linux/fs/mpage.c
<<
>>
Prefs
   1/*
   2 * fs/mpage.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains functions related to preparing and submitting BIOs which contain
   7 * multiple pagecache pages.
   8 *
   9 * 15May2002    Andrew Morton
  10 *              Initial version
  11 * 27Jun2002    axboe@suse.de
  12 *              use bio_add_page() to build bio's just the right size
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/mm.h>
  18#include <linux/kdev_t.h>
  19#include <linux/gfp.h>
  20#include <linux/bio.h>
  21#include <linux/fs.h>
  22#include <linux/buffer_head.h>
  23#include <linux/blkdev.h>
  24#include <linux/highmem.h>
  25#include <linux/prefetch.h>
  26#include <linux/mpage.h>
  27#include <linux/mm_inline.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/cleancache.h>
  32#include "internal.h"
  33
  34/*
  35 * I/O completion handler for multipage BIOs.
  36 *
  37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
  38 * If a page does not map to a contiguous run of blocks then it simply falls
  39 * back to block_read_full_page().
  40 *
  41 * Why is this?  If a page's completion depends on a number of different BIOs
  42 * which can complete in any order (or at the same time) then determining the
  43 * status of that page is hard.  See end_buffer_async_read() for the details.
  44 * There is no point in duplicating all that complexity.
  45 */
  46static void mpage_end_io(struct bio *bio)
  47{
  48        struct bio_vec *bv;
  49        int i;
  50
  51        bio_for_each_segment_all(bv, bio, i) {
  52                struct page *page = bv->bv_page;
  53                page_endio(page, bio_data_dir(bio), bio->bi_error);
  54        }
  55
  56        bio_put(bio);
  57}
  58
  59static struct bio *mpage_bio_submit(int rw, struct bio *bio)
  60{
  61        bio->bi_end_io = mpage_end_io;
  62        guard_bio_eod(rw, bio);
  63        submit_bio(rw, bio);
  64        return NULL;
  65}
  66
  67static struct bio *
  68mpage_alloc(struct block_device *bdev,
  69                sector_t first_sector, int nr_vecs,
  70                gfp_t gfp_flags)
  71{
  72        struct bio *bio;
  73
  74        bio = bio_alloc(gfp_flags, nr_vecs);
  75
  76        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  77                while (!bio && (nr_vecs /= 2))
  78                        bio = bio_alloc(gfp_flags, nr_vecs);
  79        }
  80
  81        if (bio) {
  82                bio->bi_bdev = bdev;
  83                bio->bi_iter.bi_sector = first_sector;
  84        }
  85        return bio;
  86}
  87
  88/*
  89 * support function for mpage_readpages.  The fs supplied get_block might
  90 * return an up to date buffer.  This is used to map that buffer into
  91 * the page, which allows readpage to avoid triggering a duplicate call
  92 * to get_block.
  93 *
  94 * The idea is to avoid adding buffers to pages that don't already have
  95 * them.  So when the buffer is up to date and the page size == block size,
  96 * this marks the page up to date instead of adding new buffers.
  97 */
  98static void 
  99map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
 100{
 101        struct inode *inode = page->mapping->host;
 102        struct buffer_head *page_bh, *head;
 103        int block = 0;
 104
 105        if (!page_has_buffers(page)) {
 106                /*
 107                 * don't make any buffers if there is only one buffer on
 108                 * the page and the page just needs to be set up to date
 109                 */
 110                if (inode->i_blkbits == PAGE_SHIFT &&
 111                    buffer_uptodate(bh)) {
 112                        SetPageUptodate(page);    
 113                        return;
 114                }
 115                create_empty_buffers(page, 1 << inode->i_blkbits, 0);
 116        }
 117        head = page_buffers(page);
 118        page_bh = head;
 119        do {
 120                if (block == page_block) {
 121                        page_bh->b_state = bh->b_state;
 122                        page_bh->b_bdev = bh->b_bdev;
 123                        page_bh->b_blocknr = bh->b_blocknr;
 124                        break;
 125                }
 126                page_bh = page_bh->b_this_page;
 127                block++;
 128        } while (page_bh != head);
 129}
 130
 131/*
 132 * This is the worker routine which does all the work of mapping the disk
 133 * blocks and constructs largest possible bios, submits them for IO if the
 134 * blocks are not contiguous on the disk.
 135 *
 136 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
 137 * represent the validity of its disk mapping and to decide when to do the next
 138 * get_block() call.
 139 */
 140static struct bio *
 141do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
 142                sector_t *last_block_in_bio, struct buffer_head *map_bh,
 143                unsigned long *first_logical_block, get_block_t get_block,
 144                gfp_t gfp)
 145{
 146        struct inode *inode = page->mapping->host;
 147        const unsigned blkbits = inode->i_blkbits;
 148        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 149        const unsigned blocksize = 1 << blkbits;
 150        sector_t block_in_file;
 151        sector_t last_block;
 152        sector_t last_block_in_file;
 153        sector_t blocks[MAX_BUF_PER_PAGE];
 154        unsigned page_block;
 155        unsigned first_hole = blocks_per_page;
 156        struct block_device *bdev = NULL;
 157        int length;
 158        int fully_mapped = 1;
 159        unsigned nblocks;
 160        unsigned relative_block;
 161
 162        if (page_has_buffers(page))
 163                goto confused;
 164
 165        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 166        last_block = block_in_file + nr_pages * blocks_per_page;
 167        last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
 168        if (last_block > last_block_in_file)
 169                last_block = last_block_in_file;
 170        page_block = 0;
 171
 172        /*
 173         * Map blocks using the result from the previous get_blocks call first.
 174         */
 175        nblocks = map_bh->b_size >> blkbits;
 176        if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
 177                        block_in_file < (*first_logical_block + nblocks)) {
 178                unsigned map_offset = block_in_file - *first_logical_block;
 179                unsigned last = nblocks - map_offset;
 180
 181                for (relative_block = 0; ; relative_block++) {
 182                        if (relative_block == last) {
 183                                clear_buffer_mapped(map_bh);
 184                                break;
 185                        }
 186                        if (page_block == blocks_per_page)
 187                                break;
 188                        blocks[page_block] = map_bh->b_blocknr + map_offset +
 189                                                relative_block;
 190                        page_block++;
 191                        block_in_file++;
 192                }
 193                bdev = map_bh->b_bdev;
 194        }
 195
 196        /*
 197         * Then do more get_blocks calls until we are done with this page.
 198         */
 199        map_bh->b_page = page;
 200        while (page_block < blocks_per_page) {
 201                map_bh->b_state = 0;
 202                map_bh->b_size = 0;
 203
 204                if (block_in_file < last_block) {
 205                        map_bh->b_size = (last_block-block_in_file) << blkbits;
 206                        if (get_block(inode, block_in_file, map_bh, 0))
 207                                goto confused;
 208                        *first_logical_block = block_in_file;
 209                }
 210
 211                if (!buffer_mapped(map_bh)) {
 212                        fully_mapped = 0;
 213                        if (first_hole == blocks_per_page)
 214                                first_hole = page_block;
 215                        page_block++;
 216                        block_in_file++;
 217                        continue;
 218                }
 219
 220                /* some filesystems will copy data into the page during
 221                 * the get_block call, in which case we don't want to
 222                 * read it again.  map_buffer_to_page copies the data
 223                 * we just collected from get_block into the page's buffers
 224                 * so readpage doesn't have to repeat the get_block call
 225                 */
 226                if (buffer_uptodate(map_bh)) {
 227                        map_buffer_to_page(page, map_bh, page_block);
 228                        goto confused;
 229                }
 230        
 231                if (first_hole != blocks_per_page)
 232                        goto confused;          /* hole -> non-hole */
 233
 234                /* Contiguous blocks? */
 235                if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 236                        goto confused;
 237                nblocks = map_bh->b_size >> blkbits;
 238                for (relative_block = 0; ; relative_block++) {
 239                        if (relative_block == nblocks) {
 240                                clear_buffer_mapped(map_bh);
 241                                break;
 242                        } else if (page_block == blocks_per_page)
 243                                break;
 244                        blocks[page_block] = map_bh->b_blocknr+relative_block;
 245                        page_block++;
 246                        block_in_file++;
 247                }
 248                bdev = map_bh->b_bdev;
 249        }
 250
 251        if (first_hole != blocks_per_page) {
 252                zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
 253                if (first_hole == 0) {
 254                        SetPageUptodate(page);
 255                        unlock_page(page);
 256                        goto out;
 257                }
 258        } else if (fully_mapped) {
 259                SetPageMappedToDisk(page);
 260        }
 261
 262        if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
 263            cleancache_get_page(page) == 0) {
 264                SetPageUptodate(page);
 265                goto confused;
 266        }
 267
 268        /*
 269         * This page will go to BIO.  Do we need to send this BIO off first?
 270         */
 271        if (bio && (*last_block_in_bio != blocks[0] - 1))
 272                bio = mpage_bio_submit(READ, bio);
 273
 274alloc_new:
 275        if (bio == NULL) {
 276                if (first_hole == blocks_per_page) {
 277                        if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
 278                                                                page))
 279                                goto out;
 280                }
 281                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 282                                min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
 283                if (bio == NULL)
 284                        goto confused;
 285        }
 286
 287        length = first_hole << blkbits;
 288        if (bio_add_page(bio, page, length, 0) < length) {
 289                bio = mpage_bio_submit(READ, bio);
 290                goto alloc_new;
 291        }
 292
 293        relative_block = block_in_file - *first_logical_block;
 294        nblocks = map_bh->b_size >> blkbits;
 295        if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
 296            (first_hole != blocks_per_page))
 297                bio = mpage_bio_submit(READ, bio);
 298        else
 299                *last_block_in_bio = blocks[blocks_per_page - 1];
 300out:
 301        return bio;
 302
 303confused:
 304        if (bio)
 305                bio = mpage_bio_submit(READ, bio);
 306        if (!PageUptodate(page))
 307                block_read_full_page(page, get_block);
 308        else
 309                unlock_page(page);
 310        goto out;
 311}
 312
 313/**
 314 * mpage_readpages - populate an address space with some pages & start reads against them
 315 * @mapping: the address_space
 316 * @pages: The address of a list_head which contains the target pages.  These
 317 *   pages have their ->index populated and are otherwise uninitialised.
 318 *   The page at @pages->prev has the lowest file offset, and reads should be
 319 *   issued in @pages->prev to @pages->next order.
 320 * @nr_pages: The number of pages at *@pages
 321 * @get_block: The filesystem's block mapper function.
 322 *
 323 * This function walks the pages and the blocks within each page, building and
 324 * emitting large BIOs.
 325 *
 326 * If anything unusual happens, such as:
 327 *
 328 * - encountering a page which has buffers
 329 * - encountering a page which has a non-hole after a hole
 330 * - encountering a page with non-contiguous blocks
 331 *
 332 * then this code just gives up and calls the buffer_head-based read function.
 333 * It does handle a page which has holes at the end - that is a common case:
 334 * the end-of-file on blocksize < PAGE_SIZE setups.
 335 *
 336 * BH_Boundary explanation:
 337 *
 338 * There is a problem.  The mpage read code assembles several pages, gets all
 339 * their disk mappings, and then submits them all.  That's fine, but obtaining
 340 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
 341 *
 342 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
 343 * submitted in the following order:
 344 *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
 345 *
 346 * because the indirect block has to be read to get the mappings of blocks
 347 * 13,14,15,16.  Obviously, this impacts performance.
 348 *
 349 * So what we do it to allow the filesystem's get_block() function to set
 350 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
 351 * after this one will require I/O against a block which is probably close to
 352 * this one.  So you should push what I/O you have currently accumulated.
 353 *
 354 * This all causes the disk requests to be issued in the correct order.
 355 */
 356int
 357mpage_readpages(struct address_space *mapping, struct list_head *pages,
 358                                unsigned nr_pages, get_block_t get_block)
 359{
 360        struct bio *bio = NULL;
 361        unsigned page_idx;
 362        sector_t last_block_in_bio = 0;
 363        struct buffer_head map_bh;
 364        unsigned long first_logical_block = 0;
 365        gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
 366
 367        map_bh.b_state = 0;
 368        map_bh.b_size = 0;
 369        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 370                struct page *page = lru_to_page(pages);
 371
 372                prefetchw(&page->flags);
 373                list_del(&page->lru);
 374                if (!add_to_page_cache_lru(page, mapping,
 375                                        page->index,
 376                                        gfp)) {
 377                        bio = do_mpage_readpage(bio, page,
 378                                        nr_pages - page_idx,
 379                                        &last_block_in_bio, &map_bh,
 380                                        &first_logical_block,
 381                                        get_block, gfp);
 382                }
 383                put_page(page);
 384        }
 385        BUG_ON(!list_empty(pages));
 386        if (bio)
 387                mpage_bio_submit(READ, bio);
 388        return 0;
 389}
 390EXPORT_SYMBOL(mpage_readpages);
 391
 392/*
 393 * This isn't called much at all
 394 */
 395int mpage_readpage(struct page *page, get_block_t get_block)
 396{
 397        struct bio *bio = NULL;
 398        sector_t last_block_in_bio = 0;
 399        struct buffer_head map_bh;
 400        unsigned long first_logical_block = 0;
 401        gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 402
 403        map_bh.b_state = 0;
 404        map_bh.b_size = 0;
 405        bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
 406                        &map_bh, &first_logical_block, get_block, gfp);
 407        if (bio)
 408                mpage_bio_submit(READ, bio);
 409        return 0;
 410}
 411EXPORT_SYMBOL(mpage_readpage);
 412
 413/*
 414 * Writing is not so simple.
 415 *
 416 * If the page has buffers then they will be used for obtaining the disk
 417 * mapping.  We only support pages which are fully mapped-and-dirty, with a
 418 * special case for pages which are unmapped at the end: end-of-file.
 419 *
 420 * If the page has no buffers (preferred) then the page is mapped here.
 421 *
 422 * If all blocks are found to be contiguous then the page can go into the
 423 * BIO.  Otherwise fall back to the mapping's writepage().
 424 * 
 425 * FIXME: This code wants an estimate of how many pages are still to be
 426 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
 427 * just allocate full-size (16-page) BIOs.
 428 */
 429
 430struct mpage_data {
 431        struct bio *bio;
 432        sector_t last_block_in_bio;
 433        get_block_t *get_block;
 434        unsigned use_writepage;
 435};
 436
 437/*
 438 * We have our BIO, so we can now mark the buffers clean.  Make
 439 * sure to only clean buffers which we know we'll be writing.
 440 */
 441static void clean_buffers(struct page *page, unsigned first_unmapped)
 442{
 443        unsigned buffer_counter = 0;
 444        struct buffer_head *bh, *head;
 445        if (!page_has_buffers(page))
 446                return;
 447        head = page_buffers(page);
 448        bh = head;
 449
 450        do {
 451                if (buffer_counter++ == first_unmapped)
 452                        break;
 453                clear_buffer_dirty(bh);
 454                bh = bh->b_this_page;
 455        } while (bh != head);
 456
 457        /*
 458         * we cannot drop the bh if the page is not uptodate or a concurrent
 459         * readpage would fail to serialize with the bh and it would read from
 460         * disk before we reach the platter.
 461         */
 462        if (buffer_heads_over_limit && PageUptodate(page))
 463                try_to_free_buffers(page);
 464}
 465
 466static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
 467                      void *data)
 468{
 469        struct mpage_data *mpd = data;
 470        struct bio *bio = mpd->bio;
 471        struct address_space *mapping = page->mapping;
 472        struct inode *inode = page->mapping->host;
 473        const unsigned blkbits = inode->i_blkbits;
 474        unsigned long end_index;
 475        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 476        sector_t last_block;
 477        sector_t block_in_file;
 478        sector_t blocks[MAX_BUF_PER_PAGE];
 479        unsigned page_block;
 480        unsigned first_unmapped = blocks_per_page;
 481        struct block_device *bdev = NULL;
 482        int boundary = 0;
 483        sector_t boundary_block = 0;
 484        struct block_device *boundary_bdev = NULL;
 485        int length;
 486        struct buffer_head map_bh;
 487        loff_t i_size = i_size_read(inode);
 488        int ret = 0;
 489        int wr = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
 490
 491        if (page_has_buffers(page)) {
 492                struct buffer_head *head = page_buffers(page);
 493                struct buffer_head *bh = head;
 494
 495                /* If they're all mapped and dirty, do it */
 496                page_block = 0;
 497                do {
 498                        BUG_ON(buffer_locked(bh));
 499                        if (!buffer_mapped(bh)) {
 500                                /*
 501                                 * unmapped dirty buffers are created by
 502                                 * __set_page_dirty_buffers -> mmapped data
 503                                 */
 504                                if (buffer_dirty(bh))
 505                                        goto confused;
 506                                if (first_unmapped == blocks_per_page)
 507                                        first_unmapped = page_block;
 508                                continue;
 509                        }
 510
 511                        if (first_unmapped != blocks_per_page)
 512                                goto confused;  /* hole -> non-hole */
 513
 514                        if (!buffer_dirty(bh) || !buffer_uptodate(bh))
 515                                goto confused;
 516                        if (page_block) {
 517                                if (bh->b_blocknr != blocks[page_block-1] + 1)
 518                                        goto confused;
 519                        }
 520                        blocks[page_block++] = bh->b_blocknr;
 521                        boundary = buffer_boundary(bh);
 522                        if (boundary) {
 523                                boundary_block = bh->b_blocknr;
 524                                boundary_bdev = bh->b_bdev;
 525                        }
 526                        bdev = bh->b_bdev;
 527                } while ((bh = bh->b_this_page) != head);
 528
 529                if (first_unmapped)
 530                        goto page_is_mapped;
 531
 532                /*
 533                 * Page has buffers, but they are all unmapped. The page was
 534                 * created by pagein or read over a hole which was handled by
 535                 * block_read_full_page().  If this address_space is also
 536                 * using mpage_readpages then this can rarely happen.
 537                 */
 538                goto confused;
 539        }
 540
 541        /*
 542         * The page has no buffers: map it to disk
 543         */
 544        BUG_ON(!PageUptodate(page));
 545        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 546        last_block = (i_size - 1) >> blkbits;
 547        map_bh.b_page = page;
 548        for (page_block = 0; page_block < blocks_per_page; ) {
 549
 550                map_bh.b_state = 0;
 551                map_bh.b_size = 1 << blkbits;
 552                if (mpd->get_block(inode, block_in_file, &map_bh, 1))
 553                        goto confused;
 554                if (buffer_new(&map_bh))
 555                        unmap_underlying_metadata(map_bh.b_bdev,
 556                                                map_bh.b_blocknr);
 557                if (buffer_boundary(&map_bh)) {
 558                        boundary_block = map_bh.b_blocknr;
 559                        boundary_bdev = map_bh.b_bdev;
 560                }
 561                if (page_block) {
 562                        if (map_bh.b_blocknr != blocks[page_block-1] + 1)
 563                                goto confused;
 564                }
 565                blocks[page_block++] = map_bh.b_blocknr;
 566                boundary = buffer_boundary(&map_bh);
 567                bdev = map_bh.b_bdev;
 568                if (block_in_file == last_block)
 569                        break;
 570                block_in_file++;
 571        }
 572        BUG_ON(page_block == 0);
 573
 574        first_unmapped = page_block;
 575
 576page_is_mapped:
 577        end_index = i_size >> PAGE_SHIFT;
 578        if (page->index >= end_index) {
 579                /*
 580                 * The page straddles i_size.  It must be zeroed out on each
 581                 * and every writepage invocation because it may be mmapped.
 582                 * "A file is mapped in multiples of the page size.  For a file
 583                 * that is not a multiple of the page size, the remaining memory
 584                 * is zeroed when mapped, and writes to that region are not
 585                 * written out to the file."
 586                 */
 587                unsigned offset = i_size & (PAGE_SIZE - 1);
 588
 589                if (page->index > end_index || !offset)
 590                        goto confused;
 591                zero_user_segment(page, offset, PAGE_SIZE);
 592        }
 593
 594        /*
 595         * This page will go to BIO.  Do we need to send this BIO off first?
 596         */
 597        if (bio && mpd->last_block_in_bio != blocks[0] - 1)
 598                bio = mpage_bio_submit(wr, bio);
 599
 600alloc_new:
 601        if (bio == NULL) {
 602                if (first_unmapped == blocks_per_page) {
 603                        if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
 604                                                                page, wbc)) {
 605                                clean_buffers(page, first_unmapped);
 606                                goto out;
 607                        }
 608                }
 609                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 610                                BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
 611                if (bio == NULL)
 612                        goto confused;
 613
 614                wbc_init_bio(wbc, bio);
 615        }
 616
 617        /*
 618         * Must try to add the page before marking the buffer clean or
 619         * the confused fail path above (OOM) will be very confused when
 620         * it finds all bh marked clean (i.e. it will not write anything)
 621         */
 622        wbc_account_io(wbc, page, PAGE_SIZE);
 623        length = first_unmapped << blkbits;
 624        if (bio_add_page(bio, page, length, 0) < length) {
 625                bio = mpage_bio_submit(wr, bio);
 626                goto alloc_new;
 627        }
 628
 629        clean_buffers(page, first_unmapped);
 630
 631        BUG_ON(PageWriteback(page));
 632        set_page_writeback(page);
 633        unlock_page(page);
 634        if (boundary || (first_unmapped != blocks_per_page)) {
 635                bio = mpage_bio_submit(wr, bio);
 636                if (boundary_block) {
 637                        write_boundary_block(boundary_bdev,
 638                                        boundary_block, 1 << blkbits);
 639                }
 640        } else {
 641                mpd->last_block_in_bio = blocks[blocks_per_page - 1];
 642        }
 643        goto out;
 644
 645confused:
 646        if (bio)
 647                bio = mpage_bio_submit(wr, bio);
 648
 649        if (mpd->use_writepage) {
 650                ret = mapping->a_ops->writepage(page, wbc);
 651        } else {
 652                ret = -EAGAIN;
 653                goto out;
 654        }
 655        /*
 656         * The caller has a ref on the inode, so *mapping is stable
 657         */
 658        mapping_set_error(mapping, ret);
 659out:
 660        mpd->bio = bio;
 661        return ret;
 662}
 663
 664/**
 665 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
 666 * @mapping: address space structure to write
 667 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 668 * @get_block: the filesystem's block mapper function.
 669 *             If this is NULL then use a_ops->writepage.  Otherwise, go
 670 *             direct-to-BIO.
 671 *
 672 * This is a library function, which implements the writepages()
 673 * address_space_operation.
 674 *
 675 * If a page is already under I/O, generic_writepages() skips it, even
 676 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 677 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 678 * and msync() need to guarantee that all the data which was dirty at the time
 679 * the call was made get new I/O started against them.  If wbc->sync_mode is
 680 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 681 * existing IO to complete.
 682 */
 683int
 684mpage_writepages(struct address_space *mapping,
 685                struct writeback_control *wbc, get_block_t get_block)
 686{
 687        struct blk_plug plug;
 688        int ret;
 689
 690        blk_start_plug(&plug);
 691
 692        if (!get_block)
 693                ret = generic_writepages(mapping, wbc);
 694        else {
 695                struct mpage_data mpd = {
 696                        .bio = NULL,
 697                        .last_block_in_bio = 0,
 698                        .get_block = get_block,
 699                        .use_writepage = 1,
 700                };
 701
 702                ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
 703                if (mpd.bio) {
 704                        int wr = (wbc->sync_mode == WB_SYNC_ALL ?
 705                                  WRITE_SYNC : WRITE);
 706                        mpage_bio_submit(wr, mpd.bio);
 707                }
 708        }
 709        blk_finish_plug(&plug);
 710        return ret;
 711}
 712EXPORT_SYMBOL(mpage_writepages);
 713
 714int mpage_writepage(struct page *page, get_block_t get_block,
 715        struct writeback_control *wbc)
 716{
 717        struct mpage_data mpd = {
 718                .bio = NULL,
 719                .last_block_in_bio = 0,
 720                .get_block = get_block,
 721                .use_writepage = 0,
 722        };
 723        int ret = __mpage_writepage(page, wbc, &mpd);
 724        if (mpd.bio) {
 725                int wr = (wbc->sync_mode == WB_SYNC_ALL ?
 726                          WRITE_SYNC : WRITE);
 727                mpage_bio_submit(wr, mpd.bio);
 728        }
 729        return ret;
 730}
 731EXPORT_SYMBOL(mpage_writepage);
 732