linux/fs/hugetlbfs/inode.c
<<
>>
Prefs
   1/*
   2 * hugetlbpage-backed filesystem.  Based on ramfs.
   3 *
   4 * Nadia Yvette Chambers, 2002
   5 *
   6 * Copyright (C) 2002 Linus Torvalds.
   7 * License: GPL
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/thread_info.h>
  13#include <asm/current.h>
  14#include <linux/sched.h>                /* remove ASAP */
  15#include <linux/falloc.h>
  16#include <linux/fs.h>
  17#include <linux/mount.h>
  18#include <linux/file.h>
  19#include <linux/kernel.h>
  20#include <linux/writeback.h>
  21#include <linux/pagemap.h>
  22#include <linux/highmem.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/capability.h>
  26#include <linux/ctype.h>
  27#include <linux/backing-dev.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagevec.h>
  30#include <linux/parser.h>
  31#include <linux/mman.h>
  32#include <linux/slab.h>
  33#include <linux/dnotify.h>
  34#include <linux/statfs.h>
  35#include <linux/security.h>
  36#include <linux/magic.h>
  37#include <linux/migrate.h>
  38#include <linux/uio.h>
  39
  40#include <asm/uaccess.h>
  41
  42static const struct super_operations hugetlbfs_ops;
  43static const struct address_space_operations hugetlbfs_aops;
  44const struct file_operations hugetlbfs_file_operations;
  45static const struct inode_operations hugetlbfs_dir_inode_operations;
  46static const struct inode_operations hugetlbfs_inode_operations;
  47
  48struct hugetlbfs_config {
  49        kuid_t   uid;
  50        kgid_t   gid;
  51        umode_t mode;
  52        long    max_hpages;
  53        long    nr_inodes;
  54        struct hstate *hstate;
  55        long    min_hpages;
  56};
  57
  58struct hugetlbfs_inode_info {
  59        struct shared_policy policy;
  60        struct inode vfs_inode;
  61};
  62
  63static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
  64{
  65        return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
  66}
  67
  68int sysctl_hugetlb_shm_group;
  69
  70enum {
  71        Opt_size, Opt_nr_inodes,
  72        Opt_mode, Opt_uid, Opt_gid,
  73        Opt_pagesize, Opt_min_size,
  74        Opt_err,
  75};
  76
  77static const match_table_t tokens = {
  78        {Opt_size,      "size=%s"},
  79        {Opt_nr_inodes, "nr_inodes=%s"},
  80        {Opt_mode,      "mode=%o"},
  81        {Opt_uid,       "uid=%u"},
  82        {Opt_gid,       "gid=%u"},
  83        {Opt_pagesize,  "pagesize=%s"},
  84        {Opt_min_size,  "min_size=%s"},
  85        {Opt_err,       NULL},
  86};
  87
  88#ifdef CONFIG_NUMA
  89static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  90                                        struct inode *inode, pgoff_t index)
  91{
  92        vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
  93                                                        index);
  94}
  95
  96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  97{
  98        mpol_cond_put(vma->vm_policy);
  99}
 100#else
 101static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
 102                                        struct inode *inode, pgoff_t index)
 103{
 104}
 105
 106static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
 107{
 108}
 109#endif
 110
 111static void huge_pagevec_release(struct pagevec *pvec)
 112{
 113        int i;
 114
 115        for (i = 0; i < pagevec_count(pvec); ++i)
 116                put_page(pvec->pages[i]);
 117
 118        pagevec_reinit(pvec);
 119}
 120
 121static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 122{
 123        struct inode *inode = file_inode(file);
 124        loff_t len, vma_len;
 125        int ret;
 126        struct hstate *h = hstate_file(file);
 127
 128        /*
 129         * vma address alignment (but not the pgoff alignment) has
 130         * already been checked by prepare_hugepage_range.  If you add
 131         * any error returns here, do so after setting VM_HUGETLB, so
 132         * is_vm_hugetlb_page tests below unmap_region go the right
 133         * way when do_mmap_pgoff unwinds (may be important on powerpc
 134         * and ia64).
 135         */
 136        vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 137        vma->vm_ops = &hugetlb_vm_ops;
 138
 139        if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 140                return -EINVAL;
 141
 142        vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 143
 144        inode_lock(inode);
 145        file_accessed(file);
 146
 147        ret = -ENOMEM;
 148        len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 149
 150        if (hugetlb_reserve_pages(inode,
 151                                vma->vm_pgoff >> huge_page_order(h),
 152                                len >> huge_page_shift(h), vma,
 153                                vma->vm_flags))
 154                goto out;
 155
 156        ret = 0;
 157        if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 158                inode->i_size = len;
 159out:
 160        inode_unlock(inode);
 161
 162        return ret;
 163}
 164
 165/*
 166 * Called under down_write(mmap_sem).
 167 */
 168
 169#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 170static unsigned long
 171hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 172                unsigned long len, unsigned long pgoff, unsigned long flags)
 173{
 174        struct mm_struct *mm = current->mm;
 175        struct vm_area_struct *vma;
 176        struct hstate *h = hstate_file(file);
 177        struct vm_unmapped_area_info info;
 178
 179        if (len & ~huge_page_mask(h))
 180                return -EINVAL;
 181        if (len > TASK_SIZE)
 182                return -ENOMEM;
 183
 184        if (flags & MAP_FIXED) {
 185                if (prepare_hugepage_range(file, addr, len))
 186                        return -EINVAL;
 187                return addr;
 188        }
 189
 190        if (addr) {
 191                addr = ALIGN(addr, huge_page_size(h));
 192                vma = find_vma(mm, addr);
 193                if (TASK_SIZE - len >= addr &&
 194                    (!vma || addr + len <= vma->vm_start))
 195                        return addr;
 196        }
 197
 198        info.flags = 0;
 199        info.length = len;
 200        info.low_limit = TASK_UNMAPPED_BASE;
 201        info.high_limit = TASK_SIZE;
 202        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 203        info.align_offset = 0;
 204        return vm_unmapped_area(&info);
 205}
 206#endif
 207
 208static size_t
 209hugetlbfs_read_actor(struct page *page, unsigned long offset,
 210                        struct iov_iter *to, unsigned long size)
 211{
 212        size_t copied = 0;
 213        int i, chunksize;
 214
 215        /* Find which 4k chunk and offset with in that chunk */
 216        i = offset >> PAGE_SHIFT;
 217        offset = offset & ~PAGE_MASK;
 218
 219        while (size) {
 220                size_t n;
 221                chunksize = PAGE_SIZE;
 222                if (offset)
 223                        chunksize -= offset;
 224                if (chunksize > size)
 225                        chunksize = size;
 226                n = copy_page_to_iter(&page[i], offset, chunksize, to);
 227                copied += n;
 228                if (n != chunksize)
 229                        return copied;
 230                offset = 0;
 231                size -= chunksize;
 232                i++;
 233        }
 234        return copied;
 235}
 236
 237/*
 238 * Support for read() - Find the page attached to f_mapping and copy out the
 239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
 240 * since it has PAGE_SIZE assumptions.
 241 */
 242static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 243{
 244        struct file *file = iocb->ki_filp;
 245        struct hstate *h = hstate_file(file);
 246        struct address_space *mapping = file->f_mapping;
 247        struct inode *inode = mapping->host;
 248        unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 249        unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 250        unsigned long end_index;
 251        loff_t isize;
 252        ssize_t retval = 0;
 253
 254        while (iov_iter_count(to)) {
 255                struct page *page;
 256                size_t nr, copied;
 257
 258                /* nr is the maximum number of bytes to copy from this page */
 259                nr = huge_page_size(h);
 260                isize = i_size_read(inode);
 261                if (!isize)
 262                        break;
 263                end_index = (isize - 1) >> huge_page_shift(h);
 264                if (index > end_index)
 265                        break;
 266                if (index == end_index) {
 267                        nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 268                        if (nr <= offset)
 269                                break;
 270                }
 271                nr = nr - offset;
 272
 273                /* Find the page */
 274                page = find_lock_page(mapping, index);
 275                if (unlikely(page == NULL)) {
 276                        /*
 277                         * We have a HOLE, zero out the user-buffer for the
 278                         * length of the hole or request.
 279                         */
 280                        copied = iov_iter_zero(nr, to);
 281                } else {
 282                        unlock_page(page);
 283
 284                        /*
 285                         * We have the page, copy it to user space buffer.
 286                         */
 287                        copied = hugetlbfs_read_actor(page, offset, to, nr);
 288                        put_page(page);
 289                }
 290                offset += copied;
 291                retval += copied;
 292                if (copied != nr && iov_iter_count(to)) {
 293                        if (!retval)
 294                                retval = -EFAULT;
 295                        break;
 296                }
 297                index += offset >> huge_page_shift(h);
 298                offset &= ~huge_page_mask(h);
 299        }
 300        iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 301        return retval;
 302}
 303
 304static int hugetlbfs_write_begin(struct file *file,
 305                        struct address_space *mapping,
 306                        loff_t pos, unsigned len, unsigned flags,
 307                        struct page **pagep, void **fsdata)
 308{
 309        return -EINVAL;
 310}
 311
 312static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 313                        loff_t pos, unsigned len, unsigned copied,
 314                        struct page *page, void *fsdata)
 315{
 316        BUG();
 317        return -EINVAL;
 318}
 319
 320static void remove_huge_page(struct page *page)
 321{
 322        ClearPageDirty(page);
 323        ClearPageUptodate(page);
 324        delete_from_page_cache(page);
 325}
 326
 327static void
 328hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
 329{
 330        struct vm_area_struct *vma;
 331
 332        /*
 333         * end == 0 indicates that the entire range after
 334         * start should be unmapped.
 335         */
 336        vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
 337                unsigned long v_offset;
 338                unsigned long v_end;
 339
 340                /*
 341                 * Can the expression below overflow on 32-bit arches?
 342                 * No, because the interval tree returns us only those vmas
 343                 * which overlap the truncated area starting at pgoff,
 344                 * and no vma on a 32-bit arch can span beyond the 4GB.
 345                 */
 346                if (vma->vm_pgoff < start)
 347                        v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 348                else
 349                        v_offset = 0;
 350
 351                if (!end)
 352                        v_end = vma->vm_end;
 353                else {
 354                        v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
 355                                                        + vma->vm_start;
 356                        if (v_end > vma->vm_end)
 357                                v_end = vma->vm_end;
 358                }
 359
 360                unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
 361                                                                        NULL);
 362        }
 363}
 364
 365/*
 366 * remove_inode_hugepages handles two distinct cases: truncation and hole
 367 * punch.  There are subtle differences in operation for each case.
 368 *
 369 * truncation is indicated by end of range being LLONG_MAX
 370 *      In this case, we first scan the range and release found pages.
 371 *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
 372 *      maps and global counts.  Page faults can not race with truncation
 373 *      in this routine.  hugetlb_no_page() prevents page faults in the
 374 *      truncated range.  It checks i_size before allocation, and again after
 375 *      with the page table lock for the page held.  The same lock must be
 376 *      acquired to unmap a page.
 377 * hole punch is indicated if end is not LLONG_MAX
 378 *      In the hole punch case we scan the range and release found pages.
 379 *      Only when releasing a page is the associated region/reserv map
 380 *      deleted.  The region/reserv map for ranges without associated
 381 *      pages are not modified.  Page faults can race with hole punch.
 382 *      This is indicated if we find a mapped page.
 383 * Note: If the passed end of range value is beyond the end of file, but
 384 * not LLONG_MAX this routine still performs a hole punch operation.
 385 */
 386static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 387                                   loff_t lend)
 388{
 389        struct hstate *h = hstate_inode(inode);
 390        struct address_space *mapping = &inode->i_data;
 391        const pgoff_t start = lstart >> huge_page_shift(h);
 392        const pgoff_t end = lend >> huge_page_shift(h);
 393        struct vm_area_struct pseudo_vma;
 394        struct pagevec pvec;
 395        pgoff_t next;
 396        int i, freed = 0;
 397        long lookup_nr = PAGEVEC_SIZE;
 398        bool truncate_op = (lend == LLONG_MAX);
 399
 400        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 401        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 402        pagevec_init(&pvec, 0);
 403        next = start;
 404        while (next < end) {
 405                /*
 406                 * Don't grab more pages than the number left in the range.
 407                 */
 408                if (end - next < lookup_nr)
 409                        lookup_nr = end - next;
 410
 411                /*
 412                 * When no more pages are found, we are done.
 413                 */
 414                if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
 415                        break;
 416
 417                for (i = 0; i < pagevec_count(&pvec); ++i) {
 418                        struct page *page = pvec.pages[i];
 419                        bool rsv_on_error;
 420                        u32 hash;
 421
 422                        /*
 423                         * The page (index) could be beyond end.  This is
 424                         * only possible in the punch hole case as end is
 425                         * max page offset in the truncate case.
 426                         */
 427                        next = page->index;
 428                        if (next >= end)
 429                                break;
 430
 431                        hash = hugetlb_fault_mutex_hash(h, current->mm,
 432                                                        &pseudo_vma,
 433                                                        mapping, next, 0);
 434                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
 435
 436                        /*
 437                         * If page is mapped, it was faulted in after being
 438                         * unmapped in caller.  Unmap (again) now after taking
 439                         * the fault mutex.  The mutex will prevent faults
 440                         * until we finish removing the page.
 441                         *
 442                         * This race can only happen in the hole punch case.
 443                         * Getting here in a truncate operation is a bug.
 444                         */
 445                        if (unlikely(page_mapped(page))) {
 446                                BUG_ON(truncate_op);
 447
 448                                i_mmap_lock_write(mapping);
 449                                hugetlb_vmdelete_list(&mapping->i_mmap,
 450                                        next * pages_per_huge_page(h),
 451                                        (next + 1) * pages_per_huge_page(h));
 452                                i_mmap_unlock_write(mapping);
 453                        }
 454
 455                        lock_page(page);
 456                        /*
 457                         * We must free the huge page and remove from page
 458                         * cache (remove_huge_page) BEFORE removing the
 459                         * region/reserve map (hugetlb_unreserve_pages).  In
 460                         * rare out of memory conditions, removal of the
 461                         * region/reserve map could fail.  Before free'ing
 462                         * the page, note PagePrivate which is used in case
 463                         * of error.
 464                         */
 465                        rsv_on_error = !PagePrivate(page);
 466                        remove_huge_page(page);
 467                        freed++;
 468                        if (!truncate_op) {
 469                                if (unlikely(hugetlb_unreserve_pages(inode,
 470                                                        next, next + 1, 1)))
 471                                        hugetlb_fix_reserve_counts(inode,
 472                                                                rsv_on_error);
 473                        }
 474
 475                        unlock_page(page);
 476                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 477                }
 478                ++next;
 479                huge_pagevec_release(&pvec);
 480                cond_resched();
 481        }
 482
 483        if (truncate_op)
 484                (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 485}
 486
 487static void hugetlbfs_evict_inode(struct inode *inode)
 488{
 489        struct resv_map *resv_map;
 490
 491        remove_inode_hugepages(inode, 0, LLONG_MAX);
 492        resv_map = (struct resv_map *)inode->i_mapping->private_data;
 493        /* root inode doesn't have the resv_map, so we should check it */
 494        if (resv_map)
 495                resv_map_release(&resv_map->refs);
 496        clear_inode(inode);
 497}
 498
 499static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 500{
 501        pgoff_t pgoff;
 502        struct address_space *mapping = inode->i_mapping;
 503        struct hstate *h = hstate_inode(inode);
 504
 505        BUG_ON(offset & ~huge_page_mask(h));
 506        pgoff = offset >> PAGE_SHIFT;
 507
 508        i_size_write(inode, offset);
 509        i_mmap_lock_write(mapping);
 510        if (!RB_EMPTY_ROOT(&mapping->i_mmap))
 511                hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
 512        i_mmap_unlock_write(mapping);
 513        remove_inode_hugepages(inode, offset, LLONG_MAX);
 514        return 0;
 515}
 516
 517static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 518{
 519        struct hstate *h = hstate_inode(inode);
 520        loff_t hpage_size = huge_page_size(h);
 521        loff_t hole_start, hole_end;
 522
 523        /*
 524         * For hole punch round up the beginning offset of the hole and
 525         * round down the end.
 526         */
 527        hole_start = round_up(offset, hpage_size);
 528        hole_end = round_down(offset + len, hpage_size);
 529
 530        if (hole_end > hole_start) {
 531                struct address_space *mapping = inode->i_mapping;
 532
 533                inode_lock(inode);
 534                i_mmap_lock_write(mapping);
 535                if (!RB_EMPTY_ROOT(&mapping->i_mmap))
 536                        hugetlb_vmdelete_list(&mapping->i_mmap,
 537                                                hole_start >> PAGE_SHIFT,
 538                                                hole_end  >> PAGE_SHIFT);
 539                i_mmap_unlock_write(mapping);
 540                remove_inode_hugepages(inode, hole_start, hole_end);
 541                inode_unlock(inode);
 542        }
 543
 544        return 0;
 545}
 546
 547static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 548                                loff_t len)
 549{
 550        struct inode *inode = file_inode(file);
 551        struct address_space *mapping = inode->i_mapping;
 552        struct hstate *h = hstate_inode(inode);
 553        struct vm_area_struct pseudo_vma;
 554        struct mm_struct *mm = current->mm;
 555        loff_t hpage_size = huge_page_size(h);
 556        unsigned long hpage_shift = huge_page_shift(h);
 557        pgoff_t start, index, end;
 558        int error;
 559        u32 hash;
 560
 561        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 562                return -EOPNOTSUPP;
 563
 564        if (mode & FALLOC_FL_PUNCH_HOLE)
 565                return hugetlbfs_punch_hole(inode, offset, len);
 566
 567        /*
 568         * Default preallocate case.
 569         * For this range, start is rounded down and end is rounded up
 570         * as well as being converted to page offsets.
 571         */
 572        start = offset >> hpage_shift;
 573        end = (offset + len + hpage_size - 1) >> hpage_shift;
 574
 575        inode_lock(inode);
 576
 577        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 578        error = inode_newsize_ok(inode, offset + len);
 579        if (error)
 580                goto out;
 581
 582        /*
 583         * Initialize a pseudo vma as this is required by the huge page
 584         * allocation routines.  If NUMA is configured, use page index
 585         * as input to create an allocation policy.
 586         */
 587        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 588        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 589        pseudo_vma.vm_file = file;
 590
 591        for (index = start; index < end; index++) {
 592                /*
 593                 * This is supposed to be the vaddr where the page is being
 594                 * faulted in, but we have no vaddr here.
 595                 */
 596                struct page *page;
 597                unsigned long addr;
 598                int avoid_reserve = 0;
 599
 600                cond_resched();
 601
 602                /*
 603                 * fallocate(2) manpage permits EINTR; we may have been
 604                 * interrupted because we are using up too much memory.
 605                 */
 606                if (signal_pending(current)) {
 607                        error = -EINTR;
 608                        break;
 609                }
 610
 611                /* Set numa allocation policy based on index */
 612                hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 613
 614                /* addr is the offset within the file (zero based) */
 615                addr = index * hpage_size;
 616
 617                /* mutex taken here, fault path and hole punch */
 618                hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
 619                                                index, addr);
 620                mutex_lock(&hugetlb_fault_mutex_table[hash]);
 621
 622                /* See if already present in mapping to avoid alloc/free */
 623                page = find_get_page(mapping, index);
 624                if (page) {
 625                        put_page(page);
 626                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 627                        hugetlb_drop_vma_policy(&pseudo_vma);
 628                        continue;
 629                }
 630
 631                /* Allocate page and add to page cache */
 632                page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
 633                hugetlb_drop_vma_policy(&pseudo_vma);
 634                if (IS_ERR(page)) {
 635                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 636                        error = PTR_ERR(page);
 637                        goto out;
 638                }
 639                clear_huge_page(page, addr, pages_per_huge_page(h));
 640                __SetPageUptodate(page);
 641                error = huge_add_to_page_cache(page, mapping, index);
 642                if (unlikely(error)) {
 643                        put_page(page);
 644                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 645                        goto out;
 646                }
 647
 648                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 649
 650                /*
 651                 * page_put due to reference from alloc_huge_page()
 652                 * unlock_page because locked by add_to_page_cache()
 653                 */
 654                put_page(page);
 655                unlock_page(page);
 656        }
 657
 658        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 659                i_size_write(inode, offset + len);
 660        inode->i_ctime = CURRENT_TIME;
 661out:
 662        inode_unlock(inode);
 663        return error;
 664}
 665
 666static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
 667{
 668        struct inode *inode = d_inode(dentry);
 669        struct hstate *h = hstate_inode(inode);
 670        int error;
 671        unsigned int ia_valid = attr->ia_valid;
 672
 673        BUG_ON(!inode);
 674
 675        error = inode_change_ok(inode, attr);
 676        if (error)
 677                return error;
 678
 679        if (ia_valid & ATTR_SIZE) {
 680                error = -EINVAL;
 681                if (attr->ia_size & ~huge_page_mask(h))
 682                        return -EINVAL;
 683                error = hugetlb_vmtruncate(inode, attr->ia_size);
 684                if (error)
 685                        return error;
 686        }
 687
 688        setattr_copy(inode, attr);
 689        mark_inode_dirty(inode);
 690        return 0;
 691}
 692
 693static struct inode *hugetlbfs_get_root(struct super_block *sb,
 694                                        struct hugetlbfs_config *config)
 695{
 696        struct inode *inode;
 697
 698        inode = new_inode(sb);
 699        if (inode) {
 700                struct hugetlbfs_inode_info *info;
 701                inode->i_ino = get_next_ino();
 702                inode->i_mode = S_IFDIR | config->mode;
 703                inode->i_uid = config->uid;
 704                inode->i_gid = config->gid;
 705                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 706                info = HUGETLBFS_I(inode);
 707                mpol_shared_policy_init(&info->policy, NULL);
 708                inode->i_op = &hugetlbfs_dir_inode_operations;
 709                inode->i_fop = &simple_dir_operations;
 710                /* directory inodes start off with i_nlink == 2 (for "." entry) */
 711                inc_nlink(inode);
 712                lockdep_annotate_inode_mutex_key(inode);
 713        }
 714        return inode;
 715}
 716
 717/*
 718 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 719 * be taken from reclaim -- unlike regular filesystems. This needs an
 720 * annotation because huge_pmd_share() does an allocation under hugetlb's
 721 * i_mmap_rwsem.
 722 */
 723static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 724
 725static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 726                                        struct inode *dir,
 727                                        umode_t mode, dev_t dev)
 728{
 729        struct inode *inode;
 730        struct resv_map *resv_map;
 731
 732        resv_map = resv_map_alloc();
 733        if (!resv_map)
 734                return NULL;
 735
 736        inode = new_inode(sb);
 737        if (inode) {
 738                struct hugetlbfs_inode_info *info;
 739                inode->i_ino = get_next_ino();
 740                inode_init_owner(inode, dir, mode);
 741                lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 742                                &hugetlbfs_i_mmap_rwsem_key);
 743                inode->i_mapping->a_ops = &hugetlbfs_aops;
 744                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 745                inode->i_mapping->private_data = resv_map;
 746                info = HUGETLBFS_I(inode);
 747                /*
 748                 * The policy is initialized here even if we are creating a
 749                 * private inode because initialization simply creates an
 750                 * an empty rb tree and calls rwlock_init(), later when we
 751                 * call mpol_free_shared_policy() it will just return because
 752                 * the rb tree will still be empty.
 753                 */
 754                mpol_shared_policy_init(&info->policy, NULL);
 755                switch (mode & S_IFMT) {
 756                default:
 757                        init_special_inode(inode, mode, dev);
 758                        break;
 759                case S_IFREG:
 760                        inode->i_op = &hugetlbfs_inode_operations;
 761                        inode->i_fop = &hugetlbfs_file_operations;
 762                        break;
 763                case S_IFDIR:
 764                        inode->i_op = &hugetlbfs_dir_inode_operations;
 765                        inode->i_fop = &simple_dir_operations;
 766
 767                        /* directory inodes start off with i_nlink == 2 (for "." entry) */
 768                        inc_nlink(inode);
 769                        break;
 770                case S_IFLNK:
 771                        inode->i_op = &page_symlink_inode_operations;
 772                        inode_nohighmem(inode);
 773                        break;
 774                }
 775                lockdep_annotate_inode_mutex_key(inode);
 776        } else
 777                kref_put(&resv_map->refs, resv_map_release);
 778
 779        return inode;
 780}
 781
 782/*
 783 * File creation. Allocate an inode, and we're done..
 784 */
 785static int hugetlbfs_mknod(struct inode *dir,
 786                        struct dentry *dentry, umode_t mode, dev_t dev)
 787{
 788        struct inode *inode;
 789        int error = -ENOSPC;
 790
 791        inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 792        if (inode) {
 793                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 794                d_instantiate(dentry, inode);
 795                dget(dentry);   /* Extra count - pin the dentry in core */
 796                error = 0;
 797        }
 798        return error;
 799}
 800
 801static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 802{
 803        int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
 804        if (!retval)
 805                inc_nlink(dir);
 806        return retval;
 807}
 808
 809static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
 810{
 811        return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
 812}
 813
 814static int hugetlbfs_symlink(struct inode *dir,
 815                        struct dentry *dentry, const char *symname)
 816{
 817        struct inode *inode;
 818        int error = -ENOSPC;
 819
 820        inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 821        if (inode) {
 822                int l = strlen(symname)+1;
 823                error = page_symlink(inode, symname, l);
 824                if (!error) {
 825                        d_instantiate(dentry, inode);
 826                        dget(dentry);
 827                } else
 828                        iput(inode);
 829        }
 830        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 831
 832        return error;
 833}
 834
 835/*
 836 * mark the head page dirty
 837 */
 838static int hugetlbfs_set_page_dirty(struct page *page)
 839{
 840        struct page *head = compound_head(page);
 841
 842        SetPageDirty(head);
 843        return 0;
 844}
 845
 846static int hugetlbfs_migrate_page(struct address_space *mapping,
 847                                struct page *newpage, struct page *page,
 848                                enum migrate_mode mode)
 849{
 850        int rc;
 851
 852        rc = migrate_huge_page_move_mapping(mapping, newpage, page);
 853        if (rc != MIGRATEPAGE_SUCCESS)
 854                return rc;
 855        migrate_page_copy(newpage, page);
 856
 857        return MIGRATEPAGE_SUCCESS;
 858}
 859
 860static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 861{
 862        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 863        struct hstate *h = hstate_inode(d_inode(dentry));
 864
 865        buf->f_type = HUGETLBFS_MAGIC;
 866        buf->f_bsize = huge_page_size(h);
 867        if (sbinfo) {
 868                spin_lock(&sbinfo->stat_lock);
 869                /* If no limits set, just report 0 for max/free/used
 870                 * blocks, like simple_statfs() */
 871                if (sbinfo->spool) {
 872                        long free_pages;
 873
 874                        spin_lock(&sbinfo->spool->lock);
 875                        buf->f_blocks = sbinfo->spool->max_hpages;
 876                        free_pages = sbinfo->spool->max_hpages
 877                                - sbinfo->spool->used_hpages;
 878                        buf->f_bavail = buf->f_bfree = free_pages;
 879                        spin_unlock(&sbinfo->spool->lock);
 880                        buf->f_files = sbinfo->max_inodes;
 881                        buf->f_ffree = sbinfo->free_inodes;
 882                }
 883                spin_unlock(&sbinfo->stat_lock);
 884        }
 885        buf->f_namelen = NAME_MAX;
 886        return 0;
 887}
 888
 889static void hugetlbfs_put_super(struct super_block *sb)
 890{
 891        struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 892
 893        if (sbi) {
 894                sb->s_fs_info = NULL;
 895
 896                if (sbi->spool)
 897                        hugepage_put_subpool(sbi->spool);
 898
 899                kfree(sbi);
 900        }
 901}
 902
 903static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 904{
 905        if (sbinfo->free_inodes >= 0) {
 906                spin_lock(&sbinfo->stat_lock);
 907                if (unlikely(!sbinfo->free_inodes)) {
 908                        spin_unlock(&sbinfo->stat_lock);
 909                        return 0;
 910                }
 911                sbinfo->free_inodes--;
 912                spin_unlock(&sbinfo->stat_lock);
 913        }
 914
 915        return 1;
 916}
 917
 918static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 919{
 920        if (sbinfo->free_inodes >= 0) {
 921                spin_lock(&sbinfo->stat_lock);
 922                sbinfo->free_inodes++;
 923                spin_unlock(&sbinfo->stat_lock);
 924        }
 925}
 926
 927
 928static struct kmem_cache *hugetlbfs_inode_cachep;
 929
 930static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
 931{
 932        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
 933        struct hugetlbfs_inode_info *p;
 934
 935        if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
 936                return NULL;
 937        p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
 938        if (unlikely(!p)) {
 939                hugetlbfs_inc_free_inodes(sbinfo);
 940                return NULL;
 941        }
 942        return &p->vfs_inode;
 943}
 944
 945static void hugetlbfs_i_callback(struct rcu_head *head)
 946{
 947        struct inode *inode = container_of(head, struct inode, i_rcu);
 948        kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
 949}
 950
 951static void hugetlbfs_destroy_inode(struct inode *inode)
 952{
 953        hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
 954        mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
 955        call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
 956}
 957
 958static const struct address_space_operations hugetlbfs_aops = {
 959        .write_begin    = hugetlbfs_write_begin,
 960        .write_end      = hugetlbfs_write_end,
 961        .set_page_dirty = hugetlbfs_set_page_dirty,
 962        .migratepage    = hugetlbfs_migrate_page,
 963};
 964
 965
 966static void init_once(void *foo)
 967{
 968        struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
 969
 970        inode_init_once(&ei->vfs_inode);
 971}
 972
 973const struct file_operations hugetlbfs_file_operations = {
 974        .read_iter              = hugetlbfs_read_iter,
 975        .mmap                   = hugetlbfs_file_mmap,
 976        .fsync                  = noop_fsync,
 977        .get_unmapped_area      = hugetlb_get_unmapped_area,
 978        .llseek                 = default_llseek,
 979        .fallocate              = hugetlbfs_fallocate,
 980};
 981
 982static const struct inode_operations hugetlbfs_dir_inode_operations = {
 983        .create         = hugetlbfs_create,
 984        .lookup         = simple_lookup,
 985        .link           = simple_link,
 986        .unlink         = simple_unlink,
 987        .symlink        = hugetlbfs_symlink,
 988        .mkdir          = hugetlbfs_mkdir,
 989        .rmdir          = simple_rmdir,
 990        .mknod          = hugetlbfs_mknod,
 991        .rename         = simple_rename,
 992        .setattr        = hugetlbfs_setattr,
 993};
 994
 995static const struct inode_operations hugetlbfs_inode_operations = {
 996        .setattr        = hugetlbfs_setattr,
 997};
 998
 999static const struct super_operations hugetlbfs_ops = {
1000        .alloc_inode    = hugetlbfs_alloc_inode,
1001        .destroy_inode  = hugetlbfs_destroy_inode,
1002        .evict_inode    = hugetlbfs_evict_inode,
1003        .statfs         = hugetlbfs_statfs,
1004        .put_super      = hugetlbfs_put_super,
1005        .show_options   = generic_show_options,
1006};
1007
1008enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1009
1010/*
1011 * Convert size option passed from command line to number of huge pages
1012 * in the pool specified by hstate.  Size option could be in bytes
1013 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1014 */
1015static long long
1016hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1017                                                                int val_type)
1018{
1019        if (val_type == NO_SIZE)
1020                return -1;
1021
1022        if (val_type == SIZE_PERCENT) {
1023                size_opt <<= huge_page_shift(h);
1024                size_opt *= h->max_huge_pages;
1025                do_div(size_opt, 100);
1026        }
1027
1028        size_opt >>= huge_page_shift(h);
1029        return size_opt;
1030}
1031
1032static int
1033hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1034{
1035        char *p, *rest;
1036        substring_t args[MAX_OPT_ARGS];
1037        int option;
1038        unsigned long long max_size_opt = 0, min_size_opt = 0;
1039        int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1040
1041        if (!options)
1042                return 0;
1043
1044        while ((p = strsep(&options, ",")) != NULL) {
1045                int token;
1046                if (!*p)
1047                        continue;
1048
1049                token = match_token(p, tokens, args);
1050                switch (token) {
1051                case Opt_uid:
1052                        if (match_int(&args[0], &option))
1053                                goto bad_val;
1054                        pconfig->uid = make_kuid(current_user_ns(), option);
1055                        if (!uid_valid(pconfig->uid))
1056                                goto bad_val;
1057                        break;
1058
1059                case Opt_gid:
1060                        if (match_int(&args[0], &option))
1061                                goto bad_val;
1062                        pconfig->gid = make_kgid(current_user_ns(), option);
1063                        if (!gid_valid(pconfig->gid))
1064                                goto bad_val;
1065                        break;
1066
1067                case Opt_mode:
1068                        if (match_octal(&args[0], &option))
1069                                goto bad_val;
1070                        pconfig->mode = option & 01777U;
1071                        break;
1072
1073                case Opt_size: {
1074                        /* memparse() will accept a K/M/G without a digit */
1075                        if (!isdigit(*args[0].from))
1076                                goto bad_val;
1077                        max_size_opt = memparse(args[0].from, &rest);
1078                        max_val_type = SIZE_STD;
1079                        if (*rest == '%')
1080                                max_val_type = SIZE_PERCENT;
1081                        break;
1082                }
1083
1084                case Opt_nr_inodes:
1085                        /* memparse() will accept a K/M/G without a digit */
1086                        if (!isdigit(*args[0].from))
1087                                goto bad_val;
1088                        pconfig->nr_inodes = memparse(args[0].from, &rest);
1089                        break;
1090
1091                case Opt_pagesize: {
1092                        unsigned long ps;
1093                        ps = memparse(args[0].from, &rest);
1094                        pconfig->hstate = size_to_hstate(ps);
1095                        if (!pconfig->hstate) {
1096                                pr_err("Unsupported page size %lu MB\n",
1097                                        ps >> 20);
1098                                return -EINVAL;
1099                        }
1100                        break;
1101                }
1102
1103                case Opt_min_size: {
1104                        /* memparse() will accept a K/M/G without a digit */
1105                        if (!isdigit(*args[0].from))
1106                                goto bad_val;
1107                        min_size_opt = memparse(args[0].from, &rest);
1108                        min_val_type = SIZE_STD;
1109                        if (*rest == '%')
1110                                min_val_type = SIZE_PERCENT;
1111                        break;
1112                }
1113
1114                default:
1115                        pr_err("Bad mount option: \"%s\"\n", p);
1116                        return -EINVAL;
1117                        break;
1118                }
1119        }
1120
1121        /*
1122         * Use huge page pool size (in hstate) to convert the size
1123         * options to number of huge pages.  If NO_SIZE, -1 is returned.
1124         */
1125        pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1126                                                max_size_opt, max_val_type);
1127        pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1128                                                min_size_opt, min_val_type);
1129
1130        /*
1131         * If max_size was specified, then min_size must be smaller
1132         */
1133        if (max_val_type > NO_SIZE &&
1134            pconfig->min_hpages > pconfig->max_hpages) {
1135                pr_err("minimum size can not be greater than maximum size\n");
1136                return -EINVAL;
1137        }
1138
1139        return 0;
1140
1141bad_val:
1142        pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1143        return -EINVAL;
1144}
1145
1146static int
1147hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1148{
1149        int ret;
1150        struct hugetlbfs_config config;
1151        struct hugetlbfs_sb_info *sbinfo;
1152
1153        save_mount_options(sb, data);
1154
1155        config.max_hpages = -1; /* No limit on size by default */
1156        config.nr_inodes = -1; /* No limit on number of inodes by default */
1157        config.uid = current_fsuid();
1158        config.gid = current_fsgid();
1159        config.mode = 0755;
1160        config.hstate = &default_hstate;
1161        config.min_hpages = -1; /* No default minimum size */
1162        ret = hugetlbfs_parse_options(data, &config);
1163        if (ret)
1164                return ret;
1165
1166        sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1167        if (!sbinfo)
1168                return -ENOMEM;
1169        sb->s_fs_info = sbinfo;
1170        sbinfo->hstate = config.hstate;
1171        spin_lock_init(&sbinfo->stat_lock);
1172        sbinfo->max_inodes = config.nr_inodes;
1173        sbinfo->free_inodes = config.nr_inodes;
1174        sbinfo->spool = NULL;
1175        /*
1176         * Allocate and initialize subpool if maximum or minimum size is
1177         * specified.  Any needed reservations (for minimim size) are taken
1178         * taken when the subpool is created.
1179         */
1180        if (config.max_hpages != -1 || config.min_hpages != -1) {
1181                sbinfo->spool = hugepage_new_subpool(config.hstate,
1182                                                        config.max_hpages,
1183                                                        config.min_hpages);
1184                if (!sbinfo->spool)
1185                        goto out_free;
1186        }
1187        sb->s_maxbytes = MAX_LFS_FILESIZE;
1188        sb->s_blocksize = huge_page_size(config.hstate);
1189        sb->s_blocksize_bits = huge_page_shift(config.hstate);
1190        sb->s_magic = HUGETLBFS_MAGIC;
1191        sb->s_op = &hugetlbfs_ops;
1192        sb->s_time_gran = 1;
1193        sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1194        if (!sb->s_root)
1195                goto out_free;
1196        return 0;
1197out_free:
1198        kfree(sbinfo->spool);
1199        kfree(sbinfo);
1200        return -ENOMEM;
1201}
1202
1203static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1204        int flags, const char *dev_name, void *data)
1205{
1206        return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1207}
1208
1209static struct file_system_type hugetlbfs_fs_type = {
1210        .name           = "hugetlbfs",
1211        .mount          = hugetlbfs_mount,
1212        .kill_sb        = kill_litter_super,
1213};
1214
1215static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1216
1217static int can_do_hugetlb_shm(void)
1218{
1219        kgid_t shm_group;
1220        shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1221        return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1222}
1223
1224static int get_hstate_idx(int page_size_log)
1225{
1226        struct hstate *h = hstate_sizelog(page_size_log);
1227
1228        if (!h)
1229                return -1;
1230        return h - hstates;
1231}
1232
1233static const struct dentry_operations anon_ops = {
1234        .d_dname = simple_dname
1235};
1236
1237/*
1238 * Note that size should be aligned to proper hugepage size in caller side,
1239 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1240 */
1241struct file *hugetlb_file_setup(const char *name, size_t size,
1242                                vm_flags_t acctflag, struct user_struct **user,
1243                                int creat_flags, int page_size_log)
1244{
1245        struct file *file = ERR_PTR(-ENOMEM);
1246        struct inode *inode;
1247        struct path path;
1248        struct super_block *sb;
1249        struct qstr quick_string;
1250        int hstate_idx;
1251
1252        hstate_idx = get_hstate_idx(page_size_log);
1253        if (hstate_idx < 0)
1254                return ERR_PTR(-ENODEV);
1255
1256        *user = NULL;
1257        if (!hugetlbfs_vfsmount[hstate_idx])
1258                return ERR_PTR(-ENOENT);
1259
1260        if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1261                *user = current_user();
1262                if (user_shm_lock(size, *user)) {
1263                        task_lock(current);
1264                        pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1265                                current->comm, current->pid);
1266                        task_unlock(current);
1267                } else {
1268                        *user = NULL;
1269                        return ERR_PTR(-EPERM);
1270                }
1271        }
1272
1273        sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1274        quick_string.name = name;
1275        quick_string.len = strlen(quick_string.name);
1276        quick_string.hash = 0;
1277        path.dentry = d_alloc_pseudo(sb, &quick_string);
1278        if (!path.dentry)
1279                goto out_shm_unlock;
1280
1281        d_set_d_op(path.dentry, &anon_ops);
1282        path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1283        file = ERR_PTR(-ENOSPC);
1284        inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1285        if (!inode)
1286                goto out_dentry;
1287        if (creat_flags == HUGETLB_SHMFS_INODE)
1288                inode->i_flags |= S_PRIVATE;
1289
1290        file = ERR_PTR(-ENOMEM);
1291        if (hugetlb_reserve_pages(inode, 0,
1292                        size >> huge_page_shift(hstate_inode(inode)), NULL,
1293                        acctflag))
1294                goto out_inode;
1295
1296        d_instantiate(path.dentry, inode);
1297        inode->i_size = size;
1298        clear_nlink(inode);
1299
1300        file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1301                        &hugetlbfs_file_operations);
1302        if (IS_ERR(file))
1303                goto out_dentry; /* inode is already attached */
1304
1305        return file;
1306
1307out_inode:
1308        iput(inode);
1309out_dentry:
1310        path_put(&path);
1311out_shm_unlock:
1312        if (*user) {
1313                user_shm_unlock(size, *user);
1314                *user = NULL;
1315        }
1316        return file;
1317}
1318
1319static int __init init_hugetlbfs_fs(void)
1320{
1321        struct hstate *h;
1322        int error;
1323        int i;
1324
1325        if (!hugepages_supported()) {
1326                pr_info("disabling because there are no supported hugepage sizes\n");
1327                return -ENOTSUPP;
1328        }
1329
1330        error = -ENOMEM;
1331        hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1332                                        sizeof(struct hugetlbfs_inode_info),
1333                                        0, SLAB_ACCOUNT, init_once);
1334        if (hugetlbfs_inode_cachep == NULL)
1335                goto out2;
1336
1337        error = register_filesystem(&hugetlbfs_fs_type);
1338        if (error)
1339                goto out;
1340
1341        i = 0;
1342        for_each_hstate(h) {
1343                char buf[50];
1344                unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1345
1346                snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1347                hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1348                                                        buf);
1349
1350                if (IS_ERR(hugetlbfs_vfsmount[i])) {
1351                        pr_err("Cannot mount internal hugetlbfs for "
1352                                "page size %uK", ps_kb);
1353                        error = PTR_ERR(hugetlbfs_vfsmount[i]);
1354                        hugetlbfs_vfsmount[i] = NULL;
1355                }
1356                i++;
1357        }
1358        /* Non default hstates are optional */
1359        if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1360                return 0;
1361
1362 out:
1363        kmem_cache_destroy(hugetlbfs_inode_cachep);
1364 out2:
1365        return error;
1366}
1367fs_initcall(init_hugetlbfs_fs)
1368