linux/drivers/net/ethernet/neterion/vxge/vxge-traffic.c
<<
>>
Prefs
   1/******************************************************************************
   2 * This software may be used and distributed according to the terms of
   3 * the GNU General Public License (GPL), incorporated herein by reference.
   4 * Drivers based on or derived from this code fall under the GPL and must
   5 * retain the authorship, copyright and license notice.  This file is not
   6 * a complete program and may only be used when the entire operating
   7 * system is licensed under the GPL.
   8 * See the file COPYING in this distribution for more information.
   9 *
  10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
  11 *                 Virtualized Server Adapter.
  12 * Copyright(c) 2002-2010 Exar Corp.
  13 ******************************************************************************/
  14#include <linux/etherdevice.h>
  15#include <linux/prefetch.h>
  16
  17#include "vxge-traffic.h"
  18#include "vxge-config.h"
  19#include "vxge-main.h"
  20
  21/*
  22 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
  23 * @vp: Virtual Path handle.
  24 *
  25 * Enable vpath interrupts. The function is to be executed the last in
  26 * vpath initialization sequence.
  27 *
  28 * See also: vxge_hw_vpath_intr_disable()
  29 */
  30enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
  31{
  32        u64 val64;
  33
  34        struct __vxge_hw_virtualpath *vpath;
  35        struct vxge_hw_vpath_reg __iomem *vp_reg;
  36        enum vxge_hw_status status = VXGE_HW_OK;
  37        if (vp == NULL) {
  38                status = VXGE_HW_ERR_INVALID_HANDLE;
  39                goto exit;
  40        }
  41
  42        vpath = vp->vpath;
  43
  44        if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  45                status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  46                goto exit;
  47        }
  48
  49        vp_reg = vpath->vp_reg;
  50
  51        writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
  52
  53        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  54                        &vp_reg->general_errors_reg);
  55
  56        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  57                        &vp_reg->pci_config_errors_reg);
  58
  59        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  60                        &vp_reg->mrpcim_to_vpath_alarm_reg);
  61
  62        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  63                        &vp_reg->srpcim_to_vpath_alarm_reg);
  64
  65        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  66                        &vp_reg->vpath_ppif_int_status);
  67
  68        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  69                        &vp_reg->srpcim_msg_to_vpath_reg);
  70
  71        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  72                        &vp_reg->vpath_pcipif_int_status);
  73
  74        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  75                        &vp_reg->prc_alarm_reg);
  76
  77        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  78                        &vp_reg->wrdma_alarm_status);
  79
  80        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  81                        &vp_reg->asic_ntwk_vp_err_reg);
  82
  83        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  84                        &vp_reg->xgmac_vp_int_status);
  85
  86        val64 = readq(&vp_reg->vpath_general_int_status);
  87
  88        /* Mask unwanted interrupts */
  89
  90        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  91                        &vp_reg->vpath_pcipif_int_mask);
  92
  93        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  94                        &vp_reg->srpcim_msg_to_vpath_mask);
  95
  96        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  97                        &vp_reg->srpcim_to_vpath_alarm_mask);
  98
  99        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 100                        &vp_reg->mrpcim_to_vpath_alarm_mask);
 101
 102        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 103                        &vp_reg->pci_config_errors_mask);
 104
 105        /* Unmask the individual interrupts */
 106
 107        writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
 108                VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
 109                VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
 110                VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
 111                &vp_reg->general_errors_mask);
 112
 113        __vxge_hw_pio_mem_write32_upper(
 114                (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
 115                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
 116                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
 117                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
 118                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
 119                VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
 120                &vp_reg->kdfcctl_errors_mask);
 121
 122        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
 123
 124        __vxge_hw_pio_mem_write32_upper(
 125                (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
 126                &vp_reg->prc_alarm_mask);
 127
 128        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
 129        __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
 130
 131        if (vpath->hldev->first_vp_id != vpath->vp_id)
 132                __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 133                        &vp_reg->asic_ntwk_vp_err_mask);
 134        else
 135                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
 136                VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
 137                VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
 138                &vp_reg->asic_ntwk_vp_err_mask);
 139
 140        __vxge_hw_pio_mem_write32_upper(0,
 141                &vp_reg->vpath_general_int_mask);
 142exit:
 143        return status;
 144
 145}
 146
 147/*
 148 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
 149 * @vp: Virtual Path handle.
 150 *
 151 * Disable vpath interrupts. The function is to be executed the last in
 152 * vpath initialization sequence.
 153 *
 154 * See also: vxge_hw_vpath_intr_enable()
 155 */
 156enum vxge_hw_status vxge_hw_vpath_intr_disable(
 157                        struct __vxge_hw_vpath_handle *vp)
 158{
 159        u64 val64;
 160
 161        struct __vxge_hw_virtualpath *vpath;
 162        enum vxge_hw_status status = VXGE_HW_OK;
 163        struct vxge_hw_vpath_reg __iomem *vp_reg;
 164        if (vp == NULL) {
 165                status = VXGE_HW_ERR_INVALID_HANDLE;
 166                goto exit;
 167        }
 168
 169        vpath = vp->vpath;
 170
 171        if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
 172                status = VXGE_HW_ERR_VPATH_NOT_OPEN;
 173                goto exit;
 174        }
 175        vp_reg = vpath->vp_reg;
 176
 177        __vxge_hw_pio_mem_write32_upper(
 178                (u32)VXGE_HW_INTR_MASK_ALL,
 179                &vp_reg->vpath_general_int_mask);
 180
 181        val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
 182
 183        writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
 184
 185        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 186                        &vp_reg->general_errors_mask);
 187
 188        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 189                        &vp_reg->pci_config_errors_mask);
 190
 191        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 192                        &vp_reg->mrpcim_to_vpath_alarm_mask);
 193
 194        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 195                        &vp_reg->srpcim_to_vpath_alarm_mask);
 196
 197        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 198                        &vp_reg->vpath_ppif_int_mask);
 199
 200        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 201                        &vp_reg->srpcim_msg_to_vpath_mask);
 202
 203        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 204                        &vp_reg->vpath_pcipif_int_mask);
 205
 206        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 207                        &vp_reg->wrdma_alarm_mask);
 208
 209        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 210                        &vp_reg->prc_alarm_mask);
 211
 212        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 213                        &vp_reg->xgmac_vp_int_mask);
 214
 215        __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 216                        &vp_reg->asic_ntwk_vp_err_mask);
 217
 218exit:
 219        return status;
 220}
 221
 222void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
 223{
 224        struct vxge_hw_vpath_reg __iomem *vp_reg;
 225        struct vxge_hw_vp_config *config;
 226        u64 val64;
 227
 228        if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
 229                return;
 230
 231        vp_reg = fifo->vp_reg;
 232        config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
 233
 234        if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
 235                config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
 236                val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 237                val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 238                fifo->tim_tti_cfg1_saved = val64;
 239                writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 240        }
 241}
 242
 243void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
 244{
 245        u64 val64 = ring->tim_rti_cfg1_saved;
 246
 247        val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 248        ring->tim_rti_cfg1_saved = val64;
 249        writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
 250}
 251
 252void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
 253{
 254        u64 val64 = fifo->tim_tti_cfg3_saved;
 255        u64 timer = (fifo->rtimer * 1000) / 272;
 256
 257        val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 258        if (timer)
 259                val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 260                        VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
 261
 262        writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
 263        /* tti_cfg3_saved is not updated again because it is
 264         * initialized at one place only - init time.
 265         */
 266}
 267
 268void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
 269{
 270        u64 val64 = ring->tim_rti_cfg3_saved;
 271        u64 timer = (ring->rtimer * 1000) / 272;
 272
 273        val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 274        if (timer)
 275                val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 276                        VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
 277
 278        writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
 279        /* rti_cfg3_saved is not updated again because it is
 280         * initialized at one place only - init time.
 281         */
 282}
 283
 284/**
 285 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
 286 * @channeh: Channel for rx or tx handle
 287 * @msix_id:  MSIX ID
 288 *
 289 * The function masks the msix interrupt for the given msix_id
 290 *
 291 * Returns: 0
 292 */
 293void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
 294{
 295
 296        __vxge_hw_pio_mem_write32_upper(
 297                (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 298                &channel->common_reg->set_msix_mask_vect[msix_id%4]);
 299}
 300
 301/**
 302 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
 303 * @channeh: Channel for rx or tx handle
 304 * @msix_id:  MSI ID
 305 *
 306 * The function unmasks the msix interrupt for the given msix_id
 307 *
 308 * Returns: 0
 309 */
 310void
 311vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
 312{
 313
 314        __vxge_hw_pio_mem_write32_upper(
 315                (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 316                &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
 317}
 318
 319/**
 320 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
 321 * @channel: Channel for rx or tx handle
 322 * @msix_id:  MSI ID
 323 *
 324 * The function unmasks the msix interrupt for the given msix_id
 325 * if configured in MSIX oneshot mode
 326 *
 327 * Returns: 0
 328 */
 329void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
 330{
 331        __vxge_hw_pio_mem_write32_upper(
 332                (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 333                &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
 334}
 335
 336/**
 337 * vxge_hw_device_set_intr_type - Updates the configuration
 338 *              with new interrupt type.
 339 * @hldev: HW device handle.
 340 * @intr_mode: New interrupt type
 341 */
 342u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
 343{
 344
 345        if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
 346           (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
 347           (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
 348           (intr_mode != VXGE_HW_INTR_MODE_DEF))
 349                intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
 350
 351        hldev->config.intr_mode = intr_mode;
 352        return intr_mode;
 353}
 354
 355/**
 356 * vxge_hw_device_intr_enable - Enable interrupts.
 357 * @hldev: HW device handle.
 358 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
 359 *      the type(s) of interrupts to enable.
 360 *
 361 * Enable Titan interrupts. The function is to be executed the last in
 362 * Titan initialization sequence.
 363 *
 364 * See also: vxge_hw_device_intr_disable()
 365 */
 366void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
 367{
 368        u32 i;
 369        u64 val64;
 370        u32 val32;
 371
 372        vxge_hw_device_mask_all(hldev);
 373
 374        for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 375
 376                if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 377                        continue;
 378
 379                vxge_hw_vpath_intr_enable(
 380                        VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 381        }
 382
 383        if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
 384                val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 385                        hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
 386
 387                if (val64 != 0) {
 388                        writeq(val64, &hldev->common_reg->tim_int_status0);
 389
 390                        writeq(~val64, &hldev->common_reg->tim_int_mask0);
 391                }
 392
 393                val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 394                        hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
 395
 396                if (val32 != 0) {
 397                        __vxge_hw_pio_mem_write32_upper(val32,
 398                                        &hldev->common_reg->tim_int_status1);
 399
 400                        __vxge_hw_pio_mem_write32_upper(~val32,
 401                                        &hldev->common_reg->tim_int_mask1);
 402                }
 403        }
 404
 405        val64 = readq(&hldev->common_reg->titan_general_int_status);
 406
 407        vxge_hw_device_unmask_all(hldev);
 408}
 409
 410/**
 411 * vxge_hw_device_intr_disable - Disable Titan interrupts.
 412 * @hldev: HW device handle.
 413 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
 414 *      the type(s) of interrupts to disable.
 415 *
 416 * Disable Titan interrupts.
 417 *
 418 * See also: vxge_hw_device_intr_enable()
 419 */
 420void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
 421{
 422        u32 i;
 423
 424        vxge_hw_device_mask_all(hldev);
 425
 426        /* mask all the tim interrupts */
 427        writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
 428        __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
 429                &hldev->common_reg->tim_int_mask1);
 430
 431        for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 432
 433                if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 434                        continue;
 435
 436                vxge_hw_vpath_intr_disable(
 437                        VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 438        }
 439}
 440
 441/**
 442 * vxge_hw_device_mask_all - Mask all device interrupts.
 443 * @hldev: HW device handle.
 444 *
 445 * Mask all device interrupts.
 446 *
 447 * See also: vxge_hw_device_unmask_all()
 448 */
 449void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
 450{
 451        u64 val64;
 452
 453        val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
 454                VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 455
 456        __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 457                                &hldev->common_reg->titan_mask_all_int);
 458}
 459
 460/**
 461 * vxge_hw_device_unmask_all - Unmask all device interrupts.
 462 * @hldev: HW device handle.
 463 *
 464 * Unmask all device interrupts.
 465 *
 466 * See also: vxge_hw_device_mask_all()
 467 */
 468void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
 469{
 470        u64 val64 = 0;
 471
 472        if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
 473                val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 474
 475        __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 476                        &hldev->common_reg->titan_mask_all_int);
 477}
 478
 479/**
 480 * vxge_hw_device_flush_io - Flush io writes.
 481 * @hldev: HW device handle.
 482 *
 483 * The function performs a read operation to flush io writes.
 484 *
 485 * Returns: void
 486 */
 487void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
 488{
 489        u32 val32;
 490
 491        val32 = readl(&hldev->common_reg->titan_general_int_status);
 492}
 493
 494/**
 495 * __vxge_hw_device_handle_error - Handle error
 496 * @hldev: HW device
 497 * @vp_id: Vpath Id
 498 * @type: Error type. Please see enum vxge_hw_event{}
 499 *
 500 * Handle error.
 501 */
 502static enum vxge_hw_status
 503__vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
 504                              enum vxge_hw_event type)
 505{
 506        switch (type) {
 507        case VXGE_HW_EVENT_UNKNOWN:
 508                break;
 509        case VXGE_HW_EVENT_RESET_START:
 510        case VXGE_HW_EVENT_RESET_COMPLETE:
 511        case VXGE_HW_EVENT_LINK_DOWN:
 512        case VXGE_HW_EVENT_LINK_UP:
 513                goto out;
 514        case VXGE_HW_EVENT_ALARM_CLEARED:
 515                goto out;
 516        case VXGE_HW_EVENT_ECCERR:
 517        case VXGE_HW_EVENT_MRPCIM_ECCERR:
 518                goto out;
 519        case VXGE_HW_EVENT_FIFO_ERR:
 520        case VXGE_HW_EVENT_VPATH_ERR:
 521        case VXGE_HW_EVENT_CRITICAL_ERR:
 522        case VXGE_HW_EVENT_SERR:
 523                break;
 524        case VXGE_HW_EVENT_SRPCIM_SERR:
 525        case VXGE_HW_EVENT_MRPCIM_SERR:
 526                goto out;
 527        case VXGE_HW_EVENT_SLOT_FREEZE:
 528                break;
 529        default:
 530                vxge_assert(0);
 531                goto out;
 532        }
 533
 534        /* notify driver */
 535        if (hldev->uld_callbacks->crit_err)
 536                hldev->uld_callbacks->crit_err(hldev,
 537                        type, vp_id);
 538out:
 539
 540        return VXGE_HW_OK;
 541}
 542
 543/*
 544 * __vxge_hw_device_handle_link_down_ind
 545 * @hldev: HW device handle.
 546 *
 547 * Link down indication handler. The function is invoked by HW when
 548 * Titan indicates that the link is down.
 549 */
 550static enum vxge_hw_status
 551__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
 552{
 553        /*
 554         * If the previous link state is not down, return.
 555         */
 556        if (hldev->link_state == VXGE_HW_LINK_DOWN)
 557                goto exit;
 558
 559        hldev->link_state = VXGE_HW_LINK_DOWN;
 560
 561        /* notify driver */
 562        if (hldev->uld_callbacks->link_down)
 563                hldev->uld_callbacks->link_down(hldev);
 564exit:
 565        return VXGE_HW_OK;
 566}
 567
 568/*
 569 * __vxge_hw_device_handle_link_up_ind
 570 * @hldev: HW device handle.
 571 *
 572 * Link up indication handler. The function is invoked by HW when
 573 * Titan indicates that the link is up for programmable amount of time.
 574 */
 575static enum vxge_hw_status
 576__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
 577{
 578        /*
 579         * If the previous link state is not down, return.
 580         */
 581        if (hldev->link_state == VXGE_HW_LINK_UP)
 582                goto exit;
 583
 584        hldev->link_state = VXGE_HW_LINK_UP;
 585
 586        /* notify driver */
 587        if (hldev->uld_callbacks->link_up)
 588                hldev->uld_callbacks->link_up(hldev);
 589exit:
 590        return VXGE_HW_OK;
 591}
 592
 593/*
 594 * __vxge_hw_vpath_alarm_process - Process Alarms.
 595 * @vpath: Virtual Path.
 596 * @skip_alarms: Do not clear the alarms
 597 *
 598 * Process vpath alarms.
 599 *
 600 */
 601static enum vxge_hw_status
 602__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
 603                              u32 skip_alarms)
 604{
 605        u64 val64;
 606        u64 alarm_status;
 607        u64 pic_status;
 608        struct __vxge_hw_device *hldev = NULL;
 609        enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
 610        u64 mask64;
 611        struct vxge_hw_vpath_stats_sw_info *sw_stats;
 612        struct vxge_hw_vpath_reg __iomem *vp_reg;
 613
 614        if (vpath == NULL) {
 615                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 616                        alarm_event);
 617                goto out2;
 618        }
 619
 620        hldev = vpath->hldev;
 621        vp_reg = vpath->vp_reg;
 622        alarm_status = readq(&vp_reg->vpath_general_int_status);
 623
 624        if (alarm_status == VXGE_HW_ALL_FOXES) {
 625                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
 626                        alarm_event);
 627                goto out;
 628        }
 629
 630        sw_stats = vpath->sw_stats;
 631
 632        if (alarm_status & ~(
 633                VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
 634                VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
 635                VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
 636                VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
 637                sw_stats->error_stats.unknown_alarms++;
 638
 639                alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 640                        alarm_event);
 641                goto out;
 642        }
 643
 644        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
 645
 646                val64 = readq(&vp_reg->xgmac_vp_int_status);
 647
 648                if (val64 &
 649                VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
 650
 651                        val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
 652
 653                        if (((val64 &
 654                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
 655                             (!(val64 &
 656                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
 657                            ((val64 &
 658                             VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
 659                             (!(val64 &
 660                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
 661                                     ))) {
 662                                sw_stats->error_stats.network_sustained_fault++;
 663
 664                                writeq(
 665                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
 666                                        &vp_reg->asic_ntwk_vp_err_mask);
 667
 668                                __vxge_hw_device_handle_link_down_ind(hldev);
 669                                alarm_event = VXGE_HW_SET_LEVEL(
 670                                        VXGE_HW_EVENT_LINK_DOWN, alarm_event);
 671                        }
 672
 673                        if (((val64 &
 674                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
 675                             (!(val64 &
 676                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
 677                            ((val64 &
 678                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
 679                             (!(val64 &
 680                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
 681                                     ))) {
 682
 683                                sw_stats->error_stats.network_sustained_ok++;
 684
 685                                writeq(
 686                                VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
 687                                        &vp_reg->asic_ntwk_vp_err_mask);
 688
 689                                __vxge_hw_device_handle_link_up_ind(hldev);
 690                                alarm_event = VXGE_HW_SET_LEVEL(
 691                                        VXGE_HW_EVENT_LINK_UP, alarm_event);
 692                        }
 693
 694                        writeq(VXGE_HW_INTR_MASK_ALL,
 695                                &vp_reg->asic_ntwk_vp_err_reg);
 696
 697                        alarm_event = VXGE_HW_SET_LEVEL(
 698                                VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
 699
 700                        if (skip_alarms)
 701                                return VXGE_HW_OK;
 702                }
 703        }
 704
 705        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
 706
 707                pic_status = readq(&vp_reg->vpath_ppif_int_status);
 708
 709                if (pic_status &
 710                    VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
 711
 712                        val64 = readq(&vp_reg->general_errors_reg);
 713                        mask64 = readq(&vp_reg->general_errors_mask);
 714
 715                        if ((val64 &
 716                                VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
 717                                ~mask64) {
 718                                sw_stats->error_stats.ini_serr_det++;
 719
 720                                alarm_event = VXGE_HW_SET_LEVEL(
 721                                        VXGE_HW_EVENT_SERR, alarm_event);
 722                        }
 723
 724                        if ((val64 &
 725                            VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
 726                                ~mask64) {
 727                                sw_stats->error_stats.dblgen_fifo0_overflow++;
 728
 729                                alarm_event = VXGE_HW_SET_LEVEL(
 730                                        VXGE_HW_EVENT_FIFO_ERR, alarm_event);
 731                        }
 732
 733                        if ((val64 &
 734                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
 735                                ~mask64)
 736                                sw_stats->error_stats.statsb_pif_chain_error++;
 737
 738                        if ((val64 &
 739                           VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
 740                                ~mask64)
 741                                sw_stats->error_stats.statsb_drop_timeout++;
 742
 743                        if ((val64 &
 744                                VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
 745                                ~mask64)
 746                                sw_stats->error_stats.target_illegal_access++;
 747
 748                        if (!skip_alarms) {
 749                                writeq(VXGE_HW_INTR_MASK_ALL,
 750                                        &vp_reg->general_errors_reg);
 751                                alarm_event = VXGE_HW_SET_LEVEL(
 752                                        VXGE_HW_EVENT_ALARM_CLEARED,
 753                                        alarm_event);
 754                        }
 755                }
 756
 757                if (pic_status &
 758                    VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
 759
 760                        val64 = readq(&vp_reg->kdfcctl_errors_reg);
 761                        mask64 = readq(&vp_reg->kdfcctl_errors_mask);
 762
 763                        if ((val64 &
 764                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
 765                                ~mask64) {
 766                                sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
 767
 768                                alarm_event = VXGE_HW_SET_LEVEL(
 769                                        VXGE_HW_EVENT_FIFO_ERR,
 770                                        alarm_event);
 771                        }
 772
 773                        if ((val64 &
 774                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
 775                                ~mask64) {
 776                                sw_stats->error_stats.kdfcctl_fifo0_poison++;
 777
 778                                alarm_event = VXGE_HW_SET_LEVEL(
 779                                        VXGE_HW_EVENT_FIFO_ERR,
 780                                        alarm_event);
 781                        }
 782
 783                        if ((val64 &
 784                            VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
 785                                ~mask64) {
 786                                sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
 787
 788                                alarm_event = VXGE_HW_SET_LEVEL(
 789                                        VXGE_HW_EVENT_FIFO_ERR,
 790                                        alarm_event);
 791                        }
 792
 793                        if (!skip_alarms) {
 794                                writeq(VXGE_HW_INTR_MASK_ALL,
 795                                        &vp_reg->kdfcctl_errors_reg);
 796                                alarm_event = VXGE_HW_SET_LEVEL(
 797                                        VXGE_HW_EVENT_ALARM_CLEARED,
 798                                        alarm_event);
 799                        }
 800                }
 801
 802        }
 803
 804        if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
 805
 806                val64 = readq(&vp_reg->wrdma_alarm_status);
 807
 808                if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
 809
 810                        val64 = readq(&vp_reg->prc_alarm_reg);
 811                        mask64 = readq(&vp_reg->prc_alarm_mask);
 812
 813                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
 814                                ~mask64)
 815                                sw_stats->error_stats.prc_ring_bumps++;
 816
 817                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
 818                                ~mask64) {
 819                                sw_stats->error_stats.prc_rxdcm_sc_err++;
 820
 821                                alarm_event = VXGE_HW_SET_LEVEL(
 822                                        VXGE_HW_EVENT_VPATH_ERR,
 823                                        alarm_event);
 824                        }
 825
 826                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
 827                                & ~mask64) {
 828                                sw_stats->error_stats.prc_rxdcm_sc_abort++;
 829
 830                                alarm_event = VXGE_HW_SET_LEVEL(
 831                                                VXGE_HW_EVENT_VPATH_ERR,
 832                                                alarm_event);
 833                        }
 834
 835                        if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
 836                                 & ~mask64) {
 837                                sw_stats->error_stats.prc_quanta_size_err++;
 838
 839                                alarm_event = VXGE_HW_SET_LEVEL(
 840                                        VXGE_HW_EVENT_VPATH_ERR,
 841                                        alarm_event);
 842                        }
 843
 844                        if (!skip_alarms) {
 845                                writeq(VXGE_HW_INTR_MASK_ALL,
 846                                        &vp_reg->prc_alarm_reg);
 847                                alarm_event = VXGE_HW_SET_LEVEL(
 848                                                VXGE_HW_EVENT_ALARM_CLEARED,
 849                                                alarm_event);
 850                        }
 851                }
 852        }
 853out:
 854        hldev->stats.sw_dev_err_stats.vpath_alarms++;
 855out2:
 856        if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
 857                (alarm_event == VXGE_HW_EVENT_UNKNOWN))
 858                return VXGE_HW_OK;
 859
 860        __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
 861
 862        if (alarm_event == VXGE_HW_EVENT_SERR)
 863                return VXGE_HW_ERR_CRITICAL;
 864
 865        return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
 866                VXGE_HW_ERR_SLOT_FREEZE :
 867                (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
 868                VXGE_HW_ERR_VPATH;
 869}
 870
 871/**
 872 * vxge_hw_device_begin_irq - Begin IRQ processing.
 873 * @hldev: HW device handle.
 874 * @skip_alarms: Do not clear the alarms
 875 * @reason: "Reason" for the interrupt, the value of Titan's
 876 *      general_int_status register.
 877 *
 878 * The function performs two actions, It first checks whether (shared IRQ) the
 879 * interrupt was raised by the device. Next, it masks the device interrupts.
 880 *
 881 * Note:
 882 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
 883 * bridge. Therefore, two back-to-back interrupts are potentially possible.
 884 *
 885 * Returns: 0, if the interrupt is not "ours" (note that in this case the
 886 * device remain enabled).
 887 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
 888 * status.
 889 */
 890enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
 891                                             u32 skip_alarms, u64 *reason)
 892{
 893        u32 i;
 894        u64 val64;
 895        u64 adapter_status;
 896        u64 vpath_mask;
 897        enum vxge_hw_status ret = VXGE_HW_OK;
 898
 899        val64 = readq(&hldev->common_reg->titan_general_int_status);
 900
 901        if (unlikely(!val64)) {
 902                /* not Titan interrupt  */
 903                *reason = 0;
 904                ret = VXGE_HW_ERR_WRONG_IRQ;
 905                goto exit;
 906        }
 907
 908        if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
 909
 910                adapter_status = readq(&hldev->common_reg->adapter_status);
 911
 912                if (adapter_status == VXGE_HW_ALL_FOXES) {
 913
 914                        __vxge_hw_device_handle_error(hldev,
 915                                NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
 916                        *reason = 0;
 917                        ret = VXGE_HW_ERR_SLOT_FREEZE;
 918                        goto exit;
 919                }
 920        }
 921
 922        hldev->stats.sw_dev_info_stats.total_intr_cnt++;
 923
 924        *reason = val64;
 925
 926        vpath_mask = hldev->vpaths_deployed >>
 927                                (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
 928
 929        if (val64 &
 930            VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
 931                hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
 932
 933                return VXGE_HW_OK;
 934        }
 935
 936        hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
 937
 938        if (unlikely(val64 &
 939                        VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
 940
 941                enum vxge_hw_status error_level = VXGE_HW_OK;
 942
 943                hldev->stats.sw_dev_err_stats.vpath_alarms++;
 944
 945                for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 946
 947                        if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 948                                continue;
 949
 950                        ret = __vxge_hw_vpath_alarm_process(
 951                                &hldev->virtual_paths[i], skip_alarms);
 952
 953                        error_level = VXGE_HW_SET_LEVEL(ret, error_level);
 954
 955                        if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
 956                                (ret == VXGE_HW_ERR_SLOT_FREEZE)))
 957                                break;
 958                }
 959
 960                ret = error_level;
 961        }
 962exit:
 963        return ret;
 964}
 965
 966/**
 967 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
 968 * condition that has caused the Tx and RX interrupt.
 969 * @hldev: HW device.
 970 *
 971 * Acknowledge (that is, clear) the condition that has caused
 972 * the Tx and Rx interrupt.
 973 * See also: vxge_hw_device_begin_irq(),
 974 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
 975 */
 976void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
 977{
 978
 979        if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
 980           (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
 981                writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 982                                 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
 983                                &hldev->common_reg->tim_int_status0);
 984        }
 985
 986        if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
 987           (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
 988                __vxge_hw_pio_mem_write32_upper(
 989                                (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 990                                 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
 991                                &hldev->common_reg->tim_int_status1);
 992        }
 993}
 994
 995/*
 996 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
 997 * @channel: Channel
 998 * @dtrh: Buffer to return the DTR pointer
 999 *
1000 * Allocates a dtr from the reserve array. If the reserve array is empty,
1001 * it swaps the reserve and free arrays.
1002 *
1003 */
1004static enum vxge_hw_status
1005vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1006{
1007        if (channel->reserve_ptr - channel->reserve_top > 0) {
1008_alloc_after_swap:
1009                *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1010
1011                return VXGE_HW_OK;
1012        }
1013
1014        /* switch between empty and full arrays */
1015
1016        /* the idea behind such a design is that by having free and reserved
1017         * arrays separated we basically separated irq and non-irq parts.
1018         * i.e. no additional lock need to be done when we free a resource */
1019
1020        if (channel->length - channel->free_ptr > 0) {
1021                swap(channel->reserve_arr, channel->free_arr);
1022                channel->reserve_ptr = channel->length;
1023                channel->reserve_top = channel->free_ptr;
1024                channel->free_ptr = channel->length;
1025
1026                channel->stats->reserve_free_swaps_cnt++;
1027
1028                goto _alloc_after_swap;
1029        }
1030
1031        channel->stats->full_cnt++;
1032
1033        *dtrh = NULL;
1034        return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1035}
1036
1037/*
1038 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1039 * @channelh: Channel
1040 * @dtrh: DTR pointer
1041 *
1042 * Posts a dtr to work array.
1043 *
1044 */
1045static void
1046vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1047{
1048        vxge_assert(channel->work_arr[channel->post_index] == NULL);
1049
1050        channel->work_arr[channel->post_index++] = dtrh;
1051
1052        /* wrap-around */
1053        if (channel->post_index == channel->length)
1054                channel->post_index = 0;
1055}
1056
1057/*
1058 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1059 * @channel: Channel
1060 * @dtr: Buffer to return the next completed DTR pointer
1061 *
1062 * Returns the next completed dtr with out removing it from work array
1063 *
1064 */
1065void
1066vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1067{
1068        vxge_assert(channel->compl_index < channel->length);
1069
1070        *dtrh = channel->work_arr[channel->compl_index];
1071        prefetch(*dtrh);
1072}
1073
1074/*
1075 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1076 * @channel: Channel handle
1077 *
1078 * Removes the next completed dtr from work array
1079 *
1080 */
1081void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1082{
1083        channel->work_arr[channel->compl_index] = NULL;
1084
1085        /* wrap-around */
1086        if (++channel->compl_index == channel->length)
1087                channel->compl_index = 0;
1088
1089        channel->stats->total_compl_cnt++;
1090}
1091
1092/*
1093 * vxge_hw_channel_dtr_free - Frees a dtr
1094 * @channel: Channel handle
1095 * @dtr:  DTR pointer
1096 *
1097 * Returns the dtr to free array
1098 *
1099 */
1100void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1101{
1102        channel->free_arr[--channel->free_ptr] = dtrh;
1103}
1104
1105/*
1106 * vxge_hw_channel_dtr_count
1107 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1108 *
1109 * Retrieve number of DTRs available. This function can not be called
1110 * from data path. ring_initial_replenishi() is the only user.
1111 */
1112int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1113{
1114        return (channel->reserve_ptr - channel->reserve_top) +
1115                (channel->length - channel->free_ptr);
1116}
1117
1118/**
1119 * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
1120 * @ring: Handle to the ring object used for receive
1121 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1122 * with a valid handle.
1123 *
1124 * Reserve Rx descriptor for the subsequent filling-in driver
1125 * and posting on the corresponding channel (@channelh)
1126 * via vxge_hw_ring_rxd_post().
1127 *
1128 * Returns: VXGE_HW_OK - success.
1129 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1130 *
1131 */
1132enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1133        void **rxdh)
1134{
1135        enum vxge_hw_status status;
1136        struct __vxge_hw_channel *channel;
1137
1138        channel = &ring->channel;
1139
1140        status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1141
1142        if (status == VXGE_HW_OK) {
1143                struct vxge_hw_ring_rxd_1 *rxdp =
1144                        (struct vxge_hw_ring_rxd_1 *)*rxdh;
1145
1146                rxdp->control_0 = rxdp->control_1 = 0;
1147        }
1148
1149        return status;
1150}
1151
1152/**
1153 * vxge_hw_ring_rxd_free - Free descriptor.
1154 * @ring: Handle to the ring object used for receive
1155 * @rxdh: Descriptor handle.
1156 *
1157 * Free the reserved descriptor. This operation is "symmetrical" to
1158 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1159 * lifecycle.
1160 *
1161 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1162 * be:
1163 *
1164 * - reserved (vxge_hw_ring_rxd_reserve);
1165 *
1166 * - posted     (vxge_hw_ring_rxd_post);
1167 *
1168 * - completed (vxge_hw_ring_rxd_next_completed);
1169 *
1170 * - and recycled again (vxge_hw_ring_rxd_free).
1171 *
1172 * For alternative state transitions and more details please refer to
1173 * the design doc.
1174 *
1175 */
1176void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1177{
1178        struct __vxge_hw_channel *channel;
1179
1180        channel = &ring->channel;
1181
1182        vxge_hw_channel_dtr_free(channel, rxdh);
1183
1184}
1185
1186/**
1187 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1188 * @ring: Handle to the ring object used for receive
1189 * @rxdh: Descriptor handle.
1190 *
1191 * This routine prepares a rxd and posts
1192 */
1193void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1194{
1195        struct __vxge_hw_channel *channel;
1196
1197        channel = &ring->channel;
1198
1199        vxge_hw_channel_dtr_post(channel, rxdh);
1200}
1201
1202/**
1203 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1204 * @ring: Handle to the ring object used for receive
1205 * @rxdh: Descriptor handle.
1206 *
1207 * Processes rxd after post
1208 */
1209void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1210{
1211        struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1212        struct __vxge_hw_channel *channel;
1213
1214        channel = &ring->channel;
1215
1216        rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1217
1218        if (ring->stats->common_stats.usage_cnt > 0)
1219                ring->stats->common_stats.usage_cnt--;
1220}
1221
1222/**
1223 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1224 * @ring: Handle to the ring object used for receive
1225 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1226 *
1227 * Post descriptor on the ring.
1228 * Prior to posting the descriptor should be filled in accordance with
1229 * Host/Titan interface specification for a given service (LL, etc.).
1230 *
1231 */
1232void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1233{
1234        struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1235        struct __vxge_hw_channel *channel;
1236
1237        channel = &ring->channel;
1238
1239        wmb();
1240        rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1241
1242        vxge_hw_channel_dtr_post(channel, rxdh);
1243
1244        if (ring->stats->common_stats.usage_cnt > 0)
1245                ring->stats->common_stats.usage_cnt--;
1246}
1247
1248/**
1249 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1250 * @ring: Handle to the ring object used for receive
1251 * @rxdh: Descriptor handle.
1252 *
1253 * Processes rxd after post with memory barrier.
1254 */
1255void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1256{
1257        wmb();
1258        vxge_hw_ring_rxd_post_post(ring, rxdh);
1259}
1260
1261/**
1262 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1263 * @ring: Handle to the ring object used for receive
1264 * @rxdh: Descriptor handle. Returned by HW.
1265 * @t_code:     Transfer code, as per Titan User Guide,
1266 *       Receive Descriptor Format. Returned by HW.
1267 *
1268 * Retrieve the _next_ completed descriptor.
1269 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1270 * driver of new completed descriptors. After that
1271 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1272 * completions (the very first completion is passed by HW via
1273 * vxge_hw_ring_callback_f).
1274 *
1275 * Implementation-wise, the driver is free to call
1276 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1277 * ring callback, or in a deferred fashion and separate (from HW)
1278 * context.
1279 *
1280 * Non-zero @t_code means failure to fill-in receive buffer(s)
1281 * of the descriptor.
1282 * For instance, parity error detected during the data transfer.
1283 * In this case Titan will complete the descriptor and indicate
1284 * for the host that the received data is not to be used.
1285 * For details please refer to Titan User Guide.
1286 *
1287 * Returns: VXGE_HW_OK - success.
1288 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1289 * are currently available for processing.
1290 *
1291 * See also: vxge_hw_ring_callback_f{},
1292 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1293 */
1294enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1295        struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1296{
1297        struct __vxge_hw_channel *channel;
1298        struct vxge_hw_ring_rxd_1 *rxdp;
1299        enum vxge_hw_status status = VXGE_HW_OK;
1300        u64 control_0, own;
1301
1302        channel = &ring->channel;
1303
1304        vxge_hw_channel_dtr_try_complete(channel, rxdh);
1305
1306        rxdp = *rxdh;
1307        if (rxdp == NULL) {
1308                status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1309                goto exit;
1310        }
1311
1312        control_0 = rxdp->control_0;
1313        own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1314        *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1315
1316        /* check whether it is not the end */
1317        if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1318
1319                vxge_assert((rxdp)->host_control !=
1320                                0);
1321
1322                ++ring->cmpl_cnt;
1323                vxge_hw_channel_dtr_complete(channel);
1324
1325                vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1326
1327                ring->stats->common_stats.usage_cnt++;
1328                if (ring->stats->common_stats.usage_max <
1329                                ring->stats->common_stats.usage_cnt)
1330                        ring->stats->common_stats.usage_max =
1331                                ring->stats->common_stats.usage_cnt;
1332
1333                status = VXGE_HW_OK;
1334                goto exit;
1335        }
1336
1337        /* reset it. since we don't want to return
1338         * garbage to the driver */
1339        *rxdh = NULL;
1340        status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1341exit:
1342        return status;
1343}
1344
1345/**
1346 * vxge_hw_ring_handle_tcode - Handle transfer code.
1347 * @ring: Handle to the ring object used for receive
1348 * @rxdh: Descriptor handle.
1349 * @t_code: One of the enumerated (and documented in the Titan user guide)
1350 * "transfer codes".
1351 *
1352 * Handle descriptor's transfer code. The latter comes with each completed
1353 * descriptor.
1354 *
1355 * Returns: one of the enum vxge_hw_status{} enumerated types.
1356 * VXGE_HW_OK                   - for success.
1357 * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1358 */
1359enum vxge_hw_status vxge_hw_ring_handle_tcode(
1360        struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1361{
1362        struct __vxge_hw_channel *channel;
1363        enum vxge_hw_status status = VXGE_HW_OK;
1364
1365        channel = &ring->channel;
1366
1367        /* If the t_code is not supported and if the
1368         * t_code is other than 0x5 (unparseable packet
1369         * such as unknown UPV6 header), Drop it !!!
1370         */
1371
1372        if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1373                t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1374                status = VXGE_HW_OK;
1375                goto exit;
1376        }
1377
1378        if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1379                status = VXGE_HW_ERR_INVALID_TCODE;
1380                goto exit;
1381        }
1382
1383        ring->stats->rxd_t_code_err_cnt[t_code]++;
1384exit:
1385        return status;
1386}
1387
1388/**
1389 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1390 *
1391 * @fifo: fifohandle
1392 * @txdl_ptr: The starting location of the TxDL in host memory
1393 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1394 * @no_snoop: No snoop flags
1395 *
1396 * This function posts a non-offload doorbell to doorbell FIFO
1397 *
1398 */
1399static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1400        u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1401{
1402        struct __vxge_hw_channel *channel;
1403
1404        channel = &fifo->channel;
1405
1406        writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1407                VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1408                VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1409                &fifo->nofl_db->control_0);
1410
1411        mmiowb();
1412
1413        writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1414
1415        mmiowb();
1416}
1417
1418/**
1419 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1420 * the fifo
1421 * @fifoh: Handle to the fifo object used for non offload send
1422 */
1423u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1424{
1425        return vxge_hw_channel_dtr_count(&fifoh->channel);
1426}
1427
1428/**
1429 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1430 * @fifoh: Handle to the fifo object used for non offload send
1431 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1432 *        with a valid handle.
1433 * @txdl_priv: Buffer to return the pointer to per txdl space
1434 *
1435 * Reserve a single TxDL (that is, fifo descriptor)
1436 * for the subsequent filling-in by driver)
1437 * and posting on the corresponding channel (@channelh)
1438 * via vxge_hw_fifo_txdl_post().
1439 *
1440 * Note: it is the responsibility of driver to reserve multiple descriptors
1441 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1442 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1443 *
1444 * Returns: VXGE_HW_OK - success;
1445 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1446 *
1447 */
1448enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1449        struct __vxge_hw_fifo *fifo,
1450        void **txdlh, void **txdl_priv)
1451{
1452        struct __vxge_hw_channel *channel;
1453        enum vxge_hw_status status;
1454        int i;
1455
1456        channel = &fifo->channel;
1457
1458        status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1459
1460        if (status == VXGE_HW_OK) {
1461                struct vxge_hw_fifo_txd *txdp =
1462                        (struct vxge_hw_fifo_txd *)*txdlh;
1463                struct __vxge_hw_fifo_txdl_priv *priv;
1464
1465                priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1466
1467                /* reset the TxDL's private */
1468                priv->align_dma_offset = 0;
1469                priv->align_vaddr_start = priv->align_vaddr;
1470                priv->align_used_frags = 0;
1471                priv->frags = 0;
1472                priv->alloc_frags = fifo->config->max_frags;
1473                priv->next_txdl_priv = NULL;
1474
1475                *txdl_priv = (void *)(size_t)txdp->host_control;
1476
1477                for (i = 0; i < fifo->config->max_frags; i++) {
1478                        txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1479                        txdp->control_0 = txdp->control_1 = 0;
1480                }
1481        }
1482
1483        return status;
1484}
1485
1486/**
1487 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1488 * descriptor.
1489 * @fifo: Handle to the fifo object used for non offload send
1490 * @txdlh: Descriptor handle.
1491 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1492 *            (of buffers).
1493 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1494 * @size: Size of the data buffer (in bytes).
1495 *
1496 * This API is part of the preparation of the transmit descriptor for posting
1497 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1498 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1499 * All three APIs fill in the fields of the fifo descriptor,
1500 * in accordance with the Titan specification.
1501 *
1502 */
1503void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1504                                  void *txdlh, u32 frag_idx,
1505                                  dma_addr_t dma_pointer, u32 size)
1506{
1507        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1508        struct vxge_hw_fifo_txd *txdp, *txdp_last;
1509        struct __vxge_hw_channel *channel;
1510
1511        channel = &fifo->channel;
1512
1513        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1514        txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1515
1516        if (frag_idx != 0)
1517                txdp->control_0 = txdp->control_1 = 0;
1518        else {
1519                txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1520                        VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1521                txdp->control_1 |= fifo->interrupt_type;
1522                txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1523                        fifo->tx_intr_num);
1524                if (txdl_priv->frags) {
1525                        txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1526                        (txdl_priv->frags - 1);
1527                        txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1528                                VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1529                }
1530        }
1531
1532        vxge_assert(frag_idx < txdl_priv->alloc_frags);
1533
1534        txdp->buffer_pointer = (u64)dma_pointer;
1535        txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1536        fifo->stats->total_buffers++;
1537        txdl_priv->frags++;
1538}
1539
1540/**
1541 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1542 * @fifo: Handle to the fifo object used for non offload send
1543 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1544 * @frags: Number of contiguous buffers that are part of a single
1545 *         transmit operation.
1546 *
1547 * Post descriptor on the 'fifo' type channel for transmission.
1548 * Prior to posting the descriptor should be filled in accordance with
1549 * Host/Titan interface specification for a given service (LL, etc.).
1550 *
1551 */
1552void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1553{
1554        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1555        struct vxge_hw_fifo_txd *txdp_last;
1556        struct vxge_hw_fifo_txd *txdp_first;
1557        struct __vxge_hw_channel *channel;
1558
1559        channel = &fifo->channel;
1560
1561        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1562        txdp_first = txdlh;
1563
1564        txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1565        txdp_last->control_0 |=
1566              VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1567        txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1568
1569        vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1570
1571        __vxge_hw_non_offload_db_post(fifo,
1572                (u64)txdl_priv->dma_addr,
1573                txdl_priv->frags - 1,
1574                fifo->no_snoop_bits);
1575
1576        fifo->stats->total_posts++;
1577        fifo->stats->common_stats.usage_cnt++;
1578        if (fifo->stats->common_stats.usage_max <
1579                fifo->stats->common_stats.usage_cnt)
1580                fifo->stats->common_stats.usage_max =
1581                        fifo->stats->common_stats.usage_cnt;
1582}
1583
1584/**
1585 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1586 * @fifo: Handle to the fifo object used for non offload send
1587 * @txdlh: Descriptor handle. Returned by HW.
1588 * @t_code: Transfer code, as per Titan User Guide,
1589 *          Transmit Descriptor Format.
1590 *          Returned by HW.
1591 *
1592 * Retrieve the _next_ completed descriptor.
1593 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1594 * driver of new completed descriptors. After that
1595 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1596 * completions (the very first completion is passed by HW via
1597 * vxge_hw_channel_callback_f).
1598 *
1599 * Implementation-wise, the driver is free to call
1600 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1601 * channel callback, or in a deferred fashion and separate (from HW)
1602 * context.
1603 *
1604 * Non-zero @t_code means failure to process the descriptor.
1605 * The failure could happen, for instance, when the link is
1606 * down, in which case Titan completes the descriptor because it
1607 * is not able to send the data out.
1608 *
1609 * For details please refer to Titan User Guide.
1610 *
1611 * Returns: VXGE_HW_OK - success.
1612 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1613 * are currently available for processing.
1614 *
1615 */
1616enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1617        struct __vxge_hw_fifo *fifo, void **txdlh,
1618        enum vxge_hw_fifo_tcode *t_code)
1619{
1620        struct __vxge_hw_channel *channel;
1621        struct vxge_hw_fifo_txd *txdp;
1622        enum vxge_hw_status status = VXGE_HW_OK;
1623
1624        channel = &fifo->channel;
1625
1626        vxge_hw_channel_dtr_try_complete(channel, txdlh);
1627
1628        txdp = *txdlh;
1629        if (txdp == NULL) {
1630                status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1631                goto exit;
1632        }
1633
1634        /* check whether host owns it */
1635        if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1636
1637                vxge_assert(txdp->host_control != 0);
1638
1639                vxge_hw_channel_dtr_complete(channel);
1640
1641                *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1642
1643                if (fifo->stats->common_stats.usage_cnt > 0)
1644                        fifo->stats->common_stats.usage_cnt--;
1645
1646                status = VXGE_HW_OK;
1647                goto exit;
1648        }
1649
1650        /* no more completions */
1651        *txdlh = NULL;
1652        status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1653exit:
1654        return status;
1655}
1656
1657/**
1658 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1659 * @fifo: Handle to the fifo object used for non offload send
1660 * @txdlh: Descriptor handle.
1661 * @t_code: One of the enumerated (and documented in the Titan user guide)
1662 *          "transfer codes".
1663 *
1664 * Handle descriptor's transfer code. The latter comes with each completed
1665 * descriptor.
1666 *
1667 * Returns: one of the enum vxge_hw_status{} enumerated types.
1668 * VXGE_HW_OK - for success.
1669 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1670 */
1671enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1672                                              void *txdlh,
1673                                              enum vxge_hw_fifo_tcode t_code)
1674{
1675        struct __vxge_hw_channel *channel;
1676
1677        enum vxge_hw_status status = VXGE_HW_OK;
1678        channel = &fifo->channel;
1679
1680        if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1681                status = VXGE_HW_ERR_INVALID_TCODE;
1682                goto exit;
1683        }
1684
1685        fifo->stats->txd_t_code_err_cnt[t_code]++;
1686exit:
1687        return status;
1688}
1689
1690/**
1691 * vxge_hw_fifo_txdl_free - Free descriptor.
1692 * @fifo: Handle to the fifo object used for non offload send
1693 * @txdlh: Descriptor handle.
1694 *
1695 * Free the reserved descriptor. This operation is "symmetrical" to
1696 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1697 * lifecycle.
1698 *
1699 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1700 * be:
1701 *
1702 * - reserved (vxge_hw_fifo_txdl_reserve);
1703 *
1704 * - posted (vxge_hw_fifo_txdl_post);
1705 *
1706 * - completed (vxge_hw_fifo_txdl_next_completed);
1707 *
1708 * - and recycled again (vxge_hw_fifo_txdl_free).
1709 *
1710 * For alternative state transitions and more details please refer to
1711 * the design doc.
1712 *
1713 */
1714void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1715{
1716        struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1717        u32 max_frags;
1718        struct __vxge_hw_channel *channel;
1719
1720        channel = &fifo->channel;
1721
1722        txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1723                        (struct vxge_hw_fifo_txd *)txdlh);
1724
1725        max_frags = fifo->config->max_frags;
1726
1727        vxge_hw_channel_dtr_free(channel, txdlh);
1728}
1729
1730/**
1731 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1732 *               to MAC address table.
1733 * @vp: Vpath handle.
1734 * @macaddr: MAC address to be added for this vpath into the list
1735 * @macaddr_mask: MAC address mask for macaddr
1736 * @duplicate_mode: Duplicate MAC address add mode. Please see
1737 *             enum vxge_hw_vpath_mac_addr_add_mode{}
1738 *
1739 * Adds the given mac address and mac address mask into the list for this
1740 * vpath.
1741 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1742 * vxge_hw_vpath_mac_addr_get_next
1743 *
1744 */
1745enum vxge_hw_status
1746vxge_hw_vpath_mac_addr_add(
1747        struct __vxge_hw_vpath_handle *vp,
1748        u8 (macaddr)[ETH_ALEN],
1749        u8 (macaddr_mask)[ETH_ALEN],
1750        enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1751{
1752        u32 i;
1753        u64 data1 = 0ULL;
1754        u64 data2 = 0ULL;
1755        enum vxge_hw_status status = VXGE_HW_OK;
1756
1757        if (vp == NULL) {
1758                status = VXGE_HW_ERR_INVALID_HANDLE;
1759                goto exit;
1760        }
1761
1762        for (i = 0; i < ETH_ALEN; i++) {
1763                data1 <<= 8;
1764                data1 |= (u8)macaddr[i];
1765
1766                data2 <<= 8;
1767                data2 |= (u8)macaddr_mask[i];
1768        }
1769
1770        switch (duplicate_mode) {
1771        case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1772                i = 0;
1773                break;
1774        case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1775                i = 1;
1776                break;
1777        case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1778                i = 2;
1779                break;
1780        default:
1781                i = 0;
1782                break;
1783        }
1784
1785        status = __vxge_hw_vpath_rts_table_set(vp,
1786                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1787                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1788                        0,
1789                        VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1790                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1791                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1792exit:
1793        return status;
1794}
1795
1796/**
1797 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1798 *               from MAC address table.
1799 * @vp: Vpath handle.
1800 * @macaddr: First MAC address entry for this vpath in the list
1801 * @macaddr_mask: MAC address mask for macaddr
1802 *
1803 * Returns the first mac address and mac address mask in the list for this
1804 * vpath.
1805 * see also: vxge_hw_vpath_mac_addr_get_next
1806 *
1807 */
1808enum vxge_hw_status
1809vxge_hw_vpath_mac_addr_get(
1810        struct __vxge_hw_vpath_handle *vp,
1811        u8 (macaddr)[ETH_ALEN],
1812        u8 (macaddr_mask)[ETH_ALEN])
1813{
1814        u32 i;
1815        u64 data1 = 0ULL;
1816        u64 data2 = 0ULL;
1817        enum vxge_hw_status status = VXGE_HW_OK;
1818
1819        if (vp == NULL) {
1820                status = VXGE_HW_ERR_INVALID_HANDLE;
1821                goto exit;
1822        }
1823
1824        status = __vxge_hw_vpath_rts_table_get(vp,
1825                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1826                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1827                        0, &data1, &data2);
1828
1829        if (status != VXGE_HW_OK)
1830                goto exit;
1831
1832        data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1833
1834        data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1835
1836        for (i = ETH_ALEN; i > 0; i--) {
1837                macaddr[i-1] = (u8)(data1 & 0xFF);
1838                data1 >>= 8;
1839
1840                macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1841                data2 >>= 8;
1842        }
1843exit:
1844        return status;
1845}
1846
1847/**
1848 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1849 * vpath
1850 *               from MAC address table.
1851 * @vp: Vpath handle.
1852 * @macaddr: Next MAC address entry for this vpath in the list
1853 * @macaddr_mask: MAC address mask for macaddr
1854 *
1855 * Returns the next mac address and mac address mask in the list for this
1856 * vpath.
1857 * see also: vxge_hw_vpath_mac_addr_get
1858 *
1859 */
1860enum vxge_hw_status
1861vxge_hw_vpath_mac_addr_get_next(
1862        struct __vxge_hw_vpath_handle *vp,
1863        u8 (macaddr)[ETH_ALEN],
1864        u8 (macaddr_mask)[ETH_ALEN])
1865{
1866        u32 i;
1867        u64 data1 = 0ULL;
1868        u64 data2 = 0ULL;
1869        enum vxge_hw_status status = VXGE_HW_OK;
1870
1871        if (vp == NULL) {
1872                status = VXGE_HW_ERR_INVALID_HANDLE;
1873                goto exit;
1874        }
1875
1876        status = __vxge_hw_vpath_rts_table_get(vp,
1877                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1878                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1879                        0, &data1, &data2);
1880
1881        if (status != VXGE_HW_OK)
1882                goto exit;
1883
1884        data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1885
1886        data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1887
1888        for (i = ETH_ALEN; i > 0; i--) {
1889                macaddr[i-1] = (u8)(data1 & 0xFF);
1890                data1 >>= 8;
1891
1892                macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1893                data2 >>= 8;
1894        }
1895
1896exit:
1897        return status;
1898}
1899
1900/**
1901 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1902 *               to MAC address table.
1903 * @vp: Vpath handle.
1904 * @macaddr: MAC address to be added for this vpath into the list
1905 * @macaddr_mask: MAC address mask for macaddr
1906 *
1907 * Delete the given mac address and mac address mask into the list for this
1908 * vpath.
1909 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1910 * vxge_hw_vpath_mac_addr_get_next
1911 *
1912 */
1913enum vxge_hw_status
1914vxge_hw_vpath_mac_addr_delete(
1915        struct __vxge_hw_vpath_handle *vp,
1916        u8 (macaddr)[ETH_ALEN],
1917        u8 (macaddr_mask)[ETH_ALEN])
1918{
1919        u32 i;
1920        u64 data1 = 0ULL;
1921        u64 data2 = 0ULL;
1922        enum vxge_hw_status status = VXGE_HW_OK;
1923
1924        if (vp == NULL) {
1925                status = VXGE_HW_ERR_INVALID_HANDLE;
1926                goto exit;
1927        }
1928
1929        for (i = 0; i < ETH_ALEN; i++) {
1930                data1 <<= 8;
1931                data1 |= (u8)macaddr[i];
1932
1933                data2 <<= 8;
1934                data2 |= (u8)macaddr_mask[i];
1935        }
1936
1937        status = __vxge_hw_vpath_rts_table_set(vp,
1938                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1939                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1940                        0,
1941                        VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1942                        VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1943exit:
1944        return status;
1945}
1946
1947/**
1948 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1949 *               to vlan id table.
1950 * @vp: Vpath handle.
1951 * @vid: vlan id to be added for this vpath into the list
1952 *
1953 * Adds the given vlan id into the list for this  vpath.
1954 * see also: vxge_hw_vpath_vid_delete
1955 *
1956 */
1957enum vxge_hw_status
1958vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1959{
1960        enum vxge_hw_status status = VXGE_HW_OK;
1961
1962        if (vp == NULL) {
1963                status = VXGE_HW_ERR_INVALID_HANDLE;
1964                goto exit;
1965        }
1966
1967        status = __vxge_hw_vpath_rts_table_set(vp,
1968                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1969                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1970                        0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1971exit:
1972        return status;
1973}
1974
1975/**
1976 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1977 *               to vlan id table.
1978 * @vp: Vpath handle.
1979 * @vid: vlan id to be added for this vpath into the list
1980 *
1981 * Adds the given vlan id into the list for this  vpath.
1982 * see also: vxge_hw_vpath_vid_add
1983 *
1984 */
1985enum vxge_hw_status
1986vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1987{
1988        enum vxge_hw_status status = VXGE_HW_OK;
1989
1990        if (vp == NULL) {
1991                status = VXGE_HW_ERR_INVALID_HANDLE;
1992                goto exit;
1993        }
1994
1995        status = __vxge_hw_vpath_rts_table_set(vp,
1996                        VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1997                        VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1998                        0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1999exit:
2000        return status;
2001}
2002
2003/**
2004 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2005 * @vp: Vpath handle.
2006 *
2007 * Enable promiscuous mode of Titan-e operation.
2008 *
2009 * See also: vxge_hw_vpath_promisc_disable().
2010 */
2011enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2012                        struct __vxge_hw_vpath_handle *vp)
2013{
2014        u64 val64;
2015        struct __vxge_hw_virtualpath *vpath;
2016        enum vxge_hw_status status = VXGE_HW_OK;
2017
2018        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2019                status = VXGE_HW_ERR_INVALID_HANDLE;
2020                goto exit;
2021        }
2022
2023        vpath = vp->vpath;
2024
2025        /* Enable promiscuous mode for function 0 only */
2026        if (!(vpath->hldev->access_rights &
2027                VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2028                return VXGE_HW_OK;
2029
2030        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2031
2032        if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2033
2034                val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2035                         VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2036                         VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2037                         VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2038
2039                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2040        }
2041exit:
2042        return status;
2043}
2044
2045/**
2046 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2047 * @vp: Vpath handle.
2048 *
2049 * Disable promiscuous mode of Titan-e operation.
2050 *
2051 * See also: vxge_hw_vpath_promisc_enable().
2052 */
2053enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2054                        struct __vxge_hw_vpath_handle *vp)
2055{
2056        u64 val64;
2057        struct __vxge_hw_virtualpath *vpath;
2058        enum vxge_hw_status status = VXGE_HW_OK;
2059
2060        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2061                status = VXGE_HW_ERR_INVALID_HANDLE;
2062                goto exit;
2063        }
2064
2065        vpath = vp->vpath;
2066
2067        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2068
2069        if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2070
2071                val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2072                           VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2073                           VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2074
2075                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2076        }
2077exit:
2078        return status;
2079}
2080
2081/*
2082 * vxge_hw_vpath_bcast_enable - Enable broadcast
2083 * @vp: Vpath handle.
2084 *
2085 * Enable receiving broadcasts.
2086 */
2087enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2088                        struct __vxge_hw_vpath_handle *vp)
2089{
2090        u64 val64;
2091        struct __vxge_hw_virtualpath *vpath;
2092        enum vxge_hw_status status = VXGE_HW_OK;
2093
2094        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2095                status = VXGE_HW_ERR_INVALID_HANDLE;
2096                goto exit;
2097        }
2098
2099        vpath = vp->vpath;
2100
2101        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2102
2103        if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2104                val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2105                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2106        }
2107exit:
2108        return status;
2109}
2110
2111/**
2112 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2113 * @vp: Vpath handle.
2114 *
2115 * Enable Titan-e multicast addresses.
2116 * Returns: VXGE_HW_OK on success.
2117 *
2118 */
2119enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2120                        struct __vxge_hw_vpath_handle *vp)
2121{
2122        u64 val64;
2123        struct __vxge_hw_virtualpath *vpath;
2124        enum vxge_hw_status status = VXGE_HW_OK;
2125
2126        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2127                status = VXGE_HW_ERR_INVALID_HANDLE;
2128                goto exit;
2129        }
2130
2131        vpath = vp->vpath;
2132
2133        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2134
2135        if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2136                val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2137                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2138        }
2139exit:
2140        return status;
2141}
2142
2143/**
2144 * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2145 * @vp: Vpath handle.
2146 *
2147 * Disable Titan-e multicast addresses.
2148 * Returns: VXGE_HW_OK - success.
2149 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2150 *
2151 */
2152enum vxge_hw_status
2153vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2154{
2155        u64 val64;
2156        struct __vxge_hw_virtualpath *vpath;
2157        enum vxge_hw_status status = VXGE_HW_OK;
2158
2159        if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2160                status = VXGE_HW_ERR_INVALID_HANDLE;
2161                goto exit;
2162        }
2163
2164        vpath = vp->vpath;
2165
2166        val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2167
2168        if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2169                val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2170                writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2171        }
2172exit:
2173        return status;
2174}
2175
2176/*
2177 * vxge_hw_vpath_alarm_process - Process Alarms.
2178 * @vpath: Virtual Path.
2179 * @skip_alarms: Do not clear the alarms
2180 *
2181 * Process vpath alarms.
2182 *
2183 */
2184enum vxge_hw_status vxge_hw_vpath_alarm_process(
2185                        struct __vxge_hw_vpath_handle *vp,
2186                        u32 skip_alarms)
2187{
2188        enum vxge_hw_status status = VXGE_HW_OK;
2189
2190        if (vp == NULL) {
2191                status = VXGE_HW_ERR_INVALID_HANDLE;
2192                goto exit;
2193        }
2194
2195        status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2196exit:
2197        return status;
2198}
2199
2200/**
2201 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2202 *                            alrms
2203 * @vp: Virtual Path handle.
2204 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2205 *             interrupts(Can be repeated). If fifo or ring are not enabled
2206 *             the MSIX vector for that should be set to 0
2207 * @alarm_msix_id: MSIX vector for alarm.
2208 *
2209 * This API will associate a given MSIX vector numbers with the four TIM
2210 * interrupts and alarm interrupt.
2211 */
2212void
2213vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2214                       int alarm_msix_id)
2215{
2216        u64 val64;
2217        struct __vxge_hw_virtualpath *vpath = vp->vpath;
2218        struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2219        u32 vp_id = vp->vpath->vp_id;
2220
2221        val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2222                  (vp_id * 4) + tim_msix_id[0]) |
2223                 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2224                  (vp_id * 4) + tim_msix_id[1]);
2225
2226        writeq(val64, &vp_reg->interrupt_cfg0);
2227
2228        writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2229                        (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2230                        &vp_reg->interrupt_cfg2);
2231
2232        if (vpath->hldev->config.intr_mode ==
2233                                        VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2234                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2235                                VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2236                                0, 32), &vp_reg->one_shot_vect0_en);
2237                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2238                                VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2239                                0, 32), &vp_reg->one_shot_vect1_en);
2240                __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2241                                VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2242                                0, 32), &vp_reg->one_shot_vect2_en);
2243        }
2244}
2245
2246/**
2247 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2248 * @vp: Virtual Path handle.
2249 * @msix_id:  MSIX ID
2250 *
2251 * The function masks the msix interrupt for the given msix_id
2252 *
2253 * Returns: 0,
2254 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2255 * status.
2256 * See also:
2257 */
2258void
2259vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2260{
2261        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2262        __vxge_hw_pio_mem_write32_upper(
2263                (u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2264                &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2265}
2266
2267/**
2268 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2269 * @vp: Virtual Path handle.
2270 * @msix_id:  MSI ID
2271 *
2272 * The function clears the msix interrupt for the given msix_id
2273 *
2274 * Returns: 0,
2275 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2276 * status.
2277 * See also:
2278 */
2279void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2280{
2281        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2282
2283        if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2284                __vxge_hw_pio_mem_write32_upper(
2285                        (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2286                        &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2287        else
2288                __vxge_hw_pio_mem_write32_upper(
2289                        (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2290                        &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2291}
2292
2293/**
2294 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2295 * @vp: Virtual Path handle.
2296 * @msix_id:  MSI ID
2297 *
2298 * The function unmasks the msix interrupt for the given msix_id
2299 *
2300 * Returns: 0,
2301 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2302 * status.
2303 * See also:
2304 */
2305void
2306vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2307{
2308        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2309        __vxge_hw_pio_mem_write32_upper(
2310                        (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2311                        &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2312}
2313
2314/**
2315 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2316 * @vp: Virtual Path handle.
2317 *
2318 * Mask Tx and Rx vpath interrupts.
2319 *
2320 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2321 */
2322void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2323{
2324        u64     tim_int_mask0[4] = {[0 ...3] = 0};
2325        u32     tim_int_mask1[4] = {[0 ...3] = 0};
2326        u64     val64;
2327        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2328
2329        VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2330                tim_int_mask1, vp->vpath->vp_id);
2331
2332        val64 = readq(&hldev->common_reg->tim_int_mask0);
2333
2334        if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2335                (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2336                writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2337                        tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2338                        &hldev->common_reg->tim_int_mask0);
2339        }
2340
2341        val64 = readl(&hldev->common_reg->tim_int_mask1);
2342
2343        if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2344                (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2345                __vxge_hw_pio_mem_write32_upper(
2346                        (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2347                        tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2348                        &hldev->common_reg->tim_int_mask1);
2349        }
2350}
2351
2352/**
2353 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2354 * @vp: Virtual Path handle.
2355 *
2356 * Unmask Tx and Rx vpath interrupts.
2357 *
2358 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2359 */
2360void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2361{
2362        u64     tim_int_mask0[4] = {[0 ...3] = 0};
2363        u32     tim_int_mask1[4] = {[0 ...3] = 0};
2364        u64     val64;
2365        struct __vxge_hw_device *hldev = vp->vpath->hldev;
2366
2367        VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2368                tim_int_mask1, vp->vpath->vp_id);
2369
2370        val64 = readq(&hldev->common_reg->tim_int_mask0);
2371
2372        if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2373           (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2374                writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2375                        tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2376                        &hldev->common_reg->tim_int_mask0);
2377        }
2378
2379        if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2380           (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2381                __vxge_hw_pio_mem_write32_upper(
2382                        (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2383                          tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2384                        &hldev->common_reg->tim_int_mask1);
2385        }
2386}
2387
2388/**
2389 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2390 * descriptors and process the same.
2391 * @ring: Handle to the ring object used for receive
2392 *
2393 * The function polls the Rx for the completed  descriptors and calls
2394 * the driver via supplied completion   callback.
2395 *
2396 * Returns: VXGE_HW_OK, if the polling is completed successful.
2397 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2398 * descriptors available which are yet to be processed.
2399 *
2400 * See also: vxge_hw_vpath_poll_rx()
2401 */
2402enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2403{
2404        u8 t_code;
2405        enum vxge_hw_status status = VXGE_HW_OK;
2406        void *first_rxdh;
2407        u64 val64 = 0;
2408        int new_count = 0;
2409
2410        ring->cmpl_cnt = 0;
2411
2412        status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2413        if (status == VXGE_HW_OK)
2414                ring->callback(ring, first_rxdh,
2415                        t_code, ring->channel.userdata);
2416
2417        if (ring->cmpl_cnt != 0) {
2418                ring->doorbell_cnt += ring->cmpl_cnt;
2419                if (ring->doorbell_cnt >= ring->rxds_limit) {
2420                        /*
2421                         * Each RxD is of 4 qwords, update the number of
2422                         * qwords replenished
2423                         */
2424                        new_count = (ring->doorbell_cnt * 4);
2425
2426                        /* For each block add 4 more qwords */
2427                        ring->total_db_cnt += ring->doorbell_cnt;
2428                        if (ring->total_db_cnt >= ring->rxds_per_block) {
2429                                new_count += 4;
2430                                /* Reset total count */
2431                                ring->total_db_cnt %= ring->rxds_per_block;
2432                        }
2433                        writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2434                                &ring->vp_reg->prc_rxd_doorbell);
2435                        val64 =
2436                          readl(&ring->common_reg->titan_general_int_status);
2437                        ring->doorbell_cnt = 0;
2438                }
2439        }
2440
2441        return status;
2442}
2443
2444/**
2445 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2446 * the same.
2447 * @fifo: Handle to the fifo object used for non offload send
2448 *
2449 * The function polls the Tx for the completed descriptors and calls
2450 * the driver via supplied completion callback.
2451 *
2452 * Returns: VXGE_HW_OK, if the polling is completed successful.
2453 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2454 * descriptors available which are yet to be processed.
2455 */
2456enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2457                                        struct sk_buff ***skb_ptr, int nr_skb,
2458                                        int *more)
2459{
2460        enum vxge_hw_fifo_tcode t_code;
2461        void *first_txdlh;
2462        enum vxge_hw_status status = VXGE_HW_OK;
2463        struct __vxge_hw_channel *channel;
2464
2465        channel = &fifo->channel;
2466
2467        status = vxge_hw_fifo_txdl_next_completed(fifo,
2468                                &first_txdlh, &t_code);
2469        if (status == VXGE_HW_OK)
2470                if (fifo->callback(fifo, first_txdlh, t_code,
2471                        channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2472                        status = VXGE_HW_COMPLETIONS_REMAIN;
2473
2474        return status;
2475}
2476