linux/drivers/scsi/esas2r/esas2r_ioctl.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
   3 *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
   4 *
   5 *  Copyright (c) 2001-2013 ATTO Technology, Inc.
   6 *  (mailto:linuxdrivers@attotech.com)
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version 2
  11 * of the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * NO WARRANTY
  19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  23 * solely responsible for determining the appropriateness of using and
  24 * distributing the Program and assumes all risks associated with its
  25 * exercise of rights under this Agreement, including but not limited to
  26 * the risks and costs of program errors, damage to or loss of data,
  27 * programs or equipment, and unavailability or interruption of operations.
  28 *
  29 * DISCLAIMER OF LIABILITY
  30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  37 *
  38 * You should have received a copy of the GNU General Public License
  39 * along with this program; if not, write to the Free Software
  40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  41 * USA.
  42 */
  43
  44#include "esas2r.h"
  45
  46/*
  47 * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
  48 * allocate a DMA-able memory area to communicate with the firmware.  In
  49 * order to prevent continually allocating and freeing consistent memory,
  50 * we will allocate a global buffer the first time we need it and re-use
  51 * it for subsequent ioctl calls that require it.
  52 */
  53
  54u8 *esas2r_buffered_ioctl;
  55dma_addr_t esas2r_buffered_ioctl_addr;
  56u32 esas2r_buffered_ioctl_size;
  57struct pci_dev *esas2r_buffered_ioctl_pcid;
  58
  59static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
  60typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
  61                                       struct esas2r_request *,
  62                                       struct esas2r_sg_context *,
  63                                       void *);
  64typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
  65                                             struct esas2r_request *, void *);
  66
  67struct esas2r_buffered_ioctl {
  68        struct esas2r_adapter *a;
  69        void *ioctl;
  70        u32 length;
  71        u32 control_code;
  72        u32 offset;
  73        BUFFERED_IOCTL_CALLBACK
  74                callback;
  75        void *context;
  76        BUFFERED_IOCTL_DONE_CALLBACK
  77                done_callback;
  78        void *done_context;
  79
  80};
  81
  82static void complete_fm_api_req(struct esas2r_adapter *a,
  83                                struct esas2r_request *rq)
  84{
  85        a->fm_api_command_done = 1;
  86        wake_up_interruptible(&a->fm_api_waiter);
  87}
  88
  89/* Callbacks for building scatter/gather lists for FM API requests */
  90static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
  91{
  92        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
  93        int offset = sgc->cur_offset - a->save_offset;
  94
  95        (*addr) = a->firmware.phys + offset;
  96        return a->firmware.orig_len - offset;
  97}
  98
  99static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
 100{
 101        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
 102        int offset = sgc->cur_offset - a->save_offset;
 103
 104        (*addr) = a->firmware.header_buff_phys + offset;
 105        return sizeof(struct esas2r_flash_img) - offset;
 106}
 107
 108/* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
 109static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
 110{
 111        struct esas2r_request *rq;
 112
 113        if (down_interruptible(&a->fm_api_semaphore)) {
 114                fi->status = FI_STAT_BUSY;
 115                return;
 116        }
 117
 118        rq = esas2r_alloc_request(a);
 119        if (rq == NULL) {
 120                fi->status = FI_STAT_BUSY;
 121                goto free_sem;
 122        }
 123
 124        if (fi == &a->firmware.header) {
 125                a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
 126                                                             (size_t)sizeof(
 127                                                                     struct
 128                                                                     esas2r_flash_img),
 129                                                             (dma_addr_t *)&a->
 130                                                             firmware.
 131                                                             header_buff_phys,
 132                                                             GFP_KERNEL);
 133
 134                if (a->firmware.header_buff == NULL) {
 135                        esas2r_debug("failed to allocate header buffer!");
 136                        fi->status = FI_STAT_BUSY;
 137                        goto free_req;
 138                }
 139
 140                memcpy(a->firmware.header_buff, fi,
 141                       sizeof(struct esas2r_flash_img));
 142                a->save_offset = a->firmware.header_buff;
 143                a->fm_api_sgc.get_phys_addr =
 144                        (PGETPHYSADDR)get_physaddr_fm_api_header;
 145        } else {
 146                a->save_offset = (u8 *)fi;
 147                a->fm_api_sgc.get_phys_addr =
 148                        (PGETPHYSADDR)get_physaddr_fm_api;
 149        }
 150
 151        rq->comp_cb = complete_fm_api_req;
 152        a->fm_api_command_done = 0;
 153        a->fm_api_sgc.cur_offset = a->save_offset;
 154
 155        if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
 156                           &a->fm_api_sgc))
 157                goto all_done;
 158
 159        /* Now wait around for it to complete. */
 160        while (!a->fm_api_command_done)
 161                wait_event_interruptible(a->fm_api_waiter,
 162                                         a->fm_api_command_done);
 163all_done:
 164        if (fi == &a->firmware.header) {
 165                memcpy(fi, a->firmware.header_buff,
 166                       sizeof(struct esas2r_flash_img));
 167
 168                dma_free_coherent(&a->pcid->dev,
 169                                  (size_t)sizeof(struct esas2r_flash_img),
 170                                  a->firmware.header_buff,
 171                                  (dma_addr_t)a->firmware.header_buff_phys);
 172        }
 173free_req:
 174        esas2r_free_request(a, (struct esas2r_request *)rq);
 175free_sem:
 176        up(&a->fm_api_semaphore);
 177        return;
 178
 179}
 180
 181static void complete_nvr_req(struct esas2r_adapter *a,
 182                             struct esas2r_request *rq)
 183{
 184        a->nvram_command_done = 1;
 185        wake_up_interruptible(&a->nvram_waiter);
 186}
 187
 188/* Callback for building scatter/gather lists for buffered ioctls */
 189static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
 190                                       u64 *addr)
 191{
 192        int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
 193
 194        (*addr) = esas2r_buffered_ioctl_addr + offset;
 195        return esas2r_buffered_ioctl_size - offset;
 196}
 197
 198static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
 199                                        struct esas2r_request *rq)
 200{
 201        a->buffered_ioctl_done = 1;
 202        wake_up_interruptible(&a->buffered_ioctl_waiter);
 203}
 204
 205static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
 206{
 207        struct esas2r_adapter *a = bi->a;
 208        struct esas2r_request *rq;
 209        struct esas2r_sg_context sgc;
 210        u8 result = IOCTL_SUCCESS;
 211
 212        if (down_interruptible(&buffered_ioctl_semaphore))
 213                return IOCTL_OUT_OF_RESOURCES;
 214
 215        /* allocate a buffer or use the existing buffer. */
 216        if (esas2r_buffered_ioctl) {
 217                if (esas2r_buffered_ioctl_size < bi->length) {
 218                        /* free the too-small buffer and get a new one */
 219                        dma_free_coherent(&a->pcid->dev,
 220                                          (size_t)esas2r_buffered_ioctl_size,
 221                                          esas2r_buffered_ioctl,
 222                                          esas2r_buffered_ioctl_addr);
 223
 224                        goto allocate_buffer;
 225                }
 226        } else {
 227allocate_buffer:
 228                esas2r_buffered_ioctl_size = bi->length;
 229                esas2r_buffered_ioctl_pcid = a->pcid;
 230                esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
 231                                                           (size_t)
 232                                                           esas2r_buffered_ioctl_size,
 233                                                           &
 234                                                           esas2r_buffered_ioctl_addr,
 235                                                           GFP_KERNEL);
 236        }
 237
 238        if (!esas2r_buffered_ioctl) {
 239                esas2r_log(ESAS2R_LOG_CRIT,
 240                           "could not allocate %d bytes of consistent memory "
 241                           "for a buffered ioctl!",
 242                           bi->length);
 243
 244                esas2r_debug("buffered ioctl alloc failure");
 245                result = IOCTL_OUT_OF_RESOURCES;
 246                goto exit_cleanly;
 247        }
 248
 249        memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
 250
 251        rq = esas2r_alloc_request(a);
 252        if (rq == NULL) {
 253                esas2r_log(ESAS2R_LOG_CRIT,
 254                           "could not allocate an internal request");
 255
 256                result = IOCTL_OUT_OF_RESOURCES;
 257                esas2r_debug("buffered ioctl - no requests");
 258                goto exit_cleanly;
 259        }
 260
 261        a->buffered_ioctl_done = 0;
 262        rq->comp_cb = complete_buffered_ioctl_req;
 263        sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
 264        sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
 265        sgc.length = esas2r_buffered_ioctl_size;
 266
 267        if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
 268                /* completed immediately, no need to wait */
 269                a->buffered_ioctl_done = 0;
 270                goto free_andexit_cleanly;
 271        }
 272
 273        /* now wait around for it to complete. */
 274        while (!a->buffered_ioctl_done)
 275                wait_event_interruptible(a->buffered_ioctl_waiter,
 276                                         a->buffered_ioctl_done);
 277
 278free_andexit_cleanly:
 279        if (result == IOCTL_SUCCESS && bi->done_callback)
 280                (*bi->done_callback)(a, rq, bi->done_context);
 281
 282        esas2r_free_request(a, rq);
 283
 284exit_cleanly:
 285        if (result == IOCTL_SUCCESS)
 286                memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
 287
 288        up(&buffered_ioctl_semaphore);
 289        return result;
 290}
 291
 292/* SMP ioctl support */
 293static int smp_ioctl_callback(struct esas2r_adapter *a,
 294                              struct esas2r_request *rq,
 295                              struct esas2r_sg_context *sgc, void *context)
 296{
 297        struct atto_ioctl_smp *si =
 298                (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
 299
 300        esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 301        esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
 302
 303        if (!esas2r_build_sg_list(a, rq, sgc)) {
 304                si->status = ATTO_STS_OUT_OF_RSRC;
 305                return false;
 306        }
 307
 308        esas2r_start_request(a, rq);
 309        return true;
 310}
 311
 312static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
 313{
 314        struct esas2r_buffered_ioctl bi;
 315
 316        memset(&bi, 0, sizeof(bi));
 317
 318        bi.a = a;
 319        bi.ioctl = si;
 320        bi.length = sizeof(struct atto_ioctl_smp)
 321                    + le32_to_cpu(si->req_length)
 322                    + le32_to_cpu(si->rsp_length);
 323        bi.offset = 0;
 324        bi.callback = smp_ioctl_callback;
 325        return handle_buffered_ioctl(&bi);
 326}
 327
 328
 329/* CSMI ioctl support */
 330static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
 331                                             struct esas2r_request *rq)
 332{
 333        rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
 334        rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
 335
 336        /* Now call the original completion callback. */
 337        (*rq->aux_req_cb)(a, rq);
 338}
 339
 340/* Tunnel a CSMI IOCTL to the back end driver for processing. */
 341static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
 342                              union atto_ioctl_csmi *ci,
 343                              struct esas2r_request *rq,
 344                              struct esas2r_sg_context *sgc,
 345                              u32 ctrl_code,
 346                              u16 target_id)
 347{
 348        struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
 349
 350        if (test_bit(AF_DEGRADED_MODE, &a->flags))
 351                return false;
 352
 353        esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 354        esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
 355        ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
 356        ioctl->csmi.target_id = cpu_to_le16(target_id);
 357        ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
 358
 359        /*
 360         * Always usurp the completion callback since the interrupt callback
 361         * mechanism may be used.
 362         */
 363        rq->aux_req_cx = ci;
 364        rq->aux_req_cb = rq->comp_cb;
 365        rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
 366
 367        if (!esas2r_build_sg_list(a, rq, sgc))
 368                return false;
 369
 370        esas2r_start_request(a, rq);
 371        return true;
 372}
 373
 374static bool check_lun(struct scsi_lun lun)
 375{
 376        bool result;
 377
 378        result = ((lun.scsi_lun[7] == 0) &&
 379                  (lun.scsi_lun[6] == 0) &&
 380                  (lun.scsi_lun[5] == 0) &&
 381                  (lun.scsi_lun[4] == 0) &&
 382                  (lun.scsi_lun[3] == 0) &&
 383                  (lun.scsi_lun[2] == 0) &&
 384/* Byte 1 is intentionally skipped */
 385                  (lun.scsi_lun[0] == 0));
 386
 387        return result;
 388}
 389
 390static int csmi_ioctl_callback(struct esas2r_adapter *a,
 391                               struct esas2r_request *rq,
 392                               struct esas2r_sg_context *sgc, void *context)
 393{
 394        struct atto_csmi *ci = (struct atto_csmi *)context;
 395        union atto_ioctl_csmi *ioctl_csmi =
 396                (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
 397        u8 path = 0;
 398        u8 tid = 0;
 399        u8 lun = 0;
 400        u32 sts = CSMI_STS_SUCCESS;
 401        struct esas2r_target *t;
 402        unsigned long flags;
 403
 404        if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
 405                struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
 406
 407                path = gda->path_id;
 408                tid = gda->target_id;
 409                lun = gda->lun;
 410        } else if (ci->control_code == CSMI_CC_TASK_MGT) {
 411                struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
 412
 413                path = tm->path_id;
 414                tid = tm->target_id;
 415                lun = tm->lun;
 416        }
 417
 418        if (path > 0) {
 419                rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
 420                        CSMI_STS_INV_PARAM);
 421                return false;
 422        }
 423
 424        rq->target_id = tid;
 425        rq->vrq->scsi.flags |= cpu_to_le32(lun);
 426
 427        switch (ci->control_code) {
 428        case CSMI_CC_GET_DRVR_INFO:
 429        {
 430                struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
 431
 432                strcpy(gdi->description, esas2r_get_model_name(a));
 433                gdi->csmi_major_rev = CSMI_MAJOR_REV;
 434                gdi->csmi_minor_rev = CSMI_MINOR_REV;
 435                break;
 436        }
 437
 438        case CSMI_CC_GET_CNTLR_CFG:
 439        {
 440                struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
 441
 442                gcc->base_io_addr = 0;
 443                pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
 444                                      &gcc->base_memaddr_lo);
 445                pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
 446                                      &gcc->base_memaddr_hi);
 447                gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
 448                                          a->pcid->subsystem_vendor);
 449                gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
 450                gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
 451                gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
 452                gcc->pci_addr.bus_num = a->pcid->bus->number;
 453                gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
 454                gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
 455
 456                memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
 457
 458                gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
 459                gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
 460                gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
 461                gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
 462                gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
 463                gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
 464                gcc->bios_build_rev = LOWORD(a->flash_ver);
 465
 466                if (test_bit(AF2_THUNDERLINK, &a->flags2))
 467                        gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
 468                                           | CSMI_CNTLRF_SATA_HBA;
 469                else
 470                        gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
 471                                           | CSMI_CNTLRF_SATA_RAID;
 472
 473                gcc->rrom_major_rev = 0;
 474                gcc->rrom_minor_rev = 0;
 475                gcc->rrom_build_rev = 0;
 476                gcc->rrom_release_rev = 0;
 477                gcc->rrom_biosmajor_rev = 0;
 478                gcc->rrom_biosminor_rev = 0;
 479                gcc->rrom_biosbuild_rev = 0;
 480                gcc->rrom_biosrelease_rev = 0;
 481                break;
 482        }
 483
 484        case CSMI_CC_GET_CNTLR_STS:
 485        {
 486                struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
 487
 488                if (test_bit(AF_DEGRADED_MODE, &a->flags))
 489                        gcs->status = CSMI_CNTLR_STS_FAILED;
 490                else
 491                        gcs->status = CSMI_CNTLR_STS_GOOD;
 492
 493                gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
 494                break;
 495        }
 496
 497        case CSMI_CC_FW_DOWNLOAD:
 498        case CSMI_CC_GET_RAID_INFO:
 499        case CSMI_CC_GET_RAID_CFG:
 500
 501                sts = CSMI_STS_BAD_CTRL_CODE;
 502                break;
 503
 504        case CSMI_CC_SMP_PASSTHRU:
 505        case CSMI_CC_SSP_PASSTHRU:
 506        case CSMI_CC_STP_PASSTHRU:
 507        case CSMI_CC_GET_PHY_INFO:
 508        case CSMI_CC_SET_PHY_INFO:
 509        case CSMI_CC_GET_LINK_ERRORS:
 510        case CSMI_CC_GET_SATA_SIG:
 511        case CSMI_CC_GET_CONN_INFO:
 512        case CSMI_CC_PHY_CTRL:
 513
 514                if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
 515                                       ci->control_code,
 516                                       ESAS2R_TARG_ID_INV)) {
 517                        sts = CSMI_STS_FAILED;
 518                        break;
 519                }
 520
 521                return true;
 522
 523        case CSMI_CC_GET_SCSI_ADDR:
 524        {
 525                struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
 526
 527                struct scsi_lun lun;
 528
 529                memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
 530
 531                if (!check_lun(lun)) {
 532                        sts = CSMI_STS_NO_SCSI_ADDR;
 533                        break;
 534                }
 535
 536                /* make sure the device is present */
 537                spin_lock_irqsave(&a->mem_lock, flags);
 538                t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
 539                spin_unlock_irqrestore(&a->mem_lock, flags);
 540
 541                if (t == NULL) {
 542                        sts = CSMI_STS_NO_SCSI_ADDR;
 543                        break;
 544                }
 545
 546                gsa->host_index = 0xFF;
 547                gsa->lun = gsa->sas_lun[1];
 548                rq->target_id = esas2r_targ_get_id(t, a);
 549                break;
 550        }
 551
 552        case CSMI_CC_GET_DEV_ADDR:
 553        {
 554                struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
 555
 556                /* make sure the target is present */
 557                t = a->targetdb + rq->target_id;
 558
 559                if (t >= a->targetdb_end
 560                    || t->target_state != TS_PRESENT
 561                    || t->sas_addr == 0) {
 562                        sts = CSMI_STS_NO_DEV_ADDR;
 563                        break;
 564                }
 565
 566                /* fill in the result */
 567                *(u64 *)gda->sas_addr = t->sas_addr;
 568                memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
 569                gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
 570                break;
 571        }
 572
 573        case CSMI_CC_TASK_MGT:
 574
 575                /* make sure the target is present */
 576                t = a->targetdb + rq->target_id;
 577
 578                if (t >= a->targetdb_end
 579                    || t->target_state != TS_PRESENT
 580                    || !(t->flags & TF_PASS_THRU)) {
 581                        sts = CSMI_STS_NO_DEV_ADDR;
 582                        break;
 583                }
 584
 585                if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
 586                                       ci->control_code,
 587                                       t->phys_targ_id)) {
 588                        sts = CSMI_STS_FAILED;
 589                        break;
 590                }
 591
 592                return true;
 593
 594        default:
 595
 596                sts = CSMI_STS_BAD_CTRL_CODE;
 597                break;
 598        }
 599
 600        rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
 601
 602        return false;
 603}
 604
 605
 606static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
 607                                     struct esas2r_request *rq, void *context)
 608{
 609        struct atto_csmi *ci = (struct atto_csmi *)context;
 610        union atto_ioctl_csmi *ioctl_csmi =
 611                (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
 612
 613        switch (ci->control_code) {
 614        case CSMI_CC_GET_DRVR_INFO:
 615        {
 616                struct atto_csmi_get_driver_info *gdi =
 617                        &ioctl_csmi->drvr_info;
 618
 619                strcpy(gdi->name, ESAS2R_VERSION_STR);
 620
 621                gdi->major_rev = ESAS2R_MAJOR_REV;
 622                gdi->minor_rev = ESAS2R_MINOR_REV;
 623                gdi->build_rev = 0;
 624                gdi->release_rev = 0;
 625                break;
 626        }
 627
 628        case CSMI_CC_GET_SCSI_ADDR:
 629        {
 630                struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
 631
 632                if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
 633                    CSMI_STS_SUCCESS) {
 634                        gsa->target_id = rq->target_id;
 635                        gsa->path_id = 0;
 636                }
 637
 638                break;
 639        }
 640        }
 641
 642        ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
 643}
 644
 645
 646static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
 647{
 648        struct esas2r_buffered_ioctl bi;
 649
 650        memset(&bi, 0, sizeof(bi));
 651
 652        bi.a = a;
 653        bi.ioctl = &ci->data;
 654        bi.length = sizeof(union atto_ioctl_csmi);
 655        bi.offset = 0;
 656        bi.callback = csmi_ioctl_callback;
 657        bi.context = ci;
 658        bi.done_callback = csmi_ioctl_done_callback;
 659        bi.done_context = ci;
 660
 661        return handle_buffered_ioctl(&bi);
 662}
 663
 664/* ATTO HBA ioctl support */
 665
 666/* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
 667static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
 668                             struct atto_ioctl *hi,
 669                             struct esas2r_request *rq,
 670                             struct esas2r_sg_context *sgc)
 671{
 672        esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 673
 674        esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
 675
 676        if (!esas2r_build_sg_list(a, rq, sgc)) {
 677                hi->status = ATTO_STS_OUT_OF_RSRC;
 678
 679                return false;
 680        }
 681
 682        esas2r_start_request(a, rq);
 683
 684        return true;
 685}
 686
 687static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
 688                                  struct esas2r_request *rq)
 689{
 690        struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
 691        struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
 692        u8 sts = ATTO_SPT_RS_FAILED;
 693
 694        spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
 695        spt->sense_length = rq->sense_len;
 696        spt->residual_length =
 697                le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
 698
 699        switch (rq->req_stat) {
 700        case RS_SUCCESS:
 701        case RS_SCSI_ERROR:
 702                sts = ATTO_SPT_RS_SUCCESS;
 703                break;
 704        case RS_UNDERRUN:
 705                sts = ATTO_SPT_RS_UNDERRUN;
 706                break;
 707        case RS_OVERRUN:
 708                sts = ATTO_SPT_RS_OVERRUN;
 709                break;
 710        case RS_SEL:
 711        case RS_SEL2:
 712                sts = ATTO_SPT_RS_NO_DEVICE;
 713                break;
 714        case RS_NO_LUN:
 715                sts = ATTO_SPT_RS_NO_LUN;
 716                break;
 717        case RS_TIMEOUT:
 718                sts = ATTO_SPT_RS_TIMEOUT;
 719                break;
 720        case RS_DEGRADED:
 721                sts = ATTO_SPT_RS_DEGRADED;
 722                break;
 723        case RS_BUSY:
 724                sts = ATTO_SPT_RS_BUSY;
 725                break;
 726        case RS_ABORTED:
 727                sts = ATTO_SPT_RS_ABORTED;
 728                break;
 729        case RS_RESET:
 730                sts = ATTO_SPT_RS_BUS_RESET;
 731                break;
 732        }
 733
 734        spt->req_status = sts;
 735
 736        /* Update the target ID to the next one present. */
 737        spt->target_id =
 738                esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
 739
 740        /* Done, call the completion callback. */
 741        (*rq->aux_req_cb)(a, rq);
 742}
 743
 744static int hba_ioctl_callback(struct esas2r_adapter *a,
 745                              struct esas2r_request *rq,
 746                              struct esas2r_sg_context *sgc,
 747                              void *context)
 748{
 749        struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
 750
 751        hi->status = ATTO_STS_SUCCESS;
 752
 753        switch (hi->function) {
 754        case ATTO_FUNC_GET_ADAP_INFO:
 755        {
 756                u8 *class_code = (u8 *)&a->pcid->class;
 757
 758                struct atto_hba_get_adapter_info *gai =
 759                        &hi->data.get_adap_info;
 760                int pcie_cap_reg;
 761
 762                if (hi->flags & HBAF_TUNNEL) {
 763                        hi->status = ATTO_STS_UNSUPPORTED;
 764                        break;
 765                }
 766
 767                if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
 768                        hi->status = ATTO_STS_INV_VERSION;
 769                        hi->version = ATTO_VER_GET_ADAP_INFO0;
 770                        break;
 771                }
 772
 773                memset(gai, 0, sizeof(*gai));
 774
 775                gai->pci.vendor_id = a->pcid->vendor;
 776                gai->pci.device_id = a->pcid->device;
 777                gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
 778                gai->pci.ss_device_id = a->pcid->subsystem_device;
 779                gai->pci.class_code[0] = class_code[0];
 780                gai->pci.class_code[1] = class_code[1];
 781                gai->pci.class_code[2] = class_code[2];
 782                gai->pci.rev_id = a->pcid->revision;
 783                gai->pci.bus_num = a->pcid->bus->number;
 784                gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
 785                gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
 786
 787                pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
 788                if (pcie_cap_reg) {
 789                        u16 stat;
 790                        u32 caps;
 791
 792                        pci_read_config_word(a->pcid,
 793                                             pcie_cap_reg + PCI_EXP_LNKSTA,
 794                                             &stat);
 795                        pci_read_config_dword(a->pcid,
 796                                              pcie_cap_reg + PCI_EXP_LNKCAP,
 797                                              &caps);
 798
 799                        gai->pci.link_speed_curr =
 800                                (u8)(stat & PCI_EXP_LNKSTA_CLS);
 801                        gai->pci.link_speed_max =
 802                                (u8)(caps & PCI_EXP_LNKCAP_SLS);
 803                        gai->pci.link_width_curr =
 804                                (u8)((stat & PCI_EXP_LNKSTA_NLW)
 805                                     >> PCI_EXP_LNKSTA_NLW_SHIFT);
 806                        gai->pci.link_width_max =
 807                                (u8)((caps & PCI_EXP_LNKCAP_MLW)
 808                                     >> 4);
 809                }
 810
 811                gai->pci.msi_vector_cnt = 1;
 812
 813                if (a->pcid->msix_enabled)
 814                        gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
 815                else if (a->pcid->msi_enabled)
 816                        gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
 817                else
 818                        gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
 819
 820                gai->adap_type = ATTO_GAI_AT_ESASRAID2;
 821
 822                if (test_bit(AF2_THUNDERLINK, &a->flags2))
 823                        gai->adap_type = ATTO_GAI_AT_TLSASHBA;
 824
 825                if (test_bit(AF_DEGRADED_MODE, &a->flags))
 826                        gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
 827
 828                gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
 829                                   ATTO_GAI_AF_DEVADDR_SUPP;
 830
 831                if (a->pcid->subsystem_device == ATTO_ESAS_R60F
 832                    || a->pcid->subsystem_device == ATTO_ESAS_R608
 833                    || a->pcid->subsystem_device == ATTO_ESAS_R644
 834                    || a->pcid->subsystem_device == ATTO_TSSC_3808E)
 835                        gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
 836
 837                gai->num_ports = ESAS2R_NUM_PHYS;
 838                gai->num_phys = ESAS2R_NUM_PHYS;
 839
 840                strcpy(gai->firmware_rev, a->fw_rev);
 841                strcpy(gai->flash_rev, a->flash_rev);
 842                strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
 843                strcpy(gai->model_name, esas2r_get_model_name(a));
 844
 845                gai->num_targets = ESAS2R_MAX_TARGETS;
 846
 847                gai->num_busses = 1;
 848                gai->num_targsper_bus = gai->num_targets;
 849                gai->num_lunsper_targ = 256;
 850
 851                if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
 852                    || a->pcid->subsystem_device == ATTO_ESAS_R60F)
 853                        gai->num_connectors = 4;
 854                else
 855                        gai->num_connectors = 2;
 856
 857                gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
 858
 859                gai->num_targets_backend = a->num_targets_backend;
 860
 861                gai->tunnel_flags = a->ioctl_tunnel
 862                                    & (ATTO_GAI_TF_MEM_RW
 863                                       | ATTO_GAI_TF_TRACE
 864                                       | ATTO_GAI_TF_SCSI_PASS_THRU
 865                                       | ATTO_GAI_TF_GET_DEV_ADDR
 866                                       | ATTO_GAI_TF_PHY_CTRL
 867                                       | ATTO_GAI_TF_CONN_CTRL
 868                                       | ATTO_GAI_TF_GET_DEV_INFO);
 869                break;
 870        }
 871
 872        case ATTO_FUNC_GET_ADAP_ADDR:
 873        {
 874                struct atto_hba_get_adapter_address *gaa =
 875                        &hi->data.get_adap_addr;
 876
 877                if (hi->flags & HBAF_TUNNEL) {
 878                        hi->status = ATTO_STS_UNSUPPORTED;
 879                        break;
 880                }
 881
 882                if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
 883                        hi->status = ATTO_STS_INV_VERSION;
 884                        hi->version = ATTO_VER_GET_ADAP_ADDR0;
 885                } else if (gaa->addr_type == ATTO_GAA_AT_PORT
 886                           || gaa->addr_type == ATTO_GAA_AT_NODE) {
 887                        if (gaa->addr_type == ATTO_GAA_AT_PORT
 888                            && gaa->port_id >= ESAS2R_NUM_PHYS) {
 889                                hi->status = ATTO_STS_NOT_APPL;
 890                        } else {
 891                                memcpy((u64 *)gaa->address,
 892                                       &a->nvram->sas_addr[0], sizeof(u64));
 893                                gaa->addr_len = sizeof(u64);
 894                        }
 895                } else {
 896                        hi->status = ATTO_STS_INV_PARAM;
 897                }
 898
 899                break;
 900        }
 901
 902        case ATTO_FUNC_MEM_RW:
 903        {
 904                if (hi->flags & HBAF_TUNNEL) {
 905                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
 906                                return true;
 907
 908                        break;
 909                }
 910
 911                hi->status = ATTO_STS_UNSUPPORTED;
 912
 913                break;
 914        }
 915
 916        case ATTO_FUNC_TRACE:
 917        {
 918                struct atto_hba_trace *trc = &hi->data.trace;
 919
 920                if (hi->flags & HBAF_TUNNEL) {
 921                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
 922                                return true;
 923
 924                        break;
 925                }
 926
 927                if (hi->version > ATTO_VER_TRACE1) {
 928                        hi->status = ATTO_STS_INV_VERSION;
 929                        hi->version = ATTO_VER_TRACE1;
 930                        break;
 931                }
 932
 933                if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
 934                    && hi->version >= ATTO_VER_TRACE1) {
 935                        if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
 936                                u32 len = hi->data_length;
 937                                u32 offset = trc->current_offset;
 938                                u32 total_len = ESAS2R_FWCOREDUMP_SZ;
 939
 940                                /* Size is zero if a core dump isn't present */
 941                                if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
 942                                        total_len = 0;
 943
 944                                if (len > total_len)
 945                                        len = total_len;
 946
 947                                if (offset >= total_len
 948                                    || offset + len > total_len
 949                                    || len == 0) {
 950                                        hi->status = ATTO_STS_INV_PARAM;
 951                                        break;
 952                                }
 953
 954                                memcpy(trc + 1,
 955                                       a->fw_coredump_buff + offset,
 956                                       len);
 957
 958                                hi->data_length = len;
 959                        } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
 960                                memset(a->fw_coredump_buff, 0,
 961                                       ESAS2R_FWCOREDUMP_SZ);
 962
 963                                clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
 964                        } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
 965                                hi->status = ATTO_STS_UNSUPPORTED;
 966                                break;
 967                        }
 968
 969                        /* Always return all the info we can. */
 970                        trc->trace_mask = 0;
 971                        trc->current_offset = 0;
 972                        trc->total_length = ESAS2R_FWCOREDUMP_SZ;
 973
 974                        /* Return zero length buffer if core dump not present */
 975                        if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
 976                                trc->total_length = 0;
 977                } else {
 978                        hi->status = ATTO_STS_UNSUPPORTED;
 979                }
 980
 981                break;
 982        }
 983
 984        case ATTO_FUNC_SCSI_PASS_THRU:
 985        {
 986                struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
 987                struct scsi_lun lun;
 988
 989                memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
 990
 991                if (hi->flags & HBAF_TUNNEL) {
 992                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
 993                                return true;
 994
 995                        break;
 996                }
 997
 998                if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
 999                        hi->status = ATTO_STS_INV_VERSION;
1000                        hi->version = ATTO_VER_SCSI_PASS_THRU0;
1001                        break;
1002                }
1003
1004                if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1005                        hi->status = ATTO_STS_INV_PARAM;
1006                        break;
1007                }
1008
1009                esas2r_sgc_init(sgc, a, rq, NULL);
1010
1011                sgc->length = hi->data_length;
1012                sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1013                                   + sizeof(struct atto_hba_scsi_pass_thru);
1014
1015                /* Finish request initialization */
1016                rq->target_id = (u16)spt->target_id;
1017                rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1018                memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1019                rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1020                rq->sense_len = spt->sense_length;
1021                rq->sense_buf = (u8 *)spt->sense_data;
1022                /* NOTE: we ignore spt->timeout */
1023
1024                /*
1025                 * always usurp the completion callback since the interrupt
1026                 * callback mechanism may be used.
1027                 */
1028
1029                rq->aux_req_cx = hi;
1030                rq->aux_req_cb = rq->comp_cb;
1031                rq->comp_cb = scsi_passthru_comp_cb;
1032
1033                if (spt->flags & ATTO_SPTF_DATA_IN) {
1034                        rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1035                } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1036                        rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1037                } else {
1038                        if (sgc->length) {
1039                                hi->status = ATTO_STS_INV_PARAM;
1040                                break;
1041                        }
1042                }
1043
1044                if (spt->flags & ATTO_SPTF_ORDERED_Q)
1045                        rq->vrq->scsi.flags |=
1046                                cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1047                else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1048                        rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1049
1050
1051                if (!esas2r_build_sg_list(a, rq, sgc)) {
1052                        hi->status = ATTO_STS_OUT_OF_RSRC;
1053                        break;
1054                }
1055
1056                esas2r_start_request(a, rq);
1057
1058                return true;
1059        }
1060
1061        case ATTO_FUNC_GET_DEV_ADDR:
1062        {
1063                struct atto_hba_get_device_address *gda =
1064                        &hi->data.get_dev_addr;
1065                struct esas2r_target *t;
1066
1067                if (hi->flags & HBAF_TUNNEL) {
1068                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
1069                                return true;
1070
1071                        break;
1072                }
1073
1074                if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1075                        hi->status = ATTO_STS_INV_VERSION;
1076                        hi->version = ATTO_VER_GET_DEV_ADDR0;
1077                        break;
1078                }
1079
1080                if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1081                        hi->status = ATTO_STS_INV_PARAM;
1082                        break;
1083                }
1084
1085                t = a->targetdb + (u16)gda->target_id;
1086
1087                if (t->target_state != TS_PRESENT) {
1088                        hi->status = ATTO_STS_FAILED;
1089                } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1090                        if (t->sas_addr == 0) {
1091                                hi->status = ATTO_STS_UNSUPPORTED;
1092                        } else {
1093                                *(u64 *)gda->address = t->sas_addr;
1094
1095                                gda->addr_len = sizeof(u64);
1096                        }
1097                } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1098                        hi->status = ATTO_STS_NOT_APPL;
1099                } else {
1100                        hi->status = ATTO_STS_INV_PARAM;
1101                }
1102
1103                /* update the target ID to the next one present. */
1104
1105                gda->target_id =
1106                        esas2r_targ_db_find_next_present(a,
1107                                                         (u16)gda->target_id);
1108                break;
1109        }
1110
1111        case ATTO_FUNC_PHY_CTRL:
1112        case ATTO_FUNC_CONN_CTRL:
1113        {
1114                if (hba_ioctl_tunnel(a, hi, rq, sgc))
1115                        return true;
1116
1117                break;
1118        }
1119
1120        case ATTO_FUNC_ADAP_CTRL:
1121        {
1122                struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1123
1124                if (hi->flags & HBAF_TUNNEL) {
1125                        hi->status = ATTO_STS_UNSUPPORTED;
1126                        break;
1127                }
1128
1129                if (hi->version > ATTO_VER_ADAP_CTRL0) {
1130                        hi->status = ATTO_STS_INV_VERSION;
1131                        hi->version = ATTO_VER_ADAP_CTRL0;
1132                        break;
1133                }
1134
1135                if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1136                        esas2r_reset_adapter(a);
1137                } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1138                        hi->status = ATTO_STS_UNSUPPORTED;
1139                        break;
1140                }
1141
1142                if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1143                        ac->adap_state = ATTO_AC_AS_RST_SCHED;
1144                else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1145                        ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1146                else if (test_bit(AF_DISC_PENDING, &a->flags))
1147                        ac->adap_state = ATTO_AC_AS_RST_DISC;
1148                else if (test_bit(AF_DISABLED, &a->flags))
1149                        ac->adap_state = ATTO_AC_AS_DISABLED;
1150                else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1151                        ac->adap_state = ATTO_AC_AS_DEGRADED;
1152                else
1153                        ac->adap_state = ATTO_AC_AS_OK;
1154
1155                break;
1156        }
1157
1158        case ATTO_FUNC_GET_DEV_INFO:
1159        {
1160                struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1161                struct esas2r_target *t;
1162
1163                if (hi->flags & HBAF_TUNNEL) {
1164                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
1165                                return true;
1166
1167                        break;
1168                }
1169
1170                if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1171                        hi->status = ATTO_STS_INV_VERSION;
1172                        hi->version = ATTO_VER_GET_DEV_INFO0;
1173                        break;
1174                }
1175
1176                if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1177                        hi->status = ATTO_STS_INV_PARAM;
1178                        break;
1179                }
1180
1181                t = a->targetdb + (u16)gdi->target_id;
1182
1183                /* update the target ID to the next one present. */
1184
1185                gdi->target_id =
1186                        esas2r_targ_db_find_next_present(a,
1187                                                         (u16)gdi->target_id);
1188
1189                if (t->target_state != TS_PRESENT) {
1190                        hi->status = ATTO_STS_FAILED;
1191                        break;
1192                }
1193
1194                hi->status = ATTO_STS_UNSUPPORTED;
1195                break;
1196        }
1197
1198        default:
1199
1200                hi->status = ATTO_STS_INV_FUNC;
1201                break;
1202        }
1203
1204        return false;
1205}
1206
1207static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1208                                    struct esas2r_request *rq, void *context)
1209{
1210        struct atto_ioctl *ioctl_hba =
1211                (struct atto_ioctl *)esas2r_buffered_ioctl;
1212
1213        esas2r_debug("hba_ioctl_done_callback %d", a->index);
1214
1215        if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1216                struct atto_hba_get_adapter_info *gai =
1217                        &ioctl_hba->data.get_adap_info;
1218
1219                esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1220
1221                gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1222                gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1223
1224                strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1225                strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1226
1227                gai->num_busses = 1;
1228                gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1229                gai->num_lunsper_targ = 1;
1230        }
1231}
1232
1233u8 handle_hba_ioctl(struct esas2r_adapter *a,
1234                    struct atto_ioctl *ioctl_hba)
1235{
1236        struct esas2r_buffered_ioctl bi;
1237
1238        memset(&bi, 0, sizeof(bi));
1239
1240        bi.a = a;
1241        bi.ioctl = ioctl_hba;
1242        bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1243        bi.callback = hba_ioctl_callback;
1244        bi.context = NULL;
1245        bi.done_callback = hba_ioctl_done_callback;
1246        bi.done_context = NULL;
1247        bi.offset = 0;
1248
1249        return handle_buffered_ioctl(&bi);
1250}
1251
1252
1253int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1254                        struct esas2r_sas_nvram *data)
1255{
1256        int result = 0;
1257
1258        a->nvram_command_done = 0;
1259        rq->comp_cb = complete_nvr_req;
1260
1261        if (esas2r_nvram_write(a, rq, data)) {
1262                /* now wait around for it to complete. */
1263                while (!a->nvram_command_done)
1264                        wait_event_interruptible(a->nvram_waiter,
1265                                                 a->nvram_command_done);
1266                ;
1267
1268                /* done, check the status. */
1269                if (rq->req_stat == RS_SUCCESS)
1270                        result = 1;
1271        }
1272        return result;
1273}
1274
1275
1276/* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1277int esas2r_ioctl_handler(void *hostdata, int cmd, void __user *arg)
1278{
1279        struct atto_express_ioctl *ioctl = NULL;
1280        struct esas2r_adapter *a;
1281        struct esas2r_request *rq;
1282        u16 code;
1283        int err;
1284
1285        esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1286
1287        if ((arg == NULL)
1288            || (cmd < EXPRESS_IOCTL_MIN)
1289            || (cmd > EXPRESS_IOCTL_MAX))
1290                return -ENOTSUPP;
1291
1292        if (!access_ok(VERIFY_WRITE, arg, sizeof(struct atto_express_ioctl))) {
1293                esas2r_log(ESAS2R_LOG_WARN,
1294                           "ioctl_handler access_ok failed for cmd %d, "
1295                           "address %p", cmd,
1296                           arg);
1297                return -EFAULT;
1298        }
1299
1300        /* allocate a kernel memory buffer for the IOCTL data */
1301        ioctl = kzalloc(sizeof(struct atto_express_ioctl), GFP_KERNEL);
1302        if (ioctl == NULL) {
1303                esas2r_log(ESAS2R_LOG_WARN,
1304                           "ioctl_handler kzalloc failed for %d bytes",
1305                           sizeof(struct atto_express_ioctl));
1306                return -ENOMEM;
1307        }
1308
1309        err = __copy_from_user(ioctl, arg, sizeof(struct atto_express_ioctl));
1310        if (err != 0) {
1311                esas2r_log(ESAS2R_LOG_WARN,
1312                           "copy_from_user didn't copy everything (err %d, cmd %d)",
1313                           err,
1314                           cmd);
1315                kfree(ioctl);
1316
1317                return -EFAULT;
1318        }
1319
1320        /* verify the signature */
1321
1322        if (memcmp(ioctl->header.signature,
1323                   EXPRESS_IOCTL_SIGNATURE,
1324                   EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1325                esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1326                kfree(ioctl);
1327
1328                return -ENOTSUPP;
1329        }
1330
1331        /* assume success */
1332
1333        ioctl->header.return_code = IOCTL_SUCCESS;
1334        err = 0;
1335
1336        /*
1337         * handle EXPRESS_IOCTL_GET_CHANNELS
1338         * without paying attention to channel
1339         */
1340
1341        if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1342                int i = 0, k = 0;
1343
1344                ioctl->data.chanlist.num_channels = 0;
1345
1346                while (i < MAX_ADAPTERS) {
1347                        if (esas2r_adapters[i]) {
1348                                ioctl->data.chanlist.num_channels++;
1349                                ioctl->data.chanlist.channel[k] = i;
1350                                k++;
1351                        }
1352                        i++;
1353                }
1354
1355                goto ioctl_done;
1356        }
1357
1358        /* get the channel */
1359
1360        if (ioctl->header.channel == 0xFF) {
1361                a = (struct esas2r_adapter *)hostdata;
1362        } else {
1363                if (ioctl->header.channel >= MAX_ADAPTERS ||
1364                        esas2r_adapters[ioctl->header.channel] == NULL) {
1365                        ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1366                        esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1367                        kfree(ioctl);
1368
1369                        return -ENOTSUPP;
1370                }
1371                a = esas2r_adapters[ioctl->header.channel];
1372        }
1373
1374        switch (cmd) {
1375        case EXPRESS_IOCTL_RW_FIRMWARE:
1376
1377                if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1378                        err = esas2r_write_fw(a,
1379                                              (char *)ioctl->data.fwrw.image,
1380                                              0,
1381                                              sizeof(struct
1382                                                     atto_express_ioctl));
1383
1384                        if (err >= 0) {
1385                                err = esas2r_read_fw(a,
1386                                                     (char *)ioctl->data.fwrw.
1387                                                     image,
1388                                                     0,
1389                                                     sizeof(struct
1390                                                            atto_express_ioctl));
1391                        }
1392                } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1393                        err = esas2r_write_fs(a,
1394                                              (char *)ioctl->data.fwrw.image,
1395                                              0,
1396                                              sizeof(struct
1397                                                     atto_express_ioctl));
1398
1399                        if (err >= 0) {
1400                                err = esas2r_read_fs(a,
1401                                                     (char *)ioctl->data.fwrw.
1402                                                     image,
1403                                                     0,
1404                                                     sizeof(struct
1405                                                            atto_express_ioctl));
1406                        }
1407                } else {
1408                        ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1409                }
1410
1411                break;
1412
1413        case EXPRESS_IOCTL_READ_PARAMS:
1414
1415                memcpy(ioctl->data.prw.data_buffer, a->nvram,
1416                       sizeof(struct esas2r_sas_nvram));
1417                ioctl->data.prw.code = 1;
1418                break;
1419
1420        case EXPRESS_IOCTL_WRITE_PARAMS:
1421
1422                rq = esas2r_alloc_request(a);
1423                if (rq == NULL) {
1424                        kfree(ioctl);
1425                        esas2r_log(ESAS2R_LOG_WARN,
1426                           "could not allocate an internal request");
1427                        return -ENOMEM;
1428                }
1429
1430                code = esas2r_write_params(a, rq,
1431                                           (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1432                ioctl->data.prw.code = code;
1433
1434                esas2r_free_request(a, rq);
1435
1436                break;
1437
1438        case EXPRESS_IOCTL_DEFAULT_PARAMS:
1439
1440                esas2r_nvram_get_defaults(a,
1441                                          (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1442                ioctl->data.prw.code = 1;
1443                break;
1444
1445        case EXPRESS_IOCTL_CHAN_INFO:
1446
1447                ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1448                ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1449                ioctl->data.chaninfo.IRQ = a->pcid->irq;
1450                ioctl->data.chaninfo.device_id = a->pcid->device;
1451                ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1452                ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1453                ioctl->data.chaninfo.revision_id = a->pcid->revision;
1454                ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1455                ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1456                ioctl->data.chaninfo.core_rev = 0;
1457                ioctl->data.chaninfo.host_no = a->host->host_no;
1458                ioctl->data.chaninfo.hbaapi_rev = 0;
1459                break;
1460
1461        case EXPRESS_IOCTL_SMP:
1462                ioctl->header.return_code = handle_smp_ioctl(a,
1463                                                             &ioctl->data.
1464                                                             ioctl_smp);
1465                break;
1466
1467        case EXPRESS_CSMI:
1468                ioctl->header.return_code =
1469                        handle_csmi_ioctl(a, &ioctl->data.csmi);
1470                break;
1471
1472        case EXPRESS_IOCTL_HBA:
1473                ioctl->header.return_code = handle_hba_ioctl(a,
1474                                                             &ioctl->data.
1475                                                             ioctl_hba);
1476                break;
1477
1478        case EXPRESS_IOCTL_VDA:
1479                err = esas2r_write_vda(a,
1480                                       (char *)&ioctl->data.ioctl_vda,
1481                                       0,
1482                                       sizeof(struct atto_ioctl_vda) +
1483                                       ioctl->data.ioctl_vda.data_length);
1484
1485                if (err >= 0) {
1486                        err = esas2r_read_vda(a,
1487                                              (char *)&ioctl->data.ioctl_vda,
1488                                              0,
1489                                              sizeof(struct atto_ioctl_vda) +
1490                                              ioctl->data.ioctl_vda.data_length);
1491                }
1492
1493
1494
1495
1496                break;
1497
1498        case EXPRESS_IOCTL_GET_MOD_INFO:
1499
1500                ioctl->data.modinfo.adapter = a;
1501                ioctl->data.modinfo.pci_dev = a->pcid;
1502                ioctl->data.modinfo.scsi_host = a->host;
1503                ioctl->data.modinfo.host_no = a->host->host_no;
1504
1505                break;
1506
1507        default:
1508                esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1509                ioctl->header.return_code = IOCTL_ERR_INVCMD;
1510        }
1511
1512ioctl_done:
1513
1514        if (err < 0) {
1515                esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %d", err,
1516                           cmd);
1517
1518                switch (err) {
1519                case -ENOMEM:
1520                case -EBUSY:
1521                        ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1522                        break;
1523
1524                case -ENOSYS:
1525                case -EINVAL:
1526                        ioctl->header.return_code = IOCTL_INVALID_PARAM;
1527                        break;
1528
1529                default:
1530                        ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1531                        break;
1532                }
1533
1534        }
1535
1536        /* Always copy the buffer back, if only to pick up the status */
1537        err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1538        if (err != 0) {
1539                esas2r_log(ESAS2R_LOG_WARN,
1540                           "ioctl_handler copy_to_user didn't copy "
1541                           "everything (err %d, cmd %d)", err,
1542                           cmd);
1543                kfree(ioctl);
1544
1545                return -EFAULT;
1546        }
1547
1548        kfree(ioctl);
1549
1550        return 0;
1551}
1552
1553int esas2r_ioctl(struct scsi_device *sd, int cmd, void __user *arg)
1554{
1555        return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1556}
1557
1558static void free_fw_buffers(struct esas2r_adapter *a)
1559{
1560        if (a->firmware.data) {
1561                dma_free_coherent(&a->pcid->dev,
1562                                  (size_t)a->firmware.orig_len,
1563                                  a->firmware.data,
1564                                  (dma_addr_t)a->firmware.phys);
1565
1566                a->firmware.data = NULL;
1567        }
1568}
1569
1570static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1571{
1572        free_fw_buffers(a);
1573
1574        a->firmware.orig_len = length;
1575
1576        a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1577                                                    (size_t)length,
1578                                                    (dma_addr_t *)&a->firmware.
1579                                                    phys,
1580                                                    GFP_KERNEL);
1581
1582        if (!a->firmware.data) {
1583                esas2r_debug("buffer alloc failed!");
1584                return 0;
1585        }
1586
1587        return 1;
1588}
1589
1590/* Handle a call to read firmware. */
1591int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1592{
1593        esas2r_trace_enter();
1594        /* if the cached header is a status, simply copy it over and return. */
1595        if (a->firmware.state == FW_STATUS_ST) {
1596                int size = min_t(int, count, sizeof(a->firmware.header));
1597                esas2r_trace_exit();
1598                memcpy(buf, &a->firmware.header, size);
1599                esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1600                return size;
1601        }
1602
1603        /*
1604         * if the cached header is a command, do it if at
1605         * offset 0, otherwise copy the pieces.
1606         */
1607
1608        if (a->firmware.state == FW_COMMAND_ST) {
1609                u32 length = a->firmware.header.length;
1610                esas2r_trace_exit();
1611
1612                esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1613                             length,
1614                             off);
1615
1616                if (off == 0) {
1617                        if (a->firmware.header.action == FI_ACT_UP) {
1618                                if (!allocate_fw_buffers(a, length))
1619                                        return -ENOMEM;
1620
1621
1622                                /* copy header over */
1623
1624                                memcpy(a->firmware.data,
1625                                       &a->firmware.header,
1626                                       sizeof(a->firmware.header));
1627
1628                                do_fm_api(a,
1629                                          (struct esas2r_flash_img *)a->firmware.data);
1630                        } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1631                                int size =
1632                                        min((int)count,
1633                                            (int)sizeof(a->firmware.header));
1634                                do_fm_api(a, &a->firmware.header);
1635                                memcpy(buf, &a->firmware.header, size);
1636                                esas2r_debug("FI_ACT_UPSZ size %d", size);
1637                                return size;
1638                        } else {
1639                                esas2r_debug("invalid action %d",
1640                                             a->firmware.header.action);
1641                                return -ENOSYS;
1642                        }
1643                }
1644
1645                if (count + off > length)
1646                        count = length - off;
1647
1648                if (count < 0)
1649                        return 0;
1650
1651                if (!a->firmware.data) {
1652                        esas2r_debug(
1653                                "read: nonzero offset but no buffer available!");
1654                        return -ENOMEM;
1655                }
1656
1657                esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1658                             count,
1659                             length);
1660
1661                memcpy(buf, &a->firmware.data[off], count);
1662
1663                /* when done, release the buffer */
1664
1665                if (length <= off + count) {
1666                        esas2r_debug("esas2r_read_fw: freeing buffer!");
1667
1668                        free_fw_buffers(a);
1669                }
1670
1671                return count;
1672        }
1673
1674        esas2r_trace_exit();
1675        esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1676                     a->firmware.state);
1677
1678        return -EINVAL;
1679}
1680
1681/* Handle a call to write firmware. */
1682int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1683                    int count)
1684{
1685        u32 length;
1686
1687        if (off == 0) {
1688                struct esas2r_flash_img *header =
1689                        (struct esas2r_flash_img *)buf;
1690
1691                /* assume version 0 flash image */
1692
1693                int min_size = sizeof(struct esas2r_flash_img_v0);
1694
1695                a->firmware.state = FW_INVALID_ST;
1696
1697                /* validate the version field first */
1698
1699                if (count < 4
1700                    ||  header->fi_version > FI_VERSION_1) {
1701                        esas2r_debug(
1702                                "esas2r_write_fw: short header or invalid version");
1703                        return -EINVAL;
1704                }
1705
1706                /* See if its a version 1 flash image */
1707
1708                if (header->fi_version == FI_VERSION_1)
1709                        min_size = sizeof(struct esas2r_flash_img);
1710
1711                /* If this is the start, the header must be full and valid. */
1712                if (count < min_size) {
1713                        esas2r_debug("esas2r_write_fw: short header, aborting");
1714                        return -EINVAL;
1715                }
1716
1717                /* Make sure the size is reasonable. */
1718                length = header->length;
1719
1720                if (length > 1024 * 1024) {
1721                        esas2r_debug(
1722                                "esas2r_write_fw: hosed, length %d  fi_version %d",
1723                                length, header->fi_version);
1724                        return -EINVAL;
1725                }
1726
1727                /*
1728                 * If this is a write command, allocate memory because
1729                 * we have to cache everything. otherwise, just cache
1730                 * the header, because the read op will do the command.
1731                 */
1732
1733                if (header->action == FI_ACT_DOWN) {
1734                        if (!allocate_fw_buffers(a, length))
1735                                return -ENOMEM;
1736
1737                        /*
1738                         * Store the command, so there is context on subsequent
1739                         * calls.
1740                         */
1741                        memcpy(&a->firmware.header,
1742                               buf,
1743                               sizeof(*header));
1744                } else if (header->action == FI_ACT_UP
1745                           ||  header->action == FI_ACT_UPSZ) {
1746                        /* Save the command, result will be picked up on read */
1747                        memcpy(&a->firmware.header,
1748                               buf,
1749                               sizeof(*header));
1750
1751                        a->firmware.state = FW_COMMAND_ST;
1752
1753                        esas2r_debug(
1754                                "esas2r_write_fw: COMMAND, count %d, action %d ",
1755                                count, header->action);
1756
1757                        /*
1758                         * Pretend we took the whole buffer,
1759                         * so we don't get bothered again.
1760                         */
1761
1762                        return count;
1763                } else {
1764                        esas2r_debug("esas2r_write_fw: invalid action %d ",
1765                                     a->firmware.header.action);
1766                        return -ENOSYS;
1767                }
1768        } else {
1769                length = a->firmware.header.length;
1770        }
1771
1772        /*
1773         * We only get here on a download command, regardless of offset.
1774         * the chunks written by the system need to be cached, and when
1775         * the final one arrives, issue the fmapi command.
1776         */
1777
1778        if (off + count > length)
1779                count = length - off;
1780
1781        if (count > 0) {
1782                esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1783                             count,
1784                             length);
1785
1786                /*
1787                 * On a full upload, the system tries sending the whole buffer.
1788                 * there's nothing to do with it, so just drop it here, before
1789                 * trying to copy over into unallocated memory!
1790                 */
1791                if (a->firmware.header.action == FI_ACT_UP)
1792                        return count;
1793
1794                if (!a->firmware.data) {
1795                        esas2r_debug(
1796                                "write: nonzero offset but no buffer available!");
1797                        return -ENOMEM;
1798                }
1799
1800                memcpy(&a->firmware.data[off], buf, count);
1801
1802                if (length == off + count) {
1803                        do_fm_api(a,
1804                                  (struct esas2r_flash_img *)a->firmware.data);
1805
1806                        /*
1807                         * Now copy the header result to be picked up by the
1808                         * next read
1809                         */
1810                        memcpy(&a->firmware.header,
1811                               a->firmware.data,
1812                               sizeof(a->firmware.header));
1813
1814                        a->firmware.state = FW_STATUS_ST;
1815
1816                        esas2r_debug("write completed");
1817
1818                        /*
1819                         * Since the system has the data buffered, the only way
1820                         * this can leak is if a root user writes a program
1821                         * that writes a shorter buffer than it claims, and the
1822                         * copyin fails.
1823                         */
1824                        free_fw_buffers(a);
1825                }
1826        }
1827
1828        return count;
1829}
1830
1831/* Callback for the completion of a VDA request. */
1832static void vda_complete_req(struct esas2r_adapter *a,
1833                             struct esas2r_request *rq)
1834{
1835        a->vda_command_done = 1;
1836        wake_up_interruptible(&a->vda_waiter);
1837}
1838
1839/* Scatter/gather callback for VDA requests */
1840static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1841{
1842        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1843        int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1844
1845        (*addr) = a->ppvda_buffer + offset;
1846        return VDA_MAX_BUFFER_SIZE - offset;
1847}
1848
1849/* Handle a call to read a VDA command. */
1850int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1851{
1852        if (!a->vda_buffer)
1853                return -ENOMEM;
1854
1855        if (off == 0) {
1856                struct esas2r_request *rq;
1857                struct atto_ioctl_vda *vi =
1858                        (struct atto_ioctl_vda *)a->vda_buffer;
1859                struct esas2r_sg_context sgc;
1860                bool wait_for_completion;
1861
1862                /*
1863                 * Presumeably, someone has already written to the vda_buffer,
1864                 * and now they are reading the node the response, so now we
1865                 * will actually issue the request to the chip and reply.
1866                 */
1867
1868                /* allocate a request */
1869                rq = esas2r_alloc_request(a);
1870                if (rq == NULL) {
1871                        esas2r_debug("esas2r_read_vda: out of requestss");
1872                        return -EBUSY;
1873                }
1874
1875                rq->comp_cb = vda_complete_req;
1876
1877                sgc.first_req = rq;
1878                sgc.adapter = a;
1879                sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1880                sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1881
1882                a->vda_command_done = 0;
1883
1884                wait_for_completion =
1885                        esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1886
1887                if (wait_for_completion) {
1888                        /* now wait around for it to complete. */
1889
1890                        while (!a->vda_command_done)
1891                                wait_event_interruptible(a->vda_waiter,
1892                                                         a->vda_command_done);
1893                }
1894
1895                esas2r_free_request(a, (struct esas2r_request *)rq);
1896        }
1897
1898        if (off > VDA_MAX_BUFFER_SIZE)
1899                return 0;
1900
1901        if (count + off > VDA_MAX_BUFFER_SIZE)
1902                count = VDA_MAX_BUFFER_SIZE - off;
1903
1904        if (count < 0)
1905                return 0;
1906
1907        memcpy(buf, a->vda_buffer + off, count);
1908
1909        return count;
1910}
1911
1912/* Handle a call to write a VDA command. */
1913int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1914                     int count)
1915{
1916        /*
1917         * allocate memory for it, if not already done.  once allocated,
1918         * we will keep it around until the driver is unloaded.
1919         */
1920
1921        if (!a->vda_buffer) {
1922                dma_addr_t dma_addr;
1923                a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1924                                                         (size_t)
1925                                                         VDA_MAX_BUFFER_SIZE,
1926                                                         &dma_addr,
1927                                                         GFP_KERNEL);
1928
1929                a->ppvda_buffer = dma_addr;
1930        }
1931
1932        if (!a->vda_buffer)
1933                return -ENOMEM;
1934
1935        if (off > VDA_MAX_BUFFER_SIZE)
1936                return 0;
1937
1938        if (count + off > VDA_MAX_BUFFER_SIZE)
1939                count = VDA_MAX_BUFFER_SIZE - off;
1940
1941        if (count < 1)
1942                return 0;
1943
1944        memcpy(a->vda_buffer + off, buf, count);
1945
1946        return count;
1947}
1948
1949/* Callback for the completion of an FS_API request.*/
1950static void fs_api_complete_req(struct esas2r_adapter *a,
1951                                struct esas2r_request *rq)
1952{
1953        a->fs_api_command_done = 1;
1954
1955        wake_up_interruptible(&a->fs_api_waiter);
1956}
1957
1958/* Scatter/gather callback for VDA requests */
1959static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1960{
1961        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1962        struct esas2r_ioctl_fs *fs =
1963                (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1964        u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1965
1966        (*addr) = a->ppfs_api_buffer + offset;
1967
1968        return a->fs_api_buffer_size - offset;
1969}
1970
1971/* Handle a call to read firmware via FS_API. */
1972int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1973{
1974        if (!a->fs_api_buffer)
1975                return -ENOMEM;
1976
1977        if (off == 0) {
1978                struct esas2r_request *rq;
1979                struct esas2r_sg_context sgc;
1980                struct esas2r_ioctl_fs *fs =
1981                        (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1982
1983                /* If another flash request is already in progress, return. */
1984                if (down_interruptible(&a->fs_api_semaphore)) {
1985busy:
1986                        fs->status = ATTO_STS_OUT_OF_RSRC;
1987                        return -EBUSY;
1988                }
1989
1990                /*
1991                 * Presumeably, someone has already written to the
1992                 * fs_api_buffer, and now they are reading the node the
1993                 * response, so now we will actually issue the request to the
1994                 * chip and reply. Allocate a request
1995                 */
1996
1997                rq = esas2r_alloc_request(a);
1998                if (rq == NULL) {
1999                        esas2r_debug("esas2r_read_fs: out of requests");
2000                        up(&a->fs_api_semaphore);
2001                        goto busy;
2002                }
2003
2004                rq->comp_cb = fs_api_complete_req;
2005
2006                /* Set up the SGCONTEXT for to build the s/g table */
2007
2008                sgc.cur_offset = fs->data;
2009                sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
2010
2011                a->fs_api_command_done = 0;
2012
2013                if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
2014                        if (fs->status == ATTO_STS_OUT_OF_RSRC)
2015                                count = -EBUSY;
2016
2017                        goto dont_wait;
2018                }
2019
2020                /* Now wait around for it to complete. */
2021
2022                while (!a->fs_api_command_done)
2023                        wait_event_interruptible(a->fs_api_waiter,
2024                                                 a->fs_api_command_done);
2025                ;
2026dont_wait:
2027                /* Free the request and keep going */
2028                up(&a->fs_api_semaphore);
2029                esas2r_free_request(a, (struct esas2r_request *)rq);
2030
2031                /* Pick up possible error code from above */
2032                if (count < 0)
2033                        return count;
2034        }
2035
2036        if (off > a->fs_api_buffer_size)
2037                return 0;
2038
2039        if (count + off > a->fs_api_buffer_size)
2040                count = a->fs_api_buffer_size - off;
2041
2042        if (count < 0)
2043                return 0;
2044
2045        memcpy(buf, a->fs_api_buffer + off, count);
2046
2047        return count;
2048}
2049
2050/* Handle a call to write firmware via FS_API. */
2051int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2052                    int count)
2053{
2054        if (off == 0) {
2055                struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2056                u32 length = fs->command.length + offsetof(
2057                        struct esas2r_ioctl_fs,
2058                        data);
2059
2060                /*
2061                 * Special case, for BEGIN commands, the length field
2062                 * is lying to us, so just get enough for the header.
2063                 */
2064
2065                if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2066                        length = offsetof(struct esas2r_ioctl_fs, data);
2067
2068                /*
2069                 * Beginning a command.  We assume we'll get at least
2070                 * enough in the first write so we can look at the
2071                 * header and see how much we need to alloc.
2072                 */
2073
2074                if (count < offsetof(struct esas2r_ioctl_fs, data))
2075                        return -EINVAL;
2076
2077                /* Allocate a buffer or use the existing buffer. */
2078                if (a->fs_api_buffer) {
2079                        if (a->fs_api_buffer_size < length) {
2080                                /* Free too-small buffer and get a new one */
2081                                dma_free_coherent(&a->pcid->dev,
2082                                                  (size_t)a->fs_api_buffer_size,
2083                                                  a->fs_api_buffer,
2084                                                  (dma_addr_t)a->ppfs_api_buffer);
2085
2086                                goto re_allocate_buffer;
2087                        }
2088                } else {
2089re_allocate_buffer:
2090                        a->fs_api_buffer_size = length;
2091
2092                        a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2093                                &a->pcid->dev,
2094                                (size_t)a->fs_api_buffer_size,
2095                                (dma_addr_t *)&a->ppfs_api_buffer,
2096                                GFP_KERNEL);
2097                }
2098        }
2099
2100        if (!a->fs_api_buffer)
2101                return -ENOMEM;
2102
2103        if (off > a->fs_api_buffer_size)
2104                return 0;
2105
2106        if (count + off > a->fs_api_buffer_size)
2107                count = a->fs_api_buffer_size - off;
2108
2109        if (count < 1)
2110                return 0;
2111
2112        memcpy(a->fs_api_buffer + off, buf, count);
2113
2114        return count;
2115}
2116