linux/drivers/net/ethernet/marvell/mvneta.c
<<
>>
Prefs
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/cpu.h>
  16#include <linux/etherdevice.h>
  17#include <linux/if_vlan.h>
  18#include <linux/inetdevice.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/kernel.h>
  22#include <linux/mbus.h>
  23#include <linux/module.h>
  24#include <linux/netdevice.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_mdio.h>
  29#include <linux/of_net.h>
  30#include <linux/phy.h>
  31#include <linux/platform_device.h>
  32#include <linux/skbuff.h>
  33#include <net/hwbm.h>
  34#include "mvneta_bm.h"
  35#include <net/ip.h>
  36#include <net/ipv6.h>
  37#include <net/tso.h>
  38
  39/* Registers */
  40#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  41#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
  42#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT     4
  43#define      MVNETA_RXQ_SHORT_POOL_ID_MASK      0x30
  44#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT      6
  45#define      MVNETA_RXQ_LONG_POOL_ID_MASK       0xc0
  46#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  47#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  48#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  49#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  50#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  51#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  52#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  53#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  54#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  55#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  56#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  57#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  58#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
  59#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)    (0x1700 + ((pool) << 2))
  60#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT   3
  61#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK    0xfff8
  62#define MVNETA_PORT_RX_RESET                    0x1cc0
  63#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  64#define MVNETA_PHY_ADDR                         0x2000
  65#define      MVNETA_PHY_ADDR_MASK               0x1f
  66#define MVNETA_MBUS_RETRY                       0x2010
  67#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  68#define MVNETA_UNIT_CONTROL                     0x20B0
  69#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  70#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  71#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  72#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  73#define MVNETA_BASE_ADDR_ENABLE                 0x2290
  74#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
  75#define MVNETA_PORT_CONFIG                      0x2400
  76#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  77#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  78#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  79#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  80#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  81#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  82#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  83#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  84#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  85                                                 MVNETA_DEF_RXQ_ARP(q)   | \
  86                                                 MVNETA_DEF_RXQ_TCP(q)   | \
  87                                                 MVNETA_DEF_RXQ_UDP(q)   | \
  88                                                 MVNETA_DEF_RXQ_BPDU(q)  | \
  89                                                 MVNETA_TX_UNSET_ERR_SUM | \
  90                                                 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  91#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  92#define MVNETA_MAC_ADDR_LOW                      0x2414
  93#define MVNETA_MAC_ADDR_HIGH                     0x2418
  94#define MVNETA_SDMA_CONFIG                       0x241c
  95#define      MVNETA_SDMA_BRST_SIZE_16            4
  96#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
  97#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
  98#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
  99#define      MVNETA_DESC_SWAP                    BIT(6)
 100#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
 101#define MVNETA_PORT_STATUS                       0x2444
 102#define      MVNETA_TX_IN_PRGRS                  BIT(1)
 103#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
 104#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
 105#define MVNETA_SERDES_CFG                        0x24A0
 106#define      MVNETA_SGMII_SERDES_PROTO           0x0cc7
 107#define      MVNETA_QSGMII_SERDES_PROTO          0x0667
 108#define MVNETA_TYPE_PRIO                         0x24bc
 109#define      MVNETA_FORCE_UNI                    BIT(21)
 110#define MVNETA_TXQ_CMD_1                         0x24e4
 111#define MVNETA_TXQ_CMD                           0x2448
 112#define      MVNETA_TXQ_DISABLE_SHIFT            8
 113#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
 114#define MVNETA_RX_DISCARD_FRAME_COUNT            0x2484
 115#define MVNETA_OVERRUN_FRAME_COUNT               0x2488
 116#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
 117#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
 118#define MVNETA_ACC_MODE                          0x2500
 119#define MVNETA_BM_ADDRESS                        0x2504
 120#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 121#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 122#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 123#define      MVNETA_CPU_RXQ_ACCESS(rxq)          BIT(rxq)
 124#define      MVNETA_CPU_TXQ_ACCESS(txq)          BIT(txq + 8)
 125#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 126
 127/* Exception Interrupt Port/Queue Cause register
 128 *
 129 * Their behavior depend of the mapping done using the PCPX2Q
 130 * registers. For a given CPU if the bit associated to a queue is not
 131 * set, then for the register a read from this CPU will always return
 132 * 0 and a write won't do anything
 133 */
 134
 135#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 136#define MVNETA_INTR_NEW_MASK                     0x25a4
 137
 138/* bits  0..7  = TXQ SENT, one bit per queue.
 139 * bits  8..15 = RXQ OCCUP, one bit per queue.
 140 * bits 16..23 = RXQ FREE, one bit per queue.
 141 * bit  29 = OLD_REG_SUM, see old reg ?
 142 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 143 * bit  31 = MISC_SUM,   one bit for 4 ports
 144 */
 145#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
 146#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
 147#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 148#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
 149#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
 150
 151#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 152#define MVNETA_INTR_OLD_MASK                     0x25ac
 153
 154/* Data Path Port/Queue Cause Register */
 155#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 156#define MVNETA_INTR_MISC_MASK                    0x25b4
 157
 158#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
 159#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
 160#define      MVNETA_CAUSE_PTP                    BIT(4)
 161
 162#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
 163#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
 164#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
 165#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
 166#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
 167#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
 168#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
 169#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
 170
 171#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
 172#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
 173#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
 174
 175#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
 176#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
 177#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
 178
 179#define MVNETA_INTR_ENABLE                       0x25b8
 180#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 181#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
 182
 183#define MVNETA_RXQ_CMD                           0x2680
 184#define      MVNETA_RXQ_DISABLE_SHIFT            8
 185#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 186#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 187#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 188#define MVNETA_GMAC_CTRL_0                       0x2c00
 189#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 190#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 191#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 192#define MVNETA_GMAC_CTRL_2                       0x2c08
 193#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
 194#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
 195#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 196#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 197#define MVNETA_GMAC_STATUS                       0x2c10
 198#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 199#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 200#define      MVNETA_GMAC_SPEED_100               BIT(2)
 201#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 202#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 203#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 204#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 205#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 206#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 207#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 208#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 209#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
 210#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 211#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 212#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 213#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
 214#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 215#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 216#define MVNETA_MIB_COUNTERS_BASE                 0x3000
 217#define      MVNETA_MIB_LATE_COLLISION           0x7c
 218#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 219#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 220#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 221#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 222#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 223#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 224#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 225#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 226#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 227#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 228#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 229#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 230#define MVNETA_PORT_TX_RESET                     0x3cf0
 231#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 232#define MVNETA_TX_MTU                            0x3e0c
 233#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 234#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 235#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 236#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 237
 238#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK      0xff
 239
 240/* Descriptor ring Macros */
 241#define MVNETA_QUEUE_NEXT_DESC(q, index)        \
 242        (((index) < (q)->last_desc) ? ((index) + 1) : 0)
 243
 244/* Various constants */
 245
 246/* Coalescing */
 247#define MVNETA_TXDONE_COAL_PKTS         1
 248#define MVNETA_RX_COAL_PKTS             32
 249#define MVNETA_RX_COAL_USEC             100
 250
 251/* The two bytes Marvell header. Either contains a special value used
 252 * by Marvell switches when a specific hardware mode is enabled (not
 253 * supported by this driver) or is filled automatically by zeroes on
 254 * the RX side. Those two bytes being at the front of the Ethernet
 255 * header, they allow to have the IP header aligned on a 4 bytes
 256 * boundary automatically: the hardware skips those two bytes on its
 257 * own.
 258 */
 259#define MVNETA_MH_SIZE                  2
 260
 261#define MVNETA_VLAN_TAG_LEN             4
 262
 263#define MVNETA_TX_CSUM_DEF_SIZE         1600
 264#define MVNETA_TX_CSUM_MAX_SIZE         9800
 265#define MVNETA_ACC_MODE_EXT1            1
 266#define MVNETA_ACC_MODE_EXT2            2
 267
 268#define MVNETA_MAX_DECODE_WIN           6
 269
 270/* Timeout constants */
 271#define MVNETA_TX_DISABLE_TIMEOUT_MSEC  1000
 272#define MVNETA_RX_DISABLE_TIMEOUT_MSEC  1000
 273#define MVNETA_TX_FIFO_EMPTY_TIMEOUT    10000
 274
 275#define MVNETA_TX_MTU_MAX               0x3ffff
 276
 277/* The RSS lookup table actually has 256 entries but we do not use
 278 * them yet
 279 */
 280#define MVNETA_RSS_LU_TABLE_SIZE        1
 281
 282/* TSO header size */
 283#define TSO_HEADER_SIZE 128
 284
 285/* Max number of Rx descriptors */
 286#define MVNETA_MAX_RXD 128
 287
 288/* Max number of Tx descriptors */
 289#define MVNETA_MAX_TXD 532
 290
 291/* Max number of allowed TCP segments for software TSO */
 292#define MVNETA_MAX_TSO_SEGS 100
 293
 294#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 295
 296/* descriptor aligned size */
 297#define MVNETA_DESC_ALIGNED_SIZE        32
 298
 299#define MVNETA_RX_PKT_SIZE(mtu) \
 300        ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 301              ETH_HLEN + ETH_FCS_LEN,                        \
 302              cache_line_size())
 303
 304#define IS_TSO_HEADER(txq, addr) \
 305        ((addr >= txq->tso_hdrs_phys) && \
 306         (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
 307
 308#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
 309        (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
 310
 311struct mvneta_statistic {
 312        unsigned short offset;
 313        unsigned short type;
 314        const char name[ETH_GSTRING_LEN];
 315};
 316
 317#define T_REG_32        32
 318#define T_REG_64        64
 319
 320static const struct mvneta_statistic mvneta_statistics[] = {
 321        { 0x3000, T_REG_64, "good_octets_received", },
 322        { 0x3010, T_REG_32, "good_frames_received", },
 323        { 0x3008, T_REG_32, "bad_octets_received", },
 324        { 0x3014, T_REG_32, "bad_frames_received", },
 325        { 0x3018, T_REG_32, "broadcast_frames_received", },
 326        { 0x301c, T_REG_32, "multicast_frames_received", },
 327        { 0x3050, T_REG_32, "unrec_mac_control_received", },
 328        { 0x3058, T_REG_32, "good_fc_received", },
 329        { 0x305c, T_REG_32, "bad_fc_received", },
 330        { 0x3060, T_REG_32, "undersize_received", },
 331        { 0x3064, T_REG_32, "fragments_received", },
 332        { 0x3068, T_REG_32, "oversize_received", },
 333        { 0x306c, T_REG_32, "jabber_received", },
 334        { 0x3070, T_REG_32, "mac_receive_error", },
 335        { 0x3074, T_REG_32, "bad_crc_event", },
 336        { 0x3078, T_REG_32, "collision", },
 337        { 0x307c, T_REG_32, "late_collision", },
 338        { 0x2484, T_REG_32, "rx_discard", },
 339        { 0x2488, T_REG_32, "rx_overrun", },
 340        { 0x3020, T_REG_32, "frames_64_octets", },
 341        { 0x3024, T_REG_32, "frames_65_to_127_octets", },
 342        { 0x3028, T_REG_32, "frames_128_to_255_octets", },
 343        { 0x302c, T_REG_32, "frames_256_to_511_octets", },
 344        { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
 345        { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
 346        { 0x3038, T_REG_64, "good_octets_sent", },
 347        { 0x3040, T_REG_32, "good_frames_sent", },
 348        { 0x3044, T_REG_32, "excessive_collision", },
 349        { 0x3048, T_REG_32, "multicast_frames_sent", },
 350        { 0x304c, T_REG_32, "broadcast_frames_sent", },
 351        { 0x3054, T_REG_32, "fc_sent", },
 352        { 0x300c, T_REG_32, "internal_mac_transmit_err", },
 353};
 354
 355struct mvneta_pcpu_stats {
 356        struct  u64_stats_sync syncp;
 357        u64     rx_packets;
 358        u64     rx_bytes;
 359        u64     tx_packets;
 360        u64     tx_bytes;
 361};
 362
 363struct mvneta_pcpu_port {
 364        /* Pointer to the shared port */
 365        struct mvneta_port      *pp;
 366
 367        /* Pointer to the CPU-local NAPI struct */
 368        struct napi_struct      napi;
 369
 370        /* Cause of the previous interrupt */
 371        u32                     cause_rx_tx;
 372};
 373
 374struct mvneta_port {
 375        u8 id;
 376        struct mvneta_pcpu_port __percpu        *ports;
 377        struct mvneta_pcpu_stats __percpu       *stats;
 378
 379        int pkt_size;
 380        unsigned int frag_size;
 381        void __iomem *base;
 382        struct mvneta_rx_queue *rxqs;
 383        struct mvneta_tx_queue *txqs;
 384        struct net_device *dev;
 385        struct notifier_block cpu_notifier;
 386        int rxq_def;
 387        /* Protect the access to the percpu interrupt registers,
 388         * ensuring that the configuration remains coherent.
 389         */
 390        spinlock_t lock;
 391        bool is_stopped;
 392
 393        /* Core clock */
 394        struct clk *clk;
 395        /* AXI clock */
 396        struct clk *clk_bus;
 397        u8 mcast_count[256];
 398        u16 tx_ring_size;
 399        u16 rx_ring_size;
 400
 401        struct mii_bus *mii_bus;
 402        struct phy_device *phy_dev;
 403        phy_interface_t phy_interface;
 404        struct device_node *phy_node;
 405        unsigned int link;
 406        unsigned int duplex;
 407        unsigned int speed;
 408        unsigned int tx_csum_limit;
 409        unsigned int use_inband_status:1;
 410
 411        struct mvneta_bm *bm_priv;
 412        struct mvneta_bm_pool *pool_long;
 413        struct mvneta_bm_pool *pool_short;
 414        int bm_win_id;
 415
 416        u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
 417
 418        u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
 419};
 420
 421/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 422 * layout of the transmit and reception DMA descriptors, and their
 423 * layout is therefore defined by the hardware design
 424 */
 425
 426#define MVNETA_TX_L3_OFF_SHIFT  0
 427#define MVNETA_TX_IP_HLEN_SHIFT 8
 428#define MVNETA_TX_L4_UDP        BIT(16)
 429#define MVNETA_TX_L3_IP6        BIT(17)
 430#define MVNETA_TXD_IP_CSUM      BIT(18)
 431#define MVNETA_TXD_Z_PAD        BIT(19)
 432#define MVNETA_TXD_L_DESC       BIT(20)
 433#define MVNETA_TXD_F_DESC       BIT(21)
 434#define MVNETA_TXD_FLZ_DESC     (MVNETA_TXD_Z_PAD  | \
 435                                 MVNETA_TXD_L_DESC | \
 436                                 MVNETA_TXD_F_DESC)
 437#define MVNETA_TX_L4_CSUM_FULL  BIT(30)
 438#define MVNETA_TX_L4_CSUM_NOT   BIT(31)
 439
 440#define MVNETA_RXD_ERR_CRC              0x0
 441#define MVNETA_RXD_BM_POOL_SHIFT        13
 442#define MVNETA_RXD_BM_POOL_MASK         (BIT(13) | BIT(14))
 443#define MVNETA_RXD_ERR_SUMMARY          BIT(16)
 444#define MVNETA_RXD_ERR_OVERRUN          BIT(17)
 445#define MVNETA_RXD_ERR_LEN              BIT(18)
 446#define MVNETA_RXD_ERR_RESOURCE         (BIT(17) | BIT(18))
 447#define MVNETA_RXD_ERR_CODE_MASK        (BIT(17) | BIT(18))
 448#define MVNETA_RXD_L3_IP4               BIT(25)
 449#define MVNETA_RXD_FIRST_LAST_DESC      (BIT(26) | BIT(27))
 450#define MVNETA_RXD_L4_CSUM_OK           BIT(30)
 451
 452#if defined(__LITTLE_ENDIAN)
 453struct mvneta_tx_desc {
 454        u32  command;           /* Options used by HW for packet transmitting.*/
 455        u16  reserverd1;        /* csum_l4 (for future use)             */
 456        u16  data_size;         /* Data size of transmitted packet in bytes */
 457        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 458        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 459        u32  reserved3[4];      /* Reserved - (for future use)          */
 460};
 461
 462struct mvneta_rx_desc {
 463        u32  status;            /* Info about received packet           */
 464        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 465        u16  data_size;         /* Size of received packet in bytes     */
 466
 467        u32  buf_phys_addr;     /* Physical address of the buffer       */
 468        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 469
 470        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 471        u16  reserved3;         /* prefetch_cmd, for future use         */
 472        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 473
 474        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 475        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 476};
 477#else
 478struct mvneta_tx_desc {
 479        u16  data_size;         /* Data size of transmitted packet in bytes */
 480        u16  reserverd1;        /* csum_l4 (for future use)             */
 481        u32  command;           /* Options used by HW for packet transmitting.*/
 482        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 483        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 484        u32  reserved3[4];      /* Reserved - (for future use)          */
 485};
 486
 487struct mvneta_rx_desc {
 488        u16  data_size;         /* Size of received packet in bytes     */
 489        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 490        u32  status;            /* Info about received packet           */
 491
 492        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 493        u32  buf_phys_addr;     /* Physical address of the buffer       */
 494
 495        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 496        u16  reserved3;         /* prefetch_cmd, for future use         */
 497        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 498
 499        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 500        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 501};
 502#endif
 503
 504struct mvneta_tx_queue {
 505        /* Number of this TX queue, in the range 0-7 */
 506        u8 id;
 507
 508        /* Number of TX DMA descriptors in the descriptor ring */
 509        int size;
 510
 511        /* Number of currently used TX DMA descriptor in the
 512         * descriptor ring
 513         */
 514        int count;
 515        int tx_stop_threshold;
 516        int tx_wake_threshold;
 517
 518        /* Array of transmitted skb */
 519        struct sk_buff **tx_skb;
 520
 521        /* Index of last TX DMA descriptor that was inserted */
 522        int txq_put_index;
 523
 524        /* Index of the TX DMA descriptor to be cleaned up */
 525        int txq_get_index;
 526
 527        u32 done_pkts_coal;
 528
 529        /* Virtual address of the TX DMA descriptors array */
 530        struct mvneta_tx_desc *descs;
 531
 532        /* DMA address of the TX DMA descriptors array */
 533        dma_addr_t descs_phys;
 534
 535        /* Index of the last TX DMA descriptor */
 536        int last_desc;
 537
 538        /* Index of the next TX DMA descriptor to process */
 539        int next_desc_to_proc;
 540
 541        /* DMA buffers for TSO headers */
 542        char *tso_hdrs;
 543
 544        /* DMA address of TSO headers */
 545        dma_addr_t tso_hdrs_phys;
 546
 547        /* Affinity mask for CPUs*/
 548        cpumask_t affinity_mask;
 549};
 550
 551struct mvneta_rx_queue {
 552        /* rx queue number, in the range 0-7 */
 553        u8 id;
 554
 555        /* num of rx descriptors in the rx descriptor ring */
 556        int size;
 557
 558        /* counter of times when mvneta_refill() failed */
 559        int missed;
 560
 561        u32 pkts_coal;
 562        u32 time_coal;
 563
 564        /* Virtual address of the RX DMA descriptors array */
 565        struct mvneta_rx_desc *descs;
 566
 567        /* DMA address of the RX DMA descriptors array */
 568        dma_addr_t descs_phys;
 569
 570        /* Index of the last RX DMA descriptor */
 571        int last_desc;
 572
 573        /* Index of the next RX DMA descriptor to process */
 574        int next_desc_to_proc;
 575};
 576
 577/* The hardware supports eight (8) rx queues, but we are only allowing
 578 * the first one to be used. Therefore, let's just allocate one queue.
 579 */
 580static int rxq_number = 8;
 581static int txq_number = 8;
 582
 583static int rxq_def;
 584
 585static int rx_copybreak __read_mostly = 256;
 586
 587/* HW BM need that each port be identify by a unique ID */
 588static int global_port_id;
 589
 590#define MVNETA_DRIVER_NAME "mvneta"
 591#define MVNETA_DRIVER_VERSION "1.0"
 592
 593/* Utility/helper methods */
 594
 595/* Write helper method */
 596static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 597{
 598        writel(data, pp->base + offset);
 599}
 600
 601/* Read helper method */
 602static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 603{
 604        return readl(pp->base + offset);
 605}
 606
 607/* Increment txq get counter */
 608static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 609{
 610        txq->txq_get_index++;
 611        if (txq->txq_get_index == txq->size)
 612                txq->txq_get_index = 0;
 613}
 614
 615/* Increment txq put counter */
 616static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 617{
 618        txq->txq_put_index++;
 619        if (txq->txq_put_index == txq->size)
 620                txq->txq_put_index = 0;
 621}
 622
 623
 624/* Clear all MIB counters */
 625static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 626{
 627        int i;
 628        u32 dummy;
 629
 630        /* Perform dummy reads from MIB counters */
 631        for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 632                dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 633        dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
 634        dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
 635}
 636
 637/* Get System Network Statistics */
 638struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
 639                                             struct rtnl_link_stats64 *stats)
 640{
 641        struct mvneta_port *pp = netdev_priv(dev);
 642        unsigned int start;
 643        int cpu;
 644
 645        for_each_possible_cpu(cpu) {
 646                struct mvneta_pcpu_stats *cpu_stats;
 647                u64 rx_packets;
 648                u64 rx_bytes;
 649                u64 tx_packets;
 650                u64 tx_bytes;
 651
 652                cpu_stats = per_cpu_ptr(pp->stats, cpu);
 653                do {
 654                        start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
 655                        rx_packets = cpu_stats->rx_packets;
 656                        rx_bytes   = cpu_stats->rx_bytes;
 657                        tx_packets = cpu_stats->tx_packets;
 658                        tx_bytes   = cpu_stats->tx_bytes;
 659                } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
 660
 661                stats->rx_packets += rx_packets;
 662                stats->rx_bytes   += rx_bytes;
 663                stats->tx_packets += tx_packets;
 664                stats->tx_bytes   += tx_bytes;
 665        }
 666
 667        stats->rx_errors        = dev->stats.rx_errors;
 668        stats->rx_dropped       = dev->stats.rx_dropped;
 669
 670        stats->tx_dropped       = dev->stats.tx_dropped;
 671
 672        return stats;
 673}
 674
 675/* Rx descriptors helper methods */
 676
 677/* Checks whether the RX descriptor having this status is both the first
 678 * and the last descriptor for the RX packet. Each RX packet is currently
 679 * received through a single RX descriptor, so not having each RX
 680 * descriptor with its first and last bits set is an error
 681 */
 682static int mvneta_rxq_desc_is_first_last(u32 status)
 683{
 684        return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
 685                MVNETA_RXD_FIRST_LAST_DESC;
 686}
 687
 688/* Add number of descriptors ready to receive new packets */
 689static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 690                                          struct mvneta_rx_queue *rxq,
 691                                          int ndescs)
 692{
 693        /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 694         * be added at once
 695         */
 696        while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 697                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 698                            (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 699                             MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 700                ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 701        }
 702
 703        mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 704                    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 705}
 706
 707/* Get number of RX descriptors occupied by received packets */
 708static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 709                                        struct mvneta_rx_queue *rxq)
 710{
 711        u32 val;
 712
 713        val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 714        return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 715}
 716
 717/* Update num of rx desc called upon return from rx path or
 718 * from mvneta_rxq_drop_pkts().
 719 */
 720static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 721                                       struct mvneta_rx_queue *rxq,
 722                                       int rx_done, int rx_filled)
 723{
 724        u32 val;
 725
 726        if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 727                val = rx_done |
 728                  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 729                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 730                return;
 731        }
 732
 733        /* Only 255 descriptors can be added at once */
 734        while ((rx_done > 0) || (rx_filled > 0)) {
 735                if (rx_done <= 0xff) {
 736                        val = rx_done;
 737                        rx_done = 0;
 738                } else {
 739                        val = 0xff;
 740                        rx_done -= 0xff;
 741                }
 742                if (rx_filled <= 0xff) {
 743                        val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 744                        rx_filled = 0;
 745                } else {
 746                        val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 747                        rx_filled -= 0xff;
 748                }
 749                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 750        }
 751}
 752
 753/* Get pointer to next RX descriptor to be processed by SW */
 754static struct mvneta_rx_desc *
 755mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 756{
 757        int rx_desc = rxq->next_desc_to_proc;
 758
 759        rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 760        prefetch(rxq->descs + rxq->next_desc_to_proc);
 761        return rxq->descs + rx_desc;
 762}
 763
 764/* Change maximum receive size of the port. */
 765static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 766{
 767        u32 val;
 768
 769        val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 770        val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 771        val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 772                MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 773        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 774}
 775
 776
 777/* Set rx queue offset */
 778static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 779                                  struct mvneta_rx_queue *rxq,
 780                                  int offset)
 781{
 782        u32 val;
 783
 784        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 785        val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 786
 787        /* Offset is in */
 788        val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 789        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 790}
 791
 792
 793/* Tx descriptors helper methods */
 794
 795/* Update HW with number of TX descriptors to be sent */
 796static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 797                                     struct mvneta_tx_queue *txq,
 798                                     int pend_desc)
 799{
 800        u32 val;
 801
 802        /* Only 255 descriptors can be added at once ; Assume caller
 803         * process TX desriptors in quanta less than 256
 804         */
 805        val = pend_desc;
 806        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 807}
 808
 809/* Get pointer to next TX descriptor to be processed (send) by HW */
 810static struct mvneta_tx_desc *
 811mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 812{
 813        int tx_desc = txq->next_desc_to_proc;
 814
 815        txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 816        return txq->descs + tx_desc;
 817}
 818
 819/* Release the last allocated TX descriptor. Useful to handle DMA
 820 * mapping failures in the TX path.
 821 */
 822static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 823{
 824        if (txq->next_desc_to_proc == 0)
 825                txq->next_desc_to_proc = txq->last_desc - 1;
 826        else
 827                txq->next_desc_to_proc--;
 828}
 829
 830/* Set rxq buf size */
 831static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
 832                                    struct mvneta_rx_queue *rxq,
 833                                    int buf_size)
 834{
 835        u32 val;
 836
 837        val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
 838
 839        val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
 840        val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
 841
 842        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
 843}
 844
 845/* Disable buffer management (BM) */
 846static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
 847                                  struct mvneta_rx_queue *rxq)
 848{
 849        u32 val;
 850
 851        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 852        val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
 853        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 854}
 855
 856/* Enable buffer management (BM) */
 857static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
 858                                 struct mvneta_rx_queue *rxq)
 859{
 860        u32 val;
 861
 862        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 863        val |= MVNETA_RXQ_HW_BUF_ALLOC;
 864        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 865}
 866
 867/* Notify HW about port's assignment of pool for bigger packets */
 868static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
 869                                     struct mvneta_rx_queue *rxq)
 870{
 871        u32 val;
 872
 873        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 874        val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
 875        val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
 876
 877        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 878}
 879
 880/* Notify HW about port's assignment of pool for smaller packets */
 881static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
 882                                      struct mvneta_rx_queue *rxq)
 883{
 884        u32 val;
 885
 886        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 887        val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
 888        val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
 889
 890        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 891}
 892
 893/* Set port's receive buffer size for assigned BM pool */
 894static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
 895                                              int buf_size,
 896                                              u8 pool_id)
 897{
 898        u32 val;
 899
 900        if (!IS_ALIGNED(buf_size, 8)) {
 901                dev_warn(pp->dev->dev.parent,
 902                         "illegal buf_size value %d, round to %d\n",
 903                         buf_size, ALIGN(buf_size, 8));
 904                buf_size = ALIGN(buf_size, 8);
 905        }
 906
 907        val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
 908        val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
 909        mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
 910}
 911
 912/* Configure MBUS window in order to enable access BM internal SRAM */
 913static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
 914                                  u8 target, u8 attr)
 915{
 916        u32 win_enable, win_protect;
 917        int i;
 918
 919        win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
 920
 921        if (pp->bm_win_id < 0) {
 922                /* Find first not occupied window */
 923                for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
 924                        if (win_enable & (1 << i)) {
 925                                pp->bm_win_id = i;
 926                                break;
 927                        }
 928                }
 929                if (i == MVNETA_MAX_DECODE_WIN)
 930                        return -ENOMEM;
 931        } else {
 932                i = pp->bm_win_id;
 933        }
 934
 935        mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
 936        mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
 937
 938        if (i < 4)
 939                mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
 940
 941        mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
 942                    (attr << 8) | target);
 943
 944        mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
 945
 946        win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
 947        win_protect |= 3 << (2 * i);
 948        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
 949
 950        win_enable &= ~(1 << i);
 951        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
 952
 953        return 0;
 954}
 955
 956/* Assign and initialize pools for port. In case of fail
 957 * buffer manager will remain disabled for current port.
 958 */
 959static int mvneta_bm_port_init(struct platform_device *pdev,
 960                               struct mvneta_port *pp)
 961{
 962        struct device_node *dn = pdev->dev.of_node;
 963        u32 long_pool_id, short_pool_id, wsize;
 964        u8 target, attr;
 965        int err;
 966
 967        /* Get BM window information */
 968        err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
 969                                         &target, &attr);
 970        if (err < 0)
 971                return err;
 972
 973        pp->bm_win_id = -1;
 974
 975        /* Open NETA -> BM window */
 976        err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
 977                                     target, attr);
 978        if (err < 0) {
 979                netdev_info(pp->dev, "fail to configure mbus window to BM\n");
 980                return err;
 981        }
 982
 983        if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
 984                netdev_info(pp->dev, "missing long pool id\n");
 985                return -EINVAL;
 986        }
 987
 988        /* Create port's long pool depending on mtu */
 989        pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
 990                                           MVNETA_BM_LONG, pp->id,
 991                                           MVNETA_RX_PKT_SIZE(pp->dev->mtu));
 992        if (!pp->pool_long) {
 993                netdev_info(pp->dev, "fail to obtain long pool for port\n");
 994                return -ENOMEM;
 995        }
 996
 997        pp->pool_long->port_map |= 1 << pp->id;
 998
 999        mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1000                                   pp->pool_long->id);
1001
1002        /* If short pool id is not defined, assume using single pool */
1003        if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1004                short_pool_id = long_pool_id;
1005
1006        /* Create port's short pool */
1007        pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1008                                            MVNETA_BM_SHORT, pp->id,
1009                                            MVNETA_BM_SHORT_PKT_SIZE);
1010        if (!pp->pool_short) {
1011                netdev_info(pp->dev, "fail to obtain short pool for port\n");
1012                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1013                return -ENOMEM;
1014        }
1015
1016        if (short_pool_id != long_pool_id) {
1017                pp->pool_short->port_map |= 1 << pp->id;
1018                mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1019                                           pp->pool_short->id);
1020        }
1021
1022        return 0;
1023}
1024
1025/* Update settings of a pool for bigger packets */
1026static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1027{
1028        struct mvneta_bm_pool *bm_pool = pp->pool_long;
1029        struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1030        int num;
1031
1032        /* Release all buffers from long pool */
1033        mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1034        if (hwbm_pool->buf_num) {
1035                WARN(1, "cannot free all buffers in pool %d\n",
1036                     bm_pool->id);
1037                goto bm_mtu_err;
1038        }
1039
1040        bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1041        bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1042        hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1043                        SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1044
1045        /* Fill entire long pool */
1046        num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1047        if (num != hwbm_pool->size) {
1048                WARN(1, "pool %d: %d of %d allocated\n",
1049                     bm_pool->id, num, hwbm_pool->size);
1050                goto bm_mtu_err;
1051        }
1052        mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1053
1054        return;
1055
1056bm_mtu_err:
1057        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1058        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1059
1060        pp->bm_priv = NULL;
1061        mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1062        netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1063}
1064
1065/* Start the Ethernet port RX and TX activity */
1066static void mvneta_port_up(struct mvneta_port *pp)
1067{
1068        int queue;
1069        u32 q_map;
1070
1071        /* Enable all initialized TXs. */
1072        q_map = 0;
1073        for (queue = 0; queue < txq_number; queue++) {
1074                struct mvneta_tx_queue *txq = &pp->txqs[queue];
1075                if (txq->descs != NULL)
1076                        q_map |= (1 << queue);
1077        }
1078        mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1079
1080        /* Enable all initialized RXQs. */
1081        for (queue = 0; queue < rxq_number; queue++) {
1082                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1083
1084                if (rxq->descs != NULL)
1085                        q_map |= (1 << queue);
1086        }
1087        mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1088}
1089
1090/* Stop the Ethernet port activity */
1091static void mvneta_port_down(struct mvneta_port *pp)
1092{
1093        u32 val;
1094        int count;
1095
1096        /* Stop Rx port activity. Check port Rx activity. */
1097        val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1098
1099        /* Issue stop command for active channels only */
1100        if (val != 0)
1101                mvreg_write(pp, MVNETA_RXQ_CMD,
1102                            val << MVNETA_RXQ_DISABLE_SHIFT);
1103
1104        /* Wait for all Rx activity to terminate. */
1105        count = 0;
1106        do {
1107                if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1108                        netdev_warn(pp->dev,
1109                                    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1110                                    val);
1111                        break;
1112                }
1113                mdelay(1);
1114
1115                val = mvreg_read(pp, MVNETA_RXQ_CMD);
1116        } while (val & MVNETA_RXQ_ENABLE_MASK);
1117
1118        /* Stop Tx port activity. Check port Tx activity. Issue stop
1119         * command for active channels only
1120         */
1121        val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1122
1123        if (val != 0)
1124                mvreg_write(pp, MVNETA_TXQ_CMD,
1125                            (val << MVNETA_TXQ_DISABLE_SHIFT));
1126
1127        /* Wait for all Tx activity to terminate. */
1128        count = 0;
1129        do {
1130                if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1131                        netdev_warn(pp->dev,
1132                                    "TIMEOUT for TX stopped status=0x%08x\n",
1133                                    val);
1134                        break;
1135                }
1136                mdelay(1);
1137
1138                /* Check TX Command reg that all Txqs are stopped */
1139                val = mvreg_read(pp, MVNETA_TXQ_CMD);
1140
1141        } while (val & MVNETA_TXQ_ENABLE_MASK);
1142
1143        /* Double check to verify that TX FIFO is empty */
1144        count = 0;
1145        do {
1146                if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1147                        netdev_warn(pp->dev,
1148                                    "TX FIFO empty timeout status=0x%08x\n",
1149                                    val);
1150                        break;
1151                }
1152                mdelay(1);
1153
1154                val = mvreg_read(pp, MVNETA_PORT_STATUS);
1155        } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1156                 (val & MVNETA_TX_IN_PRGRS));
1157
1158        udelay(200);
1159}
1160
1161/* Enable the port by setting the port enable bit of the MAC control register */
1162static void mvneta_port_enable(struct mvneta_port *pp)
1163{
1164        u32 val;
1165
1166        /* Enable port */
1167        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1168        val |= MVNETA_GMAC0_PORT_ENABLE;
1169        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1170}
1171
1172/* Disable the port and wait for about 200 usec before retuning */
1173static void mvneta_port_disable(struct mvneta_port *pp)
1174{
1175        u32 val;
1176
1177        /* Reset the Enable bit in the Serial Control Register */
1178        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1179        val &= ~MVNETA_GMAC0_PORT_ENABLE;
1180        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1181
1182        udelay(200);
1183}
1184
1185/* Multicast tables methods */
1186
1187/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1188static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1189{
1190        int offset;
1191        u32 val;
1192
1193        if (queue == -1) {
1194                val = 0;
1195        } else {
1196                val = 0x1 | (queue << 1);
1197                val |= (val << 24) | (val << 16) | (val << 8);
1198        }
1199
1200        for (offset = 0; offset <= 0xc; offset += 4)
1201                mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1202}
1203
1204/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1205static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1206{
1207        int offset;
1208        u32 val;
1209
1210        if (queue == -1) {
1211                val = 0;
1212        } else {
1213                val = 0x1 | (queue << 1);
1214                val |= (val << 24) | (val << 16) | (val << 8);
1215        }
1216
1217        for (offset = 0; offset <= 0xfc; offset += 4)
1218                mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1219
1220}
1221
1222/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1223static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1224{
1225        int offset;
1226        u32 val;
1227
1228        if (queue == -1) {
1229                memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1230                val = 0;
1231        } else {
1232                memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1233                val = 0x1 | (queue << 1);
1234                val |= (val << 24) | (val << 16) | (val << 8);
1235        }
1236
1237        for (offset = 0; offset <= 0xfc; offset += 4)
1238                mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1239}
1240
1241static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1242{
1243        u32 val;
1244
1245        if (enable) {
1246                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1247                val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1248                         MVNETA_GMAC_FORCE_LINK_DOWN |
1249                         MVNETA_GMAC_AN_FLOW_CTRL_EN);
1250                val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1251                       MVNETA_GMAC_AN_SPEED_EN |
1252                       MVNETA_GMAC_AN_DUPLEX_EN;
1253                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1254
1255                val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1256                val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1257                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1258
1259                val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1260                val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1261                mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1262        } else {
1263                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1264                val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1265                       MVNETA_GMAC_AN_SPEED_EN |
1266                       MVNETA_GMAC_AN_DUPLEX_EN);
1267                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1268
1269                val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1270                val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1271                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1272
1273                val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1274                val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1275                mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1276        }
1277}
1278
1279static void mvneta_percpu_unmask_interrupt(void *arg)
1280{
1281        struct mvneta_port *pp = arg;
1282
1283        /* All the queue are unmasked, but actually only the ones
1284         * mapped to this CPU will be unmasked
1285         */
1286        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1287                    MVNETA_RX_INTR_MASK_ALL |
1288                    MVNETA_TX_INTR_MASK_ALL |
1289                    MVNETA_MISCINTR_INTR_MASK);
1290}
1291
1292static void mvneta_percpu_mask_interrupt(void *arg)
1293{
1294        struct mvneta_port *pp = arg;
1295
1296        /* All the queue are masked, but actually only the ones
1297         * mapped to this CPU will be masked
1298         */
1299        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1300        mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1301        mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1302}
1303
1304static void mvneta_percpu_clear_intr_cause(void *arg)
1305{
1306        struct mvneta_port *pp = arg;
1307
1308        /* All the queue are cleared, but actually only the ones
1309         * mapped to this CPU will be cleared
1310         */
1311        mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1312        mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1313        mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1314}
1315
1316/* This method sets defaults to the NETA port:
1317 *      Clears interrupt Cause and Mask registers.
1318 *      Clears all MAC tables.
1319 *      Sets defaults to all registers.
1320 *      Resets RX and TX descriptor rings.
1321 *      Resets PHY.
1322 * This method can be called after mvneta_port_down() to return the port
1323 *      settings to defaults.
1324 */
1325static void mvneta_defaults_set(struct mvneta_port *pp)
1326{
1327        int cpu;
1328        int queue;
1329        u32 val;
1330        int max_cpu = num_present_cpus();
1331
1332        /* Clear all Cause registers */
1333        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1334
1335        /* Mask all interrupts */
1336        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1337        mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1338
1339        /* Enable MBUS Retry bit16 */
1340        mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1341
1342        /* Set CPU queue access map. CPUs are assigned to the RX and
1343         * TX queues modulo their number. If there is only one TX
1344         * queue then it is assigned to the CPU associated to the
1345         * default RX queue.
1346         */
1347        for_each_present_cpu(cpu) {
1348                int rxq_map = 0, txq_map = 0;
1349                int rxq, txq;
1350
1351                for (rxq = 0; rxq < rxq_number; rxq++)
1352                        if ((rxq % max_cpu) == cpu)
1353                                rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1354
1355                for (txq = 0; txq < txq_number; txq++)
1356                        if ((txq % max_cpu) == cpu)
1357                                txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1358
1359                /* With only one TX queue we configure a special case
1360                 * which will allow to get all the irq on a single
1361                 * CPU
1362                 */
1363                if (txq_number == 1)
1364                        txq_map = (cpu == pp->rxq_def) ?
1365                                MVNETA_CPU_TXQ_ACCESS(1) : 0;
1366
1367                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1368        }
1369
1370        /* Reset RX and TX DMAs */
1371        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1372        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1373
1374        /* Disable Legacy WRR, Disable EJP, Release from reset */
1375        mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1376        for (queue = 0; queue < txq_number; queue++) {
1377                mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1378                mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1379        }
1380
1381        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1382        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1383
1384        /* Set Port Acceleration Mode */
1385        if (pp->bm_priv)
1386                /* HW buffer management + legacy parser */
1387                val = MVNETA_ACC_MODE_EXT2;
1388        else
1389                /* SW buffer management + legacy parser */
1390                val = MVNETA_ACC_MODE_EXT1;
1391        mvreg_write(pp, MVNETA_ACC_MODE, val);
1392
1393        if (pp->bm_priv)
1394                mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1395
1396        /* Update val of portCfg register accordingly with all RxQueue types */
1397        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1398        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1399
1400        val = 0;
1401        mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1402        mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1403
1404        /* Build PORT_SDMA_CONFIG_REG */
1405        val = 0;
1406
1407        /* Default burst size */
1408        val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1409        val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1410        val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1411
1412#if defined(__BIG_ENDIAN)
1413        val |= MVNETA_DESC_SWAP;
1414#endif
1415
1416        /* Assign port SDMA configuration */
1417        mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1418
1419        /* Disable PHY polling in hardware, since we're using the
1420         * kernel phylib to do this.
1421         */
1422        val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1423        val &= ~MVNETA_PHY_POLLING_ENABLE;
1424        mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1425
1426        mvneta_set_autoneg(pp, pp->use_inband_status);
1427        mvneta_set_ucast_table(pp, -1);
1428        mvneta_set_special_mcast_table(pp, -1);
1429        mvneta_set_other_mcast_table(pp, -1);
1430
1431        /* Set port interrupt enable register - default enable all */
1432        mvreg_write(pp, MVNETA_INTR_ENABLE,
1433                    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1434                     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1435
1436        mvneta_mib_counters_clear(pp);
1437}
1438
1439/* Set max sizes for tx queues */
1440static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1441
1442{
1443        u32 val, size, mtu;
1444        int queue;
1445
1446        mtu = max_tx_size * 8;
1447        if (mtu > MVNETA_TX_MTU_MAX)
1448                mtu = MVNETA_TX_MTU_MAX;
1449
1450        /* Set MTU */
1451        val = mvreg_read(pp, MVNETA_TX_MTU);
1452        val &= ~MVNETA_TX_MTU_MAX;
1453        val |= mtu;
1454        mvreg_write(pp, MVNETA_TX_MTU, val);
1455
1456        /* TX token size and all TXQs token size must be larger that MTU */
1457        val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1458
1459        size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1460        if (size < mtu) {
1461                size = mtu;
1462                val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1463                val |= size;
1464                mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1465        }
1466        for (queue = 0; queue < txq_number; queue++) {
1467                val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1468
1469                size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1470                if (size < mtu) {
1471                        size = mtu;
1472                        val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1473                        val |= size;
1474                        mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1475                }
1476        }
1477}
1478
1479/* Set unicast address */
1480static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1481                                  int queue)
1482{
1483        unsigned int unicast_reg;
1484        unsigned int tbl_offset;
1485        unsigned int reg_offset;
1486
1487        /* Locate the Unicast table entry */
1488        last_nibble = (0xf & last_nibble);
1489
1490        /* offset from unicast tbl base */
1491        tbl_offset = (last_nibble / 4) * 4;
1492
1493        /* offset within the above reg  */
1494        reg_offset = last_nibble % 4;
1495
1496        unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1497
1498        if (queue == -1) {
1499                /* Clear accepts frame bit at specified unicast DA tbl entry */
1500                unicast_reg &= ~(0xff << (8 * reg_offset));
1501        } else {
1502                unicast_reg &= ~(0xff << (8 * reg_offset));
1503                unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1504        }
1505
1506        mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1507}
1508
1509/* Set mac address */
1510static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1511                                int queue)
1512{
1513        unsigned int mac_h;
1514        unsigned int mac_l;
1515
1516        if (queue != -1) {
1517                mac_l = (addr[4] << 8) | (addr[5]);
1518                mac_h = (addr[0] << 24) | (addr[1] << 16) |
1519                        (addr[2] << 8) | (addr[3] << 0);
1520
1521                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1522                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1523        }
1524
1525        /* Accept frames of this address */
1526        mvneta_set_ucast_addr(pp, addr[5], queue);
1527}
1528
1529/* Set the number of packets that will be received before RX interrupt
1530 * will be generated by HW.
1531 */
1532static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1533                                    struct mvneta_rx_queue *rxq, u32 value)
1534{
1535        mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1536                    value | MVNETA_RXQ_NON_OCCUPIED(0));
1537        rxq->pkts_coal = value;
1538}
1539
1540/* Set the time delay in usec before RX interrupt will be generated by
1541 * HW.
1542 */
1543static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1544                                    struct mvneta_rx_queue *rxq, u32 value)
1545{
1546        u32 val;
1547        unsigned long clk_rate;
1548
1549        clk_rate = clk_get_rate(pp->clk);
1550        val = (clk_rate / 1000000) * value;
1551
1552        mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1553        rxq->time_coal = value;
1554}
1555
1556/* Set threshold for TX_DONE pkts coalescing */
1557static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1558                                         struct mvneta_tx_queue *txq, u32 value)
1559{
1560        u32 val;
1561
1562        val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1563
1564        val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1565        val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1566
1567        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1568
1569        txq->done_pkts_coal = value;
1570}
1571
1572/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1573static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1574                                u32 phys_addr, u32 cookie)
1575{
1576        rx_desc->buf_cookie = cookie;
1577        rx_desc->buf_phys_addr = phys_addr;
1578}
1579
1580/* Decrement sent descriptors counter */
1581static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1582                                     struct mvneta_tx_queue *txq,
1583                                     int sent_desc)
1584{
1585        u32 val;
1586
1587        /* Only 255 TX descriptors can be updated at once */
1588        while (sent_desc > 0xff) {
1589                val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1590                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1591                sent_desc = sent_desc - 0xff;
1592        }
1593
1594        val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1595        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1596}
1597
1598/* Get number of TX descriptors already sent by HW */
1599static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1600                                        struct mvneta_tx_queue *txq)
1601{
1602        u32 val;
1603        int sent_desc;
1604
1605        val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1606        sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1607                MVNETA_TXQ_SENT_DESC_SHIFT;
1608
1609        return sent_desc;
1610}
1611
1612/* Get number of sent descriptors and decrement counter.
1613 *  The number of sent descriptors is returned.
1614 */
1615static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1616                                     struct mvneta_tx_queue *txq)
1617{
1618        int sent_desc;
1619
1620        /* Get number of sent descriptors */
1621        sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1622
1623        /* Decrement sent descriptors counter */
1624        if (sent_desc)
1625                mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1626
1627        return sent_desc;
1628}
1629
1630/* Set TXQ descriptors fields relevant for CSUM calculation */
1631static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1632                                int ip_hdr_len, int l4_proto)
1633{
1634        u32 command;
1635
1636        /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1637         * G_L4_chk, L4_type; required only for checksum
1638         * calculation
1639         */
1640        command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1641        command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1642
1643        if (l3_proto == htons(ETH_P_IP))
1644                command |= MVNETA_TXD_IP_CSUM;
1645        else
1646                command |= MVNETA_TX_L3_IP6;
1647
1648        if (l4_proto == IPPROTO_TCP)
1649                command |=  MVNETA_TX_L4_CSUM_FULL;
1650        else if (l4_proto == IPPROTO_UDP)
1651                command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1652        else
1653                command |= MVNETA_TX_L4_CSUM_NOT;
1654
1655        return command;
1656}
1657
1658
1659/* Display more error info */
1660static void mvneta_rx_error(struct mvneta_port *pp,
1661                            struct mvneta_rx_desc *rx_desc)
1662{
1663        u32 status = rx_desc->status;
1664
1665        if (!mvneta_rxq_desc_is_first_last(status)) {
1666                netdev_err(pp->dev,
1667                           "bad rx status %08x (buffer oversize), size=%d\n",
1668                           status, rx_desc->data_size);
1669                return;
1670        }
1671
1672        switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1673        case MVNETA_RXD_ERR_CRC:
1674                netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1675                           status, rx_desc->data_size);
1676                break;
1677        case MVNETA_RXD_ERR_OVERRUN:
1678                netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1679                           status, rx_desc->data_size);
1680                break;
1681        case MVNETA_RXD_ERR_LEN:
1682                netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1683                           status, rx_desc->data_size);
1684                break;
1685        case MVNETA_RXD_ERR_RESOURCE:
1686                netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1687                           status, rx_desc->data_size);
1688                break;
1689        }
1690}
1691
1692/* Handle RX checksum offload based on the descriptor's status */
1693static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1694                           struct sk_buff *skb)
1695{
1696        if ((status & MVNETA_RXD_L3_IP4) &&
1697            (status & MVNETA_RXD_L4_CSUM_OK)) {
1698                skb->csum = 0;
1699                skb->ip_summed = CHECKSUM_UNNECESSARY;
1700                return;
1701        }
1702
1703        skb->ip_summed = CHECKSUM_NONE;
1704}
1705
1706/* Return tx queue pointer (find last set bit) according to <cause> returned
1707 * form tx_done reg. <cause> must not be null. The return value is always a
1708 * valid queue for matching the first one found in <cause>.
1709 */
1710static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1711                                                     u32 cause)
1712{
1713        int queue = fls(cause) - 1;
1714
1715        return &pp->txqs[queue];
1716}
1717
1718/* Free tx queue skbuffs */
1719static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1720                                 struct mvneta_tx_queue *txq, int num)
1721{
1722        int i;
1723
1724        for (i = 0; i < num; i++) {
1725                struct mvneta_tx_desc *tx_desc = txq->descs +
1726                        txq->txq_get_index;
1727                struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1728
1729                mvneta_txq_inc_get(txq);
1730
1731                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1732                        dma_unmap_single(pp->dev->dev.parent,
1733                                         tx_desc->buf_phys_addr,
1734                                         tx_desc->data_size, DMA_TO_DEVICE);
1735                if (!skb)
1736                        continue;
1737                dev_kfree_skb_any(skb);
1738        }
1739}
1740
1741/* Handle end of transmission */
1742static void mvneta_txq_done(struct mvneta_port *pp,
1743                           struct mvneta_tx_queue *txq)
1744{
1745        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1746        int tx_done;
1747
1748        tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1749        if (!tx_done)
1750                return;
1751
1752        mvneta_txq_bufs_free(pp, txq, tx_done);
1753
1754        txq->count -= tx_done;
1755
1756        if (netif_tx_queue_stopped(nq)) {
1757                if (txq->count <= txq->tx_wake_threshold)
1758                        netif_tx_wake_queue(nq);
1759        }
1760}
1761
1762void *mvneta_frag_alloc(unsigned int frag_size)
1763{
1764        if (likely(frag_size <= PAGE_SIZE))
1765                return netdev_alloc_frag(frag_size);
1766        else
1767                return kmalloc(frag_size, GFP_ATOMIC);
1768}
1769EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1770
1771void mvneta_frag_free(unsigned int frag_size, void *data)
1772{
1773        if (likely(frag_size <= PAGE_SIZE))
1774                skb_free_frag(data);
1775        else
1776                kfree(data);
1777}
1778EXPORT_SYMBOL_GPL(mvneta_frag_free);
1779
1780/* Refill processing for SW buffer management */
1781static int mvneta_rx_refill(struct mvneta_port *pp,
1782                            struct mvneta_rx_desc *rx_desc)
1783
1784{
1785        dma_addr_t phys_addr;
1786        void *data;
1787
1788        data = mvneta_frag_alloc(pp->frag_size);
1789        if (!data)
1790                return -ENOMEM;
1791
1792        phys_addr = dma_map_single(pp->dev->dev.parent, data,
1793                                   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1794                                   DMA_FROM_DEVICE);
1795        if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1796                mvneta_frag_free(pp->frag_size, data);
1797                return -ENOMEM;
1798        }
1799
1800        mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1801        return 0;
1802}
1803
1804/* Handle tx checksum */
1805static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1806{
1807        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1808                int ip_hdr_len = 0;
1809                __be16 l3_proto = vlan_get_protocol(skb);
1810                u8 l4_proto;
1811
1812                if (l3_proto == htons(ETH_P_IP)) {
1813                        struct iphdr *ip4h = ip_hdr(skb);
1814
1815                        /* Calculate IPv4 checksum and L4 checksum */
1816                        ip_hdr_len = ip4h->ihl;
1817                        l4_proto = ip4h->protocol;
1818                } else if (l3_proto == htons(ETH_P_IPV6)) {
1819                        struct ipv6hdr *ip6h = ipv6_hdr(skb);
1820
1821                        /* Read l4_protocol from one of IPv6 extra headers */
1822                        if (skb_network_header_len(skb) > 0)
1823                                ip_hdr_len = (skb_network_header_len(skb) >> 2);
1824                        l4_proto = ip6h->nexthdr;
1825                } else
1826                        return MVNETA_TX_L4_CSUM_NOT;
1827
1828                return mvneta_txq_desc_csum(skb_network_offset(skb),
1829                                            l3_proto, ip_hdr_len, l4_proto);
1830        }
1831
1832        return MVNETA_TX_L4_CSUM_NOT;
1833}
1834
1835/* Drop packets received by the RXQ and free buffers */
1836static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1837                                 struct mvneta_rx_queue *rxq)
1838{
1839        int rx_done, i;
1840
1841        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1842        if (rx_done)
1843                mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1844
1845        if (pp->bm_priv) {
1846                for (i = 0; i < rx_done; i++) {
1847                        struct mvneta_rx_desc *rx_desc =
1848                                                  mvneta_rxq_next_desc_get(rxq);
1849                        u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1850                        struct mvneta_bm_pool *bm_pool;
1851
1852                        bm_pool = &pp->bm_priv->bm_pools[pool_id];
1853                        /* Return dropped buffer to the pool */
1854                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1855                                              rx_desc->buf_phys_addr);
1856                }
1857                return;
1858        }
1859
1860        for (i = 0; i < rxq->size; i++) {
1861                struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1862                void *data = (void *)rx_desc->buf_cookie;
1863
1864                dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1865                                 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1866                mvneta_frag_free(pp->frag_size, data);
1867        }
1868}
1869
1870/* Main rx processing when using software buffer management */
1871static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1872                          struct mvneta_rx_queue *rxq)
1873{
1874        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1875        struct net_device *dev = pp->dev;
1876        int rx_done;
1877        u32 rcvd_pkts = 0;
1878        u32 rcvd_bytes = 0;
1879
1880        /* Get number of received packets */
1881        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1882
1883        if (rx_todo > rx_done)
1884                rx_todo = rx_done;
1885
1886        rx_done = 0;
1887
1888        /* Fairness NAPI loop */
1889        while (rx_done < rx_todo) {
1890                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1891                struct sk_buff *skb;
1892                unsigned char *data;
1893                dma_addr_t phys_addr;
1894                u32 rx_status, frag_size;
1895                int rx_bytes, err;
1896
1897                rx_done++;
1898                rx_status = rx_desc->status;
1899                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1900                data = (unsigned char *)rx_desc->buf_cookie;
1901                phys_addr = rx_desc->buf_phys_addr;
1902
1903                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1904                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1905err_drop_frame:
1906                        dev->stats.rx_errors++;
1907                        mvneta_rx_error(pp, rx_desc);
1908                        /* leave the descriptor untouched */
1909                        continue;
1910                }
1911
1912                if (rx_bytes <= rx_copybreak) {
1913                /* better copy a small frame and not unmap the DMA region */
1914                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1915                        if (unlikely(!skb))
1916                                goto err_drop_frame;
1917
1918                        dma_sync_single_range_for_cpu(dev->dev.parent,
1919                                                      rx_desc->buf_phys_addr,
1920                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
1921                                                      rx_bytes,
1922                                                      DMA_FROM_DEVICE);
1923                        memcpy(skb_put(skb, rx_bytes),
1924                               data + MVNETA_MH_SIZE + NET_SKB_PAD,
1925                               rx_bytes);
1926
1927                        skb->protocol = eth_type_trans(skb, dev);
1928                        mvneta_rx_csum(pp, rx_status, skb);
1929                        napi_gro_receive(&port->napi, skb);
1930
1931                        rcvd_pkts++;
1932                        rcvd_bytes += rx_bytes;
1933
1934                        /* leave the descriptor and buffer untouched */
1935                        continue;
1936                }
1937
1938                /* Refill processing */
1939                err = mvneta_rx_refill(pp, rx_desc);
1940                if (err) {
1941                        netdev_err(dev, "Linux processing - Can't refill\n");
1942                        rxq->missed++;
1943                        goto err_drop_frame;
1944                }
1945
1946                frag_size = pp->frag_size;
1947
1948                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1949
1950                /* After refill old buffer has to be unmapped regardless
1951                 * the skb is successfully built or not.
1952                 */
1953                dma_unmap_single(dev->dev.parent, phys_addr,
1954                                 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1955                                 DMA_FROM_DEVICE);
1956
1957                if (!skb)
1958                        goto err_drop_frame;
1959
1960                rcvd_pkts++;
1961                rcvd_bytes += rx_bytes;
1962
1963                /* Linux processing */
1964                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1965                skb_put(skb, rx_bytes);
1966
1967                skb->protocol = eth_type_trans(skb, dev);
1968
1969                mvneta_rx_csum(pp, rx_status, skb);
1970
1971                napi_gro_receive(&port->napi, skb);
1972        }
1973
1974        if (rcvd_pkts) {
1975                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1976
1977                u64_stats_update_begin(&stats->syncp);
1978                stats->rx_packets += rcvd_pkts;
1979                stats->rx_bytes   += rcvd_bytes;
1980                u64_stats_update_end(&stats->syncp);
1981        }
1982
1983        /* Update rxq management counters */
1984        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1985
1986        return rx_done;
1987}
1988
1989/* Main rx processing when using hardware buffer management */
1990static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1991                          struct mvneta_rx_queue *rxq)
1992{
1993        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1994        struct net_device *dev = pp->dev;
1995        int rx_done;
1996        u32 rcvd_pkts = 0;
1997        u32 rcvd_bytes = 0;
1998
1999        /* Get number of received packets */
2000        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2001
2002        if (rx_todo > rx_done)
2003                rx_todo = rx_done;
2004
2005        rx_done = 0;
2006
2007        /* Fairness NAPI loop */
2008        while (rx_done < rx_todo) {
2009                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2010                struct mvneta_bm_pool *bm_pool = NULL;
2011                struct sk_buff *skb;
2012                unsigned char *data;
2013                dma_addr_t phys_addr;
2014                u32 rx_status, frag_size;
2015                int rx_bytes, err;
2016                u8 pool_id;
2017
2018                rx_done++;
2019                rx_status = rx_desc->status;
2020                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2021                data = (unsigned char *)rx_desc->buf_cookie;
2022                phys_addr = rx_desc->buf_phys_addr;
2023                pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2024                bm_pool = &pp->bm_priv->bm_pools[pool_id];
2025
2026                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2027                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2028err_drop_frame_ret_pool:
2029                        /* Return the buffer to the pool */
2030                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2031                                              rx_desc->buf_phys_addr);
2032err_drop_frame:
2033                        dev->stats.rx_errors++;
2034                        mvneta_rx_error(pp, rx_desc);
2035                        /* leave the descriptor untouched */
2036                        continue;
2037                }
2038
2039                if (rx_bytes <= rx_copybreak) {
2040                        /* better copy a small frame and not unmap the DMA region */
2041                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2042                        if (unlikely(!skb))
2043                                goto err_drop_frame_ret_pool;
2044
2045                        dma_sync_single_range_for_cpu(dev->dev.parent,
2046                                                      rx_desc->buf_phys_addr,
2047                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
2048                                                      rx_bytes,
2049                                                      DMA_FROM_DEVICE);
2050                        memcpy(skb_put(skb, rx_bytes),
2051                               data + MVNETA_MH_SIZE + NET_SKB_PAD,
2052                               rx_bytes);
2053
2054                        skb->protocol = eth_type_trans(skb, dev);
2055                        mvneta_rx_csum(pp, rx_status, skb);
2056                        napi_gro_receive(&port->napi, skb);
2057
2058                        rcvd_pkts++;
2059                        rcvd_bytes += rx_bytes;
2060
2061                        /* Return the buffer to the pool */
2062                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2063                                              rx_desc->buf_phys_addr);
2064
2065                        /* leave the descriptor and buffer untouched */
2066                        continue;
2067                }
2068
2069                /* Refill processing */
2070                err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2071                if (err) {
2072                        netdev_err(dev, "Linux processing - Can't refill\n");
2073                        rxq->missed++;
2074                        goto err_drop_frame_ret_pool;
2075                }
2076
2077                frag_size = bm_pool->hwbm_pool.frag_size;
2078
2079                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2080
2081                /* After refill old buffer has to be unmapped regardless
2082                 * the skb is successfully built or not.
2083                 */
2084                dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2085                                 bm_pool->buf_size, DMA_FROM_DEVICE);
2086                if (!skb)
2087                        goto err_drop_frame;
2088
2089                rcvd_pkts++;
2090                rcvd_bytes += rx_bytes;
2091
2092                /* Linux processing */
2093                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2094                skb_put(skb, rx_bytes);
2095
2096                skb->protocol = eth_type_trans(skb, dev);
2097
2098                mvneta_rx_csum(pp, rx_status, skb);
2099
2100                napi_gro_receive(&port->napi, skb);
2101        }
2102
2103        if (rcvd_pkts) {
2104                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2105
2106                u64_stats_update_begin(&stats->syncp);
2107                stats->rx_packets += rcvd_pkts;
2108                stats->rx_bytes   += rcvd_bytes;
2109                u64_stats_update_end(&stats->syncp);
2110        }
2111
2112        /* Update rxq management counters */
2113        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2114
2115        return rx_done;
2116}
2117
2118static inline void
2119mvneta_tso_put_hdr(struct sk_buff *skb,
2120                   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2121{
2122        struct mvneta_tx_desc *tx_desc;
2123        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2124
2125        txq->tx_skb[txq->txq_put_index] = NULL;
2126        tx_desc = mvneta_txq_next_desc_get(txq);
2127        tx_desc->data_size = hdr_len;
2128        tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2129        tx_desc->command |= MVNETA_TXD_F_DESC;
2130        tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2131                                 txq->txq_put_index * TSO_HEADER_SIZE;
2132        mvneta_txq_inc_put(txq);
2133}
2134
2135static inline int
2136mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2137                    struct sk_buff *skb, char *data, int size,
2138                    bool last_tcp, bool is_last)
2139{
2140        struct mvneta_tx_desc *tx_desc;
2141
2142        tx_desc = mvneta_txq_next_desc_get(txq);
2143        tx_desc->data_size = size;
2144        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2145                                                size, DMA_TO_DEVICE);
2146        if (unlikely(dma_mapping_error(dev->dev.parent,
2147                     tx_desc->buf_phys_addr))) {
2148                mvneta_txq_desc_put(txq);
2149                return -ENOMEM;
2150        }
2151
2152        tx_desc->command = 0;
2153        txq->tx_skb[txq->txq_put_index] = NULL;
2154
2155        if (last_tcp) {
2156                /* last descriptor in the TCP packet */
2157                tx_desc->command = MVNETA_TXD_L_DESC;
2158
2159                /* last descriptor in SKB */
2160                if (is_last)
2161                        txq->tx_skb[txq->txq_put_index] = skb;
2162        }
2163        mvneta_txq_inc_put(txq);
2164        return 0;
2165}
2166
2167static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2168                         struct mvneta_tx_queue *txq)
2169{
2170        int total_len, data_left;
2171        int desc_count = 0;
2172        struct mvneta_port *pp = netdev_priv(dev);
2173        struct tso_t tso;
2174        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2175        int i;
2176
2177        /* Count needed descriptors */
2178        if ((txq->count + tso_count_descs(skb)) >= txq->size)
2179                return 0;
2180
2181        if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2182                pr_info("*** Is this even  possible???!?!?\n");
2183                return 0;
2184        }
2185
2186        /* Initialize the TSO handler, and prepare the first payload */
2187        tso_start(skb, &tso);
2188
2189        total_len = skb->len - hdr_len;
2190        while (total_len > 0) {
2191                char *hdr;
2192
2193                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2194                total_len -= data_left;
2195                desc_count++;
2196
2197                /* prepare packet headers: MAC + IP + TCP */
2198                hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2199                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2200
2201                mvneta_tso_put_hdr(skb, pp, txq);
2202
2203                while (data_left > 0) {
2204                        int size;
2205                        desc_count++;
2206
2207                        size = min_t(int, tso.size, data_left);
2208
2209                        if (mvneta_tso_put_data(dev, txq, skb,
2210                                                 tso.data, size,
2211                                                 size == data_left,
2212                                                 total_len == 0))
2213                                goto err_release;
2214                        data_left -= size;
2215
2216                        tso_build_data(skb, &tso, size);
2217                }
2218        }
2219
2220        return desc_count;
2221
2222err_release:
2223        /* Release all used data descriptors; header descriptors must not
2224         * be DMA-unmapped.
2225         */
2226        for (i = desc_count - 1; i >= 0; i--) {
2227                struct mvneta_tx_desc *tx_desc = txq->descs + i;
2228                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2229                        dma_unmap_single(pp->dev->dev.parent,
2230                                         tx_desc->buf_phys_addr,
2231                                         tx_desc->data_size,
2232                                         DMA_TO_DEVICE);
2233                mvneta_txq_desc_put(txq);
2234        }
2235        return 0;
2236}
2237
2238/* Handle tx fragmentation processing */
2239static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2240                                  struct mvneta_tx_queue *txq)
2241{
2242        struct mvneta_tx_desc *tx_desc;
2243        int i, nr_frags = skb_shinfo(skb)->nr_frags;
2244
2245        for (i = 0; i < nr_frags; i++) {
2246                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2247                void *addr = page_address(frag->page.p) + frag->page_offset;
2248
2249                tx_desc = mvneta_txq_next_desc_get(txq);
2250                tx_desc->data_size = frag->size;
2251
2252                tx_desc->buf_phys_addr =
2253                        dma_map_single(pp->dev->dev.parent, addr,
2254                                       tx_desc->data_size, DMA_TO_DEVICE);
2255
2256                if (dma_mapping_error(pp->dev->dev.parent,
2257                                      tx_desc->buf_phys_addr)) {
2258                        mvneta_txq_desc_put(txq);
2259                        goto error;
2260                }
2261
2262                if (i == nr_frags - 1) {
2263                        /* Last descriptor */
2264                        tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2265                        txq->tx_skb[txq->txq_put_index] = skb;
2266                } else {
2267                        /* Descriptor in the middle: Not First, Not Last */
2268                        tx_desc->command = 0;
2269                        txq->tx_skb[txq->txq_put_index] = NULL;
2270                }
2271                mvneta_txq_inc_put(txq);
2272        }
2273
2274        return 0;
2275
2276error:
2277        /* Release all descriptors that were used to map fragments of
2278         * this packet, as well as the corresponding DMA mappings
2279         */
2280        for (i = i - 1; i >= 0; i--) {
2281                tx_desc = txq->descs + i;
2282                dma_unmap_single(pp->dev->dev.parent,
2283                                 tx_desc->buf_phys_addr,
2284                                 tx_desc->data_size,
2285                                 DMA_TO_DEVICE);
2286                mvneta_txq_desc_put(txq);
2287        }
2288
2289        return -ENOMEM;
2290}
2291
2292/* Main tx processing */
2293static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2294{
2295        struct mvneta_port *pp = netdev_priv(dev);
2296        u16 txq_id = skb_get_queue_mapping(skb);
2297        struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2298        struct mvneta_tx_desc *tx_desc;
2299        int len = skb->len;
2300        int frags = 0;
2301        u32 tx_cmd;
2302
2303        if (!netif_running(dev))
2304                goto out;
2305
2306        if (skb_is_gso(skb)) {
2307                frags = mvneta_tx_tso(skb, dev, txq);
2308                goto out;
2309        }
2310
2311        frags = skb_shinfo(skb)->nr_frags + 1;
2312
2313        /* Get a descriptor for the first part of the packet */
2314        tx_desc = mvneta_txq_next_desc_get(txq);
2315
2316        tx_cmd = mvneta_skb_tx_csum(pp, skb);
2317
2318        tx_desc->data_size = skb_headlen(skb);
2319
2320        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2321                                                tx_desc->data_size,
2322                                                DMA_TO_DEVICE);
2323        if (unlikely(dma_mapping_error(dev->dev.parent,
2324                                       tx_desc->buf_phys_addr))) {
2325                mvneta_txq_desc_put(txq);
2326                frags = 0;
2327                goto out;
2328        }
2329
2330        if (frags == 1) {
2331                /* First and Last descriptor */
2332                tx_cmd |= MVNETA_TXD_FLZ_DESC;
2333                tx_desc->command = tx_cmd;
2334                txq->tx_skb[txq->txq_put_index] = skb;
2335                mvneta_txq_inc_put(txq);
2336        } else {
2337                /* First but not Last */
2338                tx_cmd |= MVNETA_TXD_F_DESC;
2339                txq->tx_skb[txq->txq_put_index] = NULL;
2340                mvneta_txq_inc_put(txq);
2341                tx_desc->command = tx_cmd;
2342                /* Continue with other skb fragments */
2343                if (mvneta_tx_frag_process(pp, skb, txq)) {
2344                        dma_unmap_single(dev->dev.parent,
2345                                         tx_desc->buf_phys_addr,
2346                                         tx_desc->data_size,
2347                                         DMA_TO_DEVICE);
2348                        mvneta_txq_desc_put(txq);
2349                        frags = 0;
2350                        goto out;
2351                }
2352        }
2353
2354out:
2355        if (frags > 0) {
2356                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2357                struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2358
2359                txq->count += frags;
2360                mvneta_txq_pend_desc_add(pp, txq, frags);
2361
2362                if (txq->count >= txq->tx_stop_threshold)
2363                        netif_tx_stop_queue(nq);
2364
2365                u64_stats_update_begin(&stats->syncp);
2366                stats->tx_packets++;
2367                stats->tx_bytes  += len;
2368                u64_stats_update_end(&stats->syncp);
2369        } else {
2370                dev->stats.tx_dropped++;
2371                dev_kfree_skb_any(skb);
2372        }
2373
2374        return NETDEV_TX_OK;
2375}
2376
2377
2378/* Free tx resources, when resetting a port */
2379static void mvneta_txq_done_force(struct mvneta_port *pp,
2380                                  struct mvneta_tx_queue *txq)
2381
2382{
2383        int tx_done = txq->count;
2384
2385        mvneta_txq_bufs_free(pp, txq, tx_done);
2386
2387        /* reset txq */
2388        txq->count = 0;
2389        txq->txq_put_index = 0;
2390        txq->txq_get_index = 0;
2391}
2392
2393/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2394 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2395 */
2396static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2397{
2398        struct mvneta_tx_queue *txq;
2399        struct netdev_queue *nq;
2400
2401        while (cause_tx_done) {
2402                txq = mvneta_tx_done_policy(pp, cause_tx_done);
2403
2404                nq = netdev_get_tx_queue(pp->dev, txq->id);
2405                __netif_tx_lock(nq, smp_processor_id());
2406
2407                if (txq->count)
2408                        mvneta_txq_done(pp, txq);
2409
2410                __netif_tx_unlock(nq);
2411                cause_tx_done &= ~((1 << txq->id));
2412        }
2413}
2414
2415/* Compute crc8 of the specified address, using a unique algorithm ,
2416 * according to hw spec, different than generic crc8 algorithm
2417 */
2418static int mvneta_addr_crc(unsigned char *addr)
2419{
2420        int crc = 0;
2421        int i;
2422
2423        for (i = 0; i < ETH_ALEN; i++) {
2424                int j;
2425
2426                crc = (crc ^ addr[i]) << 8;
2427                for (j = 7; j >= 0; j--) {
2428                        if (crc & (0x100 << j))
2429                                crc ^= 0x107 << j;
2430                }
2431        }
2432
2433        return crc;
2434}
2435
2436/* This method controls the net device special MAC multicast support.
2437 * The Special Multicast Table for MAC addresses supports MAC of the form
2438 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2439 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2440 * Table entries in the DA-Filter table. This method set the Special
2441 * Multicast Table appropriate entry.
2442 */
2443static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2444                                          unsigned char last_byte,
2445                                          int queue)
2446{
2447        unsigned int smc_table_reg;
2448        unsigned int tbl_offset;
2449        unsigned int reg_offset;
2450
2451        /* Register offset from SMC table base    */
2452        tbl_offset = (last_byte / 4);
2453        /* Entry offset within the above reg */
2454        reg_offset = last_byte % 4;
2455
2456        smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2457                                        + tbl_offset * 4));
2458
2459        if (queue == -1)
2460                smc_table_reg &= ~(0xff << (8 * reg_offset));
2461        else {
2462                smc_table_reg &= ~(0xff << (8 * reg_offset));
2463                smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2464        }
2465
2466        mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2467                    smc_table_reg);
2468}
2469
2470/* This method controls the network device Other MAC multicast support.
2471 * The Other Multicast Table is used for multicast of another type.
2472 * A CRC-8 is used as an index to the Other Multicast Table entries
2473 * in the DA-Filter table.
2474 * The method gets the CRC-8 value from the calling routine and
2475 * sets the Other Multicast Table appropriate entry according to the
2476 * specified CRC-8 .
2477 */
2478static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2479                                        unsigned char crc8,
2480                                        int queue)
2481{
2482        unsigned int omc_table_reg;
2483        unsigned int tbl_offset;
2484        unsigned int reg_offset;
2485
2486        tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2487        reg_offset = crc8 % 4;       /* Entry offset within the above reg   */
2488
2489        omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2490
2491        if (queue == -1) {
2492                /* Clear accepts frame bit at specified Other DA table entry */
2493                omc_table_reg &= ~(0xff << (8 * reg_offset));
2494        } else {
2495                omc_table_reg &= ~(0xff << (8 * reg_offset));
2496                omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2497        }
2498
2499        mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2500}
2501
2502/* The network device supports multicast using two tables:
2503 *    1) Special Multicast Table for MAC addresses of the form
2504 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2505 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2506 *       Table entries in the DA-Filter table.
2507 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2508 *       is used as an index to the Other Multicast Table entries in the
2509 *       DA-Filter table.
2510 */
2511static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2512                                 int queue)
2513{
2514        unsigned char crc_result = 0;
2515
2516        if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2517                mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2518                return 0;
2519        }
2520
2521        crc_result = mvneta_addr_crc(p_addr);
2522        if (queue == -1) {
2523                if (pp->mcast_count[crc_result] == 0) {
2524                        netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2525                                    crc_result);
2526                        return -EINVAL;
2527                }
2528
2529                pp->mcast_count[crc_result]--;
2530                if (pp->mcast_count[crc_result] != 0) {
2531                        netdev_info(pp->dev,
2532                                    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2533                                    pp->mcast_count[crc_result], crc_result);
2534                        return -EINVAL;
2535                }
2536        } else
2537                pp->mcast_count[crc_result]++;
2538
2539        mvneta_set_other_mcast_addr(pp, crc_result, queue);
2540
2541        return 0;
2542}
2543
2544/* Configure Fitering mode of Ethernet port */
2545static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2546                                          int is_promisc)
2547{
2548        u32 port_cfg_reg, val;
2549
2550        port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2551
2552        val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2553
2554        /* Set / Clear UPM bit in port configuration register */
2555        if (is_promisc) {
2556                /* Accept all Unicast addresses */
2557                port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2558                val |= MVNETA_FORCE_UNI;
2559                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2560                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2561        } else {
2562                /* Reject all Unicast addresses */
2563                port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2564                val &= ~MVNETA_FORCE_UNI;
2565        }
2566
2567        mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2568        mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2569}
2570
2571/* register unicast and multicast addresses */
2572static void mvneta_set_rx_mode(struct net_device *dev)
2573{
2574        struct mvneta_port *pp = netdev_priv(dev);
2575        struct netdev_hw_addr *ha;
2576
2577        if (dev->flags & IFF_PROMISC) {
2578                /* Accept all: Multicast + Unicast */
2579                mvneta_rx_unicast_promisc_set(pp, 1);
2580                mvneta_set_ucast_table(pp, pp->rxq_def);
2581                mvneta_set_special_mcast_table(pp, pp->rxq_def);
2582                mvneta_set_other_mcast_table(pp, pp->rxq_def);
2583        } else {
2584                /* Accept single Unicast */
2585                mvneta_rx_unicast_promisc_set(pp, 0);
2586                mvneta_set_ucast_table(pp, -1);
2587                mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2588
2589                if (dev->flags & IFF_ALLMULTI) {
2590                        /* Accept all multicast */
2591                        mvneta_set_special_mcast_table(pp, pp->rxq_def);
2592                        mvneta_set_other_mcast_table(pp, pp->rxq_def);
2593                } else {
2594                        /* Accept only initialized multicast */
2595                        mvneta_set_special_mcast_table(pp, -1);
2596                        mvneta_set_other_mcast_table(pp, -1);
2597
2598                        if (!netdev_mc_empty(dev)) {
2599                                netdev_for_each_mc_addr(ha, dev) {
2600                                        mvneta_mcast_addr_set(pp, ha->addr,
2601                                                              pp->rxq_def);
2602                                }
2603                        }
2604                }
2605        }
2606}
2607
2608/* Interrupt handling - the callback for request_irq() */
2609static irqreturn_t mvneta_isr(int irq, void *dev_id)
2610{
2611        struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2612
2613        disable_percpu_irq(port->pp->dev->irq);
2614        napi_schedule(&port->napi);
2615
2616        return IRQ_HANDLED;
2617}
2618
2619static int mvneta_fixed_link_update(struct mvneta_port *pp,
2620                                    struct phy_device *phy)
2621{
2622        struct fixed_phy_status status;
2623        struct fixed_phy_status changed = {};
2624        u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2625
2626        status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2627        if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2628                status.speed = SPEED_1000;
2629        else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2630                status.speed = SPEED_100;
2631        else
2632                status.speed = SPEED_10;
2633        status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2634        changed.link = 1;
2635        changed.speed = 1;
2636        changed.duplex = 1;
2637        fixed_phy_update_state(phy, &status, &changed);
2638        return 0;
2639}
2640
2641/* NAPI handler
2642 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2643 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2644 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2645 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2646 * Each CPU has its own causeRxTx register
2647 */
2648static int mvneta_poll(struct napi_struct *napi, int budget)
2649{
2650        int rx_done = 0;
2651        u32 cause_rx_tx;
2652        int rx_queue;
2653        struct mvneta_port *pp = netdev_priv(napi->dev);
2654        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2655
2656        if (!netif_running(pp->dev)) {
2657                napi_complete(&port->napi);
2658                return rx_done;
2659        }
2660
2661        /* Read cause register */
2662        cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2663        if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2664                u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2665
2666                mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2667                if (pp->use_inband_status && (cause_misc &
2668                                (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2669                                 MVNETA_CAUSE_LINK_CHANGE |
2670                                 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2671                        mvneta_fixed_link_update(pp, pp->phy_dev);
2672                }
2673        }
2674
2675        /* Release Tx descriptors */
2676        if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2677                mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2678                cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2679        }
2680
2681        /* For the case where the last mvneta_poll did not process all
2682         * RX packets
2683         */
2684        rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2685
2686        cause_rx_tx |= port->cause_rx_tx;
2687
2688        if (rx_queue) {
2689                rx_queue = rx_queue - 1;
2690                if (pp->bm_priv)
2691                        rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2692                else
2693                        rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2694        }
2695
2696        budget -= rx_done;
2697
2698        if (budget > 0) {
2699                cause_rx_tx = 0;
2700                napi_complete(&port->napi);
2701                enable_percpu_irq(pp->dev->irq, 0);
2702        }
2703
2704        port->cause_rx_tx = cause_rx_tx;
2705        return rx_done;
2706}
2707
2708/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2709static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2710                           int num)
2711{
2712        int i;
2713
2714        for (i = 0; i < num; i++) {
2715                memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2716                if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2717                        netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2718                                __func__, rxq->id, i, num);
2719                        break;
2720                }
2721        }
2722
2723        /* Add this number of RX descriptors as non occupied (ready to
2724         * get packets)
2725         */
2726        mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2727
2728        return i;
2729}
2730
2731/* Free all packets pending transmit from all TXQs and reset TX port */
2732static void mvneta_tx_reset(struct mvneta_port *pp)
2733{
2734        int queue;
2735
2736        /* free the skb's in the tx ring */
2737        for (queue = 0; queue < txq_number; queue++)
2738                mvneta_txq_done_force(pp, &pp->txqs[queue]);
2739
2740        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2741        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2742}
2743
2744static void mvneta_rx_reset(struct mvneta_port *pp)
2745{
2746        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2747        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2748}
2749
2750/* Rx/Tx queue initialization/cleanup methods */
2751
2752/* Create a specified RX queue */
2753static int mvneta_rxq_init(struct mvneta_port *pp,
2754                           struct mvneta_rx_queue *rxq)
2755
2756{
2757        rxq->size = pp->rx_ring_size;
2758
2759        /* Allocate memory for RX descriptors */
2760        rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2761                                        rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2762                                        &rxq->descs_phys, GFP_KERNEL);
2763        if (rxq->descs == NULL)
2764                return -ENOMEM;
2765
2766        rxq->last_desc = rxq->size - 1;
2767
2768        /* Set Rx descriptors queue starting address */
2769        mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2770        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2771
2772        /* Set Offset */
2773        mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2774
2775        /* Set coalescing pkts and time */
2776        mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2777        mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2778
2779        if (!pp->bm_priv) {
2780                /* Fill RXQ with buffers from RX pool */
2781                mvneta_rxq_buf_size_set(pp, rxq,
2782                                        MVNETA_RX_BUF_SIZE(pp->pkt_size));
2783                mvneta_rxq_bm_disable(pp, rxq);
2784        } else {
2785                mvneta_rxq_bm_enable(pp, rxq);
2786                mvneta_rxq_long_pool_set(pp, rxq);
2787                mvneta_rxq_short_pool_set(pp, rxq);
2788        }
2789
2790        mvneta_rxq_fill(pp, rxq, rxq->size);
2791
2792        return 0;
2793}
2794
2795/* Cleanup Rx queue */
2796static void mvneta_rxq_deinit(struct mvneta_port *pp,
2797                              struct mvneta_rx_queue *rxq)
2798{
2799        mvneta_rxq_drop_pkts(pp, rxq);
2800
2801        if (rxq->descs)
2802                dma_free_coherent(pp->dev->dev.parent,
2803                                  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2804                                  rxq->descs,
2805                                  rxq->descs_phys);
2806
2807        rxq->descs             = NULL;
2808        rxq->last_desc         = 0;
2809        rxq->next_desc_to_proc = 0;
2810        rxq->descs_phys        = 0;
2811}
2812
2813/* Create and initialize a tx queue */
2814static int mvneta_txq_init(struct mvneta_port *pp,
2815                           struct mvneta_tx_queue *txq)
2816{
2817        int cpu;
2818
2819        txq->size = pp->tx_ring_size;
2820
2821        /* A queue must always have room for at least one skb.
2822         * Therefore, stop the queue when the free entries reaches
2823         * the maximum number of descriptors per skb.
2824         */
2825        txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2826        txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2827
2828
2829        /* Allocate memory for TX descriptors */
2830        txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2831                                        txq->size * MVNETA_DESC_ALIGNED_SIZE,
2832                                        &txq->descs_phys, GFP_KERNEL);
2833        if (txq->descs == NULL)
2834                return -ENOMEM;
2835
2836        txq->last_desc = txq->size - 1;
2837
2838        /* Set maximum bandwidth for enabled TXQs */
2839        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2840        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2841
2842        /* Set Tx descriptors queue starting address */
2843        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2844        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2845
2846        txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2847        if (txq->tx_skb == NULL) {
2848                dma_free_coherent(pp->dev->dev.parent,
2849                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2850                                  txq->descs, txq->descs_phys);
2851                return -ENOMEM;
2852        }
2853
2854        /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2855        txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2856                                           txq->size * TSO_HEADER_SIZE,
2857                                           &txq->tso_hdrs_phys, GFP_KERNEL);
2858        if (txq->tso_hdrs == NULL) {
2859                kfree(txq->tx_skb);
2860                dma_free_coherent(pp->dev->dev.parent,
2861                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2862                                  txq->descs, txq->descs_phys);
2863                return -ENOMEM;
2864        }
2865        mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2866
2867        /* Setup XPS mapping */
2868        if (txq_number > 1)
2869                cpu = txq->id % num_present_cpus();
2870        else
2871                cpu = pp->rxq_def % num_present_cpus();
2872        cpumask_set_cpu(cpu, &txq->affinity_mask);
2873        netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2874
2875        return 0;
2876}
2877
2878/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2879static void mvneta_txq_deinit(struct mvneta_port *pp,
2880                              struct mvneta_tx_queue *txq)
2881{
2882        kfree(txq->tx_skb);
2883
2884        if (txq->tso_hdrs)
2885                dma_free_coherent(pp->dev->dev.parent,
2886                                  txq->size * TSO_HEADER_SIZE,
2887                                  txq->tso_hdrs, txq->tso_hdrs_phys);
2888        if (txq->descs)
2889                dma_free_coherent(pp->dev->dev.parent,
2890                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2891                                  txq->descs, txq->descs_phys);
2892
2893        txq->descs             = NULL;
2894        txq->last_desc         = 0;
2895        txq->next_desc_to_proc = 0;
2896        txq->descs_phys        = 0;
2897
2898        /* Set minimum bandwidth for disabled TXQs */
2899        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2900        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2901
2902        /* Set Tx descriptors queue starting address and size */
2903        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2904        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2905}
2906
2907/* Cleanup all Tx queues */
2908static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2909{
2910        int queue;
2911
2912        for (queue = 0; queue < txq_number; queue++)
2913                mvneta_txq_deinit(pp, &pp->txqs[queue]);
2914}
2915
2916/* Cleanup all Rx queues */
2917static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2918{
2919        int queue;
2920
2921        for (queue = 0; queue < txq_number; queue++)
2922                mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2923}
2924
2925
2926/* Init all Rx queues */
2927static int mvneta_setup_rxqs(struct mvneta_port *pp)
2928{
2929        int queue;
2930
2931        for (queue = 0; queue < rxq_number; queue++) {
2932                int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2933
2934                if (err) {
2935                        netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2936                                   __func__, queue);
2937                        mvneta_cleanup_rxqs(pp);
2938                        return err;
2939                }
2940        }
2941
2942        return 0;
2943}
2944
2945/* Init all tx queues */
2946static int mvneta_setup_txqs(struct mvneta_port *pp)
2947{
2948        int queue;
2949
2950        for (queue = 0; queue < txq_number; queue++) {
2951                int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2952                if (err) {
2953                        netdev_err(pp->dev, "%s: can't create txq=%d\n",
2954                                   __func__, queue);
2955                        mvneta_cleanup_txqs(pp);
2956                        return err;
2957                }
2958        }
2959
2960        return 0;
2961}
2962
2963static void mvneta_start_dev(struct mvneta_port *pp)
2964{
2965        int cpu;
2966
2967        mvneta_max_rx_size_set(pp, pp->pkt_size);
2968        mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2969
2970        /* start the Rx/Tx activity */
2971        mvneta_port_enable(pp);
2972
2973        /* Enable polling on the port */
2974        for_each_online_cpu(cpu) {
2975                struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2976
2977                napi_enable(&port->napi);
2978        }
2979
2980        /* Unmask interrupts. It has to be done from each CPU */
2981        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2982
2983        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2984                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2985                    MVNETA_CAUSE_LINK_CHANGE |
2986                    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2987
2988        phy_start(pp->phy_dev);
2989        netif_tx_start_all_queues(pp->dev);
2990}
2991
2992static void mvneta_stop_dev(struct mvneta_port *pp)
2993{
2994        unsigned int cpu;
2995
2996        phy_stop(pp->phy_dev);
2997
2998        for_each_online_cpu(cpu) {
2999                struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3000
3001                napi_disable(&port->napi);
3002        }
3003
3004        netif_carrier_off(pp->dev);
3005
3006        mvneta_port_down(pp);
3007        netif_tx_stop_all_queues(pp->dev);
3008
3009        /* Stop the port activity */
3010        mvneta_port_disable(pp);
3011
3012        /* Clear all ethernet port interrupts */
3013        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3014
3015        /* Mask all ethernet port interrupts */
3016        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3017
3018        mvneta_tx_reset(pp);
3019        mvneta_rx_reset(pp);
3020}
3021
3022/* Return positive if MTU is valid */
3023static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3024{
3025        if (mtu < 68) {
3026                netdev_err(dev, "cannot change mtu to less than 68\n");
3027                return -EINVAL;
3028        }
3029
3030        /* 9676 == 9700 - 20 and rounding to 8 */
3031        if (mtu > 9676) {
3032                netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3033                mtu = 9676;
3034        }
3035
3036        if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3037                netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3038                        mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3039                mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3040        }
3041
3042        return mtu;
3043}
3044
3045static void mvneta_percpu_enable(void *arg)
3046{
3047        struct mvneta_port *pp = arg;
3048
3049        enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3050}
3051
3052static void mvneta_percpu_disable(void *arg)
3053{
3054        struct mvneta_port *pp = arg;
3055
3056        disable_percpu_irq(pp->dev->irq);
3057}
3058
3059/* Change the device mtu */
3060static int mvneta_change_mtu(struct net_device *dev, int mtu)
3061{
3062        struct mvneta_port *pp = netdev_priv(dev);
3063        int ret;
3064
3065        mtu = mvneta_check_mtu_valid(dev, mtu);
3066        if (mtu < 0)
3067                return -EINVAL;
3068
3069        dev->mtu = mtu;
3070
3071        if (!netif_running(dev)) {
3072                if (pp->bm_priv)
3073                        mvneta_bm_update_mtu(pp, mtu);
3074
3075                netdev_update_features(dev);
3076                return 0;
3077        }
3078
3079        /* The interface is running, so we have to force a
3080         * reallocation of the queues
3081         */
3082        mvneta_stop_dev(pp);
3083        on_each_cpu(mvneta_percpu_disable, pp, true);
3084
3085        mvneta_cleanup_txqs(pp);
3086        mvneta_cleanup_rxqs(pp);
3087
3088        if (pp->bm_priv)
3089                mvneta_bm_update_mtu(pp, mtu);
3090
3091        pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3092        pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3093                        SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3094
3095        ret = mvneta_setup_rxqs(pp);
3096        if (ret) {
3097                netdev_err(dev, "unable to setup rxqs after MTU change\n");
3098                return ret;
3099        }
3100
3101        ret = mvneta_setup_txqs(pp);
3102        if (ret) {
3103                netdev_err(dev, "unable to setup txqs after MTU change\n");
3104                return ret;
3105        }
3106
3107        on_each_cpu(mvneta_percpu_enable, pp, true);
3108        mvneta_start_dev(pp);
3109        mvneta_port_up(pp);
3110
3111        netdev_update_features(dev);
3112
3113        return 0;
3114}
3115
3116static netdev_features_t mvneta_fix_features(struct net_device *dev,
3117                                             netdev_features_t features)
3118{
3119        struct mvneta_port *pp = netdev_priv(dev);
3120
3121        if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3122                features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3123                netdev_info(dev,
3124                            "Disable IP checksum for MTU greater than %dB\n",
3125                            pp->tx_csum_limit);
3126        }
3127
3128        return features;
3129}
3130
3131/* Get mac address */
3132static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3133{
3134        u32 mac_addr_l, mac_addr_h;
3135
3136        mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3137        mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3138        addr[0] = (mac_addr_h >> 24) & 0xFF;
3139        addr[1] = (mac_addr_h >> 16) & 0xFF;
3140        addr[2] = (mac_addr_h >> 8) & 0xFF;
3141        addr[3] = mac_addr_h & 0xFF;
3142        addr[4] = (mac_addr_l >> 8) & 0xFF;
3143        addr[5] = mac_addr_l & 0xFF;
3144}
3145
3146/* Handle setting mac address */
3147static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3148{
3149        struct mvneta_port *pp = netdev_priv(dev);
3150        struct sockaddr *sockaddr = addr;
3151        int ret;
3152
3153        ret = eth_prepare_mac_addr_change(dev, addr);
3154        if (ret < 0)
3155                return ret;
3156        /* Remove previous address table entry */
3157        mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3158
3159        /* Set new addr in hw */
3160        mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3161
3162        eth_commit_mac_addr_change(dev, addr);
3163        return 0;
3164}
3165
3166static void mvneta_adjust_link(struct net_device *ndev)
3167{
3168        struct mvneta_port *pp = netdev_priv(ndev);
3169        struct phy_device *phydev = pp->phy_dev;
3170        int status_change = 0;
3171
3172        if (phydev->link) {
3173                if ((pp->speed != phydev->speed) ||
3174                    (pp->duplex != phydev->duplex)) {
3175                        u32 val;
3176
3177                        val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3178                        val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3179                                 MVNETA_GMAC_CONFIG_GMII_SPEED |
3180                                 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3181
3182                        if (phydev->duplex)
3183                                val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3184
3185                        if (phydev->speed == SPEED_1000)
3186                                val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3187                        else if (phydev->speed == SPEED_100)
3188                                val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3189
3190                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3191
3192                        pp->duplex = phydev->duplex;
3193                        pp->speed  = phydev->speed;
3194                }
3195        }
3196
3197        if (phydev->link != pp->link) {
3198                if (!phydev->link) {
3199                        pp->duplex = -1;
3200                        pp->speed = 0;
3201                }
3202
3203                pp->link = phydev->link;
3204                status_change = 1;
3205        }
3206
3207        if (status_change) {
3208                if (phydev->link) {
3209                        if (!pp->use_inband_status) {
3210                                u32 val = mvreg_read(pp,
3211                                                  MVNETA_GMAC_AUTONEG_CONFIG);
3212                                val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3213                                val |= MVNETA_GMAC_FORCE_LINK_PASS;
3214                                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3215                                            val);
3216                        }
3217                        mvneta_port_up(pp);
3218                } else {
3219                        if (!pp->use_inband_status) {
3220                                u32 val = mvreg_read(pp,
3221                                                  MVNETA_GMAC_AUTONEG_CONFIG);
3222                                val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3223                                val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3224                                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3225                                            val);
3226                        }
3227                        mvneta_port_down(pp);
3228                }
3229                phy_print_status(phydev);
3230        }
3231}
3232
3233static int mvneta_mdio_probe(struct mvneta_port *pp)
3234{
3235        struct phy_device *phy_dev;
3236
3237        phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3238                                 pp->phy_interface);
3239        if (!phy_dev) {
3240                netdev_err(pp->dev, "could not find the PHY\n");
3241                return -ENODEV;
3242        }
3243
3244        phy_dev->supported &= PHY_GBIT_FEATURES;
3245        phy_dev->advertising = phy_dev->supported;
3246
3247        pp->phy_dev = phy_dev;
3248        pp->link    = 0;
3249        pp->duplex  = 0;
3250        pp->speed   = 0;
3251
3252        return 0;
3253}
3254
3255static void mvneta_mdio_remove(struct mvneta_port *pp)
3256{
3257        phy_disconnect(pp->phy_dev);
3258        pp->phy_dev = NULL;
3259}
3260
3261/* Electing a CPU must be done in an atomic way: it should be done
3262 * after or before the removal/insertion of a CPU and this function is
3263 * not reentrant.
3264 */
3265static void mvneta_percpu_elect(struct mvneta_port *pp)
3266{
3267        int elected_cpu = 0, max_cpu, cpu, i = 0;
3268
3269        /* Use the cpu associated to the rxq when it is online, in all
3270         * the other cases, use the cpu 0 which can't be offline.
3271         */
3272        if (cpu_online(pp->rxq_def))
3273                elected_cpu = pp->rxq_def;
3274
3275        max_cpu = num_present_cpus();
3276
3277        for_each_online_cpu(cpu) {
3278                int rxq_map = 0, txq_map = 0;
3279                int rxq;
3280
3281                for (rxq = 0; rxq < rxq_number; rxq++)
3282                        if ((rxq % max_cpu) == cpu)
3283                                rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3284
3285                if (cpu == elected_cpu)
3286                        /* Map the default receive queue queue to the
3287                         * elected CPU
3288                         */
3289                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3290
3291                /* We update the TX queue map only if we have one
3292                 * queue. In this case we associate the TX queue to
3293                 * the CPU bound to the default RX queue
3294                 */
3295                if (txq_number == 1)
3296                        txq_map = (cpu == elected_cpu) ?
3297                                MVNETA_CPU_TXQ_ACCESS(1) : 0;
3298                else
3299                        txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3300                                MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3301
3302                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3303
3304                /* Update the interrupt mask on each CPU according the
3305                 * new mapping
3306                 */
3307                smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3308                                         pp, true);
3309                i++;
3310
3311        }
3312};
3313
3314static int mvneta_percpu_notifier(struct notifier_block *nfb,
3315                                  unsigned long action, void *hcpu)
3316{
3317        struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
3318                                              cpu_notifier);
3319        int cpu = (unsigned long)hcpu, other_cpu;
3320        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3321
3322        switch (action) {
3323        case CPU_ONLINE:
3324        case CPU_ONLINE_FROZEN:
3325        case CPU_DOWN_FAILED:
3326        case CPU_DOWN_FAILED_FROZEN:
3327                spin_lock(&pp->lock);
3328                /* Configuring the driver for a new CPU while the
3329                 * driver is stopping is racy, so just avoid it.
3330                 */
3331                if (pp->is_stopped) {
3332                        spin_unlock(&pp->lock);
3333                        break;
3334                }
3335                netif_tx_stop_all_queues(pp->dev);
3336
3337                /* We have to synchronise on tha napi of each CPU
3338                 * except the one just being waked up
3339                 */
3340                for_each_online_cpu(other_cpu) {
3341                        if (other_cpu != cpu) {
3342                                struct mvneta_pcpu_port *other_port =
3343                                        per_cpu_ptr(pp->ports, other_cpu);
3344
3345                                napi_synchronize(&other_port->napi);
3346                        }
3347                }
3348
3349                /* Mask all ethernet port interrupts */
3350                on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3351                napi_enable(&port->napi);
3352
3353
3354                /* Enable per-CPU interrupts on the CPU that is
3355                 * brought up.
3356                 */
3357                mvneta_percpu_enable(pp);
3358
3359                /* Enable per-CPU interrupt on the one CPU we care
3360                 * about.
3361                 */
3362                mvneta_percpu_elect(pp);
3363
3364                /* Unmask all ethernet port interrupts */
3365                on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3366                mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3367                        MVNETA_CAUSE_PHY_STATUS_CHANGE |
3368                        MVNETA_CAUSE_LINK_CHANGE |
3369                        MVNETA_CAUSE_PSC_SYNC_CHANGE);
3370                netif_tx_start_all_queues(pp->dev);
3371                spin_unlock(&pp->lock);
3372                break;
3373        case CPU_DOWN_PREPARE:
3374        case CPU_DOWN_PREPARE_FROZEN:
3375                netif_tx_stop_all_queues(pp->dev);
3376                /* Thanks to this lock we are sure that any pending
3377                 * cpu election is done
3378                 */
3379                spin_lock(&pp->lock);
3380                /* Mask all ethernet port interrupts */
3381                on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3382                spin_unlock(&pp->lock);
3383
3384                napi_synchronize(&port->napi);
3385                napi_disable(&port->napi);
3386                /* Disable per-CPU interrupts on the CPU that is
3387                 * brought down.
3388                 */
3389                mvneta_percpu_disable(pp);
3390
3391                break;
3392        case CPU_DEAD:
3393        case CPU_DEAD_FROZEN:
3394                /* Check if a new CPU must be elected now this on is down */
3395                spin_lock(&pp->lock);
3396                mvneta_percpu_elect(pp);
3397                spin_unlock(&pp->lock);
3398                /* Unmask all ethernet port interrupts */
3399                on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3400                mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3401                        MVNETA_CAUSE_PHY_STATUS_CHANGE |
3402                        MVNETA_CAUSE_LINK_CHANGE |
3403                        MVNETA_CAUSE_PSC_SYNC_CHANGE);
3404                netif_tx_start_all_queues(pp->dev);
3405                break;
3406        }
3407
3408        return NOTIFY_OK;
3409}
3410
3411static int mvneta_open(struct net_device *dev)
3412{
3413        struct mvneta_port *pp = netdev_priv(dev);
3414        int ret;
3415
3416        pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3417        pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3418                        SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3419
3420        ret = mvneta_setup_rxqs(pp);
3421        if (ret)
3422                return ret;
3423
3424        ret = mvneta_setup_txqs(pp);
3425        if (ret)
3426                goto err_cleanup_rxqs;
3427
3428        /* Connect to port interrupt line */
3429        ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3430                                 MVNETA_DRIVER_NAME, pp->ports);
3431        if (ret) {
3432                netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3433                goto err_cleanup_txqs;
3434        }
3435
3436        /* Enable per-CPU interrupt on all the CPU to handle our RX
3437         * queue interrupts
3438         */
3439        on_each_cpu(mvneta_percpu_enable, pp, true);
3440
3441        pp->is_stopped = false;
3442        /* Register a CPU notifier to handle the case where our CPU
3443         * might be taken offline.
3444         */
3445        register_cpu_notifier(&pp->cpu_notifier);
3446
3447        /* In default link is down */
3448        netif_carrier_off(pp->dev);
3449
3450        ret = mvneta_mdio_probe(pp);
3451        if (ret < 0) {
3452                netdev_err(dev, "cannot probe MDIO bus\n");
3453                goto err_free_irq;
3454        }
3455
3456        mvneta_start_dev(pp);
3457
3458        return 0;
3459
3460err_free_irq:
3461        free_percpu_irq(pp->dev->irq, pp->ports);
3462err_cleanup_txqs:
3463        mvneta_cleanup_txqs(pp);
3464err_cleanup_rxqs:
3465        mvneta_cleanup_rxqs(pp);
3466        return ret;
3467}
3468
3469/* Stop the port, free port interrupt line */
3470static int mvneta_stop(struct net_device *dev)
3471{
3472        struct mvneta_port *pp = netdev_priv(dev);
3473
3474        /* Inform that we are stopping so we don't want to setup the
3475         * driver for new CPUs in the notifiers. The code of the
3476         * notifier for CPU online is protected by the same spinlock,
3477         * so when we get the lock, the notifer work is done.
3478         */
3479        spin_lock(&pp->lock);
3480        pp->is_stopped = true;
3481        spin_unlock(&pp->lock);
3482
3483        mvneta_stop_dev(pp);
3484        mvneta_mdio_remove(pp);
3485        unregister_cpu_notifier(&pp->cpu_notifier);
3486        on_each_cpu(mvneta_percpu_disable, pp, true);
3487        free_percpu_irq(dev->irq, pp->ports);
3488        mvneta_cleanup_rxqs(pp);
3489        mvneta_cleanup_txqs(pp);
3490
3491        return 0;
3492}
3493
3494static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3495{
3496        struct mvneta_port *pp = netdev_priv(dev);
3497
3498        if (!pp->phy_dev)
3499                return -ENOTSUPP;
3500
3501        return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3502}
3503
3504/* Ethtool methods */
3505
3506/* Get settings (phy address, speed) for ethtools */
3507int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3508{
3509        struct mvneta_port *pp = netdev_priv(dev);
3510
3511        if (!pp->phy_dev)
3512                return -ENODEV;
3513
3514        return phy_ethtool_gset(pp->phy_dev, cmd);
3515}
3516
3517/* Set settings (phy address, speed) for ethtools */
3518int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3519{
3520        struct mvneta_port *pp = netdev_priv(dev);
3521        struct phy_device *phydev = pp->phy_dev;
3522
3523        if (!phydev)
3524                return -ENODEV;
3525
3526        if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3527                u32 val;
3528
3529                mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3530
3531                if (cmd->autoneg == AUTONEG_DISABLE) {
3532                        val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3533                        val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3534                                 MVNETA_GMAC_CONFIG_GMII_SPEED |
3535                                 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3536
3537                        if (phydev->duplex)
3538                                val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3539
3540                        if (phydev->speed == SPEED_1000)
3541                                val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3542                        else if (phydev->speed == SPEED_100)
3543                                val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3544
3545                        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3546                }
3547
3548                pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3549                netdev_info(pp->dev, "autoneg status set to %i\n",
3550                            pp->use_inband_status);
3551
3552                if (netif_running(dev)) {
3553                        mvneta_port_down(pp);
3554                        mvneta_port_up(pp);
3555                }
3556        }
3557
3558        return phy_ethtool_sset(pp->phy_dev, cmd);
3559}
3560
3561/* Set interrupt coalescing for ethtools */
3562static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3563                                       struct ethtool_coalesce *c)
3564{
3565        struct mvneta_port *pp = netdev_priv(dev);
3566        int queue;
3567
3568        for (queue = 0; queue < rxq_number; queue++) {
3569                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3570                rxq->time_coal = c->rx_coalesce_usecs;
3571                rxq->pkts_coal = c->rx_max_coalesced_frames;
3572                mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3573                mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3574        }
3575
3576        for (queue = 0; queue < txq_number; queue++) {
3577                struct mvneta_tx_queue *txq = &pp->txqs[queue];
3578                txq->done_pkts_coal = c->tx_max_coalesced_frames;
3579                mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3580        }
3581
3582        return 0;
3583}
3584
3585/* get coalescing for ethtools */
3586static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3587                                       struct ethtool_coalesce *c)
3588{
3589        struct mvneta_port *pp = netdev_priv(dev);
3590
3591        c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3592        c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3593
3594        c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3595        return 0;
3596}
3597
3598
3599static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3600                                    struct ethtool_drvinfo *drvinfo)
3601{
3602        strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3603                sizeof(drvinfo->driver));
3604        strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3605                sizeof(drvinfo->version));
3606        strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3607                sizeof(drvinfo->bus_info));
3608}
3609
3610
3611static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3612                                         struct ethtool_ringparam *ring)
3613{
3614        struct mvneta_port *pp = netdev_priv(netdev);
3615
3616        ring->rx_max_pending = MVNETA_MAX_RXD;
3617        ring->tx_max_pending = MVNETA_MAX_TXD;
3618        ring->rx_pending = pp->rx_ring_size;
3619        ring->tx_pending = pp->tx_ring_size;
3620}
3621
3622static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3623                                        struct ethtool_ringparam *ring)
3624{
3625        struct mvneta_port *pp = netdev_priv(dev);
3626
3627        if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3628                return -EINVAL;
3629        pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3630                ring->rx_pending : MVNETA_MAX_RXD;
3631
3632        pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3633                                   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3634        if (pp->tx_ring_size != ring->tx_pending)
3635                netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3636                            pp->tx_ring_size, ring->tx_pending);
3637
3638        if (netif_running(dev)) {
3639                mvneta_stop(dev);
3640                if (mvneta_open(dev)) {
3641                        netdev_err(dev,
3642                                   "error on opening device after ring param change\n");
3643                        return -ENOMEM;
3644                }
3645        }
3646
3647        return 0;
3648}
3649
3650static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3651                                       u8 *data)
3652{
3653        if (sset == ETH_SS_STATS) {
3654                int i;
3655
3656                for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3657                        memcpy(data + i * ETH_GSTRING_LEN,
3658                               mvneta_statistics[i].name, ETH_GSTRING_LEN);
3659        }
3660}
3661
3662static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3663{
3664        const struct mvneta_statistic *s;
3665        void __iomem *base = pp->base;
3666        u32 high, low, val;
3667        u64 val64;
3668        int i;
3669
3670        for (i = 0, s = mvneta_statistics;
3671             s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3672             s++, i++) {
3673                switch (s->type) {
3674                case T_REG_32:
3675                        val = readl_relaxed(base + s->offset);
3676                        pp->ethtool_stats[i] += val;
3677                        break;
3678                case T_REG_64:
3679                        /* Docs say to read low 32-bit then high */
3680                        low = readl_relaxed(base + s->offset);
3681                        high = readl_relaxed(base + s->offset + 4);
3682                        val64 = (u64)high << 32 | low;
3683                        pp->ethtool_stats[i] += val64;
3684                        break;
3685                }
3686        }
3687}
3688
3689static void mvneta_ethtool_get_stats(struct net_device *dev,
3690                                     struct ethtool_stats *stats, u64 *data)
3691{
3692        struct mvneta_port *pp = netdev_priv(dev);
3693        int i;
3694
3695        mvneta_ethtool_update_stats(pp);
3696
3697        for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3698                *data++ = pp->ethtool_stats[i];
3699}
3700
3701static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3702{
3703        if (sset == ETH_SS_STATS)
3704                return ARRAY_SIZE(mvneta_statistics);
3705        return -EOPNOTSUPP;
3706}
3707
3708static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3709{
3710        return MVNETA_RSS_LU_TABLE_SIZE;
3711}
3712
3713static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3714                                    struct ethtool_rxnfc *info,
3715                                    u32 *rules __always_unused)
3716{
3717        switch (info->cmd) {
3718        case ETHTOOL_GRXRINGS:
3719                info->data =  rxq_number;
3720                return 0;
3721        case ETHTOOL_GRXFH:
3722                return -EOPNOTSUPP;
3723        default:
3724                return -EOPNOTSUPP;
3725        }
3726}
3727
3728static int  mvneta_config_rss(struct mvneta_port *pp)
3729{
3730        int cpu;
3731        u32 val;
3732
3733        netif_tx_stop_all_queues(pp->dev);
3734
3735        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3736
3737        /* We have to synchronise on the napi of each CPU */
3738        for_each_online_cpu(cpu) {
3739                struct mvneta_pcpu_port *pcpu_port =
3740                        per_cpu_ptr(pp->ports, cpu);
3741
3742                napi_synchronize(&pcpu_port->napi);
3743                napi_disable(&pcpu_port->napi);
3744        }
3745
3746        pp->rxq_def = pp->indir[0];
3747
3748        /* Update unicast mapping */
3749        mvneta_set_rx_mode(pp->dev);
3750
3751        /* Update val of portCfg register accordingly with all RxQueue types */
3752        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3753        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3754
3755        /* Update the elected CPU matching the new rxq_def */
3756        spin_lock(&pp->lock);
3757        mvneta_percpu_elect(pp);
3758        spin_unlock(&pp->lock);
3759
3760        /* We have to synchronise on the napi of each CPU */
3761        for_each_online_cpu(cpu) {
3762                struct mvneta_pcpu_port *pcpu_port =
3763                        per_cpu_ptr(pp->ports, cpu);
3764
3765                napi_enable(&pcpu_port->napi);
3766        }
3767
3768        netif_tx_start_all_queues(pp->dev);
3769
3770        return 0;
3771}
3772
3773static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3774                                   const u8 *key, const u8 hfunc)
3775{
3776        struct mvneta_port *pp = netdev_priv(dev);
3777        /* We require at least one supported parameter to be changed
3778         * and no change in any of the unsupported parameters
3779         */
3780        if (key ||
3781            (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3782                return -EOPNOTSUPP;
3783
3784        if (!indir)
3785                return 0;
3786
3787        memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3788
3789        return mvneta_config_rss(pp);
3790}
3791
3792static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3793                                   u8 *hfunc)
3794{
3795        struct mvneta_port *pp = netdev_priv(dev);
3796
3797        if (hfunc)
3798                *hfunc = ETH_RSS_HASH_TOP;
3799
3800        if (!indir)
3801                return 0;
3802
3803        memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3804
3805        return 0;
3806}
3807
3808static const struct net_device_ops mvneta_netdev_ops = {
3809        .ndo_open            = mvneta_open,
3810        .ndo_stop            = mvneta_stop,
3811        .ndo_start_xmit      = mvneta_tx,
3812        .ndo_set_rx_mode     = mvneta_set_rx_mode,
3813        .ndo_set_mac_address = mvneta_set_mac_addr,
3814        .ndo_change_mtu      = mvneta_change_mtu,
3815        .ndo_fix_features    = mvneta_fix_features,
3816        .ndo_get_stats64     = mvneta_get_stats64,
3817        .ndo_do_ioctl        = mvneta_ioctl,
3818};
3819
3820const struct ethtool_ops mvneta_eth_tool_ops = {
3821        .get_link       = ethtool_op_get_link,
3822        .get_settings   = mvneta_ethtool_get_settings,
3823        .set_settings   = mvneta_ethtool_set_settings,
3824        .set_coalesce   = mvneta_ethtool_set_coalesce,
3825        .get_coalesce   = mvneta_ethtool_get_coalesce,
3826        .get_drvinfo    = mvneta_ethtool_get_drvinfo,
3827        .get_ringparam  = mvneta_ethtool_get_ringparam,
3828        .set_ringparam  = mvneta_ethtool_set_ringparam,
3829        .get_strings    = mvneta_ethtool_get_strings,
3830        .get_ethtool_stats = mvneta_ethtool_get_stats,
3831        .get_sset_count = mvneta_ethtool_get_sset_count,
3832        .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3833        .get_rxnfc      = mvneta_ethtool_get_rxnfc,
3834        .get_rxfh       = mvneta_ethtool_get_rxfh,
3835        .set_rxfh       = mvneta_ethtool_set_rxfh,
3836};
3837
3838/* Initialize hw */
3839static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3840{
3841        int queue;
3842
3843        /* Disable port */
3844        mvneta_port_disable(pp);
3845
3846        /* Set port default values */
3847        mvneta_defaults_set(pp);
3848
3849        pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3850                                GFP_KERNEL);
3851        if (!pp->txqs)
3852                return -ENOMEM;
3853
3854        /* Initialize TX descriptor rings */
3855        for (queue = 0; queue < txq_number; queue++) {
3856                struct mvneta_tx_queue *txq = &pp->txqs[queue];
3857                txq->id = queue;
3858                txq->size = pp->tx_ring_size;
3859                txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3860        }
3861
3862        pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3863                                GFP_KERNEL);
3864        if (!pp->rxqs)
3865                return -ENOMEM;
3866
3867        /* Create Rx descriptor rings */
3868        for (queue = 0; queue < rxq_number; queue++) {
3869                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3870                rxq->id = queue;
3871                rxq->size = pp->rx_ring_size;
3872                rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3873                rxq->time_coal = MVNETA_RX_COAL_USEC;
3874        }
3875
3876        return 0;
3877}
3878
3879/* platform glue : initialize decoding windows */
3880static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3881                                     const struct mbus_dram_target_info *dram)
3882{
3883        u32 win_enable;
3884        u32 win_protect;
3885        int i;
3886
3887        for (i = 0; i < 6; i++) {
3888                mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3889                mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3890
3891                if (i < 4)
3892                        mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3893        }
3894
3895        win_enable = 0x3f;
3896        win_protect = 0;
3897
3898        for (i = 0; i < dram->num_cs; i++) {
3899                const struct mbus_dram_window *cs = dram->cs + i;
3900                mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3901                            (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3902
3903                mvreg_write(pp, MVNETA_WIN_SIZE(i),
3904                            (cs->size - 1) & 0xffff0000);
3905
3906                win_enable &= ~(1 << i);
3907                win_protect |= 3 << (2 * i);
3908        }
3909
3910        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3911        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3912}
3913
3914/* Power up the port */
3915static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3916{
3917        u32 ctrl;
3918
3919        /* MAC Cause register should be cleared */
3920        mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3921
3922        ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3923
3924        /* Even though it might look weird, when we're configured in
3925         * SGMII or QSGMII mode, the RGMII bit needs to be set.
3926         */
3927        switch(phy_mode) {
3928        case PHY_INTERFACE_MODE_QSGMII:
3929                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3930                ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3931                break;
3932        case PHY_INTERFACE_MODE_SGMII:
3933                mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3934                ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3935                break;
3936        case PHY_INTERFACE_MODE_RGMII:
3937        case PHY_INTERFACE_MODE_RGMII_ID:
3938                ctrl |= MVNETA_GMAC2_PORT_RGMII;
3939                break;
3940        default:
3941                return -EINVAL;
3942        }
3943
3944        /* Cancel Port Reset */
3945        ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3946        mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3947
3948        while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3949                MVNETA_GMAC2_PORT_RESET) != 0)
3950                continue;
3951
3952        return 0;
3953}
3954
3955/* Device initialization routine */
3956static int mvneta_probe(struct platform_device *pdev)
3957{
3958        const struct mbus_dram_target_info *dram_target_info;
3959        struct resource *res;
3960        struct device_node *dn = pdev->dev.of_node;
3961        struct device_node *phy_node;
3962        struct device_node *bm_node;
3963        struct mvneta_port *pp;
3964        struct net_device *dev;
3965        const char *dt_mac_addr;
3966        char hw_mac_addr[ETH_ALEN];
3967        const char *mac_from;
3968        const char *managed;
3969        int tx_csum_limit;
3970        int phy_mode;
3971        int err;
3972        int cpu;
3973
3974        dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3975        if (!dev)
3976                return -ENOMEM;
3977
3978        dev->irq = irq_of_parse_and_map(dn, 0);
3979        if (dev->irq == 0) {
3980                err = -EINVAL;
3981                goto err_free_netdev;
3982        }
3983
3984        phy_node = of_parse_phandle(dn, "phy", 0);
3985        if (!phy_node) {
3986                if (!of_phy_is_fixed_link(dn)) {
3987                        dev_err(&pdev->dev, "no PHY specified\n");
3988                        err = -ENODEV;
3989                        goto err_free_irq;
3990                }
3991
3992                err = of_phy_register_fixed_link(dn);
3993                if (err < 0) {
3994                        dev_err(&pdev->dev, "cannot register fixed PHY\n");
3995                        goto err_free_irq;
3996                }
3997
3998                /* In the case of a fixed PHY, the DT node associated
3999                 * to the PHY is the Ethernet MAC DT node.
4000                 */
4001                phy_node = of_node_get(dn);
4002        }
4003
4004        phy_mode = of_get_phy_mode(dn);
4005        if (phy_mode < 0) {
4006                dev_err(&pdev->dev, "incorrect phy-mode\n");
4007                err = -EINVAL;
4008                goto err_put_phy_node;
4009        }
4010
4011        dev->tx_queue_len = MVNETA_MAX_TXD;
4012        dev->watchdog_timeo = 5 * HZ;
4013        dev->netdev_ops = &mvneta_netdev_ops;
4014
4015        dev->ethtool_ops = &mvneta_eth_tool_ops;
4016
4017        pp = netdev_priv(dev);
4018        spin_lock_init(&pp->lock);
4019        pp->phy_node = phy_node;
4020        pp->phy_interface = phy_mode;
4021
4022        err = of_property_read_string(dn, "managed", &managed);
4023        pp->use_inband_status = (err == 0 &&
4024                                 strcmp(managed, "in-band-status") == 0);
4025        pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
4026
4027        pp->rxq_def = rxq_def;
4028
4029        pp->indir[0] = rxq_def;
4030
4031        pp->clk = devm_clk_get(&pdev->dev, "core");
4032        if (IS_ERR(pp->clk))
4033                pp->clk = devm_clk_get(&pdev->dev, NULL);
4034        if (IS_ERR(pp->clk)) {
4035                err = PTR_ERR(pp->clk);
4036                goto err_put_phy_node;
4037        }
4038
4039        clk_prepare_enable(pp->clk);
4040
4041        pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4042        if (!IS_ERR(pp->clk_bus))
4043                clk_prepare_enable(pp->clk_bus);
4044
4045        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4046        pp->base = devm_ioremap_resource(&pdev->dev, res);
4047        if (IS_ERR(pp->base)) {
4048                err = PTR_ERR(pp->base);
4049                goto err_clk;
4050        }
4051
4052        /* Alloc per-cpu port structure */
4053        pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4054        if (!pp->ports) {
4055                err = -ENOMEM;
4056                goto err_clk;
4057        }
4058
4059        /* Alloc per-cpu stats */
4060        pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4061        if (!pp->stats) {
4062                err = -ENOMEM;
4063                goto err_free_ports;
4064        }
4065
4066        dt_mac_addr = of_get_mac_address(dn);
4067        if (dt_mac_addr) {
4068                mac_from = "device tree";
4069                memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4070        } else {
4071                mvneta_get_mac_addr(pp, hw_mac_addr);
4072                if (is_valid_ether_addr(hw_mac_addr)) {
4073                        mac_from = "hardware";
4074                        memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4075                } else {
4076                        mac_from = "random";
4077                        eth_hw_addr_random(dev);
4078                }
4079        }
4080
4081        if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4082                if (tx_csum_limit < 0 ||
4083                    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4084                        tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4085                        dev_info(&pdev->dev,
4086                                 "Wrong TX csum limit in DT, set to %dB\n",
4087                                 MVNETA_TX_CSUM_DEF_SIZE);
4088                }
4089        } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4090                tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4091        } else {
4092                tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4093        }
4094
4095        pp->tx_csum_limit = tx_csum_limit;
4096
4097        dram_target_info = mv_mbus_dram_info();
4098        if (dram_target_info)
4099                mvneta_conf_mbus_windows(pp, dram_target_info);
4100
4101        pp->tx_ring_size = MVNETA_MAX_TXD;
4102        pp->rx_ring_size = MVNETA_MAX_RXD;
4103
4104        pp->dev = dev;
4105        SET_NETDEV_DEV(dev, &pdev->dev);
4106
4107        pp->id = global_port_id++;
4108
4109        /* Obtain access to BM resources if enabled and already initialized */
4110        bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4111        if (bm_node && bm_node->data) {
4112                pp->bm_priv = bm_node->data;
4113                err = mvneta_bm_port_init(pdev, pp);
4114                if (err < 0) {
4115                        dev_info(&pdev->dev, "use SW buffer management\n");
4116                        pp->bm_priv = NULL;
4117                }
4118        }
4119
4120        err = mvneta_init(&pdev->dev, pp);
4121        if (err < 0)
4122                goto err_netdev;
4123
4124        err = mvneta_port_power_up(pp, phy_mode);
4125        if (err < 0) {
4126                dev_err(&pdev->dev, "can't power up port\n");
4127                goto err_netdev;
4128        }
4129
4130        for_each_present_cpu(cpu) {
4131                struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4132
4133                netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4134                port->pp = pp;
4135        }
4136
4137        dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4138        dev->hw_features |= dev->features;
4139        dev->vlan_features |= dev->features;
4140        dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
4141        dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4142
4143        err = register_netdev(dev);
4144        if (err < 0) {
4145                dev_err(&pdev->dev, "failed to register\n");
4146                goto err_free_stats;
4147        }
4148
4149        netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4150                    dev->dev_addr);
4151
4152        platform_set_drvdata(pdev, pp->dev);
4153
4154        if (pp->use_inband_status) {
4155                struct phy_device *phy = of_phy_find_device(dn);
4156
4157                mvneta_fixed_link_update(pp, phy);
4158
4159                put_device(&phy->mdio.dev);
4160        }
4161
4162        return 0;
4163
4164err_netdev:
4165        unregister_netdev(dev);
4166        if (pp->bm_priv) {
4167                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4168                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4169                                       1 << pp->id);
4170        }
4171err_free_stats:
4172        free_percpu(pp->stats);
4173err_free_ports:
4174        free_percpu(pp->ports);
4175err_clk:
4176        clk_disable_unprepare(pp->clk_bus);
4177        clk_disable_unprepare(pp->clk);
4178err_put_phy_node:
4179        of_node_put(phy_node);
4180err_free_irq:
4181        irq_dispose_mapping(dev->irq);
4182err_free_netdev:
4183        free_netdev(dev);
4184        return err;
4185}
4186
4187/* Device removal routine */
4188static int mvneta_remove(struct platform_device *pdev)
4189{
4190        struct net_device  *dev = platform_get_drvdata(pdev);
4191        struct mvneta_port *pp = netdev_priv(dev);
4192
4193        unregister_netdev(dev);
4194        clk_disable_unprepare(pp->clk_bus);
4195        clk_disable_unprepare(pp->clk);
4196        free_percpu(pp->ports);
4197        free_percpu(pp->stats);
4198        irq_dispose_mapping(dev->irq);
4199        of_node_put(pp->phy_node);
4200        free_netdev(dev);
4201
4202        if (pp->bm_priv) {
4203                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4204                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4205                                       1 << pp->id);
4206        }
4207
4208        return 0;
4209}
4210
4211static const struct of_device_id mvneta_match[] = {
4212        { .compatible = "marvell,armada-370-neta" },
4213        { .compatible = "marvell,armada-xp-neta" },
4214        { }
4215};
4216MODULE_DEVICE_TABLE(of, mvneta_match);
4217
4218static struct platform_driver mvneta_driver = {
4219        .probe = mvneta_probe,
4220        .remove = mvneta_remove,
4221        .driver = {
4222                .name = MVNETA_DRIVER_NAME,
4223                .of_match_table = mvneta_match,
4224        },
4225};
4226
4227module_platform_driver(mvneta_driver);
4228
4229MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4230MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4231MODULE_LICENSE("GPL");
4232
4233module_param(rxq_number, int, S_IRUGO);
4234module_param(txq_number, int, S_IRUGO);
4235
4236module_param(rxq_def, int, S_IRUGO);
4237module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4238