if (!this_client)
8176                return E1000_ERR_I2C;
8177
8178        swfw_mask = E1000_SWFW_PHY0_SM;
8179
8180        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8181                return E1000_ERR_SWFW_SYNC;
8182
8183        status = i2c_smbus_read_byte_data(this_client, byte_offset);
8184        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8185
8186        if (status < 0)
8187                return E1000_ERR_I2C;
8188        else {
8189                *data = status;
8190                return 0;
8191        }
8192}
8193
8194/**
8195 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8196 *  @hw: pointer to hardware structure
8197 *  @byte_offset: byte offset to write
8198 *  @dev_addr: device address
8199 *  @data: value to write
8200 *
8201 *  Performs byte write operation over I2C interface at
8202 *  a specified device address.
8203 **/
8204s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8205                       u8 dev_addr, u8 data)
8206{
8207        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8208        struct i2c_client *this_client = adapter->i2c_client;
8209        s32 status;
8210        u16 swfw_mask = E1000_SWFW_PHY0_SM;
8211
8212        if (!this_client)
8213                return E1000_ERR_I2C;
8214
8215        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8216                return E1000_ERR_SWFW_SYNC;
8217        status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8218        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8219
8220        if (status)
8221                return E1000_ERR_I2C;
8222        else
8223                return 0;
8224
8225}
8226
8227int igb_reinit_queues(struct igb_adapter *adapter)
8228{
8229        struct net_device *netdev = adapter->netdev;
8230        struct pci_dev *pdev = adapter->pdev;
8231        int err = 0;
8232
8233        if (netif_running(netdev))
8234                igb_close(netdev);
8235
8236        igb_reset_interrupt_capability(adapter);
8237
8238        if (igb_init_interrupt_scheme(adapter, true)) {
8239                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8240                return -ENOMEM;
8241        }
8242
8243        if (netif_running(netdev))
8244                err = igb_open(netdev);
8245
8246        return err;
8247}
8248/* igb_main.c */
8249