linux/fs/f2fs/segment.h
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/blkdev.h>
  12#include <linux/backing-dev.h>
  13
  14/* constant macro */
  15#define NULL_SEGNO                      ((unsigned int)(~0))
  16#define NULL_SECNO                      ((unsigned int)(~0))
  17
  18#define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
  19
  20/* L: Logical segment # in volume, R: Relative segment # in main area */
  21#define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
  22#define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
  23
  24#define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
  25#define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
  26
  27#define IS_CURSEG(sbi, seg)                                             \
  28        ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
  29         (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
  30         (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
  31         (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
  32         (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
  33         (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  34
  35#define IS_CURSEC(sbi, secno)                                           \
  36        ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
  37          sbi->segs_per_sec) || \
  38         (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
  39          sbi->segs_per_sec) || \
  40         (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
  41          sbi->segs_per_sec) || \
  42         (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
  43          sbi->segs_per_sec) || \
  44         (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
  45          sbi->segs_per_sec) || \
  46         (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
  47          sbi->segs_per_sec))   \
  48
  49#define MAIN_BLKADDR(sbi)       (SM_I(sbi)->main_blkaddr)
  50#define SEG0_BLKADDR(sbi)       (SM_I(sbi)->seg0_blkaddr)
  51
  52#define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
  53#define MAIN_SECS(sbi)  (sbi->total_sections)
  54
  55#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
  56#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
  57
  58#define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
  59#define SEGMENT_SIZE(sbi)       (1ULL << (sbi->log_blocksize +          \
  60                                        sbi->log_blocks_per_seg))
  61
  62#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
  63         (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
  64
  65#define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
  66        (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
  67
  68#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
  69#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
  70        (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
  71#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
  72        (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
  73
  74#define GET_SEGNO(sbi, blk_addr)                                        \
  75        (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
  76        NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
  77                GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  78#define GET_SECNO(sbi, segno)                                   \
  79        ((segno) / sbi->segs_per_sec)
  80#define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
  81        ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
  82
  83#define GET_SUM_BLOCK(sbi, segno)                               \
  84        ((sbi->sm_info->ssa_blkaddr) + segno)
  85
  86#define GET_SUM_TYPE(footer) ((footer)->entry_type)
  87#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
  88
  89#define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
  90        (segno % sit_i->sents_per_block)
  91#define SIT_BLOCK_OFFSET(segno)                                 \
  92        (segno / SIT_ENTRY_PER_BLOCK)
  93#define START_SEGNO(segno)              \
  94        (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
  95#define SIT_BLK_CNT(sbi)                        \
  96        ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
  97#define f2fs_bitmap_size(nr)                    \
  98        (BITS_TO_LONGS(nr) * sizeof(unsigned long))
  99
 100#define SECTOR_FROM_BLOCK(blk_addr)                                     \
 101        (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
 102#define SECTOR_TO_BLOCK(sectors)                                        \
 103        (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
 104#define MAX_BIO_BLOCKS(sbi)                                             \
 105        ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
 106
 107/*
 108 * indicate a block allocation direction: RIGHT and LEFT.
 109 * RIGHT means allocating new sections towards the end of volume.
 110 * LEFT means the opposite direction.
 111 */
 112enum {
 113        ALLOC_RIGHT = 0,
 114        ALLOC_LEFT
 115};
 116
 117/*
 118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 119 * LFS writes data sequentially with cleaning operations.
 120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 121 */
 122enum {
 123        LFS = 0,
 124        SSR
 125};
 126
 127/*
 128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 129 * GC_CB is based on cost-benefit algorithm.
 130 * GC_GREEDY is based on greedy algorithm.
 131 */
 132enum {
 133        GC_CB = 0,
 134        GC_GREEDY
 135};
 136
 137/*
 138 * BG_GC means the background cleaning job.
 139 * FG_GC means the on-demand cleaning job.
 140 * FORCE_FG_GC means on-demand cleaning job in background.
 141 */
 142enum {
 143        BG_GC = 0,
 144        FG_GC,
 145        FORCE_FG_GC,
 146};
 147
 148/* for a function parameter to select a victim segment */
 149struct victim_sel_policy {
 150        int alloc_mode;                 /* LFS or SSR */
 151        int gc_mode;                    /* GC_CB or GC_GREEDY */
 152        unsigned long *dirty_segmap;    /* dirty segment bitmap */
 153        unsigned int max_search;        /* maximum # of segments to search */
 154        unsigned int offset;            /* last scanned bitmap offset */
 155        unsigned int ofs_unit;          /* bitmap search unit */
 156        unsigned int min_cost;          /* minimum cost */
 157        unsigned int min_segno;         /* segment # having min. cost */
 158};
 159
 160struct seg_entry {
 161        unsigned short valid_blocks;    /* # of valid blocks */
 162        unsigned char *cur_valid_map;   /* validity bitmap of blocks */
 163        /*
 164         * # of valid blocks and the validity bitmap stored in the the last
 165         * checkpoint pack. This information is used by the SSR mode.
 166         */
 167        unsigned short ckpt_valid_blocks;
 168        unsigned char *ckpt_valid_map;
 169        unsigned char *discard_map;
 170        unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
 171        unsigned long long mtime;       /* modification time of the segment */
 172};
 173
 174struct sec_entry {
 175        unsigned int valid_blocks;      /* # of valid blocks in a section */
 176};
 177
 178struct segment_allocation {
 179        void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
 180};
 181
 182/*
 183 * this value is set in page as a private data which indicate that
 184 * the page is atomically written, and it is in inmem_pages list.
 185 */
 186#define ATOMIC_WRITTEN_PAGE             ((unsigned long)-1)
 187
 188#define IS_ATOMIC_WRITTEN_PAGE(page)                    \
 189                (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
 190
 191struct inmem_pages {
 192        struct list_head list;
 193        struct page *page;
 194        block_t old_addr;               /* for revoking when fail to commit */
 195};
 196
 197struct sit_info {
 198        const struct segment_allocation *s_ops;
 199
 200        block_t sit_base_addr;          /* start block address of SIT area */
 201        block_t sit_blocks;             /* # of blocks used by SIT area */
 202        block_t written_valid_blocks;   /* # of valid blocks in main area */
 203        char *sit_bitmap;               /* SIT bitmap pointer */
 204        unsigned int bitmap_size;       /* SIT bitmap size */
 205
 206        unsigned long *tmp_map;                 /* bitmap for temporal use */
 207        unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
 208        unsigned int dirty_sentries;            /* # of dirty sentries */
 209        unsigned int sents_per_block;           /* # of SIT entries per block */
 210        struct mutex sentry_lock;               /* to protect SIT cache */
 211        struct seg_entry *sentries;             /* SIT segment-level cache */
 212        struct sec_entry *sec_entries;          /* SIT section-level cache */
 213
 214        /* for cost-benefit algorithm in cleaning procedure */
 215        unsigned long long elapsed_time;        /* elapsed time after mount */
 216        unsigned long long mounted_time;        /* mount time */
 217        unsigned long long min_mtime;           /* min. modification time */
 218        unsigned long long max_mtime;           /* max. modification time */
 219};
 220
 221struct free_segmap_info {
 222        unsigned int start_segno;       /* start segment number logically */
 223        unsigned int free_segments;     /* # of free segments */
 224        unsigned int free_sections;     /* # of free sections */
 225        spinlock_t segmap_lock;         /* free segmap lock */
 226        unsigned long *free_segmap;     /* free segment bitmap */
 227        unsigned long *free_secmap;     /* free section bitmap */
 228};
 229
 230/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
 231enum dirty_type {
 232        DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
 233        DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
 234        DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
 235        DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
 236        DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
 237        DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
 238        DIRTY,                  /* to count # of dirty segments */
 239        PRE,                    /* to count # of entirely obsolete segments */
 240        NR_DIRTY_TYPE
 241};
 242
 243struct dirty_seglist_info {
 244        const struct victim_selection *v_ops;   /* victim selction operation */
 245        unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 246        struct mutex seglist_lock;              /* lock for segment bitmaps */
 247        int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
 248        unsigned long *victim_secmap;           /* background GC victims */
 249};
 250
 251/* victim selection function for cleaning and SSR */
 252struct victim_selection {
 253        int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
 254                                                        int, int, char);
 255};
 256
 257/* for active log information */
 258struct curseg_info {
 259        struct mutex curseg_mutex;              /* lock for consistency */
 260        struct f2fs_summary_block *sum_blk;     /* cached summary block */
 261        struct rw_semaphore journal_rwsem;      /* protect journal area */
 262        struct f2fs_journal *journal;           /* cached journal info */
 263        unsigned char alloc_type;               /* current allocation type */
 264        unsigned int segno;                     /* current segment number */
 265        unsigned short next_blkoff;             /* next block offset to write */
 266        unsigned int zone;                      /* current zone number */
 267        unsigned int next_segno;                /* preallocated segment */
 268};
 269
 270struct sit_entry_set {
 271        struct list_head set_list;      /* link with all sit sets */
 272        unsigned int start_segno;       /* start segno of sits in set */
 273        unsigned int entry_cnt;         /* the # of sit entries in set */
 274};
 275
 276/*
 277 * inline functions
 278 */
 279static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
 280{
 281        return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
 282}
 283
 284static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
 285                                                unsigned int segno)
 286{
 287        struct sit_info *sit_i = SIT_I(sbi);
 288        return &sit_i->sentries[segno];
 289}
 290
 291static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
 292                                                unsigned int segno)
 293{
 294        struct sit_info *sit_i = SIT_I(sbi);
 295        return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
 296}
 297
 298static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
 299                                unsigned int segno, int section)
 300{
 301        /*
 302         * In order to get # of valid blocks in a section instantly from many
 303         * segments, f2fs manages two counting structures separately.
 304         */
 305        if (section > 1)
 306                return get_sec_entry(sbi, segno)->valid_blocks;
 307        else
 308                return get_seg_entry(sbi, segno)->valid_blocks;
 309}
 310
 311static inline void seg_info_from_raw_sit(struct seg_entry *se,
 312                                        struct f2fs_sit_entry *rs)
 313{
 314        se->valid_blocks = GET_SIT_VBLOCKS(rs);
 315        se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
 316        memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 317        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 318        se->type = GET_SIT_TYPE(rs);
 319        se->mtime = le64_to_cpu(rs->mtime);
 320}
 321
 322static inline void seg_info_to_raw_sit(struct seg_entry *se,
 323                                        struct f2fs_sit_entry *rs)
 324{
 325        unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
 326                                        se->valid_blocks;
 327        rs->vblocks = cpu_to_le16(raw_vblocks);
 328        memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 329        memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 330        se->ckpt_valid_blocks = se->valid_blocks;
 331        rs->mtime = cpu_to_le64(se->mtime);
 332}
 333
 334static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
 335                unsigned int max, unsigned int segno)
 336{
 337        unsigned int ret;
 338        spin_lock(&free_i->segmap_lock);
 339        ret = find_next_bit(free_i->free_segmap, max, segno);
 340        spin_unlock(&free_i->segmap_lock);
 341        return ret;
 342}
 343
 344static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
 345{
 346        struct free_segmap_info *free_i = FREE_I(sbi);
 347        unsigned int secno = segno / sbi->segs_per_sec;
 348        unsigned int start_segno = secno * sbi->segs_per_sec;
 349        unsigned int next;
 350
 351        spin_lock(&free_i->segmap_lock);
 352        clear_bit(segno, free_i->free_segmap);
 353        free_i->free_segments++;
 354
 355        next = find_next_bit(free_i->free_segmap,
 356                        start_segno + sbi->segs_per_sec, start_segno);
 357        if (next >= start_segno + sbi->segs_per_sec) {
 358                clear_bit(secno, free_i->free_secmap);
 359                free_i->free_sections++;
 360        }
 361        spin_unlock(&free_i->segmap_lock);
 362}
 363
 364static inline void __set_inuse(struct f2fs_sb_info *sbi,
 365                unsigned int segno)
 366{
 367        struct free_segmap_info *free_i = FREE_I(sbi);
 368        unsigned int secno = segno / sbi->segs_per_sec;
 369        set_bit(segno, free_i->free_segmap);
 370        free_i->free_segments--;
 371        if (!test_and_set_bit(secno, free_i->free_secmap))
 372                free_i->free_sections--;
 373}
 374
 375static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
 376                unsigned int segno)
 377{
 378        struct free_segmap_info *free_i = FREE_I(sbi);
 379        unsigned int secno = segno / sbi->segs_per_sec;
 380        unsigned int start_segno = secno * sbi->segs_per_sec;
 381        unsigned int next;
 382
 383        spin_lock(&free_i->segmap_lock);
 384        if (test_and_clear_bit(segno, free_i->free_segmap)) {
 385                free_i->free_segments++;
 386
 387                next = find_next_bit(free_i->free_segmap,
 388                                start_segno + sbi->segs_per_sec, start_segno);
 389                if (next >= start_segno + sbi->segs_per_sec) {
 390                        if (test_and_clear_bit(secno, free_i->free_secmap))
 391                                free_i->free_sections++;
 392                }
 393        }
 394        spin_unlock(&free_i->segmap_lock);
 395}
 396
 397static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
 398                unsigned int segno)
 399{
 400        struct free_segmap_info *free_i = FREE_I(sbi);
 401        unsigned int secno = segno / sbi->segs_per_sec;
 402        spin_lock(&free_i->segmap_lock);
 403        if (!test_and_set_bit(segno, free_i->free_segmap)) {
 404                free_i->free_segments--;
 405                if (!test_and_set_bit(secno, free_i->free_secmap))
 406                        free_i->free_sections--;
 407        }
 408        spin_unlock(&free_i->segmap_lock);
 409}
 410
 411static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
 412                void *dst_addr)
 413{
 414        struct sit_info *sit_i = SIT_I(sbi);
 415        memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
 416}
 417
 418static inline block_t written_block_count(struct f2fs_sb_info *sbi)
 419{
 420        return SIT_I(sbi)->written_valid_blocks;
 421}
 422
 423static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
 424{
 425        return FREE_I(sbi)->free_segments;
 426}
 427
 428static inline int reserved_segments(struct f2fs_sb_info *sbi)
 429{
 430        return SM_I(sbi)->reserved_segments;
 431}
 432
 433static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
 434{
 435        return FREE_I(sbi)->free_sections;
 436}
 437
 438static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
 439{
 440        return DIRTY_I(sbi)->nr_dirty[PRE];
 441}
 442
 443static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
 444{
 445        return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
 446                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
 447                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
 448                DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
 449                DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
 450                DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
 451}
 452
 453static inline int overprovision_segments(struct f2fs_sb_info *sbi)
 454{
 455        return SM_I(sbi)->ovp_segments;
 456}
 457
 458static inline int overprovision_sections(struct f2fs_sb_info *sbi)
 459{
 460        return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
 461}
 462
 463static inline int reserved_sections(struct f2fs_sb_info *sbi)
 464{
 465        return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
 466}
 467
 468static inline bool need_SSR(struct f2fs_sb_info *sbi)
 469{
 470        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 471        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 472        return free_sections(sbi) <= (node_secs + 2 * dent_secs +
 473                                                reserved_sections(sbi) + 1);
 474}
 475
 476static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
 477{
 478        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 479        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 480
 481        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 482                return false;
 483
 484        return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
 485                                                reserved_sections(sbi));
 486}
 487
 488static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
 489{
 490        return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
 491}
 492
 493static inline int utilization(struct f2fs_sb_info *sbi)
 494{
 495        return div_u64((u64)valid_user_blocks(sbi) * 100,
 496                                        sbi->user_block_count);
 497}
 498
 499/*
 500 * Sometimes f2fs may be better to drop out-of-place update policy.
 501 * And, users can control the policy through sysfs entries.
 502 * There are five policies with triggering conditions as follows.
 503 * F2FS_IPU_FORCE - all the time,
 504 * F2FS_IPU_SSR - if SSR mode is activated,
 505 * F2FS_IPU_UTIL - if FS utilization is over threashold,
 506 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
 507 *                     threashold,
 508 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
 509 *                     storages. IPU will be triggered only if the # of dirty
 510 *                     pages over min_fsync_blocks.
 511 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 512 */
 513#define DEF_MIN_IPU_UTIL        70
 514#define DEF_MIN_FSYNC_BLOCKS    8
 515
 516enum {
 517        F2FS_IPU_FORCE,
 518        F2FS_IPU_SSR,
 519        F2FS_IPU_UTIL,
 520        F2FS_IPU_SSR_UTIL,
 521        F2FS_IPU_FSYNC,
 522};
 523
 524static inline bool need_inplace_update(struct inode *inode)
 525{
 526        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 527        unsigned int policy = SM_I(sbi)->ipu_policy;
 528
 529        /* IPU can be done only for the user data */
 530        if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
 531                return false;
 532
 533        if (policy & (0x1 << F2FS_IPU_FORCE))
 534                return true;
 535        if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
 536                return true;
 537        if (policy & (0x1 << F2FS_IPU_UTIL) &&
 538                        utilization(sbi) > SM_I(sbi)->min_ipu_util)
 539                return true;
 540        if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
 541                        utilization(sbi) > SM_I(sbi)->min_ipu_util)
 542                return true;
 543
 544        /* this is only set during fdatasync */
 545        if (policy & (0x1 << F2FS_IPU_FSYNC) &&
 546                        is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
 547                return true;
 548
 549        return false;
 550}
 551
 552static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
 553                int type)
 554{
 555        struct curseg_info *curseg = CURSEG_I(sbi, type);
 556        return curseg->segno;
 557}
 558
 559static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
 560                int type)
 561{
 562        struct curseg_info *curseg = CURSEG_I(sbi, type);
 563        return curseg->alloc_type;
 564}
 565
 566static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 567{
 568        struct curseg_info *curseg = CURSEG_I(sbi, type);
 569        return curseg->next_blkoff;
 570}
 571
 572static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
 573{
 574        f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
 575}
 576
 577static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
 578{
 579        f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
 580                                        || blk_addr >= MAX_BLKADDR(sbi));
 581}
 582
 583/*
 584 * Summary block is always treated as an invalid block
 585 */
 586static inline void check_block_count(struct f2fs_sb_info *sbi,
 587                int segno, struct f2fs_sit_entry *raw_sit)
 588{
 589#ifdef CONFIG_F2FS_CHECK_FS
 590        bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
 591        int valid_blocks = 0;
 592        int cur_pos = 0, next_pos;
 593
 594        /* check bitmap with valid block count */
 595        do {
 596                if (is_valid) {
 597                        next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
 598                                        sbi->blocks_per_seg,
 599                                        cur_pos);
 600                        valid_blocks += next_pos - cur_pos;
 601                } else
 602                        next_pos = find_next_bit_le(&raw_sit->valid_map,
 603                                        sbi->blocks_per_seg,
 604                                        cur_pos);
 605                cur_pos = next_pos;
 606                is_valid = !is_valid;
 607        } while (cur_pos < sbi->blocks_per_seg);
 608        BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
 609#endif
 610        /* check segment usage, and check boundary of a given segment number */
 611        f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
 612                                        || segno > TOTAL_SEGS(sbi) - 1);
 613}
 614
 615static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
 616                                                unsigned int start)
 617{
 618        struct sit_info *sit_i = SIT_I(sbi);
 619        unsigned int offset = SIT_BLOCK_OFFSET(start);
 620        block_t blk_addr = sit_i->sit_base_addr + offset;
 621
 622        check_seg_range(sbi, start);
 623
 624        /* calculate sit block address */
 625        if (f2fs_test_bit(offset, sit_i->sit_bitmap))
 626                blk_addr += sit_i->sit_blocks;
 627
 628        return blk_addr;
 629}
 630
 631static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
 632                                                pgoff_t block_addr)
 633{
 634        struct sit_info *sit_i = SIT_I(sbi);
 635        block_addr -= sit_i->sit_base_addr;
 636        if (block_addr < sit_i->sit_blocks)
 637                block_addr += sit_i->sit_blocks;
 638        else
 639                block_addr -= sit_i->sit_blocks;
 640
 641        return block_addr + sit_i->sit_base_addr;
 642}
 643
 644static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
 645{
 646        unsigned int block_off = SIT_BLOCK_OFFSET(start);
 647
 648        f2fs_change_bit(block_off, sit_i->sit_bitmap);
 649}
 650
 651static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 652{
 653        struct sit_info *sit_i = SIT_I(sbi);
 654        return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
 655                                                sit_i->mounted_time;
 656}
 657
 658static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
 659                        unsigned int ofs_in_node, unsigned char version)
 660{
 661        sum->nid = cpu_to_le32(nid);
 662        sum->ofs_in_node = cpu_to_le16(ofs_in_node);
 663        sum->version = version;
 664}
 665
 666static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
 667{
 668        return __start_cp_addr(sbi) +
 669                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
 670}
 671
 672static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
 673{
 674        return __start_cp_addr(sbi) +
 675                le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
 676                                - (base + 1) + type;
 677}
 678
 679static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
 680{
 681        if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
 682                return true;
 683        return false;
 684}
 685
 686static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
 687{
 688        struct block_device *bdev = sbi->sb->s_bdev;
 689        struct request_queue *q = bdev_get_queue(bdev);
 690        return SECTOR_TO_BLOCK(queue_max_sectors(q));
 691}
 692
 693/*
 694 * It is very important to gather dirty pages and write at once, so that we can
 695 * submit a big bio without interfering other data writes.
 696 * By default, 512 pages for directory data,
 697 * 512 pages (2MB) * 3 for three types of nodes, and
 698 * max_bio_blocks for meta are set.
 699 */
 700static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
 701{
 702        if (sbi->sb->s_bdi->wb.dirty_exceeded)
 703                return 0;
 704
 705        if (type == DATA)
 706                return sbi->blocks_per_seg;
 707        else if (type == NODE)
 708                return 3 * sbi->blocks_per_seg;
 709        else if (type == META)
 710                return MAX_BIO_BLOCKS(sbi);
 711        else
 712                return 0;
 713}
 714
 715/*
 716 * When writing pages, it'd better align nr_to_write for segment size.
 717 */
 718static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
 719                                        struct writeback_control *wbc)
 720{
 721        long nr_to_write, desired;
 722
 723        if (wbc->sync_mode != WB_SYNC_NONE)
 724                return 0;
 725
 726        nr_to_write = wbc->nr_to_write;
 727
 728        if (type == DATA)
 729                desired = 4096;
 730        else if (type == NODE)
 731                desired = 3 * max_hw_blocks(sbi);
 732        else
 733                desired = MAX_BIO_BLOCKS(sbi);
 734
 735        wbc->nr_to_write = desired;
 736        return desired - nr_to_write;
 737}
 738