linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28static inline bool extent_state_in_tree(const struct extent_state *state)
  29{
  30        return !RB_EMPTY_NODE(&state->rb_node);
  31}
  32
  33#ifdef CONFIG_BTRFS_DEBUG
  34static LIST_HEAD(buffers);
  35static LIST_HEAD(states);
  36
  37static DEFINE_SPINLOCK(leak_lock);
  38
  39static inline
  40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  41{
  42        unsigned long flags;
  43
  44        spin_lock_irqsave(&leak_lock, flags);
  45        list_add(new, head);
  46        spin_unlock_irqrestore(&leak_lock, flags);
  47}
  48
  49static inline
  50void btrfs_leak_debug_del(struct list_head *entry)
  51{
  52        unsigned long flags;
  53
  54        spin_lock_irqsave(&leak_lock, flags);
  55        list_del(entry);
  56        spin_unlock_irqrestore(&leak_lock, flags);
  57}
  58
  59static inline
  60void btrfs_leak_debug_check(void)
  61{
  62        struct extent_state *state;
  63        struct extent_buffer *eb;
  64
  65        while (!list_empty(&states)) {
  66                state = list_entry(states.next, struct extent_state, leak_list);
  67                pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  68                       state->start, state->end, state->state,
  69                       extent_state_in_tree(state),
  70                       atomic_read(&state->refs));
  71                list_del(&state->leak_list);
  72                kmem_cache_free(extent_state_cache, state);
  73        }
  74
  75        while (!list_empty(&buffers)) {
  76                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  77                printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
  78                       "refs %d\n",
  79                       eb->start, eb->len, atomic_read(&eb->refs));
  80                list_del(&eb->leak_list);
  81                kmem_cache_free(extent_buffer_cache, eb);
  82        }
  83}
  84
  85#define btrfs_debug_check_extent_io_range(tree, start, end)             \
  86        __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  88                struct extent_io_tree *tree, u64 start, u64 end)
  89{
  90        struct inode *inode;
  91        u64 isize;
  92
  93        if (!tree->mapping)
  94                return;
  95
  96        inode = tree->mapping->host;
  97        isize = i_size_read(inode);
  98        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  99                btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 100                    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 101                                caller, btrfs_ino(inode), isize, start, end);
 102        }
 103}
 104#else
 105#define btrfs_leak_debug_add(new, head) do {} while (0)
 106#define btrfs_leak_debug_del(entry)     do {} while (0)
 107#define btrfs_leak_debug_check()        do {} while (0)
 108#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 109#endif
 110
 111#define BUFFER_LRU_MAX 64
 112
 113struct tree_entry {
 114        u64 start;
 115        u64 end;
 116        struct rb_node rb_node;
 117};
 118
 119struct extent_page_data {
 120        struct bio *bio;
 121        struct extent_io_tree *tree;
 122        get_extent_t *get_extent;
 123        unsigned long bio_flags;
 124
 125        /* tells writepage not to lock the state bits for this range
 126         * it still does the unlocking
 127         */
 128        unsigned int extent_locked:1;
 129
 130        /* tells the submit_bio code to use a WRITE_SYNC */
 131        unsigned int sync_io:1;
 132};
 133
 134static void add_extent_changeset(struct extent_state *state, unsigned bits,
 135                                 struct extent_changeset *changeset,
 136                                 int set)
 137{
 138        int ret;
 139
 140        if (!changeset)
 141                return;
 142        if (set && (state->state & bits) == bits)
 143                return;
 144        if (!set && (state->state & bits) == 0)
 145                return;
 146        changeset->bytes_changed += state->end - state->start + 1;
 147        ret = ulist_add(changeset->range_changed, state->start, state->end,
 148                        GFP_ATOMIC);
 149        /* ENOMEM */
 150        BUG_ON(ret < 0);
 151}
 152
 153static noinline void flush_write_bio(void *data);
 154static inline struct btrfs_fs_info *
 155tree_fs_info(struct extent_io_tree *tree)
 156{
 157        if (!tree->mapping)
 158                return NULL;
 159        return btrfs_sb(tree->mapping->host->i_sb);
 160}
 161
 162int __init extent_io_init(void)
 163{
 164        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 165                        sizeof(struct extent_state), 0,
 166                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 167        if (!extent_state_cache)
 168                return -ENOMEM;
 169
 170        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 171                        sizeof(struct extent_buffer), 0,
 172                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 173        if (!extent_buffer_cache)
 174                goto free_state_cache;
 175
 176        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 177                                     offsetof(struct btrfs_io_bio, bio));
 178        if (!btrfs_bioset)
 179                goto free_buffer_cache;
 180
 181        if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 182                goto free_bioset;
 183
 184        return 0;
 185
 186free_bioset:
 187        bioset_free(btrfs_bioset);
 188        btrfs_bioset = NULL;
 189
 190free_buffer_cache:
 191        kmem_cache_destroy(extent_buffer_cache);
 192        extent_buffer_cache = NULL;
 193
 194free_state_cache:
 195        kmem_cache_destroy(extent_state_cache);
 196        extent_state_cache = NULL;
 197        return -ENOMEM;
 198}
 199
 200void extent_io_exit(void)
 201{
 202        btrfs_leak_debug_check();
 203
 204        /*
 205         * Make sure all delayed rcu free are flushed before we
 206         * destroy caches.
 207         */
 208        rcu_barrier();
 209        kmem_cache_destroy(extent_state_cache);
 210        kmem_cache_destroy(extent_buffer_cache);
 211        if (btrfs_bioset)
 212                bioset_free(btrfs_bioset);
 213}
 214
 215void extent_io_tree_init(struct extent_io_tree *tree,
 216                         struct address_space *mapping)
 217{
 218        tree->state = RB_ROOT;
 219        tree->ops = NULL;
 220        tree->dirty_bytes = 0;
 221        spin_lock_init(&tree->lock);
 222        tree->mapping = mapping;
 223}
 224
 225static struct extent_state *alloc_extent_state(gfp_t mask)
 226{
 227        struct extent_state *state;
 228
 229        state = kmem_cache_alloc(extent_state_cache, mask);
 230        if (!state)
 231                return state;
 232        state->state = 0;
 233        state->failrec = NULL;
 234        RB_CLEAR_NODE(&state->rb_node);
 235        btrfs_leak_debug_add(&state->leak_list, &states);
 236        atomic_set(&state->refs, 1);
 237        init_waitqueue_head(&state->wq);
 238        trace_alloc_extent_state(state, mask, _RET_IP_);
 239        return state;
 240}
 241
 242void free_extent_state(struct extent_state *state)
 243{
 244        if (!state)
 245                return;
 246        if (atomic_dec_and_test(&state->refs)) {
 247                WARN_ON(extent_state_in_tree(state));
 248                btrfs_leak_debug_del(&state->leak_list);
 249                trace_free_extent_state(state, _RET_IP_);
 250                kmem_cache_free(extent_state_cache, state);
 251        }
 252}
 253
 254static struct rb_node *tree_insert(struct rb_root *root,
 255                                   struct rb_node *search_start,
 256                                   u64 offset,
 257                                   struct rb_node *node,
 258                                   struct rb_node ***p_in,
 259                                   struct rb_node **parent_in)
 260{
 261        struct rb_node **p;
 262        struct rb_node *parent = NULL;
 263        struct tree_entry *entry;
 264
 265        if (p_in && parent_in) {
 266                p = *p_in;
 267                parent = *parent_in;
 268                goto do_insert;
 269        }
 270
 271        p = search_start ? &search_start : &root->rb_node;
 272        while (*p) {
 273                parent = *p;
 274                entry = rb_entry(parent, struct tree_entry, rb_node);
 275
 276                if (offset < entry->start)
 277                        p = &(*p)->rb_left;
 278                else if (offset > entry->end)
 279                        p = &(*p)->rb_right;
 280                else
 281                        return parent;
 282        }
 283
 284do_insert:
 285        rb_link_node(node, parent, p);
 286        rb_insert_color(node, root);
 287        return NULL;
 288}
 289
 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 291                                      struct rb_node **prev_ret,
 292                                      struct rb_node **next_ret,
 293                                      struct rb_node ***p_ret,
 294                                      struct rb_node **parent_ret)
 295{
 296        struct rb_root *root = &tree->state;
 297        struct rb_node **n = &root->rb_node;
 298        struct rb_node *prev = NULL;
 299        struct rb_node *orig_prev = NULL;
 300        struct tree_entry *entry;
 301        struct tree_entry *prev_entry = NULL;
 302
 303        while (*n) {
 304                prev = *n;
 305                entry = rb_entry(prev, struct tree_entry, rb_node);
 306                prev_entry = entry;
 307
 308                if (offset < entry->start)
 309                        n = &(*n)->rb_left;
 310                else if (offset > entry->end)
 311                        n = &(*n)->rb_right;
 312                else
 313                        return *n;
 314        }
 315
 316        if (p_ret)
 317                *p_ret = n;
 318        if (parent_ret)
 319                *parent_ret = prev;
 320
 321        if (prev_ret) {
 322                orig_prev = prev;
 323                while (prev && offset > prev_entry->end) {
 324                        prev = rb_next(prev);
 325                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 326                }
 327                *prev_ret = prev;
 328                prev = orig_prev;
 329        }
 330
 331        if (next_ret) {
 332                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 333                while (prev && offset < prev_entry->start) {
 334                        prev = rb_prev(prev);
 335                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 336                }
 337                *next_ret = prev;
 338        }
 339        return NULL;
 340}
 341
 342static inline struct rb_node *
 343tree_search_for_insert(struct extent_io_tree *tree,
 344                       u64 offset,
 345                       struct rb_node ***p_ret,
 346                       struct rb_node **parent_ret)
 347{
 348        struct rb_node *prev = NULL;
 349        struct rb_node *ret;
 350
 351        ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 352        if (!ret)
 353                return prev;
 354        return ret;
 355}
 356
 357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 358                                          u64 offset)
 359{
 360        return tree_search_for_insert(tree, offset, NULL, NULL);
 361}
 362
 363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 364                     struct extent_state *other)
 365{
 366        if (tree->ops && tree->ops->merge_extent_hook)
 367                tree->ops->merge_extent_hook(tree->mapping->host, new,
 368                                             other);
 369}
 370
 371/*
 372 * utility function to look for merge candidates inside a given range.
 373 * Any extents with matching state are merged together into a single
 374 * extent in the tree.  Extents with EXTENT_IO in their state field
 375 * are not merged because the end_io handlers need to be able to do
 376 * operations on them without sleeping (or doing allocations/splits).
 377 *
 378 * This should be called with the tree lock held.
 379 */
 380static void merge_state(struct extent_io_tree *tree,
 381                        struct extent_state *state)
 382{
 383        struct extent_state *other;
 384        struct rb_node *other_node;
 385
 386        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 387                return;
 388
 389        other_node = rb_prev(&state->rb_node);
 390        if (other_node) {
 391                other = rb_entry(other_node, struct extent_state, rb_node);
 392                if (other->end == state->start - 1 &&
 393                    other->state == state->state) {
 394                        merge_cb(tree, state, other);
 395                        state->start = other->start;
 396                        rb_erase(&other->rb_node, &tree->state);
 397                        RB_CLEAR_NODE(&other->rb_node);
 398                        free_extent_state(other);
 399                }
 400        }
 401        other_node = rb_next(&state->rb_node);
 402        if (other_node) {
 403                other = rb_entry(other_node, struct extent_state, rb_node);
 404                if (other->start == state->end + 1 &&
 405                    other->state == state->state) {
 406                        merge_cb(tree, state, other);
 407                        state->end = other->end;
 408                        rb_erase(&other->rb_node, &tree->state);
 409                        RB_CLEAR_NODE(&other->rb_node);
 410                        free_extent_state(other);
 411                }
 412        }
 413}
 414
 415static void set_state_cb(struct extent_io_tree *tree,
 416                         struct extent_state *state, unsigned *bits)
 417{
 418        if (tree->ops && tree->ops->set_bit_hook)
 419                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 420}
 421
 422static void clear_state_cb(struct extent_io_tree *tree,
 423                           struct extent_state *state, unsigned *bits)
 424{
 425        if (tree->ops && tree->ops->clear_bit_hook)
 426                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 427}
 428
 429static void set_state_bits(struct extent_io_tree *tree,
 430                           struct extent_state *state, unsigned *bits,
 431                           struct extent_changeset *changeset);
 432
 433/*
 434 * insert an extent_state struct into the tree.  'bits' are set on the
 435 * struct before it is inserted.
 436 *
 437 * This may return -EEXIST if the extent is already there, in which case the
 438 * state struct is freed.
 439 *
 440 * The tree lock is not taken internally.  This is a utility function and
 441 * probably isn't what you want to call (see set/clear_extent_bit).
 442 */
 443static int insert_state(struct extent_io_tree *tree,
 444                        struct extent_state *state, u64 start, u64 end,
 445                        struct rb_node ***p,
 446                        struct rb_node **parent,
 447                        unsigned *bits, struct extent_changeset *changeset)
 448{
 449        struct rb_node *node;
 450
 451        if (end < start)
 452                WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 453                       end, start);
 454        state->start = start;
 455        state->end = end;
 456
 457        set_state_bits(tree, state, bits, changeset);
 458
 459        node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 460        if (node) {
 461                struct extent_state *found;
 462                found = rb_entry(node, struct extent_state, rb_node);
 463                printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 464                       "%llu %llu\n",
 465                       found->start, found->end, start, end);
 466                return -EEXIST;
 467        }
 468        merge_state(tree, state);
 469        return 0;
 470}
 471
 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 473                     u64 split)
 474{
 475        if (tree->ops && tree->ops->split_extent_hook)
 476                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 477}
 478
 479/*
 480 * split a given extent state struct in two, inserting the preallocated
 481 * struct 'prealloc' as the newly created second half.  'split' indicates an
 482 * offset inside 'orig' where it should be split.
 483 *
 484 * Before calling,
 485 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 486 * are two extent state structs in the tree:
 487 * prealloc: [orig->start, split - 1]
 488 * orig: [ split, orig->end ]
 489 *
 490 * The tree locks are not taken by this function. They need to be held
 491 * by the caller.
 492 */
 493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 494                       struct extent_state *prealloc, u64 split)
 495{
 496        struct rb_node *node;
 497
 498        split_cb(tree, orig, split);
 499
 500        prealloc->start = orig->start;
 501        prealloc->end = split - 1;
 502        prealloc->state = orig->state;
 503        orig->start = split;
 504
 505        node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 506                           &prealloc->rb_node, NULL, NULL);
 507        if (node) {
 508                free_extent_state(prealloc);
 509                return -EEXIST;
 510        }
 511        return 0;
 512}
 513
 514static struct extent_state *next_state(struct extent_state *state)
 515{
 516        struct rb_node *next = rb_next(&state->rb_node);
 517        if (next)
 518                return rb_entry(next, struct extent_state, rb_node);
 519        else
 520                return NULL;
 521}
 522
 523/*
 524 * utility function to clear some bits in an extent state struct.
 525 * it will optionally wake up any one waiting on this state (wake == 1).
 526 *
 527 * If no bits are set on the state struct after clearing things, the
 528 * struct is freed and removed from the tree
 529 */
 530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 531                                            struct extent_state *state,
 532                                            unsigned *bits, int wake,
 533                                            struct extent_changeset *changeset)
 534{
 535        struct extent_state *next;
 536        unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 537
 538        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 539                u64 range = state->end - state->start + 1;
 540                WARN_ON(range > tree->dirty_bytes);
 541                tree->dirty_bytes -= range;
 542        }
 543        clear_state_cb(tree, state, bits);
 544        add_extent_changeset(state, bits_to_clear, changeset, 0);
 545        state->state &= ~bits_to_clear;
 546        if (wake)
 547                wake_up(&state->wq);
 548        if (state->state == 0) {
 549                next = next_state(state);
 550                if (extent_state_in_tree(state)) {
 551                        rb_erase(&state->rb_node, &tree->state);
 552                        RB_CLEAR_NODE(&state->rb_node);
 553                        free_extent_state(state);
 554                } else {
 555                        WARN_ON(1);
 556                }
 557        } else {
 558                merge_state(tree, state);
 559                next = next_state(state);
 560        }
 561        return next;
 562}
 563
 564static struct extent_state *
 565alloc_extent_state_atomic(struct extent_state *prealloc)
 566{
 567        if (!prealloc)
 568                prealloc = alloc_extent_state(GFP_ATOMIC);
 569
 570        return prealloc;
 571}
 572
 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 574{
 575        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 576                    "Extent tree was modified by another "
 577                    "thread while locked.");
 578}
 579
 580/*
 581 * clear some bits on a range in the tree.  This may require splitting
 582 * or inserting elements in the tree, so the gfp mask is used to
 583 * indicate which allocations or sleeping are allowed.
 584 *
 585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 586 * the given range from the tree regardless of state (ie for truncate).
 587 *
 588 * the range [start, end] is inclusive.
 589 *
 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
 591 */
 592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 593                              unsigned bits, int wake, int delete,
 594                              struct extent_state **cached_state,
 595                              gfp_t mask, struct extent_changeset *changeset)
 596{
 597        struct extent_state *state;
 598        struct extent_state *cached;
 599        struct extent_state *prealloc = NULL;
 600        struct rb_node *node;
 601        u64 last_end;
 602        int err;
 603        int clear = 0;
 604
 605        btrfs_debug_check_extent_io_range(tree, start, end);
 606
 607        if (bits & EXTENT_DELALLOC)
 608                bits |= EXTENT_NORESERVE;
 609
 610        if (delete)
 611                bits |= ~EXTENT_CTLBITS;
 612        bits |= EXTENT_FIRST_DELALLOC;
 613
 614        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 615                clear = 1;
 616again:
 617        if (!prealloc && gfpflags_allow_blocking(mask)) {
 618                /*
 619                 * Don't care for allocation failure here because we might end
 620                 * up not needing the pre-allocated extent state at all, which
 621                 * is the case if we only have in the tree extent states that
 622                 * cover our input range and don't cover too any other range.
 623                 * If we end up needing a new extent state we allocate it later.
 624                 */
 625                prealloc = alloc_extent_state(mask);
 626        }
 627
 628        spin_lock(&tree->lock);
 629        if (cached_state) {
 630                cached = *cached_state;
 631
 632                if (clear) {
 633                        *cached_state = NULL;
 634                        cached_state = NULL;
 635                }
 636
 637                if (cached && extent_state_in_tree(cached) &&
 638                    cached->start <= start && cached->end > start) {
 639                        if (clear)
 640                                atomic_dec(&cached->refs);
 641                        state = cached;
 642                        goto hit_next;
 643                }
 644                if (clear)
 645                        free_extent_state(cached);
 646        }
 647        /*
 648         * this search will find the extents that end after
 649         * our range starts
 650         */
 651        node = tree_search(tree, start);
 652        if (!node)
 653                goto out;
 654        state = rb_entry(node, struct extent_state, rb_node);
 655hit_next:
 656        if (state->start > end)
 657                goto out;
 658        WARN_ON(state->end < start);
 659        last_end = state->end;
 660
 661        /* the state doesn't have the wanted bits, go ahead */
 662        if (!(state->state & bits)) {
 663                state = next_state(state);
 664                goto next;
 665        }
 666
 667        /*
 668         *     | ---- desired range ---- |
 669         *  | state | or
 670         *  | ------------- state -------------- |
 671         *
 672         * We need to split the extent we found, and may flip
 673         * bits on second half.
 674         *
 675         * If the extent we found extends past our range, we
 676         * just split and search again.  It'll get split again
 677         * the next time though.
 678         *
 679         * If the extent we found is inside our range, we clear
 680         * the desired bit on it.
 681         */
 682
 683        if (state->start < start) {
 684                prealloc = alloc_extent_state_atomic(prealloc);
 685                BUG_ON(!prealloc);
 686                err = split_state(tree, state, prealloc, start);
 687                if (err)
 688                        extent_io_tree_panic(tree, err);
 689
 690                prealloc = NULL;
 691                if (err)
 692                        goto out;
 693                if (state->end <= end) {
 694                        state = clear_state_bit(tree, state, &bits, wake,
 695                                                changeset);
 696                        goto next;
 697                }
 698                goto search_again;
 699        }
 700        /*
 701         * | ---- desired range ---- |
 702         *                        | state |
 703         * We need to split the extent, and clear the bit
 704         * on the first half
 705         */
 706        if (state->start <= end && state->end > end) {
 707                prealloc = alloc_extent_state_atomic(prealloc);
 708                BUG_ON(!prealloc);
 709                err = split_state(tree, state, prealloc, end + 1);
 710                if (err)
 711                        extent_io_tree_panic(tree, err);
 712
 713                if (wake)
 714                        wake_up(&state->wq);
 715
 716                clear_state_bit(tree, prealloc, &bits, wake, changeset);
 717
 718                prealloc = NULL;
 719                goto out;
 720        }
 721
 722        state = clear_state_bit(tree, state, &bits, wake, changeset);
 723next:
 724        if (last_end == (u64)-1)
 725                goto out;
 726        start = last_end + 1;
 727        if (start <= end && state && !need_resched())
 728                goto hit_next;
 729        goto search_again;
 730
 731out:
 732        spin_unlock(&tree->lock);
 733        if (prealloc)
 734                free_extent_state(prealloc);
 735
 736        return 0;
 737
 738search_again:
 739        if (start > end)
 740                goto out;
 741        spin_unlock(&tree->lock);
 742        if (gfpflags_allow_blocking(mask))
 743                cond_resched();
 744        goto again;
 745}
 746
 747static void wait_on_state(struct extent_io_tree *tree,
 748                          struct extent_state *state)
 749                __releases(tree->lock)
 750                __acquires(tree->lock)
 751{
 752        DEFINE_WAIT(wait);
 753        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 754        spin_unlock(&tree->lock);
 755        schedule();
 756        spin_lock(&tree->lock);
 757        finish_wait(&state->wq, &wait);
 758}
 759
 760/*
 761 * waits for one or more bits to clear on a range in the state tree.
 762 * The range [start, end] is inclusive.
 763 * The tree lock is taken by this function
 764 */
 765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 766                            unsigned long bits)
 767{
 768        struct extent_state *state;
 769        struct rb_node *node;
 770
 771        btrfs_debug_check_extent_io_range(tree, start, end);
 772
 773        spin_lock(&tree->lock);
 774again:
 775        while (1) {
 776                /*
 777                 * this search will find all the extents that end after
 778                 * our range starts
 779                 */
 780                node = tree_search(tree, start);
 781process_node:
 782                if (!node)
 783                        break;
 784
 785                state = rb_entry(node, struct extent_state, rb_node);
 786
 787                if (state->start > end)
 788                        goto out;
 789
 790                if (state->state & bits) {
 791                        start = state->start;
 792                        atomic_inc(&state->refs);
 793                        wait_on_state(tree, state);
 794                        free_extent_state(state);
 795                        goto again;
 796                }
 797                start = state->end + 1;
 798
 799                if (start > end)
 800                        break;
 801
 802                if (!cond_resched_lock(&tree->lock)) {
 803                        node = rb_next(node);
 804                        goto process_node;
 805                }
 806        }
 807out:
 808        spin_unlock(&tree->lock);
 809}
 810
 811static void set_state_bits(struct extent_io_tree *tree,
 812                           struct extent_state *state,
 813                           unsigned *bits, struct extent_changeset *changeset)
 814{
 815        unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 816
 817        set_state_cb(tree, state, bits);
 818        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 819                u64 range = state->end - state->start + 1;
 820                tree->dirty_bytes += range;
 821        }
 822        add_extent_changeset(state, bits_to_set, changeset, 1);
 823        state->state |= bits_to_set;
 824}
 825
 826static void cache_state_if_flags(struct extent_state *state,
 827                                 struct extent_state **cached_ptr,
 828                                 unsigned flags)
 829{
 830        if (cached_ptr && !(*cached_ptr)) {
 831                if (!flags || (state->state & flags)) {
 832                        *cached_ptr = state;
 833                        atomic_inc(&state->refs);
 834                }
 835        }
 836}
 837
 838static void cache_state(struct extent_state *state,
 839                        struct extent_state **cached_ptr)
 840{
 841        return cache_state_if_flags(state, cached_ptr,
 842                                    EXTENT_IOBITS | EXTENT_BOUNDARY);
 843}
 844
 845/*
 846 * set some bits on a range in the tree.  This may require allocations or
 847 * sleeping, so the gfp mask is used to indicate what is allowed.
 848 *
 849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 850 * part of the range already has the desired bits set.  The start of the
 851 * existing range is returned in failed_start in this case.
 852 *
 853 * [start, end] is inclusive This takes the tree lock.
 854 */
 855
 856static int __must_check
 857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 858                 unsigned bits, unsigned exclusive_bits,
 859                 u64 *failed_start, struct extent_state **cached_state,
 860                 gfp_t mask, struct extent_changeset *changeset)
 861{
 862        struct extent_state *state;
 863        struct extent_state *prealloc = NULL;
 864        struct rb_node *node;
 865        struct rb_node **p;
 866        struct rb_node *parent;
 867        int err = 0;
 868        u64 last_start;
 869        u64 last_end;
 870
 871        btrfs_debug_check_extent_io_range(tree, start, end);
 872
 873        bits |= EXTENT_FIRST_DELALLOC;
 874again:
 875        if (!prealloc && gfpflags_allow_blocking(mask)) {
 876                prealloc = alloc_extent_state(mask);
 877                BUG_ON(!prealloc);
 878        }
 879
 880        spin_lock(&tree->lock);
 881        if (cached_state && *cached_state) {
 882                state = *cached_state;
 883                if (state->start <= start && state->end > start &&
 884                    extent_state_in_tree(state)) {
 885                        node = &state->rb_node;
 886                        goto hit_next;
 887                }
 888        }
 889        /*
 890         * this search will find all the extents that end after
 891         * our range starts.
 892         */
 893        node = tree_search_for_insert(tree, start, &p, &parent);
 894        if (!node) {
 895                prealloc = alloc_extent_state_atomic(prealloc);
 896                BUG_ON(!prealloc);
 897                err = insert_state(tree, prealloc, start, end,
 898                                   &p, &parent, &bits, changeset);
 899                if (err)
 900                        extent_io_tree_panic(tree, err);
 901
 902                cache_state(prealloc, cached_state);
 903                prealloc = NULL;
 904                goto out;
 905        }
 906        state = rb_entry(node, struct extent_state, rb_node);
 907hit_next:
 908        last_start = state->start;
 909        last_end = state->end;
 910
 911        /*
 912         * | ---- desired range ---- |
 913         * | state |
 914         *
 915         * Just lock what we found and keep going
 916         */
 917        if (state->start == start && state->end <= end) {
 918                if (state->state & exclusive_bits) {
 919                        *failed_start = state->start;
 920                        err = -EEXIST;
 921                        goto out;
 922                }
 923
 924                set_state_bits(tree, state, &bits, changeset);
 925                cache_state(state, cached_state);
 926                merge_state(tree, state);
 927                if (last_end == (u64)-1)
 928                        goto out;
 929                start = last_end + 1;
 930                state = next_state(state);
 931                if (start < end && state && state->start == start &&
 932                    !need_resched())
 933                        goto hit_next;
 934                goto search_again;
 935        }
 936
 937        /*
 938         *     | ---- desired range ---- |
 939         * | state |
 940         *   or
 941         * | ------------- state -------------- |
 942         *
 943         * We need to split the extent we found, and may flip bits on
 944         * second half.
 945         *
 946         * If the extent we found extends past our
 947         * range, we just split and search again.  It'll get split
 948         * again the next time though.
 949         *
 950         * If the extent we found is inside our range, we set the
 951         * desired bit on it.
 952         */
 953        if (state->start < start) {
 954                if (state->state & exclusive_bits) {
 955                        *failed_start = start;
 956                        err = -EEXIST;
 957                        goto out;
 958                }
 959
 960                prealloc = alloc_extent_state_atomic(prealloc);
 961                BUG_ON(!prealloc);
 962                err = split_state(tree, state, prealloc, start);
 963                if (err)
 964                        extent_io_tree_panic(tree, err);
 965
 966                prealloc = NULL;
 967                if (err)
 968                        goto out;
 969                if (state->end <= end) {
 970                        set_state_bits(tree, state, &bits, changeset);
 971                        cache_state(state, cached_state);
 972                        merge_state(tree, state);
 973                        if (last_end == (u64)-1)
 974                                goto out;
 975                        start = last_end + 1;
 976                        state = next_state(state);
 977                        if (start < end && state && state->start == start &&
 978                            !need_resched())
 979                                goto hit_next;
 980                }
 981                goto search_again;
 982        }
 983        /*
 984         * | ---- desired range ---- |
 985         *     | state | or               | state |
 986         *
 987         * There's a hole, we need to insert something in it and
 988         * ignore the extent we found.
 989         */
 990        if (state->start > start) {
 991                u64 this_end;
 992                if (end < last_start)
 993                        this_end = end;
 994                else
 995                        this_end = last_start - 1;
 996
 997                prealloc = alloc_extent_state_atomic(prealloc);
 998                BUG_ON(!prealloc);
 999
1000                /*
1001                 * Avoid to free 'prealloc' if it can be merged with
1002                 * the later extent.
1003                 */
1004                err = insert_state(tree, prealloc, start, this_end,
1005                                   NULL, NULL, &bits, changeset);
1006                if (err)
1007                        extent_io_tree_panic(tree, err);
1008
1009                cache_state(prealloc, cached_state);
1010                prealloc = NULL;
1011                start = this_end + 1;
1012                goto search_again;
1013        }
1014        /*
1015         * | ---- desired range ---- |
1016         *                        | state |
1017         * We need to split the extent, and set the bit
1018         * on the first half
1019         */
1020        if (state->start <= end && state->end > end) {
1021                if (state->state & exclusive_bits) {
1022                        *failed_start = start;
1023                        err = -EEXIST;
1024                        goto out;
1025                }
1026
1027                prealloc = alloc_extent_state_atomic(prealloc);
1028                BUG_ON(!prealloc);
1029                err = split_state(tree, state, prealloc, end + 1);
1030                if (err)
1031                        extent_io_tree_panic(tree, err);
1032
1033                set_state_bits(tree, prealloc, &bits, changeset);
1034                cache_state(prealloc, cached_state);
1035                merge_state(tree, prealloc);
1036                prealloc = NULL;
1037                goto out;
1038        }
1039
1040        goto search_again;
1041
1042out:
1043        spin_unlock(&tree->lock);
1044        if (prealloc)
1045                free_extent_state(prealloc);
1046
1047        return err;
1048
1049search_again:
1050        if (start > end)
1051                goto out;
1052        spin_unlock(&tree->lock);
1053        if (gfpflags_allow_blocking(mask))
1054                cond_resched();
1055        goto again;
1056}
1057
1058int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1059                   unsigned bits, u64 * failed_start,
1060                   struct extent_state **cached_state, gfp_t mask)
1061{
1062        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1063                                cached_state, mask, NULL);
1064}
1065
1066
1067/**
1068 * convert_extent_bit - convert all bits in a given range from one bit to
1069 *                      another
1070 * @tree:       the io tree to search
1071 * @start:      the start offset in bytes
1072 * @end:        the end offset in bytes (inclusive)
1073 * @bits:       the bits to set in this range
1074 * @clear_bits: the bits to clear in this range
1075 * @cached_state:       state that we're going to cache
1076 * @mask:       the allocation mask
1077 *
1078 * This will go through and set bits for the given range.  If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1082 * boundary bits like LOCK.
1083 */
1084int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1085                       unsigned bits, unsigned clear_bits,
1086                       struct extent_state **cached_state, gfp_t mask)
1087{
1088        struct extent_state *state;
1089        struct extent_state *prealloc = NULL;
1090        struct rb_node *node;
1091        struct rb_node **p;
1092        struct rb_node *parent;
1093        int err = 0;
1094        u64 last_start;
1095        u64 last_end;
1096        bool first_iteration = true;
1097
1098        btrfs_debug_check_extent_io_range(tree, start, end);
1099
1100again:
1101        if (!prealloc && gfpflags_allow_blocking(mask)) {
1102                /*
1103                 * Best effort, don't worry if extent state allocation fails
1104                 * here for the first iteration. We might have a cached state
1105                 * that matches exactly the target range, in which case no
1106                 * extent state allocations are needed. We'll only know this
1107                 * after locking the tree.
1108                 */
1109                prealloc = alloc_extent_state(mask);
1110                if (!prealloc && !first_iteration)
1111                        return -ENOMEM;
1112        }
1113
1114        spin_lock(&tree->lock);
1115        if (cached_state && *cached_state) {
1116                state = *cached_state;
1117                if (state->start <= start && state->end > start &&
1118                    extent_state_in_tree(state)) {
1119                        node = &state->rb_node;
1120                        goto hit_next;
1121                }
1122        }
1123
1124        /*
1125         * this search will find all the extents that end after
1126         * our range starts.
1127         */
1128        node = tree_search_for_insert(tree, start, &p, &parent);
1129        if (!node) {
1130                prealloc = alloc_extent_state_atomic(prealloc);
1131                if (!prealloc) {
1132                        err = -ENOMEM;
1133                        goto out;
1134                }
1135                err = insert_state(tree, prealloc, start, end,
1136                                   &p, &parent, &bits, NULL);
1137                if (err)
1138                        extent_io_tree_panic(tree, err);
1139                cache_state(prealloc, cached_state);
1140                prealloc = NULL;
1141                goto out;
1142        }
1143        state = rb_entry(node, struct extent_state, rb_node);
1144hit_next:
1145        last_start = state->start;
1146        last_end = state->end;
1147
1148        /*
1149         * | ---- desired range ---- |
1150         * | state |
1151         *
1152         * Just lock what we found and keep going
1153         */
1154        if (state->start == start && state->end <= end) {
1155                set_state_bits(tree, state, &bits, NULL);
1156                cache_state(state, cached_state);
1157                state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1158                if (last_end == (u64)-1)
1159                        goto out;
1160                start = last_end + 1;
1161                if (start < end && state && state->start == start &&
1162                    !need_resched())
1163                        goto hit_next;
1164                goto search_again;
1165        }
1166
1167        /*
1168         *     | ---- desired range ---- |
1169         * | state |
1170         *   or
1171         * | ------------- state -------------- |
1172         *
1173         * We need to split the extent we found, and may flip bits on
1174         * second half.
1175         *
1176         * If the extent we found extends past our
1177         * range, we just split and search again.  It'll get split
1178         * again the next time though.
1179         *
1180         * If the extent we found is inside our range, we set the
1181         * desired bit on it.
1182         */
1183        if (state->start < start) {
1184                prealloc = alloc_extent_state_atomic(prealloc);
1185                if (!prealloc) {
1186                        err = -ENOMEM;
1187                        goto out;
1188                }
1189                err = split_state(tree, state, prealloc, start);
1190                if (err)
1191                        extent_io_tree_panic(tree, err);
1192                prealloc = NULL;
1193                if (err)
1194                        goto out;
1195                if (state->end <= end) {
1196                        set_state_bits(tree, state, &bits, NULL);
1197                        cache_state(state, cached_state);
1198                        state = clear_state_bit(tree, state, &clear_bits, 0,
1199                                                NULL);
1200                        if (last_end == (u64)-1)
1201                                goto out;
1202                        start = last_end + 1;
1203                        if (start < end && state && state->start == start &&
1204                            !need_resched())
1205                                goto hit_next;
1206                }
1207                goto search_again;
1208        }
1209        /*
1210         * | ---- desired range ---- |
1211         *     | state | or               | state |
1212         *
1213         * There's a hole, we need to insert something in it and
1214         * ignore the extent we found.
1215         */
1216        if (state->start > start) {
1217                u64 this_end;
1218                if (end < last_start)
1219                        this_end = end;
1220                else
1221                        this_end = last_start - 1;
1222
1223                prealloc = alloc_extent_state_atomic(prealloc);
1224                if (!prealloc) {
1225                        err = -ENOMEM;
1226                        goto out;
1227                }
1228
1229                /*
1230                 * Avoid to free 'prealloc' if it can be merged with
1231                 * the later extent.
1232                 */
1233                err = insert_state(tree, prealloc, start, this_end,
1234                                   NULL, NULL, &bits, NULL);
1235                if (err)
1236                        extent_io_tree_panic(tree, err);
1237                cache_state(prealloc, cached_state);
1238                prealloc = NULL;
1239                start = this_end + 1;
1240                goto search_again;
1241        }
1242        /*
1243         * | ---- desired range ---- |
1244         *                        | state |
1245         * We need to split the extent, and set the bit
1246         * on the first half
1247         */
1248        if (state->start <= end && state->end > end) {
1249                prealloc = alloc_extent_state_atomic(prealloc);
1250                if (!prealloc) {
1251                        err = -ENOMEM;
1252                        goto out;
1253                }
1254
1255                err = split_state(tree, state, prealloc, end + 1);
1256                if (err)
1257                        extent_io_tree_panic(tree, err);
1258
1259                set_state_bits(tree, prealloc, &bits, NULL);
1260                cache_state(prealloc, cached_state);
1261                clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1262                prealloc = NULL;
1263                goto out;
1264        }
1265
1266        goto search_again;
1267
1268out:
1269        spin_unlock(&tree->lock);
1270        if (prealloc)
1271                free_extent_state(prealloc);
1272
1273        return err;
1274
1275search_again:
1276        if (start > end)
1277                goto out;
1278        spin_unlock(&tree->lock);
1279        if (gfpflags_allow_blocking(mask))
1280                cond_resched();
1281        first_iteration = false;
1282        goto again;
1283}
1284
1285/* wrappers around set/clear extent bit */
1286int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287                           unsigned bits, gfp_t mask,
1288                           struct extent_changeset *changeset)
1289{
1290        /*
1291         * We don't support EXTENT_LOCKED yet, as current changeset will
1292         * record any bits changed, so for EXTENT_LOCKED case, it will
1293         * either fail with -EEXIST or changeset will record the whole
1294         * range.
1295         */
1296        BUG_ON(bits & EXTENT_LOCKED);
1297
1298        return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299                                changeset);
1300}
1301
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303                     unsigned bits, int wake, int delete,
1304                     struct extent_state **cached, gfp_t mask)
1305{
1306        return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307                                  cached, mask, NULL);
1308}
1309
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311                             unsigned bits, gfp_t mask,
1312                             struct extent_changeset *changeset)
1313{
1314        /*
1315         * Don't support EXTENT_LOCKED case, same reason as
1316         * set_record_extent_bits().
1317         */
1318        BUG_ON(bits & EXTENT_LOCKED);
1319
1320        return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1321                                  changeset);
1322}
1323
1324/*
1325 * either insert or lock state struct between start and end use mask to tell
1326 * us if waiting is desired.
1327 */
1328int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1329                     struct extent_state **cached_state)
1330{
1331        int err;
1332        u64 failed_start;
1333
1334        while (1) {
1335                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1336                                       EXTENT_LOCKED, &failed_start,
1337                                       cached_state, GFP_NOFS, NULL);
1338                if (err == -EEXIST) {
1339                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1340                        start = failed_start;
1341                } else
1342                        break;
1343                WARN_ON(start > end);
1344        }
1345        return err;
1346}
1347
1348int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1349{
1350        int err;
1351        u64 failed_start;
1352
1353        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1354                               &failed_start, NULL, GFP_NOFS, NULL);
1355        if (err == -EEXIST) {
1356                if (failed_start > start)
1357                        clear_extent_bit(tree, start, failed_start - 1,
1358                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1359                return 0;
1360        }
1361        return 1;
1362}
1363
1364void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1365{
1366        unsigned long index = start >> PAGE_SHIFT;
1367        unsigned long end_index = end >> PAGE_SHIFT;
1368        struct page *page;
1369
1370        while (index <= end_index) {
1371                page = find_get_page(inode->i_mapping, index);
1372                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1373                clear_page_dirty_for_io(page);
1374                put_page(page);
1375                index++;
1376        }
1377}
1378
1379void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380{
1381        unsigned long index = start >> PAGE_SHIFT;
1382        unsigned long end_index = end >> PAGE_SHIFT;
1383        struct page *page;
1384
1385        while (index <= end_index) {
1386                page = find_get_page(inode->i_mapping, index);
1387                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388                __set_page_dirty_nobuffers(page);
1389                account_page_redirty(page);
1390                put_page(page);
1391                index++;
1392        }
1393}
1394
1395/*
1396 * helper function to set both pages and extents in the tree writeback
1397 */
1398static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1399{
1400        unsigned long index = start >> PAGE_SHIFT;
1401        unsigned long end_index = end >> PAGE_SHIFT;
1402        struct page *page;
1403
1404        while (index <= end_index) {
1405                page = find_get_page(tree->mapping, index);
1406                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1407                set_page_writeback(page);
1408                put_page(page);
1409                index++;
1410        }
1411}
1412
1413/* find the first state struct with 'bits' set after 'start', and
1414 * return it.  tree->lock must be held.  NULL will returned if
1415 * nothing was found after 'start'
1416 */
1417static struct extent_state *
1418find_first_extent_bit_state(struct extent_io_tree *tree,
1419                            u64 start, unsigned bits)
1420{
1421        struct rb_node *node;
1422        struct extent_state *state;
1423
1424        /*
1425         * this search will find all the extents that end after
1426         * our range starts.
1427         */
1428        node = tree_search(tree, start);
1429        if (!node)
1430                goto out;
1431
1432        while (1) {
1433                state = rb_entry(node, struct extent_state, rb_node);
1434                if (state->end >= start && (state->state & bits))
1435                        return state;
1436
1437                node = rb_next(node);
1438                if (!node)
1439                        break;
1440        }
1441out:
1442        return NULL;
1443}
1444
1445/*
1446 * find the first offset in the io tree with 'bits' set. zero is
1447 * returned if we find something, and *start_ret and *end_ret are
1448 * set to reflect the state struct that was found.
1449 *
1450 * If nothing was found, 1 is returned. If found something, return 0.
1451 */
1452int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1453                          u64 *start_ret, u64 *end_ret, unsigned bits,
1454                          struct extent_state **cached_state)
1455{
1456        struct extent_state *state;
1457        struct rb_node *n;
1458        int ret = 1;
1459
1460        spin_lock(&tree->lock);
1461        if (cached_state && *cached_state) {
1462                state = *cached_state;
1463                if (state->end == start - 1 && extent_state_in_tree(state)) {
1464                        n = rb_next(&state->rb_node);
1465                        while (n) {
1466                                state = rb_entry(n, struct extent_state,
1467                                                 rb_node);
1468                                if (state->state & bits)
1469                                        goto got_it;
1470                                n = rb_next(n);
1471                        }
1472                        free_extent_state(*cached_state);
1473                        *cached_state = NULL;
1474                        goto out;
1475                }
1476                free_extent_state(*cached_state);
1477                *cached_state = NULL;
1478        }
1479
1480        state = find_first_extent_bit_state(tree, start, bits);
1481got_it:
1482        if (state) {
1483                cache_state_if_flags(state, cached_state, 0);
1484                *start_ret = state->start;
1485                *end_ret = state->end;
1486                ret = 0;
1487        }
1488out:
1489        spin_unlock(&tree->lock);
1490        return ret;
1491}
1492
1493/*
1494 * find a contiguous range of bytes in the file marked as delalloc, not
1495 * more than 'max_bytes'.  start and end are used to return the range,
1496 *
1497 * 1 is returned if we find something, 0 if nothing was in the tree
1498 */
1499static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1500                                        u64 *start, u64 *end, u64 max_bytes,
1501                                        struct extent_state **cached_state)
1502{
1503        struct rb_node *node;
1504        struct extent_state *state;
1505        u64 cur_start = *start;
1506        u64 found = 0;
1507        u64 total_bytes = 0;
1508
1509        spin_lock(&tree->lock);
1510
1511        /*
1512         * this search will find all the extents that end after
1513         * our range starts.
1514         */
1515        node = tree_search(tree, cur_start);
1516        if (!node) {
1517                if (!found)
1518                        *end = (u64)-1;
1519                goto out;
1520        }
1521
1522        while (1) {
1523                state = rb_entry(node, struct extent_state, rb_node);
1524                if (found && (state->start != cur_start ||
1525                              (state->state & EXTENT_BOUNDARY))) {
1526                        goto out;
1527                }
1528                if (!(state->state & EXTENT_DELALLOC)) {
1529                        if (!found)
1530                                *end = state->end;
1531                        goto out;
1532                }
1533                if (!found) {
1534                        *start = state->start;
1535                        *cached_state = state;
1536                        atomic_inc(&state->refs);
1537                }
1538                found++;
1539                *end = state->end;
1540                cur_start = state->end + 1;
1541                node = rb_next(node);
1542                total_bytes += state->end - state->start + 1;
1543                if (total_bytes >= max_bytes)
1544                        break;
1545                if (!node)
1546                        break;
1547        }
1548out:
1549        spin_unlock(&tree->lock);
1550        return found;
1551}
1552
1553static noinline void __unlock_for_delalloc(struct inode *inode,
1554                                           struct page *locked_page,
1555                                           u64 start, u64 end)
1556{
1557        int ret;
1558        struct page *pages[16];
1559        unsigned long index = start >> PAGE_SHIFT;
1560        unsigned long end_index = end >> PAGE_SHIFT;
1561        unsigned long nr_pages = end_index - index + 1;
1562        int i;
1563
1564        if (index == locked_page->index && end_index == index)
1565                return;
1566
1567        while (nr_pages > 0) {
1568                ret = find_get_pages_contig(inode->i_mapping, index,
1569                                     min_t(unsigned long, nr_pages,
1570                                     ARRAY_SIZE(pages)), pages);
1571                for (i = 0; i < ret; i++) {
1572                        if (pages[i] != locked_page)
1573                                unlock_page(pages[i]);
1574                        put_page(pages[i]);
1575                }
1576                nr_pages -= ret;
1577                index += ret;
1578                cond_resched();
1579        }
1580}
1581
1582static noinline int lock_delalloc_pages(struct inode *inode,
1583                                        struct page *locked_page,
1584                                        u64 delalloc_start,
1585                                        u64 delalloc_end)
1586{
1587        unsigned long index = delalloc_start >> PAGE_SHIFT;
1588        unsigned long start_index = index;
1589        unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1590        unsigned long pages_locked = 0;
1591        struct page *pages[16];
1592        unsigned long nrpages;
1593        int ret;
1594        int i;
1595
1596        /* the caller is responsible for locking the start index */
1597        if (index == locked_page->index && index == end_index)
1598                return 0;
1599
1600        /* skip the page at the start index */
1601        nrpages = end_index - index + 1;
1602        while (nrpages > 0) {
1603                ret = find_get_pages_contig(inode->i_mapping, index,
1604                                     min_t(unsigned long,
1605                                     nrpages, ARRAY_SIZE(pages)), pages);
1606                if (ret == 0) {
1607                        ret = -EAGAIN;
1608                        goto done;
1609                }
1610                /* now we have an array of pages, lock them all */
1611                for (i = 0; i < ret; i++) {
1612                        /*
1613                         * the caller is taking responsibility for
1614                         * locked_page
1615                         */
1616                        if (pages[i] != locked_page) {
1617                                lock_page(pages[i]);
1618                                if (!PageDirty(pages[i]) ||
1619                                    pages[i]->mapping != inode->i_mapping) {
1620                                        ret = -EAGAIN;
1621                                        unlock_page(pages[i]);
1622                                        put_page(pages[i]);
1623                                        goto done;
1624                                }
1625                        }
1626                        put_page(pages[i]);
1627                        pages_locked++;
1628                }
1629                nrpages -= ret;
1630                index += ret;
1631                cond_resched();
1632        }
1633        ret = 0;
1634done:
1635        if (ret && pages_locked) {
1636                __unlock_for_delalloc(inode, locked_page,
1637                              delalloc_start,
1638                              ((u64)(start_index + pages_locked - 1)) <<
1639                              PAGE_SHIFT);
1640        }
1641        return ret;
1642}
1643
1644/*
1645 * find a contiguous range of bytes in the file marked as delalloc, not
1646 * more than 'max_bytes'.  start and end are used to return the range,
1647 *
1648 * 1 is returned if we find something, 0 if nothing was in the tree
1649 */
1650STATIC u64 find_lock_delalloc_range(struct inode *inode,
1651                                    struct extent_io_tree *tree,
1652                                    struct page *locked_page, u64 *start,
1653                                    u64 *end, u64 max_bytes)
1654{
1655        u64 delalloc_start;
1656        u64 delalloc_end;
1657        u64 found;
1658        struct extent_state *cached_state = NULL;
1659        int ret;
1660        int loops = 0;
1661
1662again:
1663        /* step one, find a bunch of delalloc bytes starting at start */
1664        delalloc_start = *start;
1665        delalloc_end = 0;
1666        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1667                                    max_bytes, &cached_state);
1668        if (!found || delalloc_end <= *start) {
1669                *start = delalloc_start;
1670                *end = delalloc_end;
1671                free_extent_state(cached_state);
1672                return 0;
1673        }
1674
1675        /*
1676         * start comes from the offset of locked_page.  We have to lock
1677         * pages in order, so we can't process delalloc bytes before
1678         * locked_page
1679         */
1680        if (delalloc_start < *start)
1681                delalloc_start = *start;
1682
1683        /*
1684         * make sure to limit the number of pages we try to lock down
1685         */
1686        if (delalloc_end + 1 - delalloc_start > max_bytes)
1687                delalloc_end = delalloc_start + max_bytes - 1;
1688
1689        /* step two, lock all the pages after the page that has start */
1690        ret = lock_delalloc_pages(inode, locked_page,
1691                                  delalloc_start, delalloc_end);
1692        if (ret == -EAGAIN) {
1693                /* some of the pages are gone, lets avoid looping by
1694                 * shortening the size of the delalloc range we're searching
1695                 */
1696                free_extent_state(cached_state);
1697                cached_state = NULL;
1698                if (!loops) {
1699                        max_bytes = PAGE_SIZE;
1700                        loops = 1;
1701                        goto again;
1702                } else {
1703                        found = 0;
1704                        goto out_failed;
1705                }
1706        }
1707        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1708
1709        /* step three, lock the state bits for the whole range */
1710        lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1711
1712        /* then test to make sure it is all still delalloc */
1713        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1714                             EXTENT_DELALLOC, 1, cached_state);
1715        if (!ret) {
1716                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1717                                     &cached_state, GFP_NOFS);
1718                __unlock_for_delalloc(inode, locked_page,
1719                              delalloc_start, delalloc_end);
1720                cond_resched();
1721                goto again;
1722        }
1723        free_extent_state(cached_state);
1724        *start = delalloc_start;
1725        *end = delalloc_end;
1726out_failed:
1727        return found;
1728}
1729
1730void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1731                                 struct page *locked_page,
1732                                 unsigned clear_bits,
1733                                 unsigned long page_ops)
1734{
1735        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1736        int ret;
1737        struct page *pages[16];
1738        unsigned long index = start >> PAGE_SHIFT;
1739        unsigned long end_index = end >> PAGE_SHIFT;
1740        unsigned long nr_pages = end_index - index + 1;
1741        int i;
1742
1743        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1744        if (page_ops == 0)
1745                return;
1746
1747        if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1748                mapping_set_error(inode->i_mapping, -EIO);
1749
1750        while (nr_pages > 0) {
1751                ret = find_get_pages_contig(inode->i_mapping, index,
1752                                     min_t(unsigned long,
1753                                     nr_pages, ARRAY_SIZE(pages)), pages);
1754                for (i = 0; i < ret; i++) {
1755
1756                        if (page_ops & PAGE_SET_PRIVATE2)
1757                                SetPagePrivate2(pages[i]);
1758
1759                        if (pages[i] == locked_page) {
1760                                put_page(pages[i]);
1761                                continue;
1762                        }
1763                        if (page_ops & PAGE_CLEAR_DIRTY)
1764                                clear_page_dirty_for_io(pages[i]);
1765                        if (page_ops & PAGE_SET_WRITEBACK)
1766                                set_page_writeback(pages[i]);
1767                        if (page_ops & PAGE_SET_ERROR)
1768                                SetPageError(pages[i]);
1769                        if (page_ops & PAGE_END_WRITEBACK)
1770                                end_page_writeback(pages[i]);
1771                        if (page_ops & PAGE_UNLOCK)
1772                                unlock_page(pages[i]);
1773                        put_page(pages[i]);
1774                }
1775                nr_pages -= ret;
1776                index += ret;
1777                cond_resched();
1778        }
1779}
1780
1781/*
1782 * count the number of bytes in the tree that have a given bit(s)
1783 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1784 * cached.  The total number found is returned.
1785 */
1786u64 count_range_bits(struct extent_io_tree *tree,
1787                     u64 *start, u64 search_end, u64 max_bytes,
1788                     unsigned bits, int contig)
1789{
1790        struct rb_node *node;
1791        struct extent_state *state;
1792        u64 cur_start = *start;
1793        u64 total_bytes = 0;
1794        u64 last = 0;
1795        int found = 0;
1796
1797        if (WARN_ON(search_end <= cur_start))
1798                return 0;
1799
1800        spin_lock(&tree->lock);
1801        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1802                total_bytes = tree->dirty_bytes;
1803                goto out;
1804        }
1805        /*
1806         * this search will find all the extents that end after
1807         * our range starts.
1808         */
1809        node = tree_search(tree, cur_start);
1810        if (!node)
1811                goto out;
1812
1813        while (1) {
1814                state = rb_entry(node, struct extent_state, rb_node);
1815                if (state->start > search_end)
1816                        break;
1817                if (contig && found && state->start > last + 1)
1818                        break;
1819                if (state->end >= cur_start && (state->state & bits) == bits) {
1820                        total_bytes += min(search_end, state->end) + 1 -
1821                                       max(cur_start, state->start);
1822                        if (total_bytes >= max_bytes)
1823                                break;
1824                        if (!found) {
1825                                *start = max(cur_start, state->start);
1826                                found = 1;
1827                        }
1828                        last = state->end;
1829                } else if (contig && found) {
1830                        break;
1831                }
1832                node = rb_next(node);
1833                if (!node)
1834                        break;
1835        }
1836out:
1837        spin_unlock(&tree->lock);
1838        return total_bytes;
1839}
1840
1841/*
1842 * set the private field for a given byte offset in the tree.  If there isn't
1843 * an extent_state there already, this does nothing.
1844 */
1845static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1846                struct io_failure_record *failrec)
1847{
1848        struct rb_node *node;
1849        struct extent_state *state;
1850        int ret = 0;
1851
1852        spin_lock(&tree->lock);
1853        /*
1854         * this search will find all the extents that end after
1855         * our range starts.
1856         */
1857        node = tree_search(tree, start);
1858        if (!node) {
1859                ret = -ENOENT;
1860                goto out;
1861        }
1862        state = rb_entry(node, struct extent_state, rb_node);
1863        if (state->start != start) {
1864                ret = -ENOENT;
1865                goto out;
1866        }
1867        state->failrec = failrec;
1868out:
1869        spin_unlock(&tree->lock);
1870        return ret;
1871}
1872
1873static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1874                struct io_failure_record **failrec)
1875{
1876        struct rb_node *node;
1877        struct extent_state *state;
1878        int ret = 0;
1879
1880        spin_lock(&tree->lock);
1881        /*
1882         * this search will find all the extents that end after
1883         * our range starts.
1884         */
1885        node = tree_search(tree, start);
1886        if (!node) {
1887                ret = -ENOENT;
1888                goto out;
1889        }
1890        state = rb_entry(node, struct extent_state, rb_node);
1891        if (state->start != start) {
1892                ret = -ENOENT;
1893                goto out;
1894        }
1895        *failrec = state->failrec;
1896out:
1897        spin_unlock(&tree->lock);
1898        return ret;
1899}
1900
1901/*
1902 * searches a range in the state tree for a given mask.
1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
1904 * has the bits set.  Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908                   unsigned bits, int filled, struct extent_state *cached)
1909{
1910        struct extent_state *state = NULL;
1911        struct rb_node *node;
1912        int bitset = 0;
1913
1914        spin_lock(&tree->lock);
1915        if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916            cached->end > start)
1917                node = &cached->rb_node;
1918        else
1919                node = tree_search(tree, start);
1920        while (node && start <= end) {
1921                state = rb_entry(node, struct extent_state, rb_node);
1922
1923                if (filled && state->start > start) {
1924                        bitset = 0;
1925                        break;
1926                }
1927
1928                if (state->start > end)
1929                        break;
1930
1931                if (state->state & bits) {
1932                        bitset = 1;
1933                        if (!filled)
1934                                break;
1935                } else if (filled) {
1936                        bitset = 0;
1937                        break;
1938                }
1939
1940                if (state->end == (u64)-1)
1941                        break;
1942
1943                start = state->end + 1;
1944                if (start > end)
1945                        break;
1946                node = rb_next(node);
1947                if (!node) {
1948                        if (filled)
1949                                bitset = 0;
1950                        break;
1951                }
1952        }
1953        spin_unlock(&tree->lock);
1954        return bitset;
1955}
1956
1957/*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
1961static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962{
1963        u64 start = page_offset(page);
1964        u64 end = start + PAGE_SIZE - 1;
1965        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966                SetPageUptodate(page);
1967}
1968
1969int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970{
1971        int ret;
1972        int err = 0;
1973        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975        set_state_failrec(failure_tree, rec->start, NULL);
1976        ret = clear_extent_bits(failure_tree, rec->start,
1977                                rec->start + rec->len - 1,
1978                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979        if (ret)
1980                err = ret;
1981
1982        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983                                rec->start + rec->len - 1,
1984                                EXTENT_DAMAGED, GFP_NOFS);
1985        if (ret && !err)
1986                err = ret;
1987
1988        kfree(rec);
1989        return err;
1990}
1991
1992/*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
1997 * to avoid any synchronization issues, wait for the data after writing, which
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
2002int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003                      struct page *page, unsigned int pg_offset, int mirror_num)
2004{
2005        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006        struct bio *bio;
2007        struct btrfs_device *dev;
2008        u64 map_length = 0;
2009        u64 sector;
2010        struct btrfs_bio *bbio = NULL;
2011        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012        int ret;
2013
2014        ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015        BUG_ON(!mirror_num);
2016
2017        /* we can't repair anything in raid56 yet */
2018        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019                return 0;
2020
2021        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022        if (!bio)
2023                return -EIO;
2024        bio->bi_iter.bi_size = 0;
2025        map_length = length;
2026
2027        ret = btrfs_map_block(fs_info, WRITE, logical,
2028                              &map_length, &bbio, mirror_num);
2029        if (ret) {
2030                bio_put(bio);
2031                return -EIO;
2032        }
2033        BUG_ON(mirror_num != bbio->mirror_num);
2034        sector = bbio->stripes[mirror_num-1].physical >> 9;
2035        bio->bi_iter.bi_sector = sector;
2036        dev = bbio->stripes[mirror_num-1].dev;
2037        btrfs_put_bbio(bbio);
2038        if (!dev || !dev->bdev || !dev->writeable) {
2039                bio_put(bio);
2040                return -EIO;
2041        }
2042        bio->bi_bdev = dev->bdev;
2043        bio_add_page(bio, page, length, pg_offset);
2044
2045        if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046                /* try to remap that extent elsewhere? */
2047                bio_put(bio);
2048                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049                return -EIO;
2050        }
2051
2052        btrfs_info_rl_in_rcu(fs_info,
2053                "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054                                  btrfs_ino(inode), start,
2055                                  rcu_str_deref(dev->name), sector);
2056        bio_put(bio);
2057        return 0;
2058}
2059
2060int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061                         int mirror_num)
2062{
2063        u64 start = eb->start;
2064        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065        int ret = 0;
2066
2067        if (root->fs_info->sb->s_flags & MS_RDONLY)
2068                return -EROFS;
2069
2070        for (i = 0; i < num_pages; i++) {
2071                struct page *p = eb->pages[i];
2072
2073                ret = repair_io_failure(root->fs_info->btree_inode, start,
2074                                        PAGE_SIZE, start, p,
2075                                        start - page_offset(p), mirror_num);
2076                if (ret)
2077                        break;
2078                start += PAGE_SIZE;
2079        }
2080
2081        return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089                     unsigned int pg_offset)
2090{
2091        u64 private;
2092        struct io_failure_record *failrec;
2093        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094        struct extent_state *state;
2095        int num_copies;
2096        int ret;
2097
2098        private = 0;
2099        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2100                                (u64)-1, 1, EXTENT_DIRTY, 0);
2101        if (!ret)
2102                return 0;
2103
2104        ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2105                        &failrec);
2106        if (ret)
2107                return 0;
2108
2109        BUG_ON(!failrec->this_mirror);
2110
2111        if (failrec->in_validation) {
2112                /* there was no real error, just free the record */
2113                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2114                         failrec->start);
2115                goto out;
2116        }
2117        if (fs_info->sb->s_flags & MS_RDONLY)
2118                goto out;
2119
2120        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2121        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2122                                            failrec->start,
2123                                            EXTENT_LOCKED);
2124        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2125
2126        if (state && state->start <= failrec->start &&
2127            state->end >= failrec->start + failrec->len - 1) {
2128                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2129                                              failrec->len);
2130                if (num_copies > 1)  {
2131                        repair_io_failure(inode, start, failrec->len,
2132                                          failrec->logical, page,
2133                                          pg_offset, failrec->failed_mirror);
2134                }
2135        }
2136
2137out:
2138        free_io_failure(inode, failrec);
2139
2140        return 0;
2141}
2142
2143/*
2144 * Can be called when
2145 * - hold extent lock
2146 * - under ordered extent
2147 * - the inode is freeing
2148 */
2149void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2150{
2151        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2152        struct io_failure_record *failrec;
2153        struct extent_state *state, *next;
2154
2155        if (RB_EMPTY_ROOT(&failure_tree->state))
2156                return;
2157
2158        spin_lock(&failure_tree->lock);
2159        state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2160        while (state) {
2161                if (state->start > end)
2162                        break;
2163
2164                ASSERT(state->end <= end);
2165
2166                next = next_state(state);
2167
2168                failrec = state->failrec;
2169                free_extent_state(state);
2170                kfree(failrec);
2171
2172                state = next;
2173        }
2174        spin_unlock(&failure_tree->lock);
2175}
2176
2177int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2178                struct io_failure_record **failrec_ret)
2179{
2180        struct io_failure_record *failrec;
2181        struct extent_map *em;
2182        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185        int ret;
2186        u64 logical;
2187
2188        ret = get_state_failrec(failure_tree, start, &failrec);
2189        if (ret) {
2190                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191                if (!failrec)
2192                        return -ENOMEM;
2193
2194                failrec->start = start;
2195                failrec->len = end - start + 1;
2196                failrec->this_mirror = 0;
2197                failrec->bio_flags = 0;
2198                failrec->in_validation = 0;
2199
2200                read_lock(&em_tree->lock);
2201                em = lookup_extent_mapping(em_tree, start, failrec->len);
2202                if (!em) {
2203                        read_unlock(&em_tree->lock);
2204                        kfree(failrec);
2205                        return -EIO;
2206                }
2207
2208                if (em->start > start || em->start + em->len <= start) {
2209                        free_extent_map(em);
2210                        em = NULL;
2211                }
2212                read_unlock(&em_tree->lock);
2213                if (!em) {
2214                        kfree(failrec);
2215                        return -EIO;
2216                }
2217
2218                logical = start - em->start;
2219                logical = em->block_start + logical;
2220                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221                        logical = em->block_start;
2222                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223                        extent_set_compress_type(&failrec->bio_flags,
2224                                                 em->compress_type);
2225                }
2226
2227                pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2228                         logical, start, failrec->len);
2229
2230                failrec->logical = logical;
2231                free_extent_map(em);
2232
2233                /* set the bits in the private failure tree */
2234                ret = set_extent_bits(failure_tree, start, end,
2235                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236                if (ret >= 0)
2237                        ret = set_state_failrec(failure_tree, start, failrec);
2238                /* set the bits in the inode's tree */
2239                if (ret >= 0)
2240                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241                                                GFP_NOFS);
2242                if (ret < 0) {
2243                        kfree(failrec);
2244                        return ret;
2245                }
2246        } else {
2247                pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248                         failrec->logical, failrec->start, failrec->len,
2249                         failrec->in_validation);
2250                /*
2251                 * when data can be on disk more than twice, add to failrec here
2252                 * (e.g. with a list for failed_mirror) to make
2253                 * clean_io_failure() clean all those errors at once.
2254                 */
2255        }
2256
2257        *failrec_ret = failrec;
2258
2259        return 0;
2260}
2261
2262int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263                           struct io_failure_record *failrec, int failed_mirror)
2264{
2265        int num_copies;
2266
2267        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268                                      failrec->logical, failrec->len);
2269        if (num_copies == 1) {
2270                /*
2271                 * we only have a single copy of the data, so don't bother with
2272                 * all the retry and error correction code that follows. no
2273                 * matter what the error is, it is very likely to persist.
2274                 */
2275                pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276                         num_copies, failrec->this_mirror, failed_mirror);
2277                return 0;
2278        }
2279
2280        /*
2281         * there are two premises:
2282         *      a) deliver good data to the caller
2283         *      b) correct the bad sectors on disk
2284         */
2285        if (failed_bio->bi_vcnt > 1) {
2286                /*
2287                 * to fulfill b), we need to know the exact failing sectors, as
2288                 * we don't want to rewrite any more than the failed ones. thus,
2289                 * we need separate read requests for the failed bio
2290                 *
2291                 * if the following BUG_ON triggers, our validation request got
2292                 * merged. we need separate requests for our algorithm to work.
2293                 */
2294                BUG_ON(failrec->in_validation);
2295                failrec->in_validation = 1;
2296                failrec->this_mirror = failed_mirror;
2297        } else {
2298                /*
2299                 * we're ready to fulfill a) and b) alongside. get a good copy
2300                 * of the failed sector and if we succeed, we have setup
2301                 * everything for repair_io_failure to do the rest for us.
2302                 */
2303                if (failrec->in_validation) {
2304                        BUG_ON(failrec->this_mirror != failed_mirror);
2305                        failrec->in_validation = 0;
2306                        failrec->this_mirror = 0;
2307                }
2308                failrec->failed_mirror = failed_mirror;
2309                failrec->this_mirror++;
2310                if (failrec->this_mirror == failed_mirror)
2311                        failrec->this_mirror++;
2312        }
2313
2314        if (failrec->this_mirror > num_copies) {
2315                pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316                         num_copies, failrec->this_mirror, failed_mirror);
2317                return 0;
2318        }
2319
2320        return 1;
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325                                    struct io_failure_record *failrec,
2326                                    struct page *page, int pg_offset, int icsum,
2327                                    bio_end_io_t *endio_func, void *data)
2328{
2329        struct bio *bio;
2330        struct btrfs_io_bio *btrfs_failed_bio;
2331        struct btrfs_io_bio *btrfs_bio;
2332
2333        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334        if (!bio)
2335                return NULL;
2336
2337        bio->bi_end_io = endio_func;
2338        bio->bi_iter.bi_sector = failrec->logical >> 9;
2339        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340        bio->bi_iter.bi_size = 0;
2341        bio->bi_private = data;
2342
2343        btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344        if (btrfs_failed_bio->csum) {
2345                struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346                u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348                btrfs_bio = btrfs_io_bio(bio);
2349                btrfs_bio->csum = btrfs_bio->csum_inline;
2350                icsum *= csum_size;
2351                memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352                       csum_size);
2353        }
2354
2355        bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357        return bio;
2358}
2359
2360/*
2361 * this is a generic handler for readpage errors (default
2362 * readpage_io_failed_hook). if other copies exist, read those and write back
2363 * good data to the failed position. does not investigate in remapping the
2364 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 * needed
2366 */
2367
2368static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369                              struct page *page, u64 start, u64 end,
2370                              int failed_mirror)
2371{
2372        struct io_failure_record *failrec;
2373        struct inode *inode = page->mapping->host;
2374        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375        struct bio *bio;
2376        int read_mode;
2377        int ret;
2378
2379        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382        if (ret)
2383                return ret;
2384
2385        ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386        if (!ret) {
2387                free_io_failure(inode, failrec);
2388                return -EIO;
2389        }
2390
2391        if (failed_bio->bi_vcnt > 1)
2392                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393        else
2394                read_mode = READ_SYNC;
2395
2396        phy_offset >>= inode->i_sb->s_blocksize_bits;
2397        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398                                      start - page_offset(page),
2399                                      (int)phy_offset, failed_bio->bi_end_io,
2400                                      NULL);
2401        if (!bio) {
2402                free_io_failure(inode, failrec);
2403                return -EIO;
2404        }
2405
2406        pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407                 read_mode, failrec->this_mirror, failrec->in_validation);
2408
2409        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410                                         failrec->this_mirror,
2411                                         failrec->bio_flags, 0);
2412        if (ret) {
2413                free_io_failure(inode, failrec);
2414                bio_put(bio);
2415        }
2416
2417        return ret;
2418}
2419
2420/* lots and lots of room for performance fixes in the end_bio funcs */
2421
2422void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423{
2424        int uptodate = (err == 0);
2425        struct extent_io_tree *tree;
2426        int ret = 0;
2427
2428        tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430        if (tree->ops && tree->ops->writepage_end_io_hook) {
2431                ret = tree->ops->writepage_end_io_hook(page, start,
2432                                               end, NULL, uptodate);
2433                if (ret)
2434                        uptodate = 0;
2435        }
2436
2437        if (!uptodate) {
2438                ClearPageUptodate(page);
2439                SetPageError(page);
2440                ret = ret < 0 ? ret : -EIO;
2441                mapping_set_error(page->mapping, ret);
2442        }
2443}
2444
2445/*
2446 * after a writepage IO is done, we need to:
2447 * clear the uptodate bits on error
2448 * clear the writeback bits in the extent tree for this IO
2449 * end_page_writeback if the page has no more pending IO
2450 *
2451 * Scheduling is not allowed, so the extent state tree is expected
2452 * to have one and only one object corresponding to this IO.
2453 */
2454static void end_bio_extent_writepage(struct bio *bio)
2455{
2456        struct bio_vec *bvec;
2457        u64 start;
2458        u64 end;
2459        int i;
2460
2461        bio_for_each_segment_all(bvec, bio, i) {
2462                struct page *page = bvec->bv_page;
2463
2464                /* We always issue full-page reads, but if some block
2465                 * in a page fails to read, blk_update_request() will
2466                 * advance bv_offset and adjust bv_len to compensate.
2467                 * Print a warning for nonzero offsets, and an error
2468                 * if they don't add up to a full page.  */
2469                if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470                        if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472                                   "partial page write in btrfs with offset %u and length %u",
2473                                        bvec->bv_offset, bvec->bv_len);
2474                        else
2475                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476                                   "incomplete page write in btrfs with offset %u and "
2477                                   "length %u",
2478                                        bvec->bv_offset, bvec->bv_len);
2479                }
2480
2481                start = page_offset(page);
2482                end = start + bvec->bv_offset + bvec->bv_len - 1;
2483
2484                end_extent_writepage(page, bio->bi_error, start, end);
2485                end_page_writeback(page);
2486        }
2487
2488        bio_put(bio);
2489}
2490
2491static void
2492endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493                              int uptodate)
2494{
2495        struct extent_state *cached = NULL;
2496        u64 end = start + len - 1;
2497
2498        if (uptodate && tree->track_uptodate)
2499                set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500        unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501}
2502
2503/*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
2514static void end_bio_extent_readpage(struct bio *bio)
2515{
2516        struct bio_vec *bvec;
2517        int uptodate = !bio->bi_error;
2518        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519        struct extent_io_tree *tree;
2520        u64 offset = 0;
2521        u64 start;
2522        u64 end;
2523        u64 len;
2524        u64 extent_start = 0;
2525        u64 extent_len = 0;
2526        int mirror;
2527        int ret;
2528        int i;
2529
2530        bio_for_each_segment_all(bvec, bio, i) {
2531                struct page *page = bvec->bv_page;
2532                struct inode *inode = page->mapping->host;
2533
2534                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535                         "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536                         bio->bi_error, io_bio->mirror_num);
2537                tree = &BTRFS_I(inode)->io_tree;
2538
2539                /* We always issue full-page reads, but if some block
2540                 * in a page fails to read, blk_update_request() will
2541                 * advance bv_offset and adjust bv_len to compensate.
2542                 * Print a warning for nonzero offsets, and an error
2543                 * if they don't add up to a full page.  */
2544                if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545                        if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547                                   "partial page read in btrfs with offset %u and length %u",
2548                                        bvec->bv_offset, bvec->bv_len);
2549                        else
2550                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551                                   "incomplete page read in btrfs with offset %u and "
2552                                   "length %u",
2553                                        bvec->bv_offset, bvec->bv_len);
2554                }
2555
2556                start = page_offset(page);
2557                end = start + bvec->bv_offset + bvec->bv_len - 1;
2558                len = bvec->bv_len;
2559
2560                mirror = io_bio->mirror_num;
2561                if (likely(uptodate && tree->ops &&
2562                           tree->ops->readpage_end_io_hook)) {
2563                        ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564                                                              page, start, end,
2565                                                              mirror);
2566                        if (ret)
2567                                uptodate = 0;
2568                        else
2569                                clean_io_failure(inode, start, page, 0);
2570                }
2571
2572                if (likely(uptodate))
2573                        goto readpage_ok;
2574
2575                if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577                        if (!ret && !bio->bi_error)
2578                                uptodate = 1;
2579                } else {
2580                        /*
2581                         * The generic bio_readpage_error handles errors the
2582                         * following way: If possible, new read requests are
2583                         * created and submitted and will end up in
2584                         * end_bio_extent_readpage as well (if we're lucky, not
2585                         * in the !uptodate case). In that case it returns 0 and
2586                         * we just go on with the next page in our bio. If it
2587                         * can't handle the error it will return -EIO and we
2588                         * remain responsible for that page.
2589                         */
2590                        ret = bio_readpage_error(bio, offset, page, start, end,
2591                                                 mirror);
2592                        if (ret == 0) {
2593                                uptodate = !bio->bi_error;
2594                                offset += len;
2595                                continue;
2596                        }
2597                }
2598readpage_ok:
2599                if (likely(uptodate)) {
2600                        loff_t i_size = i_size_read(inode);
2601                        pgoff_t end_index = i_size >> PAGE_SHIFT;
2602                        unsigned off;
2603
2604                        /* Zero out the end if this page straddles i_size */
2605                        off = i_size & (PAGE_SIZE-1);
2606                        if (page->index == end_index && off)
2607                                zero_user_segment(page, off, PAGE_SIZE);
2608                        SetPageUptodate(page);
2609                } else {
2610                        ClearPageUptodate(page);
2611                        SetPageError(page);
2612                }
2613                unlock_page(page);
2614                offset += len;
2615
2616                if (unlikely(!uptodate)) {
2617                        if (extent_len) {
2618                                endio_readpage_release_extent(tree,
2619                                                              extent_start,
2620                                                              extent_len, 1);
2621                                extent_start = 0;
2622                                extent_len = 0;
2623                        }
2624                        endio_readpage_release_extent(tree, start,
2625                                                      end - start + 1, 0);
2626                } else if (!extent_len) {
2627                        extent_start = start;
2628                        extent_len = end + 1 - start;
2629                } else if (extent_start + extent_len == start) {
2630                        extent_len += end + 1 - start;
2631                } else {
2632                        endio_readpage_release_extent(tree, extent_start,
2633                                                      extent_len, uptodate);
2634                        extent_start = start;
2635                        extent_len = end + 1 - start;
2636                }
2637        }
2638
2639        if (extent_len)
2640                endio_readpage_release_extent(tree, extent_start, extent_len,
2641                                              uptodate);
2642        if (io_bio->end_io)
2643                io_bio->end_io(io_bio, bio->bi_error);
2644        bio_put(bio);
2645}
2646
2647/*
2648 * this allocates from the btrfs_bioset.  We're returning a bio right now
2649 * but you can call btrfs_io_bio for the appropriate container_of magic
2650 */
2651struct bio *
2652btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653                gfp_t gfp_flags)
2654{
2655        struct btrfs_io_bio *btrfs_bio;
2656        struct bio *bio;
2657
2658        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659
2660        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661                while (!bio && (nr_vecs /= 2)) {
2662                        bio = bio_alloc_bioset(gfp_flags,
2663                                               nr_vecs, btrfs_bioset);
2664                }
2665        }
2666
2667        if (bio) {
2668                bio->bi_bdev = bdev;
2669                bio->bi_iter.bi_sector = first_sector;
2670                btrfs_bio = btrfs_io_bio(bio);
2671                btrfs_bio->csum = NULL;
2672                btrfs_bio->csum_allocated = NULL;
2673                btrfs_bio->end_io = NULL;
2674        }
2675        return bio;
2676}
2677
2678struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679{
2680        struct btrfs_io_bio *btrfs_bio;
2681        struct bio *new;
2682
2683        new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684        if (new) {
2685                btrfs_bio = btrfs_io_bio(new);
2686                btrfs_bio->csum = NULL;
2687                btrfs_bio->csum_allocated = NULL;
2688                btrfs_bio->end_io = NULL;
2689
2690#ifdef CONFIG_BLK_CGROUP
2691                /* FIXME, put this into bio_clone_bioset */
2692                if (bio->bi_css)
2693                        bio_associate_blkcg(new, bio->bi_css);
2694#endif
2695        }
2696        return new;
2697}
2698
2699/* this also allocates from the btrfs_bioset */
2700struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701{
2702        struct btrfs_io_bio *btrfs_bio;
2703        struct bio *bio;
2704
2705        bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706        if (bio) {
2707                btrfs_bio = btrfs_io_bio(bio);
2708                btrfs_bio->csum = NULL;
2709                btrfs_bio->csum_allocated = NULL;
2710                btrfs_bio->end_io = NULL;
2711        }
2712        return bio;
2713}
2714
2715
2716static int __must_check submit_one_bio(int rw, struct bio *bio,
2717                                       int mirror_num, unsigned long bio_flags)
2718{
2719        int ret = 0;
2720        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721        struct page *page = bvec->bv_page;
2722        struct extent_io_tree *tree = bio->bi_private;
2723        u64 start;
2724
2725        start = page_offset(page) + bvec->bv_offset;
2726
2727        bio->bi_private = NULL;
2728
2729        bio_get(bio);
2730
2731        if (tree->ops && tree->ops->submit_bio_hook)
2732                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733                                           mirror_num, bio_flags, start);
2734        else
2735                btrfsic_submit_bio(rw, bio);
2736
2737        bio_put(bio);
2738        return ret;
2739}
2740
2741static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742                     unsigned long offset, size_t size, struct bio *bio,
2743                     unsigned long bio_flags)
2744{
2745        int ret = 0;
2746        if (tree->ops && tree->ops->merge_bio_hook)
2747                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748                                                bio_flags);
2749        BUG_ON(ret < 0);
2750        return ret;
2751
2752}
2753
2754static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755                              struct writeback_control *wbc,
2756                              struct page *page, sector_t sector,
2757                              size_t size, unsigned long offset,
2758                              struct block_device *bdev,
2759                              struct bio **bio_ret,
2760                              unsigned long max_pages,
2761                              bio_end_io_t end_io_func,
2762                              int mirror_num,
2763                              unsigned long prev_bio_flags,
2764                              unsigned long bio_flags,
2765                              bool force_bio_submit)
2766{
2767        int ret = 0;
2768        struct bio *bio;
2769        int contig = 0;
2770        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771        size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772
2773        if (bio_ret && *bio_ret) {
2774                bio = *bio_ret;
2775                if (old_compressed)
2776                        contig = bio->bi_iter.bi_sector == sector;
2777                else
2778                        contig = bio_end_sector(bio) == sector;
2779
2780                if (prev_bio_flags != bio_flags || !contig ||
2781                    force_bio_submit ||
2782                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783                    bio_add_page(bio, page, page_size, offset) < page_size) {
2784                        ret = submit_one_bio(rw, bio, mirror_num,
2785                                             prev_bio_flags);
2786                        if (ret < 0) {
2787                                *bio_ret = NULL;
2788                                return ret;
2789                        }
2790                        bio = NULL;
2791                } else {
2792                        if (wbc)
2793                                wbc_account_io(wbc, page, page_size);
2794                        return 0;
2795                }
2796        }
2797
2798        bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799                        GFP_NOFS | __GFP_HIGH);
2800        if (!bio)
2801                return -ENOMEM;
2802
2803        bio_add_page(bio, page, page_size, offset);
2804        bio->bi_end_io = end_io_func;
2805        bio->bi_private = tree;
2806        if (wbc) {
2807                wbc_init_bio(wbc, bio);
2808                wbc_account_io(wbc, page, page_size);
2809        }
2810
2811        if (bio_ret)
2812                *bio_ret = bio;
2813        else
2814                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815
2816        return ret;
2817}
2818
2819static void attach_extent_buffer_page(struct extent_buffer *eb,
2820                                      struct page *page)
2821{
2822        if (!PagePrivate(page)) {
2823                SetPagePrivate(page);
2824                get_page(page);
2825                set_page_private(page, (unsigned long)eb);
2826        } else {
2827                WARN_ON(page->private != (unsigned long)eb);
2828        }
2829}
2830
2831void set_page_extent_mapped(struct page *page)
2832{
2833        if (!PagePrivate(page)) {
2834                SetPagePrivate(page);
2835                get_page(page);
2836                set_page_private(page, EXTENT_PAGE_PRIVATE);
2837        }
2838}
2839
2840static struct extent_map *
2841__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842                 u64 start, u64 len, get_extent_t *get_extent,
2843                 struct extent_map **em_cached)
2844{
2845        struct extent_map *em;
2846
2847        if (em_cached && *em_cached) {
2848                em = *em_cached;
2849                if (extent_map_in_tree(em) && start >= em->start &&
2850                    start < extent_map_end(em)) {
2851                        atomic_inc(&em->refs);
2852                        return em;
2853                }
2854
2855                free_extent_map(em);
2856                *em_cached = NULL;
2857        }
2858
2859        em = get_extent(inode, page, pg_offset, start, len, 0);
2860        if (em_cached && !IS_ERR_OR_NULL(em)) {
2861                BUG_ON(*em_cached);
2862                atomic_inc(&em->refs);
2863                *em_cached = em;
2864        }
2865        return em;
2866}
2867/*
2868 * basic readpage implementation.  Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
2871 * XXX JDM: This needs looking at to ensure proper page locking
2872 */
2873static int __do_readpage(struct extent_io_tree *tree,
2874                         struct page *page,
2875                         get_extent_t *get_extent,
2876                         struct extent_map **em_cached,
2877                         struct bio **bio, int mirror_num,
2878                         unsigned long *bio_flags, int rw,
2879                         u64 *prev_em_start)
2880{
2881        struct inode *inode = page->mapping->host;
2882        u64 start = page_offset(page);
2883        u64 page_end = start + PAGE_SIZE - 1;
2884        u64 end;
2885        u64 cur = start;
2886        u64 extent_offset;
2887        u64 last_byte = i_size_read(inode);
2888        u64 block_start;
2889        u64 cur_end;
2890        sector_t sector;
2891        struct extent_map *em;
2892        struct block_device *bdev;
2893        int ret;
2894        int nr = 0;
2895        size_t pg_offset = 0;
2896        size_t iosize;
2897        size_t disk_io_size;
2898        size_t blocksize = inode->i_sb->s_blocksize;
2899        unsigned long this_bio_flag = 0;
2900
2901        set_page_extent_mapped(page);
2902
2903        end = page_end;
2904        if (!PageUptodate(page)) {
2905                if (cleancache_get_page(page) == 0) {
2906                        BUG_ON(blocksize != PAGE_SIZE);
2907                        unlock_extent(tree, start, end);
2908                        goto out;
2909                }
2910        }
2911
2912        if (page->index == last_byte >> PAGE_SHIFT) {
2913                char *userpage;
2914                size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916                if (zero_offset) {
2917                        iosize = PAGE_SIZE - zero_offset;
2918                        userpage = kmap_atomic(page);
2919                        memset(userpage + zero_offset, 0, iosize);
2920                        flush_dcache_page(page);
2921                        kunmap_atomic(userpage);
2922                }
2923        }
2924        while (cur <= end) {
2925                unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926                bool force_bio_submit = false;
2927
2928                if (cur >= last_byte) {
2929                        char *userpage;
2930                        struct extent_state *cached = NULL;
2931
2932                        iosize = PAGE_SIZE - pg_offset;
2933                        userpage = kmap_atomic(page);
2934                        memset(userpage + pg_offset, 0, iosize);
2935                        flush_dcache_page(page);
2936                        kunmap_atomic(userpage);
2937                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2938                                            &cached, GFP_NOFS);
2939                        unlock_extent_cached(tree, cur,
2940                                             cur + iosize - 1,
2941                                             &cached, GFP_NOFS);
2942                        break;
2943                }
2944                em = __get_extent_map(inode, page, pg_offset, cur,
2945                                      end - cur + 1, get_extent, em_cached);
2946                if (IS_ERR_OR_NULL(em)) {
2947                        SetPageError(page);
2948                        unlock_extent(tree, cur, end);
2949                        break;
2950                }
2951                extent_offset = cur - em->start;
2952                BUG_ON(extent_map_end(em) <= cur);
2953                BUG_ON(end < cur);
2954
2955                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957                        extent_set_compress_type(&this_bio_flag,
2958                                                 em->compress_type);
2959                }
2960
2961                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962                cur_end = min(extent_map_end(em) - 1, end);
2963                iosize = ALIGN(iosize, blocksize);
2964                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965                        disk_io_size = em->block_len;
2966                        sector = em->block_start >> 9;
2967                } else {
2968                        sector = (em->block_start + extent_offset) >> 9;
2969                        disk_io_size = iosize;
2970                }
2971                bdev = em->bdev;
2972                block_start = em->block_start;
2973                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974                        block_start = EXTENT_MAP_HOLE;
2975
2976                /*
2977                 * If we have a file range that points to a compressed extent
2978                 * and it's followed by a consecutive file range that points to
2979                 * to the same compressed extent (possibly with a different
2980                 * offset and/or length, so it either points to the whole extent
2981                 * or only part of it), we must make sure we do not submit a
2982                 * single bio to populate the pages for the 2 ranges because
2983                 * this makes the compressed extent read zero out the pages
2984                 * belonging to the 2nd range. Imagine the following scenario:
2985                 *
2986                 *  File layout
2987                 *  [0 - 8K]                     [8K - 24K]
2988                 *    |                               |
2989                 *    |                               |
2990                 * points to extent X,         points to extent X,
2991                 * offset 4K, length of 8K     offset 0, length 16K
2992                 *
2993                 * [extent X, compressed length = 4K uncompressed length = 16K]
2994                 *
2995                 * If the bio to read the compressed extent covers both ranges,
2996                 * it will decompress extent X into the pages belonging to the
2997                 * first range and then it will stop, zeroing out the remaining
2998                 * pages that belong to the other range that points to extent X.
2999                 * So here we make sure we submit 2 bios, one for the first
3000                 * range and another one for the third range. Both will target
3001                 * the same physical extent from disk, but we can't currently
3002                 * make the compressed bio endio callback populate the pages
3003                 * for both ranges because each compressed bio is tightly
3004                 * coupled with a single extent map, and each range can have
3005                 * an extent map with a different offset value relative to the
3006                 * uncompressed data of our extent and different lengths. This
3007                 * is a corner case so we prioritize correctness over
3008                 * non-optimal behavior (submitting 2 bios for the same extent).
3009                 */
3010                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011                    prev_em_start && *prev_em_start != (u64)-1 &&
3012                    *prev_em_start != em->orig_start)
3013                        force_bio_submit = true;
3014
3015                if (prev_em_start)
3016                        *prev_em_start = em->orig_start;
3017
3018                free_extent_map(em);
3019                em = NULL;
3020
3021                /* we've found a hole, just zero and go on */
3022                if (block_start == EXTENT_MAP_HOLE) {
3023                        char *userpage;
3024                        struct extent_state *cached = NULL;
3025
3026                        userpage = kmap_atomic(page);
3027                        memset(userpage + pg_offset, 0, iosize);
3028                        flush_dcache_page(page);
3029                        kunmap_atomic(userpage);
3030
3031                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3032                                            &cached, GFP_NOFS);
3033                        unlock_extent_cached(tree, cur,
3034                                             cur + iosize - 1,
3035                                             &cached, GFP_NOFS);
3036                        cur = cur + iosize;
3037                        pg_offset += iosize;
3038                        continue;
3039                }
3040                /* the get_extent function already copied into the page */
3041                if (test_range_bit(tree, cur, cur_end,
3042                                   EXTENT_UPTODATE, 1, NULL)) {
3043                        check_page_uptodate(tree, page);
3044                        unlock_extent(tree, cur, cur + iosize - 1);
3045                        cur = cur + iosize;
3046                        pg_offset += iosize;
3047                        continue;
3048                }
3049                /* we have an inline extent but it didn't get marked up
3050                 * to date.  Error out
3051                 */
3052                if (block_start == EXTENT_MAP_INLINE) {
3053                        SetPageError(page);
3054                        unlock_extent(tree, cur, cur + iosize - 1);
3055                        cur = cur + iosize;
3056                        pg_offset += iosize;
3057                        continue;
3058                }
3059
3060                pnr -= page->index;
3061                ret = submit_extent_page(rw, tree, NULL, page,
3062                                         sector, disk_io_size, pg_offset,
3063                                         bdev, bio, pnr,
3064                                         end_bio_extent_readpage, mirror_num,
3065                                         *bio_flags,
3066                                         this_bio_flag,
3067                                         force_bio_submit);
3068                if (!ret) {
3069                        nr++;
3070                        *bio_flags = this_bio_flag;
3071                } else {
3072                        SetPageError(page);
3073                        unlock_extent(tree, cur, cur + iosize - 1);
3074                }
3075                cur = cur + iosize;
3076                pg_offset += iosize;
3077        }
3078out:
3079        if (!nr) {
3080                if (!PageError(page))
3081                        SetPageUptodate(page);
3082                unlock_page(page);
3083        }
3084        return 0;
3085}
3086
3087static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088                                             struct page *pages[], int nr_pages,
3089                                             u64 start, u64 end,
3090                                             get_extent_t *get_extent,
3091                                             struct extent_map **em_cached,
3092                                             struct bio **bio, int mirror_num,
3093                                             unsigned long *bio_flags, int rw,
3094                                             u64 *prev_em_start)
3095{
3096        struct inode *inode;
3097        struct btrfs_ordered_extent *ordered;
3098        int index;
3099
3100        inode = pages[0]->mapping->host;
3101        while (1) {
3102                lock_extent(tree, start, end);
3103                ordered = btrfs_lookup_ordered_range(inode, start,
3104                                                     end - start + 1);
3105                if (!ordered)
3106                        break;
3107                unlock_extent(tree, start, end);
3108                btrfs_start_ordered_extent(inode, ordered, 1);
3109                btrfs_put_ordered_extent(ordered);
3110        }
3111
3112        for (index = 0; index < nr_pages; index++) {
3113                __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114                              mirror_num, bio_flags, rw, prev_em_start);
3115                put_page(pages[index]);
3116        }
3117}
3118
3119static void __extent_readpages(struct extent_io_tree *tree,
3120                               struct page *pages[],
3121                               int nr_pages, get_extent_t *get_extent,
3122                               struct extent_map **em_cached,
3123                               struct bio **bio, int mirror_num,
3124                               unsigned long *bio_flags, int rw,
3125                               u64 *prev_em_start)
3126{
3127        u64 start = 0;
3128        u64 end = 0;
3129        u64 page_start;
3130        int index;
3131        int first_index = 0;
3132
3133        for (index = 0; index < nr_pages; index++) {
3134                page_start = page_offset(pages[index]);
3135                if (!end) {
3136                        start = page_start;
3137                        end = start + PAGE_SIZE - 1;
3138                        first_index = index;
3139                } else if (end + 1 == page_start) {
3140                        end += PAGE_SIZE;
3141                } else {
3142                        __do_contiguous_readpages(tree, &pages[first_index],
3143                                                  index - first_index, start,
3144                                                  end, get_extent, em_cached,
3145                                                  bio, mirror_num, bio_flags,
3146                                                  rw, prev_em_start);
3147                        start = page_start;
3148                        end = start + PAGE_SIZE - 1;
3149                        first_index = index;
3150                }
3151        }
3152
3153        if (end)
3154                __do_contiguous_readpages(tree, &pages[first_index],
3155                                          index - first_index, start,
3156                                          end, get_extent, em_cached, bio,
3157                                          mirror_num, bio_flags, rw,
3158                                          prev_em_start);
3159}
3160
3161static int __extent_read_full_page(struct extent_io_tree *tree,
3162                                   struct page *page,
3163                                   get_extent_t *get_extent,
3164                                   struct bio **bio, int mirror_num,
3165                                   unsigned long *bio_flags, int rw)
3166{
3167        struct inode *inode = page->mapping->host;
3168        struct btrfs_ordered_extent *ordered;
3169        u64 start = page_offset(page);
3170        u64 end = start + PAGE_SIZE - 1;
3171        int ret;
3172
3173        while (1) {
3174                lock_extent(tree, start, end);
3175                ordered = btrfs_lookup_ordered_range(inode, start,
3176                                                PAGE_SIZE);
3177                if (!ordered)
3178                        break;
3179                unlock_extent(tree, start, end);
3180                btrfs_start_ordered_extent(inode, ordered, 1);
3181                btrfs_put_ordered_extent(ordered);
3182        }
3183
3184        ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185                            bio_flags, rw, NULL);
3186        return ret;
3187}
3188
3189int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190                            get_extent_t *get_extent, int mirror_num)
3191{
3192        struct bio *bio = NULL;
3193        unsigned long bio_flags = 0;
3194        int ret;
3195
3196        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197                                      &bio_flags, READ);
3198        if (bio)
3199                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200        return ret;
3201}
3202
3203static noinline void update_nr_written(struct page *page,
3204                                      struct writeback_control *wbc,
3205                                      unsigned long nr_written)
3206{
3207        wbc->nr_to_write -= nr_written;
3208        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3209            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3210                page->mapping->writeback_index = page->index + nr_written;
3211}
3212
3213/*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent).  In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224                              struct page *page, struct writeback_control *wbc,
3225                              struct extent_page_data *epd,
3226                              u64 delalloc_start,
3227                              unsigned long *nr_written)
3228{
3229        struct extent_io_tree *tree = epd->tree;
3230        u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231        u64 nr_delalloc;
3232        u64 delalloc_to_write = 0;
3233        u64 delalloc_end = 0;
3234        int ret;
3235        int page_started = 0;
3236
3237        if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238                return 0;
3239
3240        while (delalloc_end < page_end) {
3241                nr_delalloc = find_lock_delalloc_range(inode, tree,
3242                                               page,
3243                                               &delalloc_start,
3244                                               &delalloc_end,
3245                                               BTRFS_MAX_EXTENT_SIZE);
3246                if (nr_delalloc == 0) {
3247                        delalloc_start = delalloc_end + 1;
3248                        continue;
3249                }
3250                ret = tree->ops->fill_delalloc(inode, page,
3251                                               delalloc_start,
3252                                               delalloc_end,
3253                                               &page_started,
3254                                               nr_written);
3255                /* File system has been set read-only */
3256                if (ret) {
3257                        SetPageError(page);
3258                        /* fill_delalloc should be return < 0 for error
3259                         * but just in case, we use > 0 here meaning the
3260                         * IO is started, so we don't want to return > 0
3261                         * unless things are going well.
3262                         */
3263                        ret = ret < 0 ? ret : -EIO;
3264                        goto done;
3265                }
3266                /*
3267                 * delalloc_end is already one less than the total length, so
3268                 * we don't subtract one from PAGE_SIZE
3269                 */
3270                delalloc_to_write += (delalloc_end - delalloc_start +
3271                                      PAGE_SIZE) >> PAGE_SHIFT;
3272                delalloc_start = delalloc_end + 1;
3273        }
3274        if (wbc->nr_to_write < delalloc_to_write) {
3275                int thresh = 8192;
3276
3277                if (delalloc_to_write < thresh * 2)
3278                        thresh = delalloc_to_write;
3279                wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280                                         thresh);
3281        }
3282
3283        /* did the fill delalloc function already unlock and start
3284         * the IO?
3285         */
3286        if (page_started) {
3287                /*
3288                 * we've unlocked the page, so we can't update
3289                 * the mapping's writeback index, just update
3290                 * nr_to_write.
3291                 */
3292                wbc->nr_to_write -= *nr_written;
3293                return 1;
3294        }
3295
3296        ret = 0;
3297
3298done:
3299        return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage.  This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311                                 struct page *page,
3312                                 struct writeback_control *wbc,
3313                                 struct extent_page_data *epd,
3314                                 loff_t i_size,
3315                                 unsigned long nr_written,
3316                                 int write_flags, int *nr_ret)
3317{
3318        struct extent_io_tree *tree = epd->tree;
3319        u64 start = page_offset(page);
3320        u64 page_end = start + PAGE_SIZE - 1;
3321        u64 end;
3322        u64 cur = start;
3323        u64 extent_offset;
3324        u64 block_start;
3325        u64 iosize;
3326        sector_t sector;
3327        struct extent_state *cached_state = NULL;
3328        struct extent_map *em;
3329        struct block_device *bdev;
3330        size_t pg_offset = 0;
3331        size_t blocksize;
3332        int ret = 0;
3333        int nr = 0;
3334        bool compressed;
3335
3336        if (tree->ops && tree->ops->writepage_start_hook) {
3337                ret = tree->ops->writepage_start_hook(page, start,
3338                                                      page_end);
3339                if (ret) {
3340                        /* Fixup worker will requeue */
3341                        if (ret == -EBUSY)
3342                                wbc->pages_skipped++;
3343                        else
3344                                redirty_page_for_writepage(wbc, page);
3345
3346                        update_nr_written(page, wbc, nr_written);
3347                        unlock_page(page);
3348                        ret = 1;
3349                        goto done_unlocked;
3350                }
3351        }
3352
3353        /*
3354         * we don't want to touch the inode after unlocking the page,
3355         * so we update the mapping writeback index now
3356         */
3357        update_nr_written(page, wbc, nr_written + 1);
3358
3359        end = page_end;
3360        if (i_size <= start) {
3361                if (tree->ops && tree->ops->writepage_end_io_hook)
3362                        tree->ops->writepage_end_io_hook(page, start,
3363                                                         page_end, NULL, 1);
3364                goto done;
3365        }
3366
3367        blocksize = inode->i_sb->s_blocksize;
3368
3369        while (cur <= end) {
3370                u64 em_end;
3371                if (cur >= i_size) {
3372                        if (tree->ops && tree->ops->writepage_end_io_hook)
3373                                tree->ops->writepage_end_io_hook(page, cur,
3374                                                         page_end, NULL, 1);
3375                        break;
3376                }
3377                em = epd->get_extent(inode, page, pg_offset, cur,
3378                                     end - cur + 1, 1);
3379                if (IS_ERR_OR_NULL(em)) {
3380                        SetPageError(page);
3381                        ret = PTR_ERR_OR_ZERO(em);
3382                        break;
3383                }
3384
3385                extent_offset = cur - em->start;
3386                em_end = extent_map_end(em);
3387                BUG_ON(em_end <= cur);
3388                BUG_ON(end < cur);
3389                iosize = min(em_end - cur, end - cur + 1);
3390                iosize = ALIGN(iosize, blocksize);
3391                sector = (em->block_start + extent_offset) >> 9;
3392                bdev = em->bdev;
3393                block_start = em->block_start;
3394                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3395                free_extent_map(em);
3396                em = NULL;
3397
3398                /*
3399                 * compressed and inline extents are written through other
3400                 * paths in the FS
3401                 */
3402                if (compressed || block_start == EXTENT_MAP_HOLE ||
3403                    block_start == EXTENT_MAP_INLINE) {
3404                        /*
3405                         * end_io notification does not happen here for
3406                         * compressed extents
3407                         */
3408                        if (!compressed && tree->ops &&
3409                            tree->ops->writepage_end_io_hook)
3410                                tree->ops->writepage_end_io_hook(page, cur,
3411                                                         cur + iosize - 1,
3412                                                         NULL, 1);
3413                        else if (compressed) {
3414                                /* we don't want to end_page_writeback on
3415                                 * a compressed extent.  this happens
3416                                 * elsewhere
3417                                 */
3418                                nr++;
3419                        }
3420
3421                        cur += iosize;
3422                        pg_offset += iosize;
3423                        continue;
3424                }
3425
3426                if (tree->ops && tree->ops->writepage_io_hook) {
3427                        ret = tree->ops->writepage_io_hook(page, cur,
3428                                                cur + iosize - 1);
3429                } else {
3430                        ret = 0;
3431                }
3432                if (ret) {
3433                        SetPageError(page);
3434                } else {
3435                        unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
3436
3437                        set_range_writeback(tree, cur, cur + iosize - 1);
3438                        if (!PageWriteback(page)) {
3439                                btrfs_err(BTRFS_I(inode)->root->fs_info,
3440                                           "page %lu not writeback, cur %llu end %llu",
3441                                       page->index, cur, end);
3442                        }
3443
3444                        ret = submit_extent_page(write_flags, tree, wbc, page,
3445                                                 sector, iosize, pg_offset,
3446                                                 bdev, &epd->bio, max_nr,
3447                                                 end_bio_extent_writepage,
3448                                                 0, 0, 0, false);
3449                        if (ret)
3450                                SetPageError(page);
3451                }
3452                cur = cur + iosize;
3453                pg_offset += iosize;
3454                nr++;
3455        }
3456done:
3457        *nr_ret = nr;
3458
3459done_unlocked:
3460
3461        /* drop our reference on any cached states */
3462        free_extent_state(cached_state);
3463        return ret;
3464}
3465
3466/*
3467 * the writepage semantics are similar to regular writepage.  extent
3468 * records are inserted to lock ranges in the tree, and as dirty areas
3469 * are found, they are marked writeback.  Then the lock bits are removed
3470 * and the end_io handler clears the writeback ranges
3471 */
3472static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3473                              void *data)
3474{
3475        struct inode *inode = page->mapping->host;
3476        struct extent_page_data *epd = data;
3477        u64 start = page_offset(page);
3478        u64 page_end = start + PAGE_SIZE - 1;
3479        int ret;
3480        int nr = 0;
3481        size_t pg_offset = 0;
3482        loff_t i_size = i_size_read(inode);
3483        unsigned long end_index = i_size >> PAGE_SHIFT;
3484        int write_flags;
3485        unsigned long nr_written = 0;
3486
3487        if (wbc->sync_mode == WB_SYNC_ALL)
3488                write_flags = WRITE_SYNC;
3489        else
3490                write_flags = WRITE;
3491
3492        trace___extent_writepage(page, inode, wbc);
3493
3494        WARN_ON(!PageLocked(page));
3495
3496        ClearPageError(page);
3497
3498        pg_offset = i_size & (PAGE_SIZE - 1);
3499        if (page->index > end_index ||
3500           (page->index == end_index && !pg_offset)) {
3501                page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3502                unlock_page(page);
3503                return 0;
3504        }
3505
3506        if (page->index == end_index) {
3507                char *userpage;
3508
3509                userpage = kmap_atomic(page);
3510                memset(userpage + pg_offset, 0,
3511                       PAGE_SIZE - pg_offset);
3512                kunmap_atomic(userpage);
3513                flush_dcache_page(page);
3514        }
3515
3516        pg_offset = 0;
3517
3518        set_page_extent_mapped(page);
3519
3520        ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3521        if (ret == 1)
3522                goto done_unlocked;
3523        if (ret)
3524                goto done;
3525
3526        ret = __extent_writepage_io(inode, page, wbc, epd,
3527                                    i_size, nr_written, write_flags, &nr);
3528        if (ret == 1)
3529                goto done_unlocked;
3530
3531done:
3532        if (nr == 0) {
3533                /* make sure the mapping tag for page dirty gets cleared */
3534                set_page_writeback(page);
3535                end_page_writeback(page);
3536        }
3537        if (PageError(page)) {
3538                ret = ret < 0 ? ret : -EIO;
3539                end_extent_writepage(page, ret, start, page_end);
3540        }
3541        unlock_page(page);
3542        return ret;
3543
3544done_unlocked:
3545        return 0;
3546}
3547
3548void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3549{
3550        wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3551                       TASK_UNINTERRUPTIBLE);
3552}
3553
3554static noinline_for_stack int
3555lock_extent_buffer_for_io(struct extent_buffer *eb,
3556                          struct btrfs_fs_info *fs_info,
3557                          struct extent_page_data *epd)
3558{
3559        unsigned long i, num_pages;
3560        int flush = 0;
3561        int ret = 0;
3562
3563        if (!btrfs_try_tree_write_lock(eb)) {
3564                flush = 1;
3565                flush_write_bio(epd);
3566                btrfs_tree_lock(eb);
3567        }
3568
3569        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3570                btrfs_tree_unlock(eb);
3571                if (!epd->sync_io)
3572                        return 0;
3573                if (!flush) {
3574                        flush_write_bio(epd);
3575                        flush = 1;
3576                }
3577                while (1) {
3578                        wait_on_extent_buffer_writeback(eb);
3579                        btrfs_tree_lock(eb);
3580                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3581                                break;
3582                        btrfs_tree_unlock(eb);
3583                }
3584        }
3585
3586        /*
3587         * We need to do this to prevent races in people who check if the eb is
3588         * under IO since we can end up having no IO bits set for a short period
3589         * of time.
3590         */
3591        spin_lock(&eb->refs_lock);
3592        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3593                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3594                spin_unlock(&eb->refs_lock);
3595                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3596                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3597                                     -eb->len,
3598                                     fs_info->dirty_metadata_batch);
3599                ret = 1;
3600        } else {
3601                spin_unlock(&eb->refs_lock);
3602        }
3603
3604        btrfs_tree_unlock(eb);
3605
3606        if (!ret)
3607                return ret;
3608
3609        num_pages = num_extent_pages(eb->start, eb->len);
3610        for (i = 0; i < num_pages; i++) {
3611                struct page *p = eb->pages[i];
3612
3613                if (!trylock_page(p)) {
3614                        if (!flush) {
3615                                flush_write_bio(epd);
3616                                flush = 1;
3617                        }
3618                        lock_page(p);
3619                }
3620        }
3621
3622        return ret;
3623}
3624
3625static void end_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3628        smp_mb__after_atomic();
3629        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3630}
3631
3632static void set_btree_ioerr(struct page *page)
3633{
3634        struct extent_buffer *eb = (struct extent_buffer *)page->private;
3635        struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3636
3637        SetPageError(page);
3638        if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3639                return;
3640
3641        /*
3642         * If writeback for a btree extent that doesn't belong to a log tree
3643         * failed, increment the counter transaction->eb_write_errors.
3644         * We do this because while the transaction is running and before it's
3645         * committing (when we call filemap_fdata[write|wait]_range against
3646         * the btree inode), we might have
3647         * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3648         * returns an error or an error happens during writeback, when we're
3649         * committing the transaction we wouldn't know about it, since the pages
3650         * can be no longer dirty nor marked anymore for writeback (if a
3651         * subsequent modification to the extent buffer didn't happen before the
3652         * transaction commit), which makes filemap_fdata[write|wait]_range not
3653         * able to find the pages tagged with SetPageError at transaction
3654         * commit time. So if this happens we must abort the transaction,
3655         * otherwise we commit a super block with btree roots that point to
3656         * btree nodes/leafs whose content on disk is invalid - either garbage
3657         * or the content of some node/leaf from a past generation that got
3658         * cowed or deleted and is no longer valid.
3659         *
3660         * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3661         * not be enough - we need to distinguish between log tree extents vs
3662         * non-log tree extents, and the next filemap_fdatawait_range() call
3663         * will catch and clear such errors in the mapping - and that call might
3664         * be from a log sync and not from a transaction commit. Also, checking
3665         * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3666         * not done and would not be reliable - the eb might have been released
3667         * from memory and reading it back again means that flag would not be
3668         * set (since it's a runtime flag, not persisted on disk).
3669         *
3670         * Using the flags below in the btree inode also makes us achieve the
3671         * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3672         * writeback for all dirty pages and before filemap_fdatawait_range()
3673         * is called, the writeback for all dirty pages had already finished
3674         * with errors - because we were not using AS_EIO/AS_ENOSPC,
3675         * filemap_fdatawait_range() would return success, as it could not know
3676         * that writeback errors happened (the pages were no longer tagged for
3677         * writeback).
3678         */
3679        switch (eb->log_index) {
3680        case -1:
3681                set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3682                break;
3683        case 0:
3684                set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3685                break;
3686        case 1:
3687                set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3688                break;
3689        default:
3690                BUG(); /* unexpected, logic error */
3691        }
3692}
3693
3694static void end_bio_extent_buffer_writepage(struct bio *bio)
3695{
3696        struct bio_vec *bvec;
3697        struct extent_buffer *eb;
3698        int i, done;
3699
3700        bio_for_each_segment_all(bvec, bio, i) {
3701                struct page *page = bvec->bv_page;
3702
3703                eb = (struct extent_buffer *)page->private;
3704                BUG_ON(!eb);
3705                done = atomic_dec_and_test(&eb->io_pages);
3706
3707                if (bio->bi_error ||
3708                    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3709                        ClearPageUptodate(page);
3710                        set_btree_ioerr(page);
3711                }
3712
3713                end_page_writeback(page);
3714
3715                if (!done)
3716                        continue;
3717
3718                end_extent_buffer_writeback(eb);
3719        }
3720
3721        bio_put(bio);
3722}
3723
3724static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3725                        struct btrfs_fs_info *fs_info,
3726                        struct writeback_control *wbc,
3727                        struct extent_page_data *epd)
3728{
3729        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3730        struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3731        u64 offset = eb->start;
3732        unsigned long i, num_pages;
3733        unsigned long bio_flags = 0;
3734        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3735        int ret = 0;
3736
3737        clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3738        num_pages = num_extent_pages(eb->start, eb->len);
3739        atomic_set(&eb->io_pages, num_pages);
3740        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3741                bio_flags = EXTENT_BIO_TREE_LOG;
3742
3743        for (i = 0; i < num_pages; i++) {
3744                struct page *p = eb->pages[i];
3745
3746                clear_page_dirty_for_io(p);
3747                set_page_writeback(p);
3748                ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3749                                         PAGE_SIZE, 0, bdev, &epd->bio,
3750                                         -1, end_bio_extent_buffer_writepage,
3751                                         0, epd->bio_flags, bio_flags, false);
3752                epd->bio_flags = bio_flags;
3753                if (ret) {
3754                        set_btree_ioerr(p);
3755                        end_page_writeback(p);
3756                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757                                end_extent_buffer_writeback(eb);
3758                        ret = -EIO;
3759                        break;
3760                }
3761                offset += PAGE_SIZE;
3762                update_nr_written(p, wbc, 1);
3763                unlock_page(p);
3764        }
3765
3766        if (unlikely(ret)) {
3767                for (; i < num_pages; i++) {
3768                        struct page *p = eb->pages[i];
3769                        clear_page_dirty_for_io(p);
3770                        unlock_page(p);
3771                }
3772        }
3773
3774        return ret;
3775}
3776
3777int btree_write_cache_pages(struct address_space *mapping,
3778                                   struct writeback_control *wbc)
3779{
3780        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782        struct extent_buffer *eb, *prev_eb = NULL;
3783        struct extent_page_data epd = {
3784                .bio = NULL,
3785                .tree = tree,
3786                .extent_locked = 0,
3787                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3788                .bio_flags = 0,
3789        };
3790        int ret = 0;
3791        int done = 0;
3792        int nr_to_write_done = 0;
3793        struct pagevec pvec;
3794        int nr_pages;
3795        pgoff_t index;
3796        pgoff_t end;            /* Inclusive */
3797        int scanned = 0;
3798        int tag;
3799
3800        pagevec_init(&pvec, 0);
3801        if (wbc->range_cyclic) {
3802                index = mapping->writeback_index; /* Start from prev offset */
3803                end = -1;
3804        } else {
3805                index = wbc->range_start >> PAGE_SHIFT;
3806                end = wbc->range_end >> PAGE_SHIFT;
3807                scanned = 1;
3808        }
3809        if (wbc->sync_mode == WB_SYNC_ALL)
3810                tag = PAGECACHE_TAG_TOWRITE;
3811        else
3812                tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814        if (wbc->sync_mode == WB_SYNC_ALL)
3815                tag_pages_for_writeback(mapping, index, end);
3816        while (!done && !nr_to_write_done && (index <= end) &&
3817               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819                unsigned i;
3820
3821                scanned = 1;
3822                for (i = 0; i < nr_pages; i++) {
3823                        struct page *page = pvec.pages[i];
3824
3825                        if (!PagePrivate(page))
3826                                continue;
3827
3828                        if (!wbc->range_cyclic && page->index > end) {
3829                                done = 1;
3830                                break;
3831                        }
3832
3833                        spin_lock(&mapping->private_lock);
3834                        if (!PagePrivate(page)) {
3835                                spin_unlock(&mapping->private_lock);
3836                                continue;
3837                        }
3838
3839                        eb = (struct extent_buffer *)page->private;
3840
3841                        /*
3842                         * Shouldn't happen and normally this would be a BUG_ON
3843                         * but no sense in crashing the users box for something
3844                         * we can survive anyway.
3845                         */
3846                        if (WARN_ON(!eb)) {
3847                                spin_unlock(&mapping->private_lock);
3848                                continue;
3849                        }
3850
3851                        if (eb == prev_eb) {
3852                                spin_unlock(&mapping->private_lock);
3853                                continue;
3854                        }
3855
3856                        ret = atomic_inc_not_zero(&eb->refs);
3857                        spin_unlock(&mapping->private_lock);
3858                        if (!ret)
3859                                continue;
3860
3861                        prev_eb = eb;
3862                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863                        if (!ret) {
3864                                free_extent_buffer(eb);
3865                                continue;
3866                        }
3867
3868                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3869                        if (ret) {
3870                                done = 1;
3871                                free_extent_buffer(eb);
3872                                break;
3873                        }
3874                        free_extent_buffer(eb);
3875
3876                        /*
3877                         * the filesystem may choose to bump up nr_to_write.
3878                         * We have to make sure to honor the new nr_to_write
3879                         * at any time
3880                         */
3881                        nr_to_write_done = wbc->nr_to_write <= 0;
3882                }
3883                pagevec_release(&pvec);
3884                cond_resched();
3885        }
3886        if (!scanned && !done) {
3887                /*
3888                 * We hit the last page and there is more work to be done: wrap
3889                 * back to the start of the file
3890                 */
3891                scanned = 1;
3892                index = 0;
3893                goto retry;
3894        }
3895        flush_write_bio(&epd);
3896        return ret;
3897}
3898
3899/**
3900 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3901 * @mapping: address space structure to write
3902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903 * @writepage: function called for each page
3904 * @data: data passed to writepage function
3905 *
3906 * If a page is already under I/O, write_cache_pages() skips it, even
3907 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3908 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3909 * and msync() need to guarantee that all the data which was dirty at the time
3910 * the call was made get new I/O started against them.  If wbc->sync_mode is
3911 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912 * existing IO to complete.
3913 */
3914static int extent_write_cache_pages(struct extent_io_tree *tree,
3915                             struct address_space *mapping,
3916                             struct writeback_control *wbc,
3917                             writepage_t writepage, void *data,
3918                             void (*flush_fn)(void *))
3919{
3920        struct inode *inode = mapping->host;
3921        int ret = 0;
3922        int done = 0;
3923        int err = 0;
3924        int nr_to_write_done = 0;
3925        struct pagevec pvec;
3926        int nr_pages;
3927        pgoff_t index;
3928        pgoff_t end;            /* Inclusive */
3929        int scanned = 0;
3930        int tag;
3931
3932        /*
3933         * We have to hold onto the inode so that ordered extents can do their
3934         * work when the IO finishes.  The alternative to this is failing to add
3935         * an ordered extent if the igrab() fails there and that is a huge pain
3936         * to deal with, so instead just hold onto the inode throughout the
3937         * writepages operation.  If it fails here we are freeing up the inode
3938         * anyway and we'd rather not waste our time writing out stuff that is
3939         * going to be truncated anyway.
3940         */
3941        if (!igrab(inode))
3942                return 0;
3943
3944        pagevec_init(&pvec, 0);
3945        if (wbc->range_cyclic) {
3946                index = mapping->writeback_index; /* Start from prev offset */
3947                end = -1;
3948        } else {
3949                index = wbc->range_start >> PAGE_SHIFT;
3950                end = wbc->range_end >> PAGE_SHIFT;
3951                scanned = 1;
3952        }
3953        if (wbc->sync_mode == WB_SYNC_ALL)
3954                tag = PAGECACHE_TAG_TOWRITE;
3955        else
3956                tag = PAGECACHE_TAG_DIRTY;
3957retry:
3958        if (wbc->sync_mode == WB_SYNC_ALL)
3959                tag_pages_for_writeback(mapping, index, end);
3960        while (!done && !nr_to_write_done && (index <= end) &&
3961               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3962                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3963                unsigned i;
3964
3965                scanned = 1;
3966                for (i = 0; i < nr_pages; i++) {
3967                        struct page *page = pvec.pages[i];
3968
3969                        /*
3970                         * At this point we hold neither mapping->tree_lock nor
3971                         * lock on the page itself: the page may be truncated or
3972                         * invalidated (changing page->mapping to NULL), or even
3973                         * swizzled back from swapper_space to tmpfs file
3974                         * mapping
3975                         */
3976                        if (!trylock_page(page)) {
3977                                flush_fn(data);
3978                                lock_page(page);
3979                        }
3980
3981                        if (unlikely(page->mapping != mapping)) {
3982                                unlock_page(page);
3983                                continue;
3984                        }
3985
3986                        if (!wbc->range_cyclic && page->index > end) {
3987                                done = 1;
3988                                unlock_page(page);
3989                                continue;
3990                        }
3991
3992                        if (wbc->sync_mode != WB_SYNC_NONE) {
3993                                if (PageWriteback(page))
3994                                        flush_fn(data);
3995                                wait_on_page_writeback(page);
3996                        }
3997
3998                        if (PageWriteback(page) ||
3999                            !clear_page_dirty_for_io(page)) {
4000                                unlock_page(page);
4001                                continue;
4002                        }
4003
4004                        ret = (*writepage)(page, wbc, data);
4005
4006                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4007                                unlock_page(page);
4008                                ret = 0;
4009                        }
4010                        if (!err && ret < 0)
4011                                err = ret;
4012
4013                        /*
4014                         * the filesystem may choose to bump up nr_to_write.
4015                         * We have to make sure to honor the new nr_to_write
4016                         * at any time
4017                         */
4018                        nr_to_write_done = wbc->nr_to_write <= 0;
4019                }
4020                pagevec_release(&pvec);
4021                cond_resched();
4022        }
4023        if (!scanned && !done && !err) {
4024                /*
4025                 * We hit the last page and there is more work to be done: wrap
4026                 * back to the start of the file
4027                 */
4028                scanned = 1;
4029                index = 0;
4030                goto retry;
4031        }
4032        btrfs_add_delayed_iput(inode);
4033        return err;
4034}
4035
4036static void flush_epd_write_bio(struct extent_page_data *epd)
4037{
4038        if (epd->bio) {
4039                int rw = WRITE;
4040                int ret;
4041
4042                if (epd->sync_io)
4043                        rw = WRITE_SYNC;
4044
4045                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4046                BUG_ON(ret < 0); /* -ENOMEM */
4047                epd->bio = NULL;
4048        }
4049}
4050
4051static noinline void flush_write_bio(void *data)
4052{
4053        struct extent_page_data *epd = data;
4054        flush_epd_write_bio(epd);
4055}
4056
4057int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4058                          get_extent_t *get_extent,
4059                          struct writeback_control *wbc)
4060{
4061        int ret;
4062        struct extent_page_data epd = {
4063                .bio = NULL,
4064                .tree = tree,
4065                .get_extent = get_extent,
4066                .extent_locked = 0,
4067                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4068                .bio_flags = 0,
4069        };
4070
4071        ret = __extent_writepage(page, wbc, &epd);
4072
4073        flush_epd_write_bio(&epd);
4074        return ret;
4075}
4076
4077int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4078                              u64 start, u64 end, get_extent_t *get_extent,
4079                              int mode)
4080{
4081        int ret = 0;
4082        struct address_space *mapping = inode->i_mapping;
4083        struct page *page;
4084        unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4085                PAGE_SHIFT;
4086
4087        struct extent_page_data epd = {
4088                .bio = NULL,
4089                .tree = tree,
4090                .get_extent = get_extent,
4091                .extent_locked = 1,
4092                .sync_io = mode == WB_SYNC_ALL,
4093                .bio_flags = 0,
4094        };
4095        struct writeback_control wbc_writepages = {
4096                .sync_mode      = mode,
4097                .nr_to_write    = nr_pages * 2,
4098                .range_start    = start,
4099                .range_end      = end + 1,
4100        };
4101
4102        while (start <= end) {
4103                page = find_get_page(mapping, start >> PAGE_SHIFT);
4104                if (clear_page_dirty_for_io(page))
4105                        ret = __extent_writepage(page, &wbc_writepages, &epd);
4106                else {
4107                        if (tree->ops && tree->ops->writepage_end_io_hook)
4108                                tree->ops->writepage_end_io_hook(page, start,
4109                                                 start + PAGE_SIZE - 1,
4110                                                 NULL, 1);
4111                        unlock_page(page);
4112                }
4113                put_page(page);
4114                start += PAGE_SIZE;
4115        }
4116
4117        flush_epd_write_bio(&epd);
4118        return ret;
4119}
4120
4121int extent_writepages(struct extent_io_tree *tree,
4122                      struct address_space *mapping,
4123                      get_extent_t *get_extent,
4124                      struct writeback_control *wbc)
4125{
4126        int ret = 0;
4127        struct extent_page_data epd = {
4128                .bio = NULL,
4129                .tree = tree,
4130                .get_extent = get_extent,
4131                .extent_locked = 0,
4132                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4133                .bio_flags = 0,
4134        };
4135
4136        ret = extent_write_cache_pages(tree, mapping, wbc,
4137                                       __extent_writepage, &epd,
4138                                       flush_write_bio);
4139        flush_epd_write_bio(&epd);
4140        return ret;
4141}
4142
4143int extent_readpages(struct extent_io_tree *tree,
4144                     struct address_space *mapping,
4145                     struct list_head *pages, unsigned nr_pages,
4146                     get_extent_t get_extent)
4147{
4148        struct bio *bio = NULL;
4149        unsigned page_idx;
4150        unsigned long bio_flags = 0;
4151        struct page *pagepool[16];
4152        struct page *page;
4153        struct extent_map *em_cached = NULL;
4154        int nr = 0;
4155        u64 prev_em_start = (u64)-1;
4156
4157        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4158                page = list_entry(pages->prev, struct page, lru);
4159
4160                prefetchw(&page->flags);
4161                list_del(&page->lru);
4162                if (add_to_page_cache_lru(page, mapping,
4163                                        page->index, GFP_NOFS)) {
4164                        put_page(page);
4165                        continue;
4166                }
4167
4168                pagepool[nr++] = page;
4169                if (nr < ARRAY_SIZE(pagepool))
4170                        continue;
4171                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4172                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4173                nr = 0;
4174        }
4175        if (nr)
4176                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4177                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4178
4179        if (em_cached)
4180                free_extent_map(em_cached);
4181
4182        BUG_ON(!list_empty(pages));
4183        if (bio)
4184                return submit_one_bio(READ, bio, 0, bio_flags);
4185        return 0;
4186}
4187
4188/*
4189 * basic invalidatepage code, this waits on any locked or writeback
4190 * ranges corresponding to the page, and then deletes any extent state
4191 * records from the tree
4192 */
4193int extent_invalidatepage(struct extent_io_tree *tree,
4194                          struct page *page, unsigned long offset)
4195{
4196        struct extent_state *cached_state = NULL;
4197        u64 start = page_offset(page);
4198        u64 end = start + PAGE_SIZE - 1;
4199        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4200
4201        start += ALIGN(offset, blocksize);
4202        if (start > end)
4203                return 0;
4204
4205        lock_extent_bits(tree, start, end, &cached_state);
4206        wait_on_page_writeback(page);
4207        clear_extent_bit(tree, start, end,
4208                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4209                         EXTENT_DO_ACCOUNTING,
4210                         1, 1, &cached_state, GFP_NOFS);
4211        return 0;
4212}
4213
4214/*
4215 * a helper for releasepage, this tests for areas of the page that
4216 * are locked or under IO and drops the related state bits if it is safe
4217 * to drop the page.
4218 */
4219static int try_release_extent_state(struct extent_map_tree *map,
4220                                    struct extent_io_tree *tree,
4221                                    struct page *page, gfp_t mask)
4222{
4223        u64 start = page_offset(page);
4224        u64 end = start + PAGE_SIZE - 1;
4225        int ret = 1;
4226
4227        if (test_range_bit(tree, start, end,
4228                           EXTENT_IOBITS, 0, NULL))
4229                ret = 0;
4230        else {
4231                if ((mask & GFP_NOFS) == GFP_NOFS)
4232                        mask = GFP_NOFS;
4233                /*
4234                 * at this point we can safely clear everything except the
4235                 * locked bit and the nodatasum bit
4236                 */
4237                ret = clear_extent_bit(tree, start, end,
4238                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4239                                 0, 0, NULL, mask);
4240
4241                /* if clear_extent_bit failed for enomem reasons,
4242                 * we can't allow the release to continue.
4243                 */
4244                if (ret < 0)
4245                        ret = 0;
4246                else
4247                        ret = 1;
4248        }
4249        return ret;
4250}
4251
4252/*
4253 * a helper for releasepage.  As long as there are no locked extents
4254 * in the range corresponding to the page, both state records and extent
4255 * map records are removed
4256 */
4257int try_release_extent_mapping(struct extent_map_tree *map,
4258                               struct extent_io_tree *tree, struct page *page,
4259                               gfp_t mask)
4260{
4261        struct extent_map *em;
4262        u64 start = page_offset(page);
4263        u64 end = start + PAGE_SIZE - 1;
4264
4265        if (gfpflags_allow_blocking(mask) &&
4266            page->mapping->host->i_size > SZ_16M) {
4267                u64 len;
4268                while (start <= end) {
4269                        len = end - start + 1;
4270                        write_lock(&map->lock);
4271                        em = lookup_extent_mapping(map, start, len);
4272                        if (!em) {
4273                                write_unlock(&map->lock);
4274                                break;
4275                        }
4276                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4277                            em->start != start) {
4278                                write_unlock(&map->lock);
4279                                free_extent_map(em);
4280                                break;
4281                        }
4282                        if (!test_range_bit(tree, em->start,
4283                                            extent_map_end(em) - 1,
4284                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
4285                                            0, NULL)) {
4286                                remove_extent_mapping(map, em);
4287                                /* once for the rb tree */
4288                                free_extent_map(em);
4289                        }
4290                        start = extent_map_end(em);
4291                        write_unlock(&map->lock);
4292
4293                        /* once for us */
4294                        free_extent_map(em);
4295                }
4296        }
4297        return try_release_extent_state(map, tree, page, mask);
4298}
4299
4300/*
4301 * helper function for fiemap, which doesn't want to see any holes.
4302 * This maps until we find something past 'last'
4303 */
4304static struct extent_map *get_extent_skip_holes(struct inode *inode,
4305                                                u64 offset,
4306                                                u64 last,
4307                                                get_extent_t *get_extent)
4308{
4309        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4310        struct extent_map *em;
4311        u64 len;
4312
4313        if (offset >= last)
4314                return NULL;
4315
4316        while (1) {
4317                len = last - offset;
4318                if (len == 0)
4319                        break;
4320                len = ALIGN(len, sectorsize);
4321                em = get_extent(inode, NULL, 0, offset, len, 0);
4322                if (IS_ERR_OR_NULL(em))
4323                        return em;
4324
4325                /* if this isn't a hole return it */
4326                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4327                    em->block_start != EXTENT_MAP_HOLE) {
4328                        return em;
4329                }
4330
4331                /* this is a hole, advance to the next extent */
4332                offset = extent_map_end(em);
4333                free_extent_map(em);
4334                if (offset >= last)
4335                        break;
4336        }
4337        return NULL;
4338}
4339
4340int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4341                __u64 start, __u64 len, get_extent_t *get_extent)
4342{
4343        int ret = 0;
4344        u64 off = start;
4345        u64 max = start + len;
4346        u32 flags = 0;
4347        u32 found_type;
4348        u64 last;
4349        u64 last_for_get_extent = 0;
4350        u64 disko = 0;
4351        u64 isize = i_size_read(inode);
4352        struct btrfs_key found_key;
4353        struct extent_map *em = NULL;
4354        struct extent_state *cached_state = NULL;
4355        struct btrfs_path *path;
4356        struct btrfs_root *root = BTRFS_I(inode)->root;
4357        int end = 0;
4358        u64 em_start = 0;
4359        u64 em_len = 0;
4360        u64 em_end = 0;
4361
4362        if (len == 0)
4363                return -EINVAL;
4364
4365        path = btrfs_alloc_path();
4366        if (!path)
4367                return -ENOMEM;
4368        path->leave_spinning = 1;
4369
4370        start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4371        len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4372
4373        /*
4374         * lookup the last file extent.  We're not using i_size here
4375         * because there might be preallocation past i_size
4376         */
4377        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4378                                       0);
4379        if (ret < 0) {
4380                btrfs_free_path(path);
4381                return ret;
4382        }
4383        WARN_ON(!ret);
4384        path->slots[0]--;
4385        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4386        found_type = found_key.type;
4387
4388        /* No extents, but there might be delalloc bits */
4389        if (found_key.objectid != btrfs_ino(inode) ||
4390            found_type != BTRFS_EXTENT_DATA_KEY) {
4391                /* have to trust i_size as the end */
4392                last = (u64)-1;
4393                last_for_get_extent = isize;
4394        } else {
4395                /*
4396                 * remember the start of the last extent.  There are a
4397                 * bunch of different factors that go into the length of the
4398                 * extent, so its much less complex to remember where it started
4399                 */
4400                last = found_key.offset;
4401                last_for_get_extent = last + 1;
4402        }
4403        btrfs_release_path(path);
4404
4405        /*
4406         * we might have some extents allocated but more delalloc past those
4407         * extents.  so, we trust isize unless the start of the last extent is
4408         * beyond isize
4409         */
4410        if (last < isize) {
4411                last = (u64)-1;
4412                last_for_get_extent = isize;
4413        }
4414
4415        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4416                         &cached_state);
4417
4418        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4419                                   get_extent);
4420        if (!em)
4421                goto out;
4422        if (IS_ERR(em)) {
4423                ret = PTR_ERR(em);
4424                goto out;
4425        }
4426
4427        while (!end) {
4428                u64 offset_in_extent = 0;
4429
4430                /* break if the extent we found is outside the range */
4431                if (em->start >= max || extent_map_end(em) < off)
4432                        break;
4433
4434                /*
4435                 * get_extent may return an extent that starts before our
4436                 * requested range.  We have to make sure the ranges
4437                 * we return to fiemap always move forward and don't
4438                 * overlap, so adjust the offsets here
4439                 */
4440                em_start = max(em->start, off);
4441
4442                /*
4443                 * record the offset from the start of the extent
4444                 * for adjusting the disk offset below.  Only do this if the
4445                 * extent isn't compressed since our in ram offset may be past
4446                 * what we have actually allocated on disk.
4447                 */
4448                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4449                        offset_in_extent = em_start - em->start;
4450                em_end = extent_map_end(em);
4451                em_len = em_end - em_start;
4452                disko = 0;
4453                flags = 0;
4454
4455                /*
4456                 * bump off for our next call to get_extent
4457                 */
4458                off = extent_map_end(em);
4459                if (off >= max)
4460                        end = 1;
4461
4462                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4463                        end = 1;
4464                        flags |= FIEMAP_EXTENT_LAST;
4465                } else if (em->block_start == EXTENT_MAP_INLINE) {
4466                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4467                                  FIEMAP_EXTENT_NOT_ALIGNED);
4468                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4469                        flags |= (FIEMAP_EXTENT_DELALLOC |
4470                                  FIEMAP_EXTENT_UNKNOWN);
4471                } else if (fieinfo->fi_extents_max) {
4472                        u64 bytenr = em->block_start -
4473                                (em->start - em->orig_start);
4474
4475                        disko = em->block_start + offset_in_extent;
4476
4477                        /*
4478                         * As btrfs supports shared space, this information
4479                         * can be exported to userspace tools via
4480                         * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4481                         * then we're just getting a count and we can skip the
4482                         * lookup stuff.
4483                         */
4484                        ret = btrfs_check_shared(NULL, root->fs_info,
4485                                                 root->objectid,
4486                                                 btrfs_ino(inode), bytenr);
4487                        if (ret < 0)
4488                                goto out_free;
4489                        if (ret)
4490                                flags |= FIEMAP_EXTENT_SHARED;
4491                        ret = 0;
4492                }
4493                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4494                        flags |= FIEMAP_EXTENT_ENCODED;
4495                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4496                        flags |= FIEMAP_EXTENT_UNWRITTEN;
4497
4498                free_extent_map(em);
4499                em = NULL;
4500                if ((em_start >= last) || em_len == (u64)-1 ||
4501                   (last == (u64)-1 && isize <= em_end)) {
4502                        flags |= FIEMAP_EXTENT_LAST;
4503                        end = 1;
4504                }
4505
4506                /* now scan forward to see if this is really the last extent. */
4507                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4508                                           get_extent);
4509                if (IS_ERR(em)) {
4510                        ret = PTR_ERR(em);
4511                        goto out;
4512                }
4513                if (!em) {
4514                        flags |= FIEMAP_EXTENT_LAST;
4515                        end = 1;
4516                }
4517                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4518                                              em_len, flags);
4519                if (ret) {
4520                        if (ret == 1)
4521                                ret = 0;
4522                        goto out_free;
4523                }
4524        }
4525out_free:
4526        free_extent_map(em);
4527out:
4528        btrfs_free_path(path);
4529        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4530                             &cached_state, GFP_NOFS);
4531        return ret;
4532}
4533
4534static void __free_extent_buffer(struct extent_buffer *eb)
4535{
4536        btrfs_leak_debug_del(&eb->leak_list);
4537        kmem_cache_free(extent_buffer_cache, eb);
4538}
4539
4540int extent_buffer_under_io(struct extent_buffer *eb)
4541{
4542        return (atomic_read(&eb->io_pages) ||
4543                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4544                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4545}
4546
4547/*
4548 * Helper for releasing extent buffer page.
4549 */
4550static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4551{
4552        unsigned long index;
4553        struct page *page;
4554        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4555
4556        BUG_ON(extent_buffer_under_io(eb));
4557
4558        index = num_extent_pages(eb->start, eb->len);
4559        if (index == 0)
4560                return;
4561
4562        do {
4563                index--;
4564                page = eb->pages[index];
4565                if (!page)
4566                        continue;
4567                if (mapped)
4568                        spin_lock(&page->mapping->private_lock);
4569                /*
4570                 * We do this since we'll remove the pages after we've
4571                 * removed the eb from the radix tree, so we could race
4572                 * and have this page now attached to the new eb.  So
4573                 * only clear page_private if it's still connected to
4574                 * this eb.
4575                 */
4576                if (PagePrivate(page) &&
4577                    page->private == (unsigned long)eb) {
4578                        BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4579                        BUG_ON(PageDirty(page));
4580                        BUG_ON(PageWriteback(page));
4581                        /*
4582                         * We need to make sure we haven't be attached
4583                         * to a new eb.
4584                         */
4585                        ClearPagePrivate(page);
4586                        set_page_private(page, 0);
4587                        /* One for the page private */
4588                        put_page(page);
4589                }
4590
4591                if (mapped)
4592                        spin_unlock(&page->mapping->private_lock);
4593
4594                /* One for when we alloced the page */
4595                put_page(page);
4596        } while (index != 0);
4597}
4598
4599/*
4600 * Helper for releasing the extent buffer.
4601 */
4602static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4603{
4604        btrfs_release_extent_buffer_page(eb);
4605        __free_extent_buffer(eb);
4606}
4607
4608static struct extent_buffer *
4609__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4610                      unsigned long len)
4611{
4612        struct extent_buffer *eb = NULL;
4613
4614        eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4615        eb->start = start;
4616        eb->len = len;
4617        eb->fs_info = fs_info;
4618        eb->bflags = 0;
4619        rwlock_init(&eb->lock);
4620        atomic_set(&eb->write_locks, 0);
4621        atomic_set(&eb->read_locks, 0);
4622        atomic_set(&eb->blocking_readers, 0);
4623        atomic_set(&eb->blocking_writers, 0);
4624        atomic_set(&eb->spinning_readers, 0);
4625        atomic_set(&eb->spinning_writers, 0);
4626        eb->lock_nested = 0;
4627        init_waitqueue_head(&eb->write_lock_wq);
4628        init_waitqueue_head(&eb->read_lock_wq);
4629
4630        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4631
4632        spin_lock_init(&eb->refs_lock);
4633        atomic_set(&eb->refs, 1);
4634        atomic_set(&eb->io_pages, 0);
4635
4636        /*
4637         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4638         */
4639        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4640                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4641        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4642
4643        return eb;
4644}
4645
4646struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4647{
4648        unsigned long i;
4649        struct page *p;
4650        struct extent_buffer *new;
4651        unsigned long num_pages = num_extent_pages(src->start, src->len);
4652
4653        new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4654        if (new == NULL)
4655                return NULL;
4656
4657        for (i = 0; i < num_pages; i++) {
4658                p = alloc_page(GFP_NOFS);
4659                if (!p) {
4660                        btrfs_release_extent_buffer(new);
4661                        return NULL;
4662                }
4663                attach_extent_buffer_page(new, p);
4664                WARN_ON(PageDirty(p));
4665                SetPageUptodate(p);
4666                new->pages[i] = p;
4667        }
4668
4669        copy_extent_buffer(new, src, 0, 0, src->len);
4670        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4671        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4672
4673        return new;
4674}
4675
4676struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4677                                                  u64 start, unsigned long len)
4678{
4679        struct extent_buffer *eb;
4680        unsigned long num_pages;
4681        unsigned long i;
4682
4683        num_pages = num_extent_pages(start, len);
4684
4685        eb = __alloc_extent_buffer(fs_info, start, len);
4686        if (!eb)
4687                return NULL;
4688
4689        for (i = 0; i < num_pages; i++) {
4690                eb->pages[i] = alloc_page(GFP_NOFS);
4691                if (!eb->pages[i])
4692                        goto err;
4693        }
4694        set_extent_buffer_uptodate(eb);
4695        btrfs_set_header_nritems(eb, 0);
4696        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4697
4698        return eb;
4699err:
4700        for (; i > 0; i--)
4701                __free_page(eb->pages[i - 1]);
4702        __free_extent_buffer(eb);
4703        return NULL;
4704}
4705
4706struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4707                                                u64 start)
4708{
4709        unsigned long len;
4710
4711        if (!fs_info) {
4712                /*
4713                 * Called only from tests that don't always have a fs_info
4714                 * available, but we know that nodesize is 4096
4715                 */
4716                len = 4096;
4717        } else {
4718                len = fs_info->tree_root->nodesize;
4719        }
4720
4721        return __alloc_dummy_extent_buffer(fs_info, start, len);
4722}
4723
4724static void check_buffer_tree_ref(struct extent_buffer *eb)
4725{
4726        int refs;
4727        /* the ref bit is tricky.  We have to make sure it is set
4728         * if we have the buffer dirty.   Otherwise the
4729         * code to free a buffer can end up dropping a dirty
4730         * page
4731         *
4732         * Once the ref bit is set, it won't go away while the
4733         * buffer is dirty or in writeback, and it also won't
4734         * go away while we have the reference count on the
4735         * eb bumped.
4736         *
4737         * We can't just set the ref bit without bumping the
4738         * ref on the eb because free_extent_buffer might
4739         * see the ref bit and try to clear it.  If this happens
4740         * free_extent_buffer might end up dropping our original
4741         * ref by mistake and freeing the page before we are able
4742         * to add one more ref.
4743         *
4744         * So bump the ref count first, then set the bit.  If someone
4745         * beat us to it, drop the ref we added.
4746         */
4747        refs = atomic_read(&eb->refs);
4748        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4749                return;
4750
4751        spin_lock(&eb->refs_lock);
4752        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4753                atomic_inc(&eb->refs);
4754        spin_unlock(&eb->refs_lock);
4755}
4756
4757static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4758                struct page *accessed)
4759{
4760        unsigned long num_pages, i;
4761
4762        check_buffer_tree_ref(eb);
4763
4764        num_pages = num_extent_pages(eb->start, eb->len);
4765        for (i = 0; i < num_pages; i++) {
4766                struct page *p = eb->pages[i];
4767
4768                if (p != accessed)
4769                        mark_page_accessed(p);
4770        }
4771}
4772
4773struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4774                                         u64 start)
4775{
4776        struct extent_buffer *eb;
4777
4778        rcu_read_lock();
4779        eb = radix_tree_lookup(&fs_info->buffer_radix,
4780                               start >> PAGE_SHIFT);
4781        if (eb && atomic_inc_not_zero(&eb->refs)) {
4782                rcu_read_unlock();
4783                /*
4784                 * Lock our eb's refs_lock to avoid races with
4785                 * free_extent_buffer. When we get our eb it might be flagged
4786                 * with EXTENT_BUFFER_STALE and another task running
4787                 * free_extent_buffer might have seen that flag set,
4788                 * eb->refs == 2, that the buffer isn't under IO (dirty and
4789                 * writeback flags not set) and it's still in the tree (flag
4790                 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4791                 * of decrementing the extent buffer's reference count twice.
4792                 * So here we could race and increment the eb's reference count,
4793                 * clear its stale flag, mark it as dirty and drop our reference
4794                 * before the other task finishes executing free_extent_buffer,
4795                 * which would later result in an attempt to free an extent
4796                 * buffer that is dirty.
4797                 */
4798                if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4799                        spin_lock(&eb->refs_lock);
4800                        spin_unlock(&eb->refs_lock);
4801                }
4802                mark_extent_buffer_accessed(eb, NULL);
4803                return eb;
4804        }
4805        rcu_read_unlock();
4806
4807        return NULL;
4808}
4809
4810#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4811struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4812                                               u64 start)
4813{
4814        struct extent_buffer *eb, *exists = NULL;
4815        int ret;
4816
4817        eb = find_extent_buffer(fs_info, start);
4818        if (eb)
4819                return eb;
4820        eb = alloc_dummy_extent_buffer(fs_info, start);
4821        if (!eb)
4822                return NULL;
4823        eb->fs_info = fs_info;
4824again:
4825        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4826        if (ret)
4827                goto free_eb;
4828        spin_lock(&fs_info->buffer_lock);
4829        ret = radix_tree_insert(&fs_info->buffer_radix,
4830                                start >> PAGE_SHIFT, eb);
4831        spin_unlock(&fs_info->buffer_lock);
4832        radix_tree_preload_end();
4833        if (ret == -EEXIST) {
4834                exists = find_extent_buffer(fs_info, start);
4835                if (exists)
4836                        goto free_eb;
4837                else
4838                        goto again;
4839        }
4840        check_buffer_tree_ref(eb);
4841        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4842
4843        /*
4844         * We will free dummy extent buffer's if they come into
4845         * free_extent_buffer with a ref count of 2, but if we are using this we
4846         * want the buffers to stay in memory until we're done with them, so
4847         * bump the ref count again.
4848         */
4849        atomic_inc(&eb->refs);
4850        return eb;
4851free_eb:
4852        btrfs_release_extent_buffer(eb);
4853        return exists;
4854}
4855#endif
4856
4857struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4858                                          u64 start)
4859{
4860        unsigned long len = fs_info->tree_root->nodesize;
4861        unsigned long num_pages = num_extent_pages(start, len);
4862        unsigned long i;
4863        unsigned long index = start >> PAGE_SHIFT;
4864        struct extent_buffer *eb;
4865        struct extent_buffer *exists = NULL;
4866        struct page *p;
4867        struct address_space *mapping = fs_info->btree_inode->i_mapping;
4868        int uptodate = 1;
4869        int ret;
4870
4871        eb = find_extent_buffer(fs_info, start);
4872        if (eb)
4873                return eb;
4874
4875        eb = __alloc_extent_buffer(fs_info, start, len);
4876        if (!eb)
4877                return NULL;
4878
4879        for (i = 0; i < num_pages; i++, index++) {
4880                p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4881                if (!p)
4882                        goto free_eb;
4883
4884                spin_lock(&mapping->private_lock);
4885                if (PagePrivate(p)) {
4886                        /*
4887                         * We could have already allocated an eb for this page
4888                         * and attached one so lets see if we can get a ref on
4889                         * the existing eb, and if we can we know it's good and
4890                         * we can just return that one, else we know we can just
4891                         * overwrite page->private.
4892                         */
4893                        exists = (struct extent_buffer *)p->private;
4894                        if (atomic_inc_not_zero(&exists->refs)) {
4895                                spin_unlock(&mapping->private_lock);
4896                                unlock_page(p);
4897                                put_page(p);
4898                                mark_extent_buffer_accessed(exists, p);
4899                                goto free_eb;
4900                        }
4901                        exists = NULL;
4902
4903                        /*
4904                         * Do this so attach doesn't complain and we need to
4905                         * drop the ref the old guy had.
4906                         */
4907                        ClearPagePrivate(p);
4908                        WARN_ON(PageDirty(p));
4909                        put_page(p);
4910                }
4911                attach_extent_buffer_page(eb, p);
4912                spin_unlock(&mapping->private_lock);
4913                WARN_ON(PageDirty(p));
4914                eb->pages[i] = p;
4915                if (!PageUptodate(p))
4916                        uptodate = 0;
4917
4918                /*
4919                 * see below about how we avoid a nasty race with release page
4920                 * and why we unlock later
4921                 */
4922        }
4923        if (uptodate)
4924                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4925again:
4926        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4927        if (ret)
4928                goto free_eb;
4929
4930        spin_lock(&fs_info->buffer_lock);
4931        ret = radix_tree_insert(&fs_info->buffer_radix,
4932                                start >> PAGE_SHIFT, eb);
4933        spin_unlock(&fs_info->buffer_lock);
4934        radix_tree_preload_end();
4935        if (ret == -EEXIST) {
4936                exists = find_extent_buffer(fs_info, start);
4937                if (exists)
4938                        goto free_eb;
4939                else
4940                        goto again;
4941        }
4942        /* add one reference for the tree */
4943        check_buffer_tree_ref(eb);
4944        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4945
4946        /*
4947         * there is a race where release page may have
4948         * tried to find this extent buffer in the radix
4949         * but failed.  It will tell the VM it is safe to
4950         * reclaim the, and it will clear the page private bit.
4951         * We must make sure to set the page private bit properly
4952         * after the extent buffer is in the radix tree so
4953         * it doesn't get lost
4954         */
4955        SetPageChecked(eb->pages[0]);
4956        for (i = 1; i < num_pages; i++) {
4957                p = eb->pages[i];
4958                ClearPageChecked(p);
4959                unlock_page(p);
4960        }
4961        unlock_page(eb->pages[0]);
4962        return eb;
4963
4964free_eb:
4965        WARN_ON(!atomic_dec_and_test(&eb->refs));
4966        for (i = 0; i < num_pages; i++) {
4967                if (eb->pages[i])
4968                        unlock_page(eb->pages[i]);
4969        }
4970
4971        btrfs_release_extent_buffer(eb);
4972        return exists;
4973}
4974
4975static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4976{
4977        struct extent_buffer *eb =
4978                        container_of(head, struct extent_buffer, rcu_head);
4979
4980        __free_extent_buffer(eb);
4981}
4982
4983/* Expects to have eb->eb_lock already held */
4984static int release_extent_buffer(struct extent_buffer *eb)
4985{
4986        WARN_ON(atomic_read(&eb->refs) == 0);
4987        if (atomic_dec_and_test(&eb->refs)) {
4988                if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4989                        struct btrfs_fs_info *fs_info = eb->fs_info;
4990
4991                        spin_unlock(&eb->refs_lock);
4992
4993                        spin_lock(&fs_info->buffer_lock);
4994                        radix_tree_delete(&fs_info->buffer_radix,
4995                                          eb->start >> PAGE_SHIFT);
4996                        spin_unlock(&fs_info->buffer_lock);
4997                } else {
4998                        spin_unlock(&eb->refs_lock);
4999                }
5000
5001                /* Should be safe to release our pages at this point */
5002                btrfs_release_extent_buffer_page(eb);
5003#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5004                if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5005                        __free_extent_buffer(eb);
5006                        return 1;
5007                }
5008#endif
5009                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5010                return 1;
5011        }
5012        spin_unlock(&eb->refs_lock);
5013
5014        return 0;
5015}
5016
5017void free_extent_buffer(struct extent_buffer *eb)
5018{
5019        int refs;
5020        int old;
5021        if (!eb)
5022                return;
5023
5024        while (1) {
5025                refs = atomic_read(&eb->refs);
5026                if (refs <= 3)
5027                        break;
5028                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5029                if (old == refs)
5030                        return;
5031        }
5032
5033        spin_lock(&eb->refs_lock);
5034        if (atomic_read(&eb->refs) == 2 &&
5035            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5036                atomic_dec(&eb->refs);
5037
5038        if (atomic_read(&eb->refs) == 2 &&
5039            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5040            !extent_buffer_under_io(eb) &&
5041            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5042                atomic_dec(&eb->refs);
5043
5044        /*
5045         * I know this is terrible, but it's temporary until we stop tracking
5046         * the uptodate bits and such for the extent buffers.
5047         */
5048        release_extent_buffer(eb);
5049}
5050
5051void free_extent_buffer_stale(struct extent_buffer *eb)
5052{
5053        if (!eb)
5054                return;
5055
5056        spin_lock(&eb->refs_lock);
5057        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5058
5059        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5060            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5061                atomic_dec(&eb->refs);
5062        release_extent_buffer(eb);
5063}
5064
5065void clear_extent_buffer_dirty(struct extent_buffer *eb)
5066{
5067        unsigned long i;
5068        unsigned long num_pages;
5069        struct page *page;
5070
5071        num_pages = num_extent_pages(eb->start, eb->len);
5072
5073        for (i = 0; i < num_pages; i++) {
5074                page = eb->pages[i];
5075                if (!PageDirty(page))
5076                        continue;
5077
5078                lock_page(page);
5079                WARN_ON(!PagePrivate(page));
5080
5081                clear_page_dirty_for_io(page);
5082                spin_lock_irq(&page->mapping->tree_lock);
5083                if (!PageDirty(page)) {
5084                        radix_tree_tag_clear(&page->mapping->page_tree,
5085                                                page_index(page),
5086                                                PAGECACHE_TAG_DIRTY);
5087                }
5088                spin_unlock_irq(&page->mapping->tree_lock);
5089                ClearPageError(page);
5090                unlock_page(page);
5091        }
5092        WARN_ON(atomic_read(&eb->refs) == 0);
5093}
5094
5095int set_extent_buffer_dirty(struct extent_buffer *eb)
5096{
5097        unsigned long i;
5098        unsigned long num_pages;
5099        int was_dirty = 0;
5100
5101        check_buffer_tree_ref(eb);
5102
5103        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5104
5105        num_pages = num_extent_pages(eb->start, eb->len);
5106        WARN_ON(atomic_read(&eb->refs) == 0);
5107        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5108
5109        for (i = 0; i < num_pages; i++)
5110                set_page_dirty(eb->pages[i]);
5111        return was_dirty;
5112}
5113
5114void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5115{
5116        unsigned long i;
5117        struct page *page;
5118        unsigned long num_pages;
5119
5120        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5121        num_pages = num_extent_pages(eb->start, eb->len);
5122        for (i = 0; i < num_pages; i++) {
5123                page = eb->pages[i];
5124                if (page)
5125                        ClearPageUptodate(page);
5126        }
5127}
5128
5129void set_extent_buffer_uptodate(struct extent_buffer *eb)
5130{
5131        unsigned long i;
5132        struct page *page;
5133        unsigned long num_pages;
5134
5135        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5136        num_pages = num_extent_pages(eb->start, eb->len);
5137        for (i = 0; i < num_pages; i++) {
5138                page = eb->pages[i];
5139                SetPageUptodate(page);
5140        }
5141}
5142
5143int extent_buffer_uptodate(struct extent_buffer *eb)
5144{
5145        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5146}
5147
5148int read_extent_buffer_pages(struct extent_io_tree *tree,
5149                             struct extent_buffer *eb, u64 start, int wait,
5150                             get_extent_t *get_extent, int mirror_num)
5151{
5152        unsigned long i;
5153        unsigned long start_i;
5154        struct page *page;
5155        int err;
5156        int ret = 0;
5157        int locked_pages = 0;
5158        int all_uptodate = 1;
5159        unsigned long num_pages;
5160        unsigned long num_reads = 0;
5161        struct bio *bio = NULL;
5162        unsigned long bio_flags = 0;
5163
5164        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5165                return 0;
5166
5167        if (start) {
5168                WARN_ON(start < eb->start);
5169                start_i = (start >> PAGE_SHIFT) -
5170                        (eb->start >> PAGE_SHIFT);
5171        } else {
5172                start_i = 0;
5173        }
5174
5175        num_pages = num_extent_pages(eb->start, eb->len);
5176        for (i = start_i; i < num_pages; i++) {
5177                page = eb->pages[i];
5178                if (wait == WAIT_NONE) {
5179                        if (!trylock_page(page))
5180                                goto unlock_exit;
5181                } else {
5182                        lock_page(page);
5183                }
5184                locked_pages++;
5185                if (!PageUptodate(page)) {
5186                        num_reads++;
5187                        all_uptodate = 0;
5188                }
5189        }
5190        if (all_uptodate) {
5191                if (start_i == 0)
5192                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5193                goto unlock_exit;
5194        }
5195
5196        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5197        eb->read_mirror = 0;
5198        atomic_set(&eb->io_pages, num_reads);
5199        for (i = start_i; i < num_pages; i++) {
5200                page = eb->pages[i];
5201                if (!PageUptodate(page)) {
5202                        ClearPageError(page);
5203                        err = __extent_read_full_page(tree, page,
5204                                                      get_extent, &bio,
5205                                                      mirror_num, &bio_flags,
5206                                                      READ | REQ_META);
5207                        if (err)
5208                                ret = err;
5209                } else {
5210                        unlock_page(page);
5211                }
5212        }
5213
5214        if (bio) {
5215                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5216                                     bio_flags);
5217                if (err)
5218                        return err;
5219        }
5220
5221        if (ret || wait != WAIT_COMPLETE)
5222                return ret;
5223
5224        for (i = start_i; i < num_pages; i++) {
5225                page = eb->pages[i];
5226                wait_on_page_locked(page);
5227                if (!PageUptodate(page))
5228                        ret = -EIO;
5229        }
5230
5231        return ret;
5232
5233unlock_exit:
5234        i = start_i;
5235        while (locked_pages > 0) {
5236                page = eb->pages[i];
5237                i++;
5238                unlock_page(page);
5239                locked_pages--;
5240        }
5241        return ret;
5242}
5243
5244void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5245                        unsigned long start,
5246                        unsigned long len)
5247{
5248        size_t cur;
5249        size_t offset;
5250        struct page *page;
5251        char *kaddr;
5252        char *dst = (char *)dstv;
5253        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5254        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5255
5256        WARN_ON(start > eb->len);
5257        WARN_ON(start + len > eb->start + eb->len);
5258
5259        offset = (start_offset + start) & (PAGE_SIZE - 1);
5260
5261        while (len > 0) {
5262                page = eb->pages[i];
5263
5264                cur = min(len, (PAGE_SIZE - offset));
5265                kaddr = page_address(page);
5266                memcpy(dst, kaddr + offset, cur);
5267
5268                dst += cur;
5269                len -= cur;
5270                offset = 0;
5271                i++;
5272        }
5273}
5274
5275int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5276                        unsigned long start,
5277                        unsigned long len)
5278{
5279        size_t cur;
5280        size_t offset;
5281        struct page *page;
5282        char *kaddr;
5283        char __user *dst = (char __user *)dstv;
5284        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5285        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5286        int ret = 0;
5287
5288        WARN_ON(start > eb->len);
5289        WARN_ON(start + len > eb->start + eb->len);
5290
5291        offset = (start_offset + start) & (PAGE_SIZE - 1);
5292
5293        while (len > 0) {
5294                page = eb->pages[i];
5295
5296                cur = min(len, (PAGE_SIZE - offset));
5297                kaddr = page_address(page);
5298                if (copy_to_user(dst, kaddr + offset, cur)) {
5299                        ret = -EFAULT;
5300                        break;
5301                }
5302
5303                dst += cur;
5304                len -= cur;
5305                offset = 0;
5306                i++;
5307        }
5308
5309        return ret;
5310}
5311
5312int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5313                               unsigned long min_len, char **map,
5314                               unsigned long *map_start,
5315                               unsigned long *map_len)
5316{
5317        size_t offset = start & (PAGE_SIZE - 1);
5318        char *kaddr;
5319        struct page *p;
5320        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5321        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5322        unsigned long end_i = (start_offset + start + min_len - 1) >>
5323                PAGE_SHIFT;
5324
5325        if (i != end_i)
5326                return -EINVAL;
5327
5328        if (i == 0) {
5329                offset = start_offset;
5330                *map_start = 0;
5331        } else {
5332                offset = 0;
5333                *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5334        }
5335
5336        if (start + min_len > eb->len) {
5337                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5338                       "wanted %lu %lu\n",
5339                       eb->start, eb->len, start, min_len);
5340                return -EINVAL;
5341        }
5342
5343        p = eb->pages[i];
5344        kaddr = page_address(p);
5345        *map = kaddr + offset;
5346        *map_len = PAGE_SIZE - offset;
5347        return 0;
5348}
5349
5350int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5351                          unsigned long start,
5352                          unsigned long len)
5353{
5354        size_t cur;
5355        size_t offset;
5356        struct page *page;
5357        char *kaddr;
5358        char *ptr = (char *)ptrv;
5359        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5360        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5361        int ret = 0;
5362
5363        WARN_ON(start > eb->len);
5364        WARN_ON(start + len > eb->start + eb->len);
5365
5366        offset = (start_offset + start) & (PAGE_SIZE - 1);
5367
5368        while (len > 0) {
5369                page = eb->pages[i];
5370
5371                cur = min(len, (PAGE_SIZE - offset));
5372
5373                kaddr = page_address(page);
5374                ret = memcmp(ptr, kaddr + offset, cur);
5375                if (ret)
5376                        break;
5377
5378                ptr += cur;
5379                len -= cur;
5380                offset = 0;
5381                i++;
5382        }
5383        return ret;
5384}
5385
5386void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5387                         unsigned long start, unsigned long len)
5388{
5389        size_t cur;
5390        size_t offset;
5391        struct page *page;
5392        char *kaddr;
5393        char *src = (char *)srcv;
5394        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5395        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5396
5397        WARN_ON(start > eb->len);
5398        WARN_ON(start + len > eb->start + eb->len);
5399
5400        offset = (start_offset + start) & (PAGE_SIZE - 1);
5401
5402        while (len > 0) {
5403                page = eb->pages[i];
5404                WARN_ON(!PageUptodate(page));
5405
5406                cur = min(len, PAGE_SIZE - offset);
5407                kaddr = page_address(page);
5408                memcpy(kaddr + offset, src, cur);
5409
5410                src += cur;
5411                len -= cur;
5412                offset = 0;
5413                i++;
5414        }
5415}
5416
5417void memset_extent_buffer(struct extent_buffer *eb, char c,
5418                          unsigned long start, unsigned long len)
5419{
5420        size_t cur;
5421        size_t offset;
5422        struct page *page;
5423        char *kaddr;
5424        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5425        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5426
5427        WARN_ON(start > eb->len);
5428        WARN_ON(start + len > eb->start + eb->len);
5429
5430        offset = (start_offset + start) & (PAGE_SIZE - 1);
5431
5432        while (len > 0) {
5433                page = eb->pages[i];
5434                WARN_ON(!PageUptodate(page));
5435
5436                cur = min(len, PAGE_SIZE - offset);
5437                kaddr = page_address(page);
5438                memset(kaddr + offset, c, cur);
5439
5440                len -= cur;
5441                offset = 0;
5442                i++;
5443        }
5444}
5445
5446void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5447                        unsigned long dst_offset, unsigned long src_offset,
5448                        unsigned long len)
5449{
5450        u64 dst_len = dst->len;
5451        size_t cur;
5452        size_t offset;
5453        struct page *page;
5454        char *kaddr;
5455        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5456        unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5457
5458        WARN_ON(src->len != dst_len);
5459
5460        offset = (start_offset + dst_offset) &
5461                (PAGE_SIZE - 1);
5462
5463        while (len > 0) {
5464                page = dst->pages[i];
5465                WARN_ON(!PageUptodate(page));
5466
5467                cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5468
5469                kaddr = page_address(page);
5470                read_extent_buffer(src, kaddr + offset, src_offset, cur);
5471
5472                src_offset += cur;
5473                len -= cur;
5474                offset = 0;
5475                i++;
5476        }
5477}
5478
5479/*
5480 * The extent buffer bitmap operations are done with byte granularity because
5481 * bitmap items are not guaranteed to be aligned to a word and therefore a
5482 * single word in a bitmap may straddle two pages in the extent buffer.
5483 */
5484#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5485#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5486#define BITMAP_FIRST_BYTE_MASK(start) \
5487        ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5488#define BITMAP_LAST_BYTE_MASK(nbits) \
5489        (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5490
5491/*
5492 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5493 * given bit number
5494 * @eb: the extent buffer
5495 * @start: offset of the bitmap item in the extent buffer
5496 * @nr: bit number
5497 * @page_index: return index of the page in the extent buffer that contains the
5498 * given bit number
5499 * @page_offset: return offset into the page given by page_index
5500 *
5501 * This helper hides the ugliness of finding the byte in an extent buffer which
5502 * contains a given bit.
5503 */
5504static inline void eb_bitmap_offset(struct extent_buffer *eb,
5505                                    unsigned long start, unsigned long nr,
5506                                    unsigned long *page_index,
5507                                    size_t *page_offset)
5508{
5509        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5510        size_t byte_offset = BIT_BYTE(nr);
5511        size_t offset;
5512
5513        /*
5514         * The byte we want is the offset of the extent buffer + the offset of
5515         * the bitmap item in the extent buffer + the offset of the byte in the
5516         * bitmap item.
5517         */
5518        offset = start_offset + start + byte_offset;
5519
5520        *page_index = offset >> PAGE_SHIFT;
5521        *page_offset = offset & (PAGE_SIZE - 1);
5522}
5523
5524/**
5525 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5526 * @eb: the extent buffer
5527 * @start: offset of the bitmap item in the extent buffer
5528 * @nr: bit number to test
5529 */
5530int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5531                           unsigned long nr)
5532{
5533        char *kaddr;
5534        struct page *page;
5535        unsigned long i;
5536        size_t offset;
5537
5538        eb_bitmap_offset(eb, start, nr, &i, &offset);
5539        page = eb->pages[i];
5540        WARN_ON(!PageUptodate(page));
5541        kaddr = page_address(page);
5542        return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5543}
5544
5545/**
5546 * extent_buffer_bitmap_set - set an area of a bitmap
5547 * @eb: the extent buffer
5548 * @start: offset of the bitmap item in the extent buffer
5549 * @pos: bit number of the first bit
5550 * @len: number of bits to set
5551 */
5552void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5553                              unsigned long pos, unsigned long len)
5554{
5555        char *kaddr;
5556        struct page *page;
5557        unsigned long i;
5558        size_t offset;
5559        const unsigned int size = pos + len;
5560        int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5561        unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5562
5563        eb_bitmap_offset(eb, start, pos, &i, &offset);
5564        page = eb->pages[i];
5565        WARN_ON(!PageUptodate(page));
5566        kaddr = page_address(page);
5567
5568        while (len >= bits_to_set) {
5569                kaddr[offset] |= mask_to_set;
5570                len -= bits_to_set;
5571                bits_to_set = BITS_PER_BYTE;
5572                mask_to_set = ~0U;
5573                if (++offset >= PAGE_SIZE && len > 0) {
5574                        offset = 0;
5575                        page = eb->pages[++i];
5576                        WARN_ON(!PageUptodate(page));
5577                        kaddr = page_address(page);
5578                }
5579        }
5580        if (len) {
5581                mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5582                kaddr[offset] |= mask_to_set;
5583        }
5584}
5585
5586
5587/**
5588 * extent_buffer_bitmap_clear - clear an area of a bitmap
5589 * @eb: the extent buffer
5590 * @start: offset of the bitmap item in the extent buffer
5591 * @pos: bit number of the first bit
5592 * @len: number of bits to clear
5593 */
5594void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5595                                unsigned long pos, unsigned long len)
5596{
5597        char *kaddr;
5598        struct page *page;
5599        unsigned long i;
5600        size_t offset;
5601        const unsigned int size = pos + len;
5602        int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5603        unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5604
5605        eb_bitmap_offset(eb, start, pos, &i, &offset);
5606        page = eb->pages[i];
5607        WARN_ON(!PageUptodate(page));
5608        kaddr = page_address(page);
5609
5610        while (len >= bits_to_clear) {
5611                kaddr[offset] &= ~mask_to_clear;
5612                len -= bits_to_clear;
5613                bits_to_clear = BITS_PER_BYTE;
5614                mask_to_clear = ~0U;
5615                if (++offset >= PAGE_SIZE && len > 0) {
5616                        offset = 0;
5617                        page = eb->pages[++i];
5618                        WARN_ON(!PageUptodate(page));
5619                        kaddr = page_address(page);
5620                }
5621        }
5622        if (len) {
5623                mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5624                kaddr[offset] &= ~mask_to_clear;
5625        }
5626}
5627
5628static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5629{
5630        unsigned long distance = (src > dst) ? src - dst : dst - src;
5631        return distance < len;
5632}
5633
5634static void copy_pages(struct page *dst_page, struct page *src_page,
5635                       unsigned long dst_off, unsigned long src_off,
5636                       unsigned long len)
5637{
5638        char *dst_kaddr = page_address(dst_page);
5639        char *src_kaddr;
5640        int must_memmove = 0;
5641
5642        if (dst_page != src_page) {
5643                src_kaddr = page_address(src_page);
5644        } else {
5645                src_kaddr = dst_kaddr;
5646                if (areas_overlap(src_off, dst_off, len))
5647                        must_memmove = 1;
5648        }
5649
5650        if (must_memmove)
5651                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5652        else
5653                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5654}
5655
5656void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5657                           unsigned long src_offset, unsigned long len)
5658{
5659        size_t cur;
5660        size_t dst_off_in_page;
5661        size_t src_off_in_page;
5662        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5663        unsigned long dst_i;
5664        unsigned long src_i;
5665
5666        if (src_offset + len > dst->len) {
5667                btrfs_err(dst->fs_info,
5668                        "memmove bogus src_offset %lu move "
5669                       "len %lu dst len %lu", src_offset, len, dst->len);
5670                BUG_ON(1);
5671        }
5672        if (dst_offset + len > dst->len) {
5673                btrfs_err(dst->fs_info,
5674                        "memmove bogus dst_offset %lu move "
5675                       "len %lu dst len %lu", dst_offset, len, dst->len);
5676                BUG_ON(1);
5677        }
5678
5679        while (len > 0) {
5680                dst_off_in_page = (start_offset + dst_offset) &
5681                        (PAGE_SIZE - 1);
5682                src_off_in_page = (start_offset + src_offset) &
5683                        (PAGE_SIZE - 1);
5684
5685                dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5686                src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5687
5688                cur = min(len, (unsigned long)(PAGE_SIZE -
5689                                               src_off_in_page));
5690                cur = min_t(unsigned long, cur,
5691                        (unsigned long)(PAGE_SIZE - dst_off_in_page));
5692
5693                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5694                           dst_off_in_page, src_off_in_page, cur);
5695
5696                src_offset += cur;
5697                dst_offset += cur;
5698                len -= cur;
5699        }
5700}
5701
5702void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5703                           unsigned long src_offset, unsigned long len)
5704{
5705        size_t cur;
5706        size_t dst_off_in_page;
5707        size_t src_off_in_page;
5708        unsigned long dst_end = dst_offset + len - 1;
5709        unsigned long src_end = src_offset + len - 1;
5710        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5711        unsigned long dst_i;
5712        unsigned long src_i;
5713
5714        if (src_offset + len > dst->len) {
5715                btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5716                       "len %lu len %lu", src_offset, len, dst->len);
5717                BUG_ON(1);
5718        }
5719        if (dst_offset + len > dst->len) {
5720                btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5721                       "len %lu len %lu", dst_offset, len, dst->len);
5722                BUG_ON(1);
5723        }
5724        if (dst_offset < src_offset) {
5725                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5726                return;
5727        }
5728        while (len > 0) {
5729                dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5730                src_i = (start_offset + src_end) >> PAGE_SHIFT;
5731
5732                dst_off_in_page = (start_offset + dst_end) &
5733                        (PAGE_SIZE - 1);
5734                src_off_in_page = (start_offset + src_end) &
5735                        (PAGE_SIZE - 1);
5736
5737                cur = min_t(unsigned long, len, src_off_in_page + 1);
5738                cur = min(cur, dst_off_in_page + 1);
5739                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5740                           dst_off_in_page - cur + 1,
5741                           src_off_in_page - cur + 1, cur);
5742
5743                dst_end -= cur;
5744                src_end -= cur;
5745                len -= cur;
5746        }
5747}
5748
5749int try_release_extent_buffer(struct page *page)
5750{
5751        struct extent_buffer *eb;
5752
5753        /*
5754         * We need to make sure noboody is attaching this page to an eb right
5755         * now.
5756         */
5757        spin_lock(&page->mapping->private_lock);
5758        if (!PagePrivate(page)) {
5759                spin_unlock(&page->mapping->private_lock);
5760                return 1;
5761        }
5762
5763        eb = (struct extent_buffer *)page->private;
5764        BUG_ON(!eb);
5765
5766        /*
5767         * This is a little awful but should be ok, we need to make sure that
5768         * the eb doesn't disappear out from under us while we're looking at
5769         * this page.
5770         */
5771        spin_lock(&eb->refs_lock);
5772        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5773                spin_unlock(&eb->refs_lock);
5774                spin_unlock(&page->mapping->private_lock);
5775                return 0;
5776        }
5777        spin_unlock(&page->mapping->private_lock);
5778
5779        /*
5780         * If tree ref isn't set then we know the ref on this eb is a real ref,
5781         * so just return, this page will likely be freed soon anyway.
5782         */
5783        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5784                spin_unlock(&eb->refs_lock);
5785                return 0;
5786        }
5787
5788        return release_extent_buffer(eb);
5789}
5790