linux/fs/fs-writeback.c
<<
>>
Prefs
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Split out of fs/inode.c
  13 *              Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39        atomic_t                cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46        long nr_pages;
  47        struct super_block *sb;
  48        unsigned long *older_than_this;
  49        enum writeback_sync_modes sync_mode;
  50        unsigned int tagged_writepages:1;
  51        unsigned int for_kupdate:1;
  52        unsigned int range_cyclic:1;
  53        unsigned int for_background:1;
  54        unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
  55        unsigned int auto_free:1;       /* free on completion */
  56        enum wb_reason reason;          /* why was writeback initiated? */
  57
  58        struct list_head list;          /* pending work list */
  59        struct wb_completion *done;     /* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
  70        struct wb_completion cmpl = {                                   \
  71                .cnt            = ATOMIC_INIT(1),                       \
  72        }
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89        return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104        if (wb_has_dirty_io(wb)) {
 105                return false;
 106        } else {
 107                set_bit(WB_has_dirty_io, &wb->state);
 108                WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109                atomic_long_add(wb->avg_write_bandwidth,
 110                                &wb->bdi->tot_write_bandwidth);
 111                return true;
 112        }
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117        if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118            list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119                clear_bit(WB_has_dirty_io, &wb->state);
 120                WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121                                        &wb->bdi->tot_write_bandwidth) < 0);
 122        }
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136                                      struct bdi_writeback *wb,
 137                                      struct list_head *head)
 138{
 139        assert_spin_locked(&wb->list_lock);
 140
 141        list_move(&inode->i_io_list, head);
 142
 143        /* dirty_time doesn't count as dirty_io until expiration */
 144        if (head != &wb->b_dirty_time)
 145                return wb_io_lists_populated(wb);
 146
 147        wb_io_lists_depopulated(wb);
 148        return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160                                     struct bdi_writeback *wb)
 161{
 162        assert_spin_locked(&wb->list_lock);
 163
 164        list_del_init(&inode->i_io_list);
 165        wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170        spin_lock_bh(&wb->work_lock);
 171        if (test_bit(WB_registered, &wb->state))
 172                mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173        spin_unlock_bh(&wb->work_lock);
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177                          struct wb_writeback_work *work)
 178{
 179        trace_writeback_queue(wb, work);
 180
 181        spin_lock_bh(&wb->work_lock);
 182        if (!test_bit(WB_registered, &wb->state))
 183                goto out_unlock;
 184        if (work->done)
 185                atomic_inc(&work->done->cnt);
 186        list_add_tail(&work->list, &wb->work_list);
 187        mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 189        spin_unlock_bh(&wb->work_lock);
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204                                   struct wb_completion *done)
 205{
 206        atomic_dec(&done->cnt);         /* put down the initial count */
 207        wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 213#define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
 217
 218#define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220                                        /* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
 222                                        /* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224                                        /* one round can affect upto 5 slots */
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231        struct backing_dev_info *bdi = inode_to_bdi(inode);
 232        struct bdi_writeback *wb = NULL;
 233
 234        if (inode_cgwb_enabled(inode)) {
 235                struct cgroup_subsys_state *memcg_css;
 236
 237                if (page) {
 238                        memcg_css = mem_cgroup_css_from_page(page);
 239                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240                } else {
 241                        /* must pin memcg_css, see wb_get_create() */
 242                        memcg_css = task_get_css(current, memory_cgrp_id);
 243                        wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244                        css_put(memcg_css);
 245                }
 246        }
 247
 248        if (!wb)
 249                wb = &bdi->wb;
 250
 251        /*
 252         * There may be multiple instances of this function racing to
 253         * update the same inode.  Use cmpxchg() to tell the winner.
 254         */
 255        if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256                wb_put(wb);
 257}
 258
 259/**
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269        __releases(&inode->i_lock)
 270        __acquires(&wb->list_lock)
 271{
 272        while (true) {
 273                struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275                /*
 276                 * inode_to_wb() association is protected by both
 277                 * @inode->i_lock and @wb->list_lock but list_lock nests
 278                 * outside i_lock.  Drop i_lock and verify that the
 279                 * association hasn't changed after acquiring list_lock.
 280                 */
 281                wb_get(wb);
 282                spin_unlock(&inode->i_lock);
 283                spin_lock(&wb->list_lock);
 284
 285                /* i_wb may have changed inbetween, can't use inode_to_wb() */
 286                if (likely(wb == inode->i_wb)) {
 287                        wb_put(wb);     /* @inode already has ref */
 288                        return wb;
 289                }
 290
 291                spin_unlock(&wb->list_lock);
 292                wb_put(wb);
 293                cpu_relax();
 294                spin_lock(&inode->i_lock);
 295        }
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306        __acquires(&wb->list_lock)
 307{
 308        spin_lock(&inode->i_lock);
 309        return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313        struct inode            *inode;
 314        struct bdi_writeback    *new_wb;
 315
 316        struct rcu_head         rcu_head;
 317        struct work_struct      work;
 318};
 319
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 321{
 322        struct inode_switch_wbs_context *isw =
 323                container_of(work, struct inode_switch_wbs_context, work);
 324        struct inode *inode = isw->inode;
 325        struct address_space *mapping = inode->i_mapping;
 326        struct bdi_writeback *old_wb = inode->i_wb;
 327        struct bdi_writeback *new_wb = isw->new_wb;
 328        struct radix_tree_iter iter;
 329        bool switched = false;
 330        void **slot;
 331
 332        /*
 333         * By the time control reaches here, RCU grace period has passed
 334         * since I_WB_SWITCH assertion and all wb stat update transactions
 335         * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336         * synchronizing against mapping->tree_lock.
 337         *
 338         * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339         * gives us exclusion against all wb related operations on @inode
 340         * including IO list manipulations and stat updates.
 341         */
 342        if (old_wb < new_wb) {
 343                spin_lock(&old_wb->list_lock);
 344                spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345        } else {
 346                spin_lock(&new_wb->list_lock);
 347                spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348        }
 349        spin_lock(&inode->i_lock);
 350        spin_lock_irq(&mapping->tree_lock);
 351
 352        /*
 353         * Once I_FREEING is visible under i_lock, the eviction path owns
 354         * the inode and we shouldn't modify ->i_io_list.
 355         */
 356        if (unlikely(inode->i_state & I_FREEING))
 357                goto skip_switch;
 358
 359        /*
 360         * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361         * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362         * pages actually under underwriteback.
 363         */
 364        radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365                                   PAGECACHE_TAG_DIRTY) {
 366                struct page *page = radix_tree_deref_slot_protected(slot,
 367                                                        &mapping->tree_lock);
 368                if (likely(page) && PageDirty(page)) {
 369                        __dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370                        __inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371                }
 372        }
 373
 374        radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375                                   PAGECACHE_TAG_WRITEBACK) {
 376                struct page *page = radix_tree_deref_slot_protected(slot,
 377                                                        &mapping->tree_lock);
 378                if (likely(page)) {
 379                        WARN_ON_ONCE(!PageWriteback(page));
 380                        __dec_wb_stat(old_wb, WB_WRITEBACK);
 381                        __inc_wb_stat(new_wb, WB_WRITEBACK);
 382                }
 383        }
 384
 385        wb_get(new_wb);
 386
 387        /*
 388         * Transfer to @new_wb's IO list if necessary.  The specific list
 389         * @inode was on is ignored and the inode is put on ->b_dirty which
 390         * is always correct including from ->b_dirty_time.  The transfer
 391         * preserves @inode->dirtied_when ordering.
 392         */
 393        if (!list_empty(&inode->i_io_list)) {
 394                struct inode *pos;
 395
 396                inode_io_list_del_locked(inode, old_wb);
 397                inode->i_wb = new_wb;
 398                list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399                        if (time_after_eq(inode->dirtied_when,
 400                                          pos->dirtied_when))
 401                                break;
 402                inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 403        } else {
 404                inode->i_wb = new_wb;
 405        }
 406
 407        /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408        inode->i_wb_frn_winner = 0;
 409        inode->i_wb_frn_avg_time = 0;
 410        inode->i_wb_frn_history = 0;
 411        switched = true;
 412skip_switch:
 413        /*
 414         * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415         * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416         */
 417        smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419        spin_unlock_irq(&mapping->tree_lock);
 420        spin_unlock(&inode->i_lock);
 421        spin_unlock(&new_wb->list_lock);
 422        spin_unlock(&old_wb->list_lock);
 423
 424        if (switched) {
 425                wb_wakeup(new_wb);
 426                wb_put(old_wb);
 427        }
 428        wb_put(new_wb);
 429
 430        iput(inode);
 431        kfree(isw);
 432
 433        atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 437{
 438        struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439                                struct inode_switch_wbs_context, rcu_head);
 440
 441        /* needs to grab bh-unsafe locks, bounce to work item */
 442        INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443        queue_work(isw_wq, &isw->work);
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456        struct backing_dev_info *bdi = inode_to_bdi(inode);
 457        struct cgroup_subsys_state *memcg_css;
 458        struct inode_switch_wbs_context *isw;
 459
 460        /* noop if seems to be already in progress */
 461        if (inode->i_state & I_WB_SWITCH)
 462                return;
 463
 464        isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 465        if (!isw)
 466                return;
 467
 468        /* find and pin the new wb */
 469        rcu_read_lock();
 470        memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471        if (memcg_css)
 472                isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473        rcu_read_unlock();
 474        if (!isw->new_wb)
 475                goto out_free;
 476
 477        /* while holding I_WB_SWITCH, no one else can update the association */
 478        spin_lock(&inode->i_lock);
 479        if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480            inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481            inode_to_wb(inode) == isw->new_wb) {
 482                spin_unlock(&inode->i_lock);
 483                goto out_free;
 484        }
 485        inode->i_state |= I_WB_SWITCH;
 486        spin_unlock(&inode->i_lock);
 487
 488        ihold(inode);
 489        isw->inode = inode;
 490
 491        atomic_inc(&isw_nr_in_flight);
 492
 493        /*
 494         * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495         * the RCU protected stat update paths to grab the mapping's
 496         * tree_lock so that stat transfer can synchronize against them.
 497         * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498         */
 499        call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 500        return;
 501
 502out_free:
 503        if (isw->new_wb)
 504                wb_put(isw->new_wb);
 505        kfree(isw);
 506}
 507
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519                                 struct inode *inode)
 520{
 521        if (!inode_cgwb_enabled(inode)) {
 522                spin_unlock(&inode->i_lock);
 523                return;
 524        }
 525
 526        wbc->wb = inode_to_wb(inode);
 527        wbc->inode = inode;
 528
 529        wbc->wb_id = wbc->wb->memcg_css->id;
 530        wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531        wbc->wb_tcand_id = 0;
 532        wbc->wb_bytes = 0;
 533        wbc->wb_lcand_bytes = 0;
 534        wbc->wb_tcand_bytes = 0;
 535
 536        wb_get(wbc->wb);
 537        spin_unlock(&inode->i_lock);
 538
 539        /*
 540         * A dying wb indicates that the memcg-blkcg mapping has changed
 541         * and a new wb is already serving the memcg.  Switch immediately.
 542         */
 543        if (unlikely(wb_dying(wbc->wb)))
 544                inode_switch_wbs(inode, wbc->wb_id);
 545}
 546
 547/**
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586        struct bdi_writeback *wb = wbc->wb;
 587        struct inode *inode = wbc->inode;
 588        unsigned long avg_time, max_bytes, max_time;
 589        u16 history;
 590        int max_id;
 591
 592        if (!wb)
 593                return;
 594
 595        history = inode->i_wb_frn_history;
 596        avg_time = inode->i_wb_frn_avg_time;
 597
 598        /* pick the winner of this round */
 599        if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600            wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601                max_id = wbc->wb_id;
 602                max_bytes = wbc->wb_bytes;
 603        } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604                max_id = wbc->wb_lcand_id;
 605                max_bytes = wbc->wb_lcand_bytes;
 606        } else {
 607                max_id = wbc->wb_tcand_id;
 608                max_bytes = wbc->wb_tcand_bytes;
 609        }
 610
 611        /*
 612         * Calculate the amount of IO time the winner consumed and fold it
 613         * into the running average kept per inode.  If the consumed IO
 614         * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615         * deciding whether to switch or not.  This is to prevent one-off
 616         * small dirtiers from skewing the verdict.
 617         */
 618        max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619                                wb->avg_write_bandwidth);
 620        if (avg_time)
 621                avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622                            (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623        else
 624                avg_time = max_time;    /* immediate catch up on first run */
 625
 626        if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627                int slots;
 628
 629                /*
 630                 * The switch verdict is reached if foreign wb's consume
 631                 * more than a certain proportion of IO time in a
 632                 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633                 * history mask where each bit represents one sixteenth of
 634                 * the period.  Determine the number of slots to shift into
 635                 * history from @max_time.
 636                 */
 637                slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638                            (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639                history <<= slots;
 640                if (wbc->wb_id != max_id)
 641                        history |= (1U << slots) - 1;
 642
 643                /*
 644                 * Switch if the current wb isn't the consistent winner.
 645                 * If there are multiple closely competing dirtiers, the
 646                 * inode may switch across them repeatedly over time, which
 647                 * is okay.  The main goal is avoiding keeping an inode on
 648                 * the wrong wb for an extended period of time.
 649                 */
 650                if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651                        inode_switch_wbs(inode, max_id);
 652        }
 653
 654        /*
 655         * Multiple instances of this function may race to update the
 656         * following fields but we don't mind occassional inaccuracies.
 657         */
 658        inode->i_wb_frn_winner = max_id;
 659        inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660        inode->i_wb_frn_history = history;
 661
 662        wb_put(wbc->wb);
 663        wbc->wb = NULL;
 664}
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677                    size_t bytes)
 678{
 679        int id;
 680
 681        /*
 682         * pageout() path doesn't attach @wbc to the inode being written
 683         * out.  This is intentional as we don't want the function to block
 684         * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685         * regular writeback instead of writing things out itself.
 686         */
 687        if (!wbc->wb)
 688                return;
 689
 690        id = mem_cgroup_css_from_page(page)->id;
 691
 692        if (id == wbc->wb_id) {
 693                wbc->wb_bytes += bytes;
 694                return;
 695        }
 696
 697        if (id == wbc->wb_lcand_id)
 698                wbc->wb_lcand_bytes += bytes;
 699
 700        /* Boyer-Moore majority vote algorithm */
 701        if (!wbc->wb_tcand_bytes)
 702                wbc->wb_tcand_id = id;
 703        if (id == wbc->wb_tcand_id)
 704                wbc->wb_tcand_bytes += bytes;
 705        else
 706                wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728        /*
 729         * Once set, ->i_wb never becomes NULL while the inode is alive.
 730         * Start transaction iff ->i_wb is visible.
 731         */
 732        if (inode && inode_to_wb_is_valid(inode)) {
 733                struct bdi_writeback *wb;
 734                bool locked, congested;
 735
 736                wb = unlocked_inode_to_wb_begin(inode, &locked);
 737                congested = wb_congested(wb, cong_bits);
 738                unlocked_inode_to_wb_end(inode, locked);
 739                return congested;
 740        }
 741
 742        return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757        unsigned long this_bw = wb->avg_write_bandwidth;
 758        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760        if (nr_pages == LONG_MAX)
 761                return LONG_MAX;
 762
 763        /*
 764         * This may be called on clean wb's and proportional distribution
 765         * may not make sense, just use the original @nr_pages in those
 766         * cases.  In general, we wanna err on the side of writing more.
 767         */
 768        if (!tot_bw || this_bw >= tot_bw)
 769                return nr_pages;
 770        else
 771                return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786                                  struct wb_writeback_work *base_work,
 787                                  bool skip_if_busy)
 788{
 789        struct bdi_writeback *last_wb = NULL;
 790        struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791                                              struct bdi_writeback, bdi_node);
 792
 793        might_sleep();
 794restart:
 795        rcu_read_lock();
 796        list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797                DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798                struct wb_writeback_work fallback_work;
 799                struct wb_writeback_work *work;
 800                long nr_pages;
 801
 802                if (last_wb) {
 803                        wb_put(last_wb);
 804                        last_wb = NULL;
 805                }
 806
 807                /* SYNC_ALL writes out I_DIRTY_TIME too */
 808                if (!wb_has_dirty_io(wb) &&
 809                    (base_work->sync_mode == WB_SYNC_NONE ||
 810                     list_empty(&wb->b_dirty_time)))
 811                        continue;
 812                if (skip_if_busy && writeback_in_progress(wb))
 813                        continue;
 814
 815                nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817                work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818                if (work) {
 819                        *work = *base_work;
 820                        work->nr_pages = nr_pages;
 821                        work->auto_free = 1;
 822                        wb_queue_work(wb, work);
 823                        continue;
 824                }
 825
 826                /* alloc failed, execute synchronously using on-stack fallback */
 827                work = &fallback_work;
 828                *work = *base_work;
 829                work->nr_pages = nr_pages;
 830                work->auto_free = 0;
 831                work->done = &fallback_work_done;
 832
 833                wb_queue_work(wb, work);
 834
 835                /*
 836                 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837                 * continuing iteration from @wb after dropping and
 838                 * regrabbing rcu read lock.
 839                 */
 840                wb_get(wb);
 841                last_wb = wb;
 842
 843                rcu_read_unlock();
 844                wb_wait_for_completion(bdi, &fallback_work_done);
 845                goto restart;
 846        }
 847        rcu_read_unlock();
 848
 849        if (last_wb)
 850                wb_put(last_wb);
 851}
 852
 853/**
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 865        if (atomic_read(&isw_nr_in_flight)) {
 866                synchronize_rcu();
 867                flush_workqueue(isw_wq);
 868        }
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873        isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874        if (!isw_wq)
 875                return -ENOMEM;
 876        return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else   /* CONFIG_CGROUP_WRITEBACK */
 881
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884        __releases(&inode->i_lock)
 885        __acquires(&wb->list_lock)
 886{
 887        struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889        spin_unlock(&inode->i_lock);
 890        spin_lock(&wb->list_lock);
 891        return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895        __acquires(&wb->list_lock)
 896{
 897        struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899        spin_lock(&wb->list_lock);
 900        return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905        return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909                                  struct wb_writeback_work *base_work,
 910                                  bool skip_if_busy)
 911{
 912        might_sleep();
 913
 914        if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915                base_work->auto_free = 0;
 916                wb_queue_work(&bdi->wb, base_work);
 917        }
 918}
 919
 920#endif  /* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923                        bool range_cyclic, enum wb_reason reason)
 924{
 925        struct wb_writeback_work *work;
 926
 927        if (!wb_has_dirty_io(wb))
 928                return;
 929
 930        /*
 931         * This is WB_SYNC_NONE writeback, so if allocation fails just
 932         * wakeup the thread for old dirty data writeback
 933         */
 934        work = kzalloc(sizeof(*work), GFP_ATOMIC);
 935        if (!work) {
 936                trace_writeback_nowork(wb);
 937                wb_wakeup(wb);
 938                return;
 939        }
 940
 941        work->sync_mode = WB_SYNC_NONE;
 942        work->nr_pages  = nr_pages;
 943        work->range_cyclic = range_cyclic;
 944        work->reason    = reason;
 945        work->auto_free = 1;
 946
 947        wb_queue_work(wb, work);
 948}
 949
 950/**
 951 * wb_start_background_writeback - start background writeback
 952 * @wb: bdi_writback to write from
 953 *
 954 * Description:
 955 *   This makes sure WB_SYNC_NONE background writeback happens. When
 956 *   this function returns, it is only guaranteed that for given wb
 957 *   some IO is happening if we are over background dirty threshold.
 958 *   Caller need not hold sb s_umount semaphore.
 959 */
 960void wb_start_background_writeback(struct bdi_writeback *wb)
 961{
 962        /*
 963         * We just wake up the flusher thread. It will perform background
 964         * writeback as soon as there is no other work to do.
 965         */
 966        trace_writeback_wake_background(wb);
 967        wb_wakeup(wb);
 968}
 969
 970/*
 971 * Remove the inode from the writeback list it is on.
 972 */
 973void inode_io_list_del(struct inode *inode)
 974{
 975        struct bdi_writeback *wb;
 976
 977        wb = inode_to_wb_and_lock_list(inode);
 978        inode_io_list_del_locked(inode, wb);
 979        spin_unlock(&wb->list_lock);
 980}
 981
 982/*
 983 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 984 * furthest end of its superblock's dirty-inode list.
 985 *
 986 * Before stamping the inode's ->dirtied_when, we check to see whether it is
 987 * already the most-recently-dirtied inode on the b_dirty list.  If that is
 988 * the case then the inode must have been redirtied while it was being written
 989 * out and we don't reset its dirtied_when.
 990 */
 991static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
 992{
 993        if (!list_empty(&wb->b_dirty)) {
 994                struct inode *tail;
 995
 996                tail = wb_inode(wb->b_dirty.next);
 997                if (time_before(inode->dirtied_when, tail->dirtied_when))
 998                        inode->dirtied_when = jiffies;
 999        }
1000        inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1001}
1002
1003/*
1004 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1005 */
1006static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1007{
1008        inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1009}
1010
1011static void inode_sync_complete(struct inode *inode)
1012{
1013        inode->i_state &= ~I_SYNC;
1014        /* If inode is clean an unused, put it into LRU now... */
1015        inode_add_lru(inode);
1016        /* Waiters must see I_SYNC cleared before being woken up */
1017        smp_mb();
1018        wake_up_bit(&inode->i_state, __I_SYNC);
1019}
1020
1021static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1022{
1023        bool ret = time_after(inode->dirtied_when, t);
1024#ifndef CONFIG_64BIT
1025        /*
1026         * For inodes being constantly redirtied, dirtied_when can get stuck.
1027         * It _appears_ to be in the future, but is actually in distant past.
1028         * This test is necessary to prevent such wrapped-around relative times
1029         * from permanently stopping the whole bdi writeback.
1030         */
1031        ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1032#endif
1033        return ret;
1034}
1035
1036#define EXPIRE_DIRTY_ATIME 0x0001
1037
1038/*
1039 * Move expired (dirtied before work->older_than_this) dirty inodes from
1040 * @delaying_queue to @dispatch_queue.
1041 */
1042static int move_expired_inodes(struct list_head *delaying_queue,
1043                               struct list_head *dispatch_queue,
1044                               int flags,
1045                               struct wb_writeback_work *work)
1046{
1047        unsigned long *older_than_this = NULL;
1048        unsigned long expire_time;
1049        LIST_HEAD(tmp);
1050        struct list_head *pos, *node;
1051        struct super_block *sb = NULL;
1052        struct inode *inode;
1053        int do_sb_sort = 0;
1054        int moved = 0;
1055
1056        if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1057                older_than_this = work->older_than_this;
1058        else if (!work->for_sync) {
1059                expire_time = jiffies - (dirtytime_expire_interval * HZ);
1060                older_than_this = &expire_time;
1061        }
1062        while (!list_empty(delaying_queue)) {
1063                inode = wb_inode(delaying_queue->prev);
1064                if (older_than_this &&
1065                    inode_dirtied_after(inode, *older_than_this))
1066                        break;
1067                list_move(&inode->i_io_list, &tmp);
1068                moved++;
1069                if (flags & EXPIRE_DIRTY_ATIME)
1070                        set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1071                if (sb_is_blkdev_sb(inode->i_sb))
1072                        continue;
1073                if (sb && sb != inode->i_sb)
1074                        do_sb_sort = 1;
1075                sb = inode->i_sb;
1076        }
1077
1078        /* just one sb in list, splice to dispatch_queue and we're done */
1079        if (!do_sb_sort) {
1080                list_splice(&tmp, dispatch_queue);
1081                goto out;
1082        }
1083
1084        /* Move inodes from one superblock together */
1085        while (!list_empty(&tmp)) {
1086                sb = wb_inode(tmp.prev)->i_sb;
1087                list_for_each_prev_safe(pos, node, &tmp) {
1088                        inode = wb_inode(pos);
1089                        if (inode->i_sb == sb)
1090                                list_move(&inode->i_io_list, dispatch_queue);
1091                }
1092        }
1093out:
1094        return moved;
1095}
1096
1097/*
1098 * Queue all expired dirty inodes for io, eldest first.
1099 * Before
1100 *         newly dirtied     b_dirty    b_io    b_more_io
1101 *         =============>    gf         edc     BA
1102 * After
1103 *         newly dirtied     b_dirty    b_io    b_more_io
1104 *         =============>    g          fBAedc
1105 *                                           |
1106 *                                           +--> dequeue for IO
1107 */
1108static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1109{
1110        int moved;
1111
1112        assert_spin_locked(&wb->list_lock);
1113        list_splice_init(&wb->b_more_io, &wb->b_io);
1114        moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1115        moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1116                                     EXPIRE_DIRTY_ATIME, work);
1117        if (moved)
1118                wb_io_lists_populated(wb);
1119        trace_writeback_queue_io(wb, work, moved);
1120}
1121
1122static int write_inode(struct inode *inode, struct writeback_control *wbc)
1123{
1124        int ret;
1125
1126        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1127                trace_writeback_write_inode_start(inode, wbc);
1128                ret = inode->i_sb->s_op->write_inode(inode, wbc);
1129                trace_writeback_write_inode(inode, wbc);
1130                return ret;
1131        }
1132        return 0;
1133}
1134
1135/*
1136 * Wait for writeback on an inode to complete. Called with i_lock held.
1137 * Caller must make sure inode cannot go away when we drop i_lock.
1138 */
1139static void __inode_wait_for_writeback(struct inode *inode)
1140        __releases(inode->i_lock)
1141        __acquires(inode->i_lock)
1142{
1143        DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1144        wait_queue_head_t *wqh;
1145
1146        wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1147        while (inode->i_state & I_SYNC) {
1148                spin_unlock(&inode->i_lock);
1149                __wait_on_bit(wqh, &wq, bit_wait,
1150                              TASK_UNINTERRUPTIBLE);
1151                spin_lock(&inode->i_lock);
1152        }
1153}
1154
1155/*
1156 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1157 */
1158void inode_wait_for_writeback(struct inode *inode)
1159{
1160        spin_lock(&inode->i_lock);
1161        __inode_wait_for_writeback(inode);
1162        spin_unlock(&inode->i_lock);
1163}
1164
1165/*
1166 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1167 * held and drops it. It is aimed for callers not holding any inode reference
1168 * so once i_lock is dropped, inode can go away.
1169 */
1170static void inode_sleep_on_writeback(struct inode *inode)
1171        __releases(inode->i_lock)
1172{
1173        DEFINE_WAIT(wait);
1174        wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1175        int sleep;
1176
1177        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1178        sleep = inode->i_state & I_SYNC;
1179        spin_unlock(&inode->i_lock);
1180        if (sleep)
1181                schedule();
1182        finish_wait(wqh, &wait);
1183}
1184
1185/*
1186 * Find proper writeback list for the inode depending on its current state and
1187 * possibly also change of its state while we were doing writeback.  Here we
1188 * handle things such as livelock prevention or fairness of writeback among
1189 * inodes. This function can be called only by flusher thread - noone else
1190 * processes all inodes in writeback lists and requeueing inodes behind flusher
1191 * thread's back can have unexpected consequences.
1192 */
1193static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1194                          struct writeback_control *wbc)
1195{
1196        if (inode->i_state & I_FREEING)
1197                return;
1198
1199        /*
1200         * Sync livelock prevention. Each inode is tagged and synced in one
1201         * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1202         * the dirty time to prevent enqueue and sync it again.
1203         */
1204        if ((inode->i_state & I_DIRTY) &&
1205            (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1206                inode->dirtied_when = jiffies;
1207
1208        if (wbc->pages_skipped) {
1209                /*
1210                 * writeback is not making progress due to locked
1211                 * buffers. Skip this inode for now.
1212                 */
1213                redirty_tail(inode, wb);
1214                return;
1215        }
1216
1217        if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1218                /*
1219                 * We didn't write back all the pages.  nfs_writepages()
1220                 * sometimes bales out without doing anything.
1221                 */
1222                if (wbc->nr_to_write <= 0) {
1223                        /* Slice used up. Queue for next turn. */
1224                        requeue_io(inode, wb);
1225                } else {
1226                        /*
1227                         * Writeback blocked by something other than
1228                         * congestion. Delay the inode for some time to
1229                         * avoid spinning on the CPU (100% iowait)
1230                         * retrying writeback of the dirty page/inode
1231                         * that cannot be performed immediately.
1232                         */
1233                        redirty_tail(inode, wb);
1234                }
1235        } else if (inode->i_state & I_DIRTY) {
1236                /*
1237                 * Filesystems can dirty the inode during writeback operations,
1238                 * such as delayed allocation during submission or metadata
1239                 * updates after data IO completion.
1240                 */
1241                redirty_tail(inode, wb);
1242        } else if (inode->i_state & I_DIRTY_TIME) {
1243                inode->dirtied_when = jiffies;
1244                inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1245        } else {
1246                /* The inode is clean. Remove from writeback lists. */
1247                inode_io_list_del_locked(inode, wb);
1248        }
1249}
1250
1251/*
1252 * Write out an inode and its dirty pages. Do not update the writeback list
1253 * linkage. That is left to the caller. The caller is also responsible for
1254 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1255 */
1256static int
1257__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1258{
1259        struct address_space *mapping = inode->i_mapping;
1260        long nr_to_write = wbc->nr_to_write;
1261        unsigned dirty;
1262        int ret;
1263
1264        WARN_ON(!(inode->i_state & I_SYNC));
1265
1266        trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1267
1268        ret = do_writepages(mapping, wbc);
1269
1270        /*
1271         * Make sure to wait on the data before writing out the metadata.
1272         * This is important for filesystems that modify metadata on data
1273         * I/O completion. We don't do it for sync(2) writeback because it has a
1274         * separate, external IO completion path and ->sync_fs for guaranteeing
1275         * inode metadata is written back correctly.
1276         */
1277        if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1278                int err = filemap_fdatawait(mapping);
1279                if (ret == 0)
1280                        ret = err;
1281        }
1282
1283        /*
1284         * Some filesystems may redirty the inode during the writeback
1285         * due to delalloc, clear dirty metadata flags right before
1286         * write_inode()
1287         */
1288        spin_lock(&inode->i_lock);
1289
1290        dirty = inode->i_state & I_DIRTY;
1291        if (inode->i_state & I_DIRTY_TIME) {
1292                if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1293                    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1294                    unlikely(time_after(jiffies,
1295                                        (inode->dirtied_time_when +
1296                                         dirtytime_expire_interval * HZ)))) {
1297                        dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1298                        trace_writeback_lazytime(inode);
1299                }
1300        } else
1301                inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1302        inode->i_state &= ~dirty;
1303
1304        /*
1305         * Paired with smp_mb() in __mark_inode_dirty().  This allows
1306         * __mark_inode_dirty() to test i_state without grabbing i_lock -
1307         * either they see the I_DIRTY bits cleared or we see the dirtied
1308         * inode.
1309         *
1310         * I_DIRTY_PAGES is always cleared together above even if @mapping
1311         * still has dirty pages.  The flag is reinstated after smp_mb() if
1312         * necessary.  This guarantees that either __mark_inode_dirty()
1313         * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1314         */
1315        smp_mb();
1316
1317        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1318                inode->i_state |= I_DIRTY_PAGES;
1319
1320        spin_unlock(&inode->i_lock);
1321
1322        if (dirty & I_DIRTY_TIME)
1323                mark_inode_dirty_sync(inode);
1324        /* Don't write the inode if only I_DIRTY_PAGES was set */
1325        if (dirty & ~I_DIRTY_PAGES) {
1326                int err = write_inode(inode, wbc);
1327                if (ret == 0)
1328                        ret = err;
1329        }
1330        trace_writeback_single_inode(inode, wbc, nr_to_write);
1331        return ret;
1332}
1333
1334/*
1335 * Write out an inode's dirty pages. Either the caller has an active reference
1336 * on the inode or the inode has I_WILL_FREE set.
1337 *
1338 * This function is designed to be called for writing back one inode which
1339 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1340 * and does more profound writeback list handling in writeback_sb_inodes().
1341 */
1342static int writeback_single_inode(struct inode *inode,
1343                                  struct writeback_control *wbc)
1344{
1345        struct bdi_writeback *wb;
1346        int ret = 0;
1347
1348        spin_lock(&inode->i_lock);
1349        if (!atomic_read(&inode->i_count))
1350                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1351        else
1352                WARN_ON(inode->i_state & I_WILL_FREE);
1353
1354        if (inode->i_state & I_SYNC) {
1355                if (wbc->sync_mode != WB_SYNC_ALL)
1356                        goto out;
1357                /*
1358                 * It's a data-integrity sync. We must wait. Since callers hold
1359                 * inode reference or inode has I_WILL_FREE set, it cannot go
1360                 * away under us.
1361                 */
1362                __inode_wait_for_writeback(inode);
1363        }
1364        WARN_ON(inode->i_state & I_SYNC);
1365        /*
1366         * Skip inode if it is clean and we have no outstanding writeback in
1367         * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1368         * function since flusher thread may be doing for example sync in
1369         * parallel and if we move the inode, it could get skipped. So here we
1370         * make sure inode is on some writeback list and leave it there unless
1371         * we have completely cleaned the inode.
1372         */
1373        if (!(inode->i_state & I_DIRTY_ALL) &&
1374            (wbc->sync_mode != WB_SYNC_ALL ||
1375             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1376                goto out;
1377        inode->i_state |= I_SYNC;
1378        wbc_attach_and_unlock_inode(wbc, inode);
1379
1380        ret = __writeback_single_inode(inode, wbc);
1381
1382        wbc_detach_inode(wbc);
1383
1384        wb = inode_to_wb_and_lock_list(inode);
1385        spin_lock(&inode->i_lock);
1386        /*
1387         * If inode is clean, remove it from writeback lists. Otherwise don't
1388         * touch it. See comment above for explanation.
1389         */
1390        if (!(inode->i_state & I_DIRTY_ALL))
1391                inode_io_list_del_locked(inode, wb);
1392        spin_unlock(&wb->list_lock);
1393        inode_sync_complete(inode);
1394out:
1395        spin_unlock(&inode->i_lock);
1396        return ret;
1397}
1398
1399static long writeback_chunk_size(struct bdi_writeback *wb,
1400                                 struct wb_writeback_work *work)
1401{
1402        long pages;
1403
1404        /*
1405         * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1406         * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1407         * here avoids calling into writeback_inodes_wb() more than once.
1408         *
1409         * The intended call sequence for WB_SYNC_ALL writeback is:
1410         *
1411         *      wb_writeback()
1412         *          writeback_sb_inodes()       <== called only once
1413         *              write_cache_pages()     <== called once for each inode
1414         *                   (quickly) tag currently dirty pages
1415         *                   (maybe slowly) sync all tagged pages
1416         */
1417        if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1418                pages = LONG_MAX;
1419        else {
1420                pages = min(wb->avg_write_bandwidth / 2,
1421                            global_wb_domain.dirty_limit / DIRTY_SCOPE);
1422                pages = min(pages, work->nr_pages);
1423                pages = round_down(pages + MIN_WRITEBACK_PAGES,
1424                                   MIN_WRITEBACK_PAGES);
1425        }
1426
1427        return pages;
1428}
1429
1430/*
1431 * Write a portion of b_io inodes which belong to @sb.
1432 *
1433 * Return the number of pages and/or inodes written.
1434 *
1435 * NOTE! This is called with wb->list_lock held, and will
1436 * unlock and relock that for each inode it ends up doing
1437 * IO for.
1438 */
1439static long writeback_sb_inodes(struct super_block *sb,
1440                                struct bdi_writeback *wb,
1441                                struct wb_writeback_work *work)
1442{
1443        struct writeback_control wbc = {
1444                .sync_mode              = work->sync_mode,
1445                .tagged_writepages      = work->tagged_writepages,
1446                .for_kupdate            = work->for_kupdate,
1447                .for_background         = work->for_background,
1448                .for_sync               = work->for_sync,
1449                .range_cyclic           = work->range_cyclic,
1450                .range_start            = 0,
1451                .range_end              = LLONG_MAX,
1452        };
1453        unsigned long start_time = jiffies;
1454        long write_chunk;
1455        long wrote = 0;  /* count both pages and inodes */
1456
1457        while (!list_empty(&wb->b_io)) {
1458                struct inode *inode = wb_inode(wb->b_io.prev);
1459                struct bdi_writeback *tmp_wb;
1460
1461                if (inode->i_sb != sb) {
1462                        if (work->sb) {
1463                                /*
1464                                 * We only want to write back data for this
1465                                 * superblock, move all inodes not belonging
1466                                 * to it back onto the dirty list.
1467                                 */
1468                                redirty_tail(inode, wb);
1469                                continue;
1470                        }
1471
1472                        /*
1473                         * The inode belongs to a different superblock.
1474                         * Bounce back to the caller to unpin this and
1475                         * pin the next superblock.
1476                         */
1477                        break;
1478                }
1479
1480                /*
1481                 * Don't bother with new inodes or inodes being freed, first
1482                 * kind does not need periodic writeout yet, and for the latter
1483                 * kind writeout is handled by the freer.
1484                 */
1485                spin_lock(&inode->i_lock);
1486                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1487                        spin_unlock(&inode->i_lock);
1488                        redirty_tail(inode, wb);
1489                        continue;
1490                }
1491                if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1492                        /*
1493                         * If this inode is locked for writeback and we are not
1494                         * doing writeback-for-data-integrity, move it to
1495                         * b_more_io so that writeback can proceed with the
1496                         * other inodes on s_io.
1497                         *
1498                         * We'll have another go at writing back this inode
1499                         * when we completed a full scan of b_io.
1500                         */
1501                        spin_unlock(&inode->i_lock);
1502                        requeue_io(inode, wb);
1503                        trace_writeback_sb_inodes_requeue(inode);
1504                        continue;
1505                }
1506                spin_unlock(&wb->list_lock);
1507
1508                /*
1509                 * We already requeued the inode if it had I_SYNC set and we
1510                 * are doing WB_SYNC_NONE writeback. So this catches only the
1511                 * WB_SYNC_ALL case.
1512                 */
1513                if (inode->i_state & I_SYNC) {
1514                        /* Wait for I_SYNC. This function drops i_lock... */
1515                        inode_sleep_on_writeback(inode);
1516                        /* Inode may be gone, start again */
1517                        spin_lock(&wb->list_lock);
1518                        continue;
1519                }
1520                inode->i_state |= I_SYNC;
1521                wbc_attach_and_unlock_inode(&wbc, inode);
1522
1523                write_chunk = writeback_chunk_size(wb, work);
1524                wbc.nr_to_write = write_chunk;
1525                wbc.pages_skipped = 0;
1526
1527                /*
1528                 * We use I_SYNC to pin the inode in memory. While it is set
1529                 * evict_inode() will wait so the inode cannot be freed.
1530                 */
1531                __writeback_single_inode(inode, &wbc);
1532
1533                wbc_detach_inode(&wbc);
1534                work->nr_pages -= write_chunk - wbc.nr_to_write;
1535                wrote += write_chunk - wbc.nr_to_write;
1536
1537                if (need_resched()) {
1538                        /*
1539                         * We're trying to balance between building up a nice
1540                         * long list of IOs to improve our merge rate, and
1541                         * getting those IOs out quickly for anyone throttling
1542                         * in balance_dirty_pages().  cond_resched() doesn't
1543                         * unplug, so get our IOs out the door before we
1544                         * give up the CPU.
1545                         */
1546                        blk_flush_plug(current);
1547                        cond_resched();
1548                }
1549
1550                /*
1551                 * Requeue @inode if still dirty.  Be careful as @inode may
1552                 * have been switched to another wb in the meantime.
1553                 */
1554                tmp_wb = inode_to_wb_and_lock_list(inode);
1555                spin_lock(&inode->i_lock);
1556                if (!(inode->i_state & I_DIRTY_ALL))
1557                        wrote++;
1558                requeue_inode(inode, tmp_wb, &wbc);
1559                inode_sync_complete(inode);
1560                spin_unlock(&inode->i_lock);
1561
1562                if (unlikely(tmp_wb != wb)) {
1563                        spin_unlock(&tmp_wb->list_lock);
1564                        spin_lock(&wb->list_lock);
1565                }
1566
1567                /*
1568                 * bail out to wb_writeback() often enough to check
1569                 * background threshold and other termination conditions.
1570                 */
1571                if (wrote) {
1572                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1573                                break;
1574                        if (work->nr_pages <= 0)
1575                                break;
1576                }
1577        }
1578        return wrote;
1579}
1580
1581static long __writeback_inodes_wb(struct bdi_writeback *wb,
1582                                  struct wb_writeback_work *work)
1583{
1584        unsigned long start_time = jiffies;
1585        long wrote = 0;
1586
1587        while (!list_empty(&wb->b_io)) {
1588                struct inode *inode = wb_inode(wb->b_io.prev);
1589                struct super_block *sb = inode->i_sb;
1590
1591                if (!trylock_super(sb)) {
1592                        /*
1593                         * trylock_super() may fail consistently due to
1594                         * s_umount being grabbed by someone else. Don't use
1595                         * requeue_io() to avoid busy retrying the inode/sb.
1596                         */
1597                        redirty_tail(inode, wb);
1598                        continue;
1599                }
1600                wrote += writeback_sb_inodes(sb, wb, work);
1601                up_read(&sb->s_umount);
1602
1603                /* refer to the same tests at the end of writeback_sb_inodes */
1604                if (wrote) {
1605                        if (time_is_before_jiffies(start_time + HZ / 10UL))
1606                                break;
1607                        if (work->nr_pages <= 0)
1608                                break;
1609                }
1610        }
1611        /* Leave any unwritten inodes on b_io */
1612        return wrote;
1613}
1614
1615static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1616                                enum wb_reason reason)
1617{
1618        struct wb_writeback_work work = {
1619                .nr_pages       = nr_pages,
1620                .sync_mode      = WB_SYNC_NONE,
1621                .range_cyclic   = 1,
1622                .reason         = reason,
1623        };
1624        struct blk_plug plug;
1625
1626        blk_start_plug(&plug);
1627        spin_lock(&wb->list_lock);
1628        if (list_empty(&wb->b_io))
1629                queue_io(wb, &work);
1630        __writeback_inodes_wb(wb, &work);
1631        spin_unlock(&wb->list_lock);
1632        blk_finish_plug(&plug);
1633
1634        return nr_pages - work.nr_pages;
1635}
1636
1637/*
1638 * Explicit flushing or periodic writeback of "old" data.
1639 *
1640 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1641 * dirtying-time in the inode's address_space.  So this periodic writeback code
1642 * just walks the superblock inode list, writing back any inodes which are
1643 * older than a specific point in time.
1644 *
1645 * Try to run once per dirty_writeback_interval.  But if a writeback event
1646 * takes longer than a dirty_writeback_interval interval, then leave a
1647 * one-second gap.
1648 *
1649 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1650 * all dirty pages if they are all attached to "old" mappings.
1651 */
1652static long wb_writeback(struct bdi_writeback *wb,
1653                         struct wb_writeback_work *work)
1654{
1655        unsigned long wb_start = jiffies;
1656        long nr_pages = work->nr_pages;
1657        unsigned long oldest_jif;
1658        struct inode *inode;
1659        long progress;
1660        struct blk_plug plug;
1661
1662        oldest_jif = jiffies;
1663        work->older_than_this = &oldest_jif;
1664
1665        blk_start_plug(&plug);
1666        spin_lock(&wb->list_lock);
1667        for (;;) {
1668                /*
1669                 * Stop writeback when nr_pages has been consumed
1670                 */
1671                if (work->nr_pages <= 0)
1672                        break;
1673
1674                /*
1675                 * Background writeout and kupdate-style writeback may
1676                 * run forever. Stop them if there is other work to do
1677                 * so that e.g. sync can proceed. They'll be restarted
1678                 * after the other works are all done.
1679                 */
1680                if ((work->for_background || work->for_kupdate) &&
1681                    !list_empty(&wb->work_list))
1682                        break;
1683
1684                /*
1685                 * For background writeout, stop when we are below the
1686                 * background dirty threshold
1687                 */
1688                if (work->for_background && !wb_over_bg_thresh(wb))
1689                        break;
1690
1691                /*
1692                 * Kupdate and background works are special and we want to
1693                 * include all inodes that need writing. Livelock avoidance is
1694                 * handled by these works yielding to any other work so we are
1695                 * safe.
1696                 */
1697                if (work->for_kupdate) {
1698                        oldest_jif = jiffies -
1699                                msecs_to_jiffies(dirty_expire_interval * 10);
1700                } else if (work->for_background)
1701                        oldest_jif = jiffies;
1702
1703                trace_writeback_start(wb, work);
1704                if (list_empty(&wb->b_io))
1705                        queue_io(wb, work);
1706                if (work->sb)
1707                        progress = writeback_sb_inodes(work->sb, wb, work);
1708                else
1709                        progress = __writeback_inodes_wb(wb, work);
1710                trace_writeback_written(wb, work);
1711
1712                wb_update_bandwidth(wb, wb_start);
1713
1714                /*
1715                 * Did we write something? Try for more
1716                 *
1717                 * Dirty inodes are moved to b_io for writeback in batches.
1718                 * The completion of the current batch does not necessarily
1719                 * mean the overall work is done. So we keep looping as long
1720                 * as made some progress on cleaning pages or inodes.
1721                 */
1722                if (progress)
1723                        continue;
1724                /*
1725                 * No more inodes for IO, bail
1726                 */
1727                if (list_empty(&wb->b_more_io))
1728                        break;
1729                /*
1730                 * Nothing written. Wait for some inode to
1731                 * become available for writeback. Otherwise
1732                 * we'll just busyloop.
1733                 */
1734                if (!list_empty(&wb->b_more_io))  {
1735                        trace_writeback_wait(wb, work);
1736                        inode = wb_inode(wb->b_more_io.prev);
1737                        spin_lock(&inode->i_lock);
1738                        spin_unlock(&wb->list_lock);
1739                        /* This function drops i_lock... */
1740                        inode_sleep_on_writeback(inode);
1741                        spin_lock(&wb->list_lock);
1742                }
1743        }
1744        spin_unlock(&wb->list_lock);
1745        blk_finish_plug(&plug);
1746
1747        return nr_pages - work->nr_pages;
1748}
1749
1750/*
1751 * Return the next wb_writeback_work struct that hasn't been processed yet.
1752 */
1753static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1754{
1755        struct wb_writeback_work *work = NULL;
1756
1757        spin_lock_bh(&wb->work_lock);
1758        if (!list_empty(&wb->work_list)) {
1759                work = list_entry(wb->work_list.next,
1760                                  struct wb_writeback_work, list);
1761                list_del_init(&work->list);
1762        }
1763        spin_unlock_bh(&wb->work_lock);
1764        return work;
1765}
1766
1767/*
1768 * Add in the number of potentially dirty inodes, because each inode
1769 * write can dirty pagecache in the underlying blockdev.
1770 */
1771static unsigned long get_nr_dirty_pages(void)
1772{
1773        return global_page_state(NR_FILE_DIRTY) +
1774                global_page_state(NR_UNSTABLE_NFS) +
1775                get_nr_dirty_inodes();
1776}
1777
1778static long wb_check_background_flush(struct bdi_writeback *wb)
1779{
1780        if (wb_over_bg_thresh(wb)) {
1781
1782                struct wb_writeback_work work = {
1783                        .nr_pages       = LONG_MAX,
1784                        .sync_mode      = WB_SYNC_NONE,
1785                        .for_background = 1,
1786                        .range_cyclic   = 1,
1787                        .reason         = WB_REASON_BACKGROUND,
1788                };
1789
1790                return wb_writeback(wb, &work);
1791        }
1792
1793        return 0;
1794}
1795
1796static long wb_check_old_data_flush(struct bdi_writeback *wb)
1797{
1798        unsigned long expired;
1799        long nr_pages;
1800
1801        /*
1802         * When set to zero, disable periodic writeback
1803         */
1804        if (!dirty_writeback_interval)
1805                return 0;
1806
1807        expired = wb->last_old_flush +
1808                        msecs_to_jiffies(dirty_writeback_interval * 10);
1809        if (time_before(jiffies, expired))
1810                return 0;
1811
1812        wb->last_old_flush = jiffies;
1813        nr_pages = get_nr_dirty_pages();
1814
1815        if (nr_pages) {
1816                struct wb_writeback_work work = {
1817                        .nr_pages       = nr_pages,
1818                        .sync_mode      = WB_SYNC_NONE,
1819                        .for_kupdate    = 1,
1820                        .range_cyclic   = 1,
1821                        .reason         = WB_REASON_PERIODIC,
1822                };
1823
1824                return wb_writeback(wb, &work);
1825        }
1826
1827        return 0;
1828}
1829
1830/*
1831 * Retrieve work items and do the writeback they describe
1832 */
1833static long wb_do_writeback(struct bdi_writeback *wb)
1834{
1835        struct wb_writeback_work *work;
1836        long wrote = 0;
1837
1838        set_bit(WB_writeback_running, &wb->state);
1839        while ((work = get_next_work_item(wb)) != NULL) {
1840                struct wb_completion *done = work->done;
1841
1842                trace_writeback_exec(wb, work);
1843
1844                wrote += wb_writeback(wb, work);
1845
1846                if (work->auto_free)
1847                        kfree(work);
1848                if (done && atomic_dec_and_test(&done->cnt))
1849                        wake_up_all(&wb->bdi->wb_waitq);
1850        }
1851
1852        /*
1853         * Check for periodic writeback, kupdated() style
1854         */
1855        wrote += wb_check_old_data_flush(wb);
1856        wrote += wb_check_background_flush(wb);
1857        clear_bit(WB_writeback_running, &wb->state);
1858
1859        return wrote;
1860}
1861
1862/*
1863 * Handle writeback of dirty data for the device backed by this bdi. Also
1864 * reschedules periodically and does kupdated style flushing.
1865 */
1866void wb_workfn(struct work_struct *work)
1867{
1868        struct bdi_writeback *wb = container_of(to_delayed_work(work),
1869                                                struct bdi_writeback, dwork);
1870        long pages_written;
1871
1872        set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1873        current->flags |= PF_SWAPWRITE;
1874
1875        if (likely(!current_is_workqueue_rescuer() ||
1876                   !test_bit(WB_registered, &wb->state))) {
1877                /*
1878                 * The normal path.  Keep writing back @wb until its
1879                 * work_list is empty.  Note that this path is also taken
1880                 * if @wb is shutting down even when we're running off the
1881                 * rescuer as work_list needs to be drained.
1882                 */
1883                do {
1884                        pages_written = wb_do_writeback(wb);
1885                        trace_writeback_pages_written(pages_written);
1886                } while (!list_empty(&wb->work_list));
1887        } else {
1888                /*
1889                 * bdi_wq can't get enough workers and we're running off
1890                 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1891                 * enough for efficient IO.
1892                 */
1893                pages_written = writeback_inodes_wb(wb, 1024,
1894                                                    WB_REASON_FORKER_THREAD);
1895                trace_writeback_pages_written(pages_written);
1896        }
1897
1898        if (!list_empty(&wb->work_list))
1899                mod_delayed_work(bdi_wq, &wb->dwork, 0);
1900        else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1901                wb_wakeup_delayed(wb);
1902
1903        current->flags &= ~PF_SWAPWRITE;
1904}
1905
1906/*
1907 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1908 * the whole world.
1909 */
1910void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1911{
1912        struct backing_dev_info *bdi;
1913
1914        if (!nr_pages)
1915                nr_pages = get_nr_dirty_pages();
1916
1917        rcu_read_lock();
1918        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1919                struct bdi_writeback *wb;
1920
1921                if (!bdi_has_dirty_io(bdi))
1922                        continue;
1923
1924                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1925                        wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1926                                           false, reason);
1927        }
1928        rcu_read_unlock();
1929}
1930
1931/*
1932 * Wake up bdi's periodically to make sure dirtytime inodes gets
1933 * written back periodically.  We deliberately do *not* check the
1934 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1935 * kernel to be constantly waking up once there are any dirtytime
1936 * inodes on the system.  So instead we define a separate delayed work
1937 * function which gets called much more rarely.  (By default, only
1938 * once every 12 hours.)
1939 *
1940 * If there is any other write activity going on in the file system,
1941 * this function won't be necessary.  But if the only thing that has
1942 * happened on the file system is a dirtytime inode caused by an atime
1943 * update, we need this infrastructure below to make sure that inode
1944 * eventually gets pushed out to disk.
1945 */
1946static void wakeup_dirtytime_writeback(struct work_struct *w);
1947static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1948
1949static void wakeup_dirtytime_writeback(struct work_struct *w)
1950{
1951        struct backing_dev_info *bdi;
1952
1953        rcu_read_lock();
1954        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1955                struct bdi_writeback *wb;
1956
1957                list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1958                        if (!list_empty(&wb->b_dirty_time))
1959                                wb_wakeup(wb);
1960        }
1961        rcu_read_unlock();
1962        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1963}
1964
1965static int __init start_dirtytime_writeback(void)
1966{
1967        schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1968        return 0;
1969}
1970__initcall(start_dirtytime_writeback);
1971
1972int dirtytime_interval_handler(struct ctl_table *table, int write,
1973                               void __user *buffer, size_t *lenp, loff_t *ppos)
1974{
1975        int ret;
1976
1977        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1978        if (ret == 0 && write)
1979                mod_delayed_work(system_wq, &dirtytime_work, 0);
1980        return ret;
1981}
1982
1983static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1984{
1985        if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1986                struct dentry *dentry;
1987                const char *name = "?";
1988
1989                dentry = d_find_alias(inode);
1990                if (dentry) {
1991                        spin_lock(&dentry->d_lock);
1992                        name = (const char *) dentry->d_name.name;
1993                }
1994                printk(KERN_DEBUG
1995                       "%s(%d): dirtied inode %lu (%s) on %s\n",
1996                       current->comm, task_pid_nr(current), inode->i_ino,
1997                       name, inode->i_sb->s_id);
1998                if (dentry) {
1999                        spin_unlock(&dentry->d_lock);
2000                        dput(dentry);
2001                }
2002        }
2003}
2004
2005/**
2006 *      __mark_inode_dirty -    internal function
2007 *      @inode: inode to mark
2008 *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2009 *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2010 *      mark_inode_dirty_sync.
2011 *
2012 * Put the inode on the super block's dirty list.
2013 *
2014 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2015 * dirty list only if it is hashed or if it refers to a blockdev.
2016 * If it was not hashed, it will never be added to the dirty list
2017 * even if it is later hashed, as it will have been marked dirty already.
2018 *
2019 * In short, make sure you hash any inodes _before_ you start marking
2020 * them dirty.
2021 *
2022 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2023 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2024 * the kernel-internal blockdev inode represents the dirtying time of the
2025 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2026 * page->mapping->host, so the page-dirtying time is recorded in the internal
2027 * blockdev inode.
2028 */
2029void __mark_inode_dirty(struct inode *inode, int flags)
2030{
2031#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2032        struct super_block *sb = inode->i_sb;
2033        int dirtytime;
2034
2035        trace_writeback_mark_inode_dirty(inode, flags);
2036
2037        /*
2038         * Don't do this for I_DIRTY_PAGES - that doesn't actually
2039         * dirty the inode itself
2040         */
2041        if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2042                trace_writeback_dirty_inode_start(inode, flags);
2043
2044                if (sb->s_op->dirty_inode)
2045                        sb->s_op->dirty_inode(inode, flags);
2046
2047                trace_writeback_dirty_inode(inode, flags);
2048        }
2049        if (flags & I_DIRTY_INODE)
2050                flags &= ~I_DIRTY_TIME;
2051        dirtytime = flags & I_DIRTY_TIME;
2052
2053        /*
2054         * Paired with smp_mb() in __writeback_single_inode() for the
2055         * following lockless i_state test.  See there for details.
2056         */
2057        smp_mb();
2058
2059        if (((inode->i_state & flags) == flags) ||
2060            (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2061                return;
2062
2063        if (unlikely(block_dump))
2064                block_dump___mark_inode_dirty(inode);
2065
2066        spin_lock(&inode->i_lock);
2067        if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2068                goto out_unlock_inode;
2069        if ((inode->i_state & flags) != flags) {
2070                const int was_dirty = inode->i_state & I_DIRTY;
2071
2072                inode_attach_wb(inode, NULL);
2073
2074                if (flags & I_DIRTY_INODE)
2075                        inode->i_state &= ~I_DIRTY_TIME;
2076                inode->i_state |= flags;
2077
2078                /*
2079                 * If the inode is being synced, just update its dirty state.
2080                 * The unlocker will place the inode on the appropriate
2081                 * superblock list, based upon its state.
2082                 */
2083                if (inode->i_state & I_SYNC)
2084                        goto out_unlock_inode;
2085
2086                /*
2087                 * Only add valid (hashed) inodes to the superblock's
2088                 * dirty list.  Add blockdev inodes as well.
2089                 */
2090                if (!S_ISBLK(inode->i_mode)) {
2091                        if (inode_unhashed(inode))
2092                                goto out_unlock_inode;
2093                }
2094                if (inode->i_state & I_FREEING)
2095                        goto out_unlock_inode;
2096
2097                /*
2098                 * If the inode was already on b_dirty/b_io/b_more_io, don't
2099                 * reposition it (that would break b_dirty time-ordering).
2100                 */
2101                if (!was_dirty) {
2102                        struct bdi_writeback *wb;
2103                        struct list_head *dirty_list;
2104                        bool wakeup_bdi = false;
2105
2106                        wb = locked_inode_to_wb_and_lock_list(inode);
2107
2108                        WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2109                             !test_bit(WB_registered, &wb->state),
2110                             "bdi-%s not registered\n", wb->bdi->name);
2111
2112                        inode->dirtied_when = jiffies;
2113                        if (dirtytime)
2114                                inode->dirtied_time_when = jiffies;
2115
2116                        if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2117                                dirty_list = &wb->b_dirty;
2118                        else
2119                                dirty_list = &wb->b_dirty_time;
2120
2121                        wakeup_bdi = inode_io_list_move_locked(inode, wb,
2122                                                               dirty_list);
2123
2124                        spin_unlock(&wb->list_lock);
2125                        trace_writeback_dirty_inode_enqueue(inode);
2126
2127                        /*
2128                         * If this is the first dirty inode for this bdi,
2129                         * we have to wake-up the corresponding bdi thread
2130                         * to make sure background write-back happens
2131                         * later.
2132                         */
2133                        if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2134                                wb_wakeup_delayed(wb);
2135                        return;
2136                }
2137        }
2138out_unlock_inode:
2139        spin_unlock(&inode->i_lock);
2140
2141#undef I_DIRTY_INODE
2142}
2143EXPORT_SYMBOL(__mark_inode_dirty);
2144
2145/*
2146 * The @s_sync_lock is used to serialise concurrent sync operations
2147 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2148 * Concurrent callers will block on the s_sync_lock rather than doing contending
2149 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2150 * has been issued up to the time this function is enter is guaranteed to be
2151 * completed by the time we have gained the lock and waited for all IO that is
2152 * in progress regardless of the order callers are granted the lock.
2153 */
2154static void wait_sb_inodes(struct super_block *sb)
2155{
2156        struct inode *inode, *old_inode = NULL;
2157
2158        /*
2159         * We need to be protected against the filesystem going from
2160         * r/o to r/w or vice versa.
2161         */
2162        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2163
2164        mutex_lock(&sb->s_sync_lock);
2165        spin_lock(&sb->s_inode_list_lock);
2166
2167        /*
2168         * Data integrity sync. Must wait for all pages under writeback,
2169         * because there may have been pages dirtied before our sync
2170         * call, but which had writeout started before we write it out.
2171         * In which case, the inode may not be on the dirty list, but
2172         * we still have to wait for that writeout.
2173         */
2174        list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2175                struct address_space *mapping = inode->i_mapping;
2176
2177                spin_lock(&inode->i_lock);
2178                if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2179                    (mapping->nrpages == 0)) {
2180                        spin_unlock(&inode->i_lock);
2181                        continue;
2182                }
2183                __iget(inode);
2184                spin_unlock(&inode->i_lock);
2185                spin_unlock(&sb->s_inode_list_lock);
2186
2187                /*
2188                 * We hold a reference to 'inode' so it couldn't have been
2189                 * removed from s_inodes list while we dropped the
2190                 * s_inode_list_lock.  We cannot iput the inode now as we can
2191                 * be holding the last reference and we cannot iput it under
2192                 * s_inode_list_lock. So we keep the reference and iput it
2193                 * later.
2194                 */
2195                iput(old_inode);
2196                old_inode = inode;
2197
2198                /*
2199                 * We keep the error status of individual mapping so that
2200                 * applications can catch the writeback error using fsync(2).
2201                 * See filemap_fdatawait_keep_errors() for details.
2202                 */
2203                filemap_fdatawait_keep_errors(mapping);
2204
2205                cond_resched();
2206
2207                spin_lock(&sb->s_inode_list_lock);
2208        }
2209        spin_unlock(&sb->s_inode_list_lock);
2210        iput(old_inode);
2211        mutex_unlock(&sb->s_sync_lock);
2212}
2213
2214static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2215                                     enum wb_reason reason, bool skip_if_busy)
2216{
2217        DEFINE_WB_COMPLETION_ONSTACK(done);
2218        struct wb_writeback_work work = {
2219                .sb                     = sb,
2220                .sync_mode              = WB_SYNC_NONE,
2221                .tagged_writepages      = 1,
2222                .done                   = &done,
2223                .nr_pages               = nr,
2224                .reason                 = reason,
2225        };
2226        struct backing_dev_info *bdi = sb->s_bdi;
2227
2228        if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2229                return;
2230        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2231
2232        bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2233        wb_wait_for_completion(bdi, &done);
2234}
2235
2236/**
2237 * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2238 * @sb: the superblock
2239 * @nr: the number of pages to write
2240 * @reason: reason why some writeback work initiated
2241 *
2242 * Start writeback on some inodes on this super_block. No guarantees are made
2243 * on how many (if any) will be written, and this function does not wait
2244 * for IO completion of submitted IO.
2245 */
2246void writeback_inodes_sb_nr(struct super_block *sb,
2247                            unsigned long nr,
2248                            enum wb_reason reason)
2249{
2250        __writeback_inodes_sb_nr(sb, nr, reason, false);
2251}
2252EXPORT_SYMBOL(writeback_inodes_sb_nr);
2253
2254/**
2255 * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2256 * @sb: the superblock
2257 * @reason: reason why some writeback work was initiated
2258 *
2259 * Start writeback on some inodes on this super_block. No guarantees are made
2260 * on how many (if any) will be written, and this function does not wait
2261 * for IO completion of submitted IO.
2262 */
2263void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2264{
2265        return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2266}
2267EXPORT_SYMBOL(writeback_inodes_sb);
2268
2269/**
2270 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2271 * @sb: the superblock
2272 * @nr: the number of pages to write
2273 * @reason: the reason of writeback
2274 *
2275 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2276 * Returns 1 if writeback was started, 0 if not.
2277 */
2278bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2279                                   enum wb_reason reason)
2280{
2281        if (!down_read_trylock(&sb->s_umount))
2282                return false;
2283
2284        __writeback_inodes_sb_nr(sb, nr, reason, true);
2285        up_read(&sb->s_umount);
2286        return true;
2287}
2288EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2289
2290/**
2291 * try_to_writeback_inodes_sb - try to start writeback if none underway
2292 * @sb: the superblock
2293 * @reason: reason why some writeback work was initiated
2294 *
2295 * Implement by try_to_writeback_inodes_sb_nr()
2296 * Returns 1 if writeback was started, 0 if not.
2297 */
2298bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2299{
2300        return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2301}
2302EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2303
2304/**
2305 * sync_inodes_sb       -       sync sb inode pages
2306 * @sb: the superblock
2307 *
2308 * This function writes and waits on any dirty inode belonging to this
2309 * super_block.
2310 */
2311void sync_inodes_sb(struct super_block *sb)
2312{
2313        DEFINE_WB_COMPLETION_ONSTACK(done);
2314        struct wb_writeback_work work = {
2315                .sb             = sb,
2316                .sync_mode      = WB_SYNC_ALL,
2317                .nr_pages       = LONG_MAX,
2318                .range_cyclic   = 0,
2319                .done           = &done,
2320                .reason         = WB_REASON_SYNC,
2321                .for_sync       = 1,
2322        };
2323        struct backing_dev_info *bdi = sb->s_bdi;
2324
2325        /*
2326         * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2327         * inodes under writeback and I_DIRTY_TIME inodes ignored by
2328         * bdi_has_dirty() need to be written out too.
2329         */
2330        if (bdi == &noop_backing_dev_info)
2331                return;
2332        WARN_ON(!rwsem_is_locked(&sb->s_umount));
2333
2334        bdi_split_work_to_wbs(bdi, &work, false);
2335        wb_wait_for_completion(bdi, &done);
2336
2337        wait_sb_inodes(sb);
2338}
2339EXPORT_SYMBOL(sync_inodes_sb);
2340
2341/**
2342 * write_inode_now      -       write an inode to disk
2343 * @inode: inode to write to disk
2344 * @sync: whether the write should be synchronous or not
2345 *
2346 * This function commits an inode to disk immediately if it is dirty. This is
2347 * primarily needed by knfsd.
2348 *
2349 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2350 */
2351int write_inode_now(struct inode *inode, int sync)
2352{
2353        struct writeback_control wbc = {
2354                .nr_to_write = LONG_MAX,
2355                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2356                .range_start = 0,
2357                .range_end = LLONG_MAX,
2358        };
2359
2360        if (!mapping_cap_writeback_dirty(inode->i_mapping))
2361                wbc.nr_to_write = 0;
2362
2363        might_sleep();
2364        return writeback_single_inode(inode, &wbc);
2365}
2366EXPORT_SYMBOL(write_inode_now);
2367
2368/**
2369 * sync_inode - write an inode and its pages to disk.
2370 * @inode: the inode to sync
2371 * @wbc: controls the writeback mode
2372 *
2373 * sync_inode() will write an inode and its pages to disk.  It will also
2374 * correctly update the inode on its superblock's dirty inode lists and will
2375 * update inode->i_state.
2376 *
2377 * The caller must have a ref on the inode.
2378 */
2379int sync_inode(struct inode *inode, struct writeback_control *wbc)
2380{
2381        return writeback_single_inode(inode, wbc);
2382}
2383EXPORT_SYMBOL(sync_inode);
2384
2385/**
2386 * sync_inode_metadata - write an inode to disk
2387 * @inode: the inode to sync
2388 * @wait: wait for I/O to complete.
2389 *
2390 * Write an inode to disk and adjust its dirty state after completion.
2391 *
2392 * Note: only writes the actual inode, no associated data or other metadata.
2393 */
2394int sync_inode_metadata(struct inode *inode, int wait)
2395{
2396        struct writeback_control wbc = {
2397                .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2398                .nr_to_write = 0, /* metadata-only */
2399        };
2400
2401        return sync_inode(inode, &wbc);
2402}
2403EXPORT_SYMBOL(sync_inode_metadata);
2404