linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57                                   struct buffer_head *bh_result, int create)
  58{
  59        int err = -EIO;
  60        int status;
  61        struct ocfs2_dinode *fe = NULL;
  62        struct buffer_head *bh = NULL;
  63        struct buffer_head *buffer_cache_bh = NULL;
  64        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65        void *kaddr;
  66
  67        trace_ocfs2_symlink_get_block(
  68                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  69                        (unsigned long long)iblock, bh_result, create);
  70
  71        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75                     (unsigned long long)iblock);
  76                goto bail;
  77        }
  78
  79        status = ocfs2_read_inode_block(inode, &bh);
  80        if (status < 0) {
  81                mlog_errno(status);
  82                goto bail;
  83        }
  84        fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87                                                    le32_to_cpu(fe->i_clusters))) {
  88                err = -ENOMEM;
  89                mlog(ML_ERROR, "block offset is outside the allocated size: "
  90                     "%llu\n", (unsigned long long)iblock);
  91                goto bail;
  92        }
  93
  94        /* We don't use the page cache to create symlink data, so if
  95         * need be, copy it over from the buffer cache. */
  96        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98                            iblock;
  99                buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100                if (!buffer_cache_bh) {
 101                        err = -ENOMEM;
 102                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103                        goto bail;
 104                }
 105
 106                /* we haven't locked out transactions, so a commit
 107                 * could've happened. Since we've got a reference on
 108                 * the bh, even if it commits while we're doing the
 109                 * copy, the data is still good. */
 110                if (buffer_jbd(buffer_cache_bh)
 111                    && ocfs2_inode_is_new(inode)) {
 112                        kaddr = kmap_atomic(bh_result->b_page);
 113                        if (!kaddr) {
 114                                mlog(ML_ERROR, "couldn't kmap!\n");
 115                                goto bail;
 116                        }
 117                        memcpy(kaddr + (bh_result->b_size * iblock),
 118                               buffer_cache_bh->b_data,
 119                               bh_result->b_size);
 120                        kunmap_atomic(kaddr);
 121                        set_buffer_uptodate(bh_result);
 122                }
 123                brelse(buffer_cache_bh);
 124        }
 125
 126        map_bh(bh_result, inode->i_sb,
 127               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129        err = 0;
 130
 131bail:
 132        brelse(bh);
 133
 134        return err;
 135}
 136
 137int ocfs2_get_block(struct inode *inode, sector_t iblock,
 138                    struct buffer_head *bh_result, int create)
 139{
 140        int err = 0;
 141        unsigned int ext_flags;
 142        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 143        u64 p_blkno, count, past_eof;
 144        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 145
 146        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 147                              (unsigned long long)iblock, bh_result, create);
 148
 149        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 150                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 151                     inode, inode->i_ino);
 152
 153        if (S_ISLNK(inode->i_mode)) {
 154                /* this always does I/O for some reason. */
 155                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 156                goto bail;
 157        }
 158
 159        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 160                                          &ext_flags);
 161        if (err) {
 162                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 163                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 164                     (unsigned long long)p_blkno);
 165                goto bail;
 166        }
 167
 168        if (max_blocks < count)
 169                count = max_blocks;
 170
 171        /*
 172         * ocfs2 never allocates in this function - the only time we
 173         * need to use BH_New is when we're extending i_size on a file
 174         * system which doesn't support holes, in which case BH_New
 175         * allows __block_write_begin() to zero.
 176         *
 177         * If we see this on a sparse file system, then a truncate has
 178         * raced us and removed the cluster. In this case, we clear
 179         * the buffers dirty and uptodate bits and let the buffer code
 180         * ignore it as a hole.
 181         */
 182        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 183                clear_buffer_dirty(bh_result);
 184                clear_buffer_uptodate(bh_result);
 185                goto bail;
 186        }
 187
 188        /* Treat the unwritten extent as a hole for zeroing purposes. */
 189        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 190                map_bh(bh_result, inode->i_sb, p_blkno);
 191
 192        bh_result->b_size = count << inode->i_blkbits;
 193
 194        if (!ocfs2_sparse_alloc(osb)) {
 195                if (p_blkno == 0) {
 196                        err = -EIO;
 197                        mlog(ML_ERROR,
 198                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 199                             (unsigned long long)iblock,
 200                             (unsigned long long)p_blkno,
 201                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 202                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 203                        dump_stack();
 204                        goto bail;
 205                }
 206        }
 207
 208        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 209
 210        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 211                                  (unsigned long long)past_eof);
 212        if (create && (iblock >= past_eof))
 213                set_buffer_new(bh_result);
 214
 215bail:
 216        if (err < 0)
 217                err = -EIO;
 218
 219        return err;
 220}
 221
 222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 223                           struct buffer_head *di_bh)
 224{
 225        void *kaddr;
 226        loff_t size;
 227        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 228
 229        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 230                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 231                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 232                return -EROFS;
 233        }
 234
 235        size = i_size_read(inode);
 236
 237        if (size > PAGE_SIZE ||
 238            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 239                ocfs2_error(inode->i_sb,
 240                            "Inode %llu has with inline data has bad size: %Lu\n",
 241                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 242                            (unsigned long long)size);
 243                return -EROFS;
 244        }
 245
 246        kaddr = kmap_atomic(page);
 247        if (size)
 248                memcpy(kaddr, di->id2.i_data.id_data, size);
 249        /* Clear the remaining part of the page */
 250        memset(kaddr + size, 0, PAGE_SIZE - size);
 251        flush_dcache_page(page);
 252        kunmap_atomic(kaddr);
 253
 254        SetPageUptodate(page);
 255
 256        return 0;
 257}
 258
 259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 260{
 261        int ret;
 262        struct buffer_head *di_bh = NULL;
 263
 264        BUG_ON(!PageLocked(page));
 265        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 266
 267        ret = ocfs2_read_inode_block(inode, &di_bh);
 268        if (ret) {
 269                mlog_errno(ret);
 270                goto out;
 271        }
 272
 273        ret = ocfs2_read_inline_data(inode, page, di_bh);
 274out:
 275        unlock_page(page);
 276
 277        brelse(di_bh);
 278        return ret;
 279}
 280
 281static int ocfs2_readpage(struct file *file, struct page *page)
 282{
 283        struct inode *inode = page->mapping->host;
 284        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 285        loff_t start = (loff_t)page->index << PAGE_SHIFT;
 286        int ret, unlock = 1;
 287
 288        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 289                             (page ? page->index : 0));
 290
 291        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 292        if (ret != 0) {
 293                if (ret == AOP_TRUNCATED_PAGE)
 294                        unlock = 0;
 295                mlog_errno(ret);
 296                goto out;
 297        }
 298
 299        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 300                /*
 301                 * Unlock the page and cycle ip_alloc_sem so that we don't
 302                 * busyloop waiting for ip_alloc_sem to unlock
 303                 */
 304                ret = AOP_TRUNCATED_PAGE;
 305                unlock_page(page);
 306                unlock = 0;
 307                down_read(&oi->ip_alloc_sem);
 308                up_read(&oi->ip_alloc_sem);
 309                goto out_inode_unlock;
 310        }
 311
 312        /*
 313         * i_size might have just been updated as we grabed the meta lock.  We
 314         * might now be discovering a truncate that hit on another node.
 315         * block_read_full_page->get_block freaks out if it is asked to read
 316         * beyond the end of a file, so we check here.  Callers
 317         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 318         * and notice that the page they just read isn't needed.
 319         *
 320         * XXX sys_readahead() seems to get that wrong?
 321         */
 322        if (start >= i_size_read(inode)) {
 323                zero_user(page, 0, PAGE_SIZE);
 324                SetPageUptodate(page);
 325                ret = 0;
 326                goto out_alloc;
 327        }
 328
 329        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 330                ret = ocfs2_readpage_inline(inode, page);
 331        else
 332                ret = block_read_full_page(page, ocfs2_get_block);
 333        unlock = 0;
 334
 335out_alloc:
 336        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 337out_inode_unlock:
 338        ocfs2_inode_unlock(inode, 0);
 339out:
 340        if (unlock)
 341                unlock_page(page);
 342        return ret;
 343}
 344
 345/*
 346 * This is used only for read-ahead. Failures or difficult to handle
 347 * situations are safe to ignore.
 348 *
 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 350 * are quite large (243 extents on 4k blocks), so most inodes don't
 351 * grow out to a tree. If need be, detecting boundary extents could
 352 * trivially be added in a future version of ocfs2_get_block().
 353 */
 354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 355                           struct list_head *pages, unsigned nr_pages)
 356{
 357        int ret, err = -EIO;
 358        struct inode *inode = mapping->host;
 359        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 360        loff_t start;
 361        struct page *last;
 362
 363        /*
 364         * Use the nonblocking flag for the dlm code to avoid page
 365         * lock inversion, but don't bother with retrying.
 366         */
 367        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 368        if (ret)
 369                return err;
 370
 371        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 372                ocfs2_inode_unlock(inode, 0);
 373                return err;
 374        }
 375
 376        /*
 377         * Don't bother with inline-data. There isn't anything
 378         * to read-ahead in that case anyway...
 379         */
 380        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 381                goto out_unlock;
 382
 383        /*
 384         * Check whether a remote node truncated this file - we just
 385         * drop out in that case as it's not worth handling here.
 386         */
 387        last = list_entry(pages->prev, struct page, lru);
 388        start = (loff_t)last->index << PAGE_SHIFT;
 389        if (start >= i_size_read(inode))
 390                goto out_unlock;
 391
 392        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 393
 394out_unlock:
 395        up_read(&oi->ip_alloc_sem);
 396        ocfs2_inode_unlock(inode, 0);
 397
 398        return err;
 399}
 400
 401/* Note: Because we don't support holes, our allocation has
 402 * already happened (allocation writes zeros to the file data)
 403 * so we don't have to worry about ordered writes in
 404 * ocfs2_writepage.
 405 *
 406 * ->writepage is called during the process of invalidating the page cache
 407 * during blocked lock processing.  It can't block on any cluster locks
 408 * to during block mapping.  It's relying on the fact that the block
 409 * mapping can't have disappeared under the dirty pages that it is
 410 * being asked to write back.
 411 */
 412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 413{
 414        trace_ocfs2_writepage(
 415                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 416                page->index);
 417
 418        return block_write_full_page(page, ocfs2_get_block, wbc);
 419}
 420
 421/* Taken from ext3. We don't necessarily need the full blown
 422 * functionality yet, but IMHO it's better to cut and paste the whole
 423 * thing so we can avoid introducing our own bugs (and easily pick up
 424 * their fixes when they happen) --Mark */
 425int walk_page_buffers(  handle_t *handle,
 426                        struct buffer_head *head,
 427                        unsigned from,
 428                        unsigned to,
 429                        int *partial,
 430                        int (*fn)(      handle_t *handle,
 431                                        struct buffer_head *bh))
 432{
 433        struct buffer_head *bh;
 434        unsigned block_start, block_end;
 435        unsigned blocksize = head->b_size;
 436        int err, ret = 0;
 437        struct buffer_head *next;
 438
 439        for (   bh = head, block_start = 0;
 440                ret == 0 && (bh != head || !block_start);
 441                block_start = block_end, bh = next)
 442        {
 443                next = bh->b_this_page;
 444                block_end = block_start + blocksize;
 445                if (block_end <= from || block_start >= to) {
 446                        if (partial && !buffer_uptodate(bh))
 447                                *partial = 1;
 448                        continue;
 449                }
 450                err = (*fn)(handle, bh);
 451                if (!ret)
 452                        ret = err;
 453        }
 454        return ret;
 455}
 456
 457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 458{
 459        sector_t status;
 460        u64 p_blkno = 0;
 461        int err = 0;
 462        struct inode *inode = mapping->host;
 463
 464        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 465                         (unsigned long long)block);
 466
 467        /* We don't need to lock journal system files, since they aren't
 468         * accessed concurrently from multiple nodes.
 469         */
 470        if (!INODE_JOURNAL(inode)) {
 471                err = ocfs2_inode_lock(inode, NULL, 0);
 472                if (err) {
 473                        if (err != -ENOENT)
 474                                mlog_errno(err);
 475                        goto bail;
 476                }
 477                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 478        }
 479
 480        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 481                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 482                                                  NULL);
 483
 484        if (!INODE_JOURNAL(inode)) {
 485                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 486                ocfs2_inode_unlock(inode, 0);
 487        }
 488
 489        if (err) {
 490                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 491                     (unsigned long long)block);
 492                mlog_errno(err);
 493                goto bail;
 494        }
 495
 496bail:
 497        status = err ? 0 : p_blkno;
 498
 499        return status;
 500}
 501
 502static int ocfs2_releasepage(struct page *page, gfp_t wait)
 503{
 504        if (!page_has_buffers(page))
 505                return 0;
 506        return try_to_free_buffers(page);
 507}
 508
 509static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 510                                            u32 cpos,
 511                                            unsigned int *start,
 512                                            unsigned int *end)
 513{
 514        unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 515
 516        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 517                unsigned int cpp;
 518
 519                cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 520
 521                cluster_start = cpos % cpp;
 522                cluster_start = cluster_start << osb->s_clustersize_bits;
 523
 524                cluster_end = cluster_start + osb->s_clustersize;
 525        }
 526
 527        BUG_ON(cluster_start > PAGE_SIZE);
 528        BUG_ON(cluster_end > PAGE_SIZE);
 529
 530        if (start)
 531                *start = cluster_start;
 532        if (end)
 533                *end = cluster_end;
 534}
 535
 536/*
 537 * 'from' and 'to' are the region in the page to avoid zeroing.
 538 *
 539 * If pagesize > clustersize, this function will avoid zeroing outside
 540 * of the cluster boundary.
 541 *
 542 * from == to == 0 is code for "zero the entire cluster region"
 543 */
 544static void ocfs2_clear_page_regions(struct page *page,
 545                                     struct ocfs2_super *osb, u32 cpos,
 546                                     unsigned from, unsigned to)
 547{
 548        void *kaddr;
 549        unsigned int cluster_start, cluster_end;
 550
 551        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 552
 553        kaddr = kmap_atomic(page);
 554
 555        if (from || to) {
 556                if (from > cluster_start)
 557                        memset(kaddr + cluster_start, 0, from - cluster_start);
 558                if (to < cluster_end)
 559                        memset(kaddr + to, 0, cluster_end - to);
 560        } else {
 561                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 562        }
 563
 564        kunmap_atomic(kaddr);
 565}
 566
 567/*
 568 * Nonsparse file systems fully allocate before we get to the write
 569 * code. This prevents ocfs2_write() from tagging the write as an
 570 * allocating one, which means ocfs2_map_page_blocks() might try to
 571 * read-in the blocks at the tail of our file. Avoid reading them by
 572 * testing i_size against each block offset.
 573 */
 574static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 575                                 unsigned int block_start)
 576{
 577        u64 offset = page_offset(page) + block_start;
 578
 579        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 580                return 1;
 581
 582        if (i_size_read(inode) > offset)
 583                return 1;
 584
 585        return 0;
 586}
 587
 588/*
 589 * Some of this taken from __block_write_begin(). We already have our
 590 * mapping by now though, and the entire write will be allocating or
 591 * it won't, so not much need to use BH_New.
 592 *
 593 * This will also skip zeroing, which is handled externally.
 594 */
 595int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 596                          struct inode *inode, unsigned int from,
 597                          unsigned int to, int new)
 598{
 599        int ret = 0;
 600        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 601        unsigned int block_end, block_start;
 602        unsigned int bsize = 1 << inode->i_blkbits;
 603
 604        if (!page_has_buffers(page))
 605                create_empty_buffers(page, bsize, 0);
 606
 607        head = page_buffers(page);
 608        for (bh = head, block_start = 0; bh != head || !block_start;
 609             bh = bh->b_this_page, block_start += bsize) {
 610                block_end = block_start + bsize;
 611
 612                clear_buffer_new(bh);
 613
 614                /*
 615                 * Ignore blocks outside of our i/o range -
 616                 * they may belong to unallocated clusters.
 617                 */
 618                if (block_start >= to || block_end <= from) {
 619                        if (PageUptodate(page))
 620                                set_buffer_uptodate(bh);
 621                        continue;
 622                }
 623
 624                /*
 625                 * For an allocating write with cluster size >= page
 626                 * size, we always write the entire page.
 627                 */
 628                if (new)
 629                        set_buffer_new(bh);
 630
 631                if (!buffer_mapped(bh)) {
 632                        map_bh(bh, inode->i_sb, *p_blkno);
 633                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 634                }
 635
 636                if (PageUptodate(page)) {
 637                        if (!buffer_uptodate(bh))
 638                                set_buffer_uptodate(bh);
 639                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 640                           !buffer_new(bh) &&
 641                           ocfs2_should_read_blk(inode, page, block_start) &&
 642                           (block_start < from || block_end > to)) {
 643                        ll_rw_block(READ, 1, &bh);
 644                        *wait_bh++=bh;
 645                }
 646
 647                *p_blkno = *p_blkno + 1;
 648        }
 649
 650        /*
 651         * If we issued read requests - let them complete.
 652         */
 653        while(wait_bh > wait) {
 654                wait_on_buffer(*--wait_bh);
 655                if (!buffer_uptodate(*wait_bh))
 656                        ret = -EIO;
 657        }
 658
 659        if (ret == 0 || !new)
 660                return ret;
 661
 662        /*
 663         * If we get -EIO above, zero out any newly allocated blocks
 664         * to avoid exposing stale data.
 665         */
 666        bh = head;
 667        block_start = 0;
 668        do {
 669                block_end = block_start + bsize;
 670                if (block_end <= from)
 671                        goto next_bh;
 672                if (block_start >= to)
 673                        break;
 674
 675                zero_user(page, block_start, bh->b_size);
 676                set_buffer_uptodate(bh);
 677                mark_buffer_dirty(bh);
 678
 679next_bh:
 680                block_start = block_end;
 681                bh = bh->b_this_page;
 682        } while (bh != head);
 683
 684        return ret;
 685}
 686
 687#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 688#define OCFS2_MAX_CTXT_PAGES    1
 689#else
 690#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 691#endif
 692
 693#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 694
 695struct ocfs2_unwritten_extent {
 696        struct list_head        ue_node;
 697        struct list_head        ue_ip_node;
 698        u32                     ue_cpos;
 699        u32                     ue_phys;
 700};
 701
 702/*
 703 * Describe the state of a single cluster to be written to.
 704 */
 705struct ocfs2_write_cluster_desc {
 706        u32             c_cpos;
 707        u32             c_phys;
 708        /*
 709         * Give this a unique field because c_phys eventually gets
 710         * filled.
 711         */
 712        unsigned        c_new;
 713        unsigned        c_clear_unwritten;
 714        unsigned        c_needs_zero;
 715};
 716
 717struct ocfs2_write_ctxt {
 718        /* Logical cluster position / len of write */
 719        u32                             w_cpos;
 720        u32                             w_clen;
 721
 722        /* First cluster allocated in a nonsparse extend */
 723        u32                             w_first_new_cpos;
 724
 725        /* Type of caller. Must be one of buffer, mmap, direct.  */
 726        ocfs2_write_type_t              w_type;
 727
 728        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 729
 730        /*
 731         * This is true if page_size > cluster_size.
 732         *
 733         * It triggers a set of special cases during write which might
 734         * have to deal with allocating writes to partial pages.
 735         */
 736        unsigned int                    w_large_pages;
 737
 738        /*
 739         * Pages involved in this write.
 740         *
 741         * w_target_page is the page being written to by the user.
 742         *
 743         * w_pages is an array of pages which always contains
 744         * w_target_page, and in the case of an allocating write with
 745         * page_size < cluster size, it will contain zero'd and mapped
 746         * pages adjacent to w_target_page which need to be written
 747         * out in so that future reads from that region will get
 748         * zero's.
 749         */
 750        unsigned int                    w_num_pages;
 751        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 752        struct page                     *w_target_page;
 753
 754        /*
 755         * w_target_locked is used for page_mkwrite path indicating no unlocking
 756         * against w_target_page in ocfs2_write_end_nolock.
 757         */
 758        unsigned int                    w_target_locked:1;
 759
 760        /*
 761         * ocfs2_write_end() uses this to know what the real range to
 762         * write in the target should be.
 763         */
 764        unsigned int                    w_target_from;
 765        unsigned int                    w_target_to;
 766
 767        /*
 768         * We could use journal_current_handle() but this is cleaner,
 769         * IMHO -Mark
 770         */
 771        handle_t                        *w_handle;
 772
 773        struct buffer_head              *w_di_bh;
 774
 775        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 776
 777        struct list_head                w_unwritten_list;
 778};
 779
 780void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 781{
 782        int i;
 783
 784        for(i = 0; i < num_pages; i++) {
 785                if (pages[i]) {
 786                        unlock_page(pages[i]);
 787                        mark_page_accessed(pages[i]);
 788                        put_page(pages[i]);
 789                }
 790        }
 791}
 792
 793static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 794{
 795        int i;
 796
 797        /*
 798         * w_target_locked is only set to true in the page_mkwrite() case.
 799         * The intent is to allow us to lock the target page from write_begin()
 800         * to write_end(). The caller must hold a ref on w_target_page.
 801         */
 802        if (wc->w_target_locked) {
 803                BUG_ON(!wc->w_target_page);
 804                for (i = 0; i < wc->w_num_pages; i++) {
 805                        if (wc->w_target_page == wc->w_pages[i]) {
 806                                wc->w_pages[i] = NULL;
 807                                break;
 808                        }
 809                }
 810                mark_page_accessed(wc->w_target_page);
 811                put_page(wc->w_target_page);
 812        }
 813        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 814}
 815
 816static void ocfs2_free_unwritten_list(struct inode *inode,
 817                                 struct list_head *head)
 818{
 819        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 820        struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 821
 822        list_for_each_entry_safe(ue, tmp, head, ue_node) {
 823                list_del(&ue->ue_node);
 824                spin_lock(&oi->ip_lock);
 825                list_del(&ue->ue_ip_node);
 826                spin_unlock(&oi->ip_lock);
 827                kfree(ue);
 828        }
 829}
 830
 831static void ocfs2_free_write_ctxt(struct inode *inode,
 832                                  struct ocfs2_write_ctxt *wc)
 833{
 834        ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 835        ocfs2_unlock_pages(wc);
 836        brelse(wc->w_di_bh);
 837        kfree(wc);
 838}
 839
 840static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 841                                  struct ocfs2_super *osb, loff_t pos,
 842                                  unsigned len, ocfs2_write_type_t type,
 843                                  struct buffer_head *di_bh)
 844{
 845        u32 cend;
 846        struct ocfs2_write_ctxt *wc;
 847
 848        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 849        if (!wc)
 850                return -ENOMEM;
 851
 852        wc->w_cpos = pos >> osb->s_clustersize_bits;
 853        wc->w_first_new_cpos = UINT_MAX;
 854        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 855        wc->w_clen = cend - wc->w_cpos + 1;
 856        get_bh(di_bh);
 857        wc->w_di_bh = di_bh;
 858        wc->w_type = type;
 859
 860        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 861                wc->w_large_pages = 1;
 862        else
 863                wc->w_large_pages = 0;
 864
 865        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 866        INIT_LIST_HEAD(&wc->w_unwritten_list);
 867
 868        *wcp = wc;
 869
 870        return 0;
 871}
 872
 873/*
 874 * If a page has any new buffers, zero them out here, and mark them uptodate
 875 * and dirty so they'll be written out (in order to prevent uninitialised
 876 * block data from leaking). And clear the new bit.
 877 */
 878static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 879{
 880        unsigned int block_start, block_end;
 881        struct buffer_head *head, *bh;
 882
 883        BUG_ON(!PageLocked(page));
 884        if (!page_has_buffers(page))
 885                return;
 886
 887        bh = head = page_buffers(page);
 888        block_start = 0;
 889        do {
 890                block_end = block_start + bh->b_size;
 891
 892                if (buffer_new(bh)) {
 893                        if (block_end > from && block_start < to) {
 894                                if (!PageUptodate(page)) {
 895                                        unsigned start, end;
 896
 897                                        start = max(from, block_start);
 898                                        end = min(to, block_end);
 899
 900                                        zero_user_segment(page, start, end);
 901                                        set_buffer_uptodate(bh);
 902                                }
 903
 904                                clear_buffer_new(bh);
 905                                mark_buffer_dirty(bh);
 906                        }
 907                }
 908
 909                block_start = block_end;
 910                bh = bh->b_this_page;
 911        } while (bh != head);
 912}
 913
 914/*
 915 * Only called when we have a failure during allocating write to write
 916 * zero's to the newly allocated region.
 917 */
 918static void ocfs2_write_failure(struct inode *inode,
 919                                struct ocfs2_write_ctxt *wc,
 920                                loff_t user_pos, unsigned user_len)
 921{
 922        int i;
 923        unsigned from = user_pos & (PAGE_SIZE - 1),
 924                to = user_pos + user_len;
 925        struct page *tmppage;
 926
 927        if (wc->w_target_page)
 928                ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 929
 930        for(i = 0; i < wc->w_num_pages; i++) {
 931                tmppage = wc->w_pages[i];
 932
 933                if (tmppage && page_has_buffers(tmppage)) {
 934                        if (ocfs2_should_order_data(inode))
 935                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
 936
 937                        block_commit_write(tmppage, from, to);
 938                }
 939        }
 940}
 941
 942static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 943                                        struct ocfs2_write_ctxt *wc,
 944                                        struct page *page, u32 cpos,
 945                                        loff_t user_pos, unsigned user_len,
 946                                        int new)
 947{
 948        int ret;
 949        unsigned int map_from = 0, map_to = 0;
 950        unsigned int cluster_start, cluster_end;
 951        unsigned int user_data_from = 0, user_data_to = 0;
 952
 953        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 954                                        &cluster_start, &cluster_end);
 955
 956        /* treat the write as new if the a hole/lseek spanned across
 957         * the page boundary.
 958         */
 959        new = new | ((i_size_read(inode) <= page_offset(page)) &&
 960                        (page_offset(page) <= user_pos));
 961
 962        if (page == wc->w_target_page) {
 963                map_from = user_pos & (PAGE_SIZE - 1);
 964                map_to = map_from + user_len;
 965
 966                if (new)
 967                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 968                                                    cluster_start, cluster_end,
 969                                                    new);
 970                else
 971                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 972                                                    map_from, map_to, new);
 973                if (ret) {
 974                        mlog_errno(ret);
 975                        goto out;
 976                }
 977
 978                user_data_from = map_from;
 979                user_data_to = map_to;
 980                if (new) {
 981                        map_from = cluster_start;
 982                        map_to = cluster_end;
 983                }
 984        } else {
 985                /*
 986                 * If we haven't allocated the new page yet, we
 987                 * shouldn't be writing it out without copying user
 988                 * data. This is likely a math error from the caller.
 989                 */
 990                BUG_ON(!new);
 991
 992                map_from = cluster_start;
 993                map_to = cluster_end;
 994
 995                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 996                                            cluster_start, cluster_end, new);
 997                if (ret) {
 998                        mlog_errno(ret);
 999                        goto out;
1000                }
1001        }
1002
1003        /*
1004         * Parts of newly allocated pages need to be zero'd.
1005         *
1006         * Above, we have also rewritten 'to' and 'from' - as far as
1007         * the rest of the function is concerned, the entire cluster
1008         * range inside of a page needs to be written.
1009         *
1010         * We can skip this if the page is up to date - it's already
1011         * been zero'd from being read in as a hole.
1012         */
1013        if (new && !PageUptodate(page))
1014                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1015                                         cpos, user_data_from, user_data_to);
1016
1017        flush_dcache_page(page);
1018
1019out:
1020        return ret;
1021}
1022
1023/*
1024 * This function will only grab one clusters worth of pages.
1025 */
1026static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027                                      struct ocfs2_write_ctxt *wc,
1028                                      u32 cpos, loff_t user_pos,
1029                                      unsigned user_len, int new,
1030                                      struct page *mmap_page)
1031{
1032        int ret = 0, i;
1033        unsigned long start, target_index, end_index, index;
1034        struct inode *inode = mapping->host;
1035        loff_t last_byte;
1036
1037        target_index = user_pos >> PAGE_SHIFT;
1038
1039        /*
1040         * Figure out how many pages we'll be manipulating here. For
1041         * non allocating write, we just change the one
1042         * page. Otherwise, we'll need a whole clusters worth.  If we're
1043         * writing past i_size, we only need enough pages to cover the
1044         * last page of the write.
1045         */
1046        if (new) {
1047                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1049                /*
1050                 * We need the index *past* the last page we could possibly
1051                 * touch.  This is the page past the end of the write or
1052                 * i_size, whichever is greater.
1053                 */
1054                last_byte = max(user_pos + user_len, i_size_read(inode));
1055                BUG_ON(last_byte < 1);
1056                end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1057                if ((start + wc->w_num_pages) > end_index)
1058                        wc->w_num_pages = end_index - start;
1059        } else {
1060                wc->w_num_pages = 1;
1061                start = target_index;
1062        }
1063        end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1064
1065        for(i = 0; i < wc->w_num_pages; i++) {
1066                index = start + i;
1067
1068                if (index >= target_index && index <= end_index &&
1069                    wc->w_type == OCFS2_WRITE_MMAP) {
1070                        /*
1071                         * ocfs2_pagemkwrite() is a little different
1072                         * and wants us to directly use the page
1073                         * passed in.
1074                         */
1075                        lock_page(mmap_page);
1076
1077                        /* Exit and let the caller retry */
1078                        if (mmap_page->mapping != mapping) {
1079                                WARN_ON(mmap_page->mapping);
1080                                unlock_page(mmap_page);
1081                                ret = -EAGAIN;
1082                                goto out;
1083                        }
1084
1085                        get_page(mmap_page);
1086                        wc->w_pages[i] = mmap_page;
1087                        wc->w_target_locked = true;
1088                } else if (index >= target_index && index <= end_index &&
1089                           wc->w_type == OCFS2_WRITE_DIRECT) {
1090                        /* Direct write has no mapping page. */
1091                        wc->w_pages[i] = NULL;
1092                        continue;
1093                } else {
1094                        wc->w_pages[i] = find_or_create_page(mapping, index,
1095                                                             GFP_NOFS);
1096                        if (!wc->w_pages[i]) {
1097                                ret = -ENOMEM;
1098                                mlog_errno(ret);
1099                                goto out;
1100                        }
1101                }
1102                wait_for_stable_page(wc->w_pages[i]);
1103
1104                if (index == target_index)
1105                        wc->w_target_page = wc->w_pages[i];
1106        }
1107out:
1108        if (ret)
1109                wc->w_target_locked = false;
1110        return ret;
1111}
1112
1113/*
1114 * Prepare a single cluster for write one cluster into the file.
1115 */
1116static int ocfs2_write_cluster(struct address_space *mapping,
1117                               u32 *phys, unsigned int new,
1118                               unsigned int clear_unwritten,
1119                               unsigned int should_zero,
1120                               struct ocfs2_alloc_context *data_ac,
1121                               struct ocfs2_alloc_context *meta_ac,
1122                               struct ocfs2_write_ctxt *wc, u32 cpos,
1123                               loff_t user_pos, unsigned user_len)
1124{
1125        int ret, i;
1126        u64 p_blkno;
1127        struct inode *inode = mapping->host;
1128        struct ocfs2_extent_tree et;
1129        int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1130
1131        if (new) {
1132                u32 tmp_pos;
1133
1134                /*
1135                 * This is safe to call with the page locks - it won't take
1136                 * any additional semaphores or cluster locks.
1137                 */
1138                tmp_pos = cpos;
1139                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1140                                           &tmp_pos, 1, !clear_unwritten,
1141                                           wc->w_di_bh, wc->w_handle,
1142                                           data_ac, meta_ac, NULL);
1143                /*
1144                 * This shouldn't happen because we must have already
1145                 * calculated the correct meta data allocation required. The
1146                 * internal tree allocation code should know how to increase
1147                 * transaction credits itself.
1148                 *
1149                 * If need be, we could handle -EAGAIN for a
1150                 * RESTART_TRANS here.
1151                 */
1152                mlog_bug_on_msg(ret == -EAGAIN,
1153                                "Inode %llu: EAGAIN return during allocation.\n",
1154                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1155                if (ret < 0) {
1156                        mlog_errno(ret);
1157                        goto out;
1158                }
1159        } else if (clear_unwritten) {
1160                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161                                              wc->w_di_bh);
1162                ret = ocfs2_mark_extent_written(inode, &et,
1163                                                wc->w_handle, cpos, 1, *phys,
1164                                                meta_ac, &wc->w_dealloc);
1165                if (ret < 0) {
1166                        mlog_errno(ret);
1167                        goto out;
1168                }
1169        }
1170
1171        /*
1172         * The only reason this should fail is due to an inability to
1173         * find the extent added.
1174         */
1175        ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176        if (ret < 0) {
1177                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1178                            "at logical cluster %u",
1179                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1180                goto out;
1181        }
1182
1183        BUG_ON(*phys == 0);
1184
1185        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186        if (!should_zero)
1187                p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1188
1189        for(i = 0; i < wc->w_num_pages; i++) {
1190                int tmpret;
1191
1192                /* This is the direct io target page. */
1193                if (wc->w_pages[i] == NULL) {
1194                        p_blkno++;
1195                        continue;
1196                }
1197
1198                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199                                                      wc->w_pages[i], cpos,
1200                                                      user_pos, user_len,
1201                                                      should_zero);
1202                if (tmpret) {
1203                        mlog_errno(tmpret);
1204                        if (ret == 0)
1205                                ret = tmpret;
1206                }
1207        }
1208
1209        /*
1210         * We only have cleanup to do in case of allocating write.
1211         */
1212        if (ret && new)
1213                ocfs2_write_failure(inode, wc, user_pos, user_len);
1214
1215out:
1216
1217        return ret;
1218}
1219
1220static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221                                       struct ocfs2_alloc_context *data_ac,
1222                                       struct ocfs2_alloc_context *meta_ac,
1223                                       struct ocfs2_write_ctxt *wc,
1224                                       loff_t pos, unsigned len)
1225{
1226        int ret, i;
1227        loff_t cluster_off;
1228        unsigned int local_len = len;
1229        struct ocfs2_write_cluster_desc *desc;
1230        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1231
1232        for (i = 0; i < wc->w_clen; i++) {
1233                desc = &wc->w_desc[i];
1234
1235                /*
1236                 * We have to make sure that the total write passed in
1237                 * doesn't extend past a single cluster.
1238                 */
1239                local_len = len;
1240                cluster_off = pos & (osb->s_clustersize - 1);
1241                if ((cluster_off + local_len) > osb->s_clustersize)
1242                        local_len = osb->s_clustersize - cluster_off;
1243
1244                ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245                                          desc->c_new,
1246                                          desc->c_clear_unwritten,
1247                                          desc->c_needs_zero,
1248                                          data_ac, meta_ac,
1249                                          wc, desc->c_cpos, pos, local_len);
1250                if (ret) {
1251                        mlog_errno(ret);
1252                        goto out;
1253                }
1254
1255                len -= local_len;
1256                pos += local_len;
1257        }
1258
1259        ret = 0;
1260out:
1261        return ret;
1262}
1263
1264/*
1265 * ocfs2_write_end() wants to know which parts of the target page it
1266 * should complete the write on. It's easiest to compute them ahead of
1267 * time when a more complete view of the write is available.
1268 */
1269static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270                                        struct ocfs2_write_ctxt *wc,
1271                                        loff_t pos, unsigned len, int alloc)
1272{
1273        struct ocfs2_write_cluster_desc *desc;
1274
1275        wc->w_target_from = pos & (PAGE_SIZE - 1);
1276        wc->w_target_to = wc->w_target_from + len;
1277
1278        if (alloc == 0)
1279                return;
1280
1281        /*
1282         * Allocating write - we may have different boundaries based
1283         * on page size and cluster size.
1284         *
1285         * NOTE: We can no longer compute one value from the other as
1286         * the actual write length and user provided length may be
1287         * different.
1288         */
1289
1290        if (wc->w_large_pages) {
1291                /*
1292                 * We only care about the 1st and last cluster within
1293                 * our range and whether they should be zero'd or not. Either
1294                 * value may be extended out to the start/end of a
1295                 * newly allocated cluster.
1296                 */
1297                desc = &wc->w_desc[0];
1298                if (desc->c_needs_zero)
1299                        ocfs2_figure_cluster_boundaries(osb,
1300                                                        desc->c_cpos,
1301                                                        &wc->w_target_from,
1302                                                        NULL);
1303
1304                desc = &wc->w_desc[wc->w_clen - 1];
1305                if (desc->c_needs_zero)
1306                        ocfs2_figure_cluster_boundaries(osb,
1307                                                        desc->c_cpos,
1308                                                        NULL,
1309                                                        &wc->w_target_to);
1310        } else {
1311                wc->w_target_from = 0;
1312                wc->w_target_to = PAGE_SIZE;
1313        }
1314}
1315
1316/*
1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319 * by the direct io procedure.
1320 * If this is a new extent that allocated by direct io, we should mark it in
1321 * the ip_unwritten_list.
1322 */
1323static int ocfs2_unwritten_check(struct inode *inode,
1324                                 struct ocfs2_write_ctxt *wc,
1325                                 struct ocfs2_write_cluster_desc *desc)
1326{
1327        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1328        struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1329        int ret = 0;
1330
1331        if (!desc->c_needs_zero)
1332                return 0;
1333
1334retry:
1335        spin_lock(&oi->ip_lock);
1336        /* Needs not to zero no metter buffer or direct. The one who is zero
1337         * the cluster is doing zero. And he will clear unwritten after all
1338         * cluster io finished. */
1339        list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340                if (desc->c_cpos == ue->ue_cpos) {
1341                        BUG_ON(desc->c_new);
1342                        desc->c_needs_zero = 0;
1343                        desc->c_clear_unwritten = 0;
1344                        goto unlock;
1345                }
1346        }
1347
1348        if (wc->w_type != OCFS2_WRITE_DIRECT)
1349                goto unlock;
1350
1351        if (new == NULL) {
1352                spin_unlock(&oi->ip_lock);
1353                new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354                             GFP_NOFS);
1355                if (new == NULL) {
1356                        ret = -ENOMEM;
1357                        goto out;
1358                }
1359                goto retry;
1360        }
1361        /* This direct write will doing zero. */
1362        new->ue_cpos = desc->c_cpos;
1363        new->ue_phys = desc->c_phys;
1364        desc->c_clear_unwritten = 0;
1365        list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366        list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367        new = NULL;
1368unlock:
1369        spin_unlock(&oi->ip_lock);
1370out:
1371        if (new)
1372                kfree(new);
1373        return ret;
1374}
1375
1376/*
1377 * Populate each single-cluster write descriptor in the write context
1378 * with information about the i/o to be done.
1379 *
1380 * Returns the number of clusters that will have to be allocated, as
1381 * well as a worst case estimate of the number of extent records that
1382 * would have to be created during a write to an unwritten region.
1383 */
1384static int ocfs2_populate_write_desc(struct inode *inode,
1385                                     struct ocfs2_write_ctxt *wc,
1386                                     unsigned int *clusters_to_alloc,
1387                                     unsigned int *extents_to_split)
1388{
1389        int ret;
1390        struct ocfs2_write_cluster_desc *desc;
1391        unsigned int num_clusters = 0;
1392        unsigned int ext_flags = 0;
1393        u32 phys = 0;
1394        int i;
1395
1396        *clusters_to_alloc = 0;
1397        *extents_to_split = 0;
1398
1399        for (i = 0; i < wc->w_clen; i++) {
1400                desc = &wc->w_desc[i];
1401                desc->c_cpos = wc->w_cpos + i;
1402
1403                if (num_clusters == 0) {
1404                        /*
1405                         * Need to look up the next extent record.
1406                         */
1407                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1408                                                 &num_clusters, &ext_flags);
1409                        if (ret) {
1410                                mlog_errno(ret);
1411                                goto out;
1412                        }
1413
1414                        /* We should already CoW the refcountd extent. */
1415                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416
1417                        /*
1418                         * Assume worst case - that we're writing in
1419                         * the middle of the extent.
1420                         *
1421                         * We can assume that the write proceeds from
1422                         * left to right, in which case the extent
1423                         * insert code is smart enough to coalesce the
1424                         * next splits into the previous records created.
1425                         */
1426                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427                                *extents_to_split = *extents_to_split + 2;
1428                } else if (phys) {
1429                        /*
1430                         * Only increment phys if it doesn't describe
1431                         * a hole.
1432                         */
1433                        phys++;
1434                }
1435
1436                /*
1437                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438                 * file that got extended.  w_first_new_cpos tells us
1439                 * where the newly allocated clusters are so we can
1440                 * zero them.
1441                 */
1442                if (desc->c_cpos >= wc->w_first_new_cpos) {
1443                        BUG_ON(phys == 0);
1444                        desc->c_needs_zero = 1;
1445                }
1446
1447                desc->c_phys = phys;
1448                if (phys == 0) {
1449                        desc->c_new = 1;
1450                        desc->c_needs_zero = 1;
1451                        desc->c_clear_unwritten = 1;
1452                        *clusters_to_alloc = *clusters_to_alloc + 1;
1453                }
1454
1455                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1456                        desc->c_clear_unwritten = 1;
1457                        desc->c_needs_zero = 1;
1458                }
1459
1460                ret = ocfs2_unwritten_check(inode, wc, desc);
1461                if (ret) {
1462                        mlog_errno(ret);
1463                        goto out;
1464                }
1465
1466                num_clusters--;
1467        }
1468
1469        ret = 0;
1470out:
1471        return ret;
1472}
1473
1474static int ocfs2_write_begin_inline(struct address_space *mapping,
1475                                    struct inode *inode,
1476                                    struct ocfs2_write_ctxt *wc)
1477{
1478        int ret;
1479        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480        struct page *page;
1481        handle_t *handle;
1482        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485        if (IS_ERR(handle)) {
1486                ret = PTR_ERR(handle);
1487                mlog_errno(ret);
1488                goto out;
1489        }
1490
1491        page = find_or_create_page(mapping, 0, GFP_NOFS);
1492        if (!page) {
1493                ocfs2_commit_trans(osb, handle);
1494                ret = -ENOMEM;
1495                mlog_errno(ret);
1496                goto out;
1497        }
1498        /*
1499         * If we don't set w_num_pages then this page won't get unlocked
1500         * and freed on cleanup of the write context.
1501         */
1502        wc->w_pages[0] = wc->w_target_page = page;
1503        wc->w_num_pages = 1;
1504
1505        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506                                      OCFS2_JOURNAL_ACCESS_WRITE);
1507        if (ret) {
1508                ocfs2_commit_trans(osb, handle);
1509
1510                mlog_errno(ret);
1511                goto out;
1512        }
1513
1514        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515                ocfs2_set_inode_data_inline(inode, di);
1516
1517        if (!PageUptodate(page)) {
1518                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519                if (ret) {
1520                        ocfs2_commit_trans(osb, handle);
1521
1522                        goto out;
1523                }
1524        }
1525
1526        wc->w_handle = handle;
1527out:
1528        return ret;
1529}
1530
1531int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532{
1533        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
1535        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536                return 1;
1537        return 0;
1538}
1539
1540static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541                                          struct inode *inode, loff_t pos,
1542                                          unsigned len, struct page *mmap_page,
1543                                          struct ocfs2_write_ctxt *wc)
1544{
1545        int ret, written = 0;
1546        loff_t end = pos + len;
1547        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548        struct ocfs2_dinode *di = NULL;
1549
1550        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551                                             len, (unsigned long long)pos,
1552                                             oi->ip_dyn_features);
1553
1554        /*
1555         * Handle inodes which already have inline data 1st.
1556         */
1557        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558                if (mmap_page == NULL &&
1559                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560                        goto do_inline_write;
1561
1562                /*
1563                 * The write won't fit - we have to give this inode an
1564                 * inline extent list now.
1565                 */
1566                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567                if (ret)
1568                        mlog_errno(ret);
1569                goto out;
1570        }
1571
1572        /*
1573         * Check whether the inode can accept inline data.
1574         */
1575        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576                return 0;
1577
1578        /*
1579         * Check whether the write can fit.
1580         */
1581        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582        if (mmap_page ||
1583            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584                return 0;
1585
1586do_inline_write:
1587        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588        if (ret) {
1589                mlog_errno(ret);
1590                goto out;
1591        }
1592
1593        /*
1594         * This signals to the caller that the data can be written
1595         * inline.
1596         */
1597        written = 1;
1598out:
1599        return written ? written : ret;
1600}
1601
1602/*
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1605 *
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1610 */
1611static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612                                        struct buffer_head *di_bh,
1613                                        loff_t pos, unsigned len,
1614                                        struct ocfs2_write_ctxt *wc)
1615{
1616        int ret;
1617        loff_t newsize = pos + len;
1618
1619        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620
1621        if (newsize <= i_size_read(inode))
1622                return 0;
1623
1624        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625        if (ret)
1626                mlog_errno(ret);
1627
1628        /* There is no wc if this is call from direct. */
1629        if (wc)
1630                wc->w_first_new_cpos =
1631                        ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1632
1633        return ret;
1634}
1635
1636static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637                           loff_t pos)
1638{
1639        int ret = 0;
1640
1641        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642        if (pos > i_size_read(inode))
1643                ret = ocfs2_zero_extend(inode, di_bh, pos);
1644
1645        return ret;
1646}
1647
1648/*
1649 * Try to flush truncate logs if we can free enough clusters from it.
1650 * As for return value, "< 0" means error, "0" no space and "1" means
1651 * we have freed enough spaces and let the caller try to allocate again.
1652 */
1653static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1654                                          unsigned int needed)
1655{
1656        tid_t target;
1657        int ret = 0;
1658        unsigned int truncated_clusters;
1659
1660        inode_lock(osb->osb_tl_inode);
1661        truncated_clusters = osb->truncated_clusters;
1662        inode_unlock(osb->osb_tl_inode);
1663
1664        /*
1665         * Check whether we can succeed in allocating if we free
1666         * the truncate log.
1667         */
1668        if (truncated_clusters < needed)
1669                goto out;
1670
1671        ret = ocfs2_flush_truncate_log(osb);
1672        if (ret) {
1673                mlog_errno(ret);
1674                goto out;
1675        }
1676
1677        if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1678                jbd2_log_wait_commit(osb->journal->j_journal, target);
1679                ret = 1;
1680        }
1681out:
1682        return ret;
1683}
1684
1685int ocfs2_write_begin_nolock(struct address_space *mapping,
1686                             loff_t pos, unsigned len, ocfs2_write_type_t type,
1687                             struct page **pagep, void **fsdata,
1688                             struct buffer_head *di_bh, struct page *mmap_page)
1689{
1690        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1691        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1692        struct ocfs2_write_ctxt *wc;
1693        struct inode *inode = mapping->host;
1694        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1695        struct ocfs2_dinode *di;
1696        struct ocfs2_alloc_context *data_ac = NULL;
1697        struct ocfs2_alloc_context *meta_ac = NULL;
1698        handle_t *handle;
1699        struct ocfs2_extent_tree et;
1700        int try_free = 1, ret1;
1701
1702try_again:
1703        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1704        if (ret) {
1705                mlog_errno(ret);
1706                return ret;
1707        }
1708
1709        if (ocfs2_supports_inline_data(osb)) {
1710                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1711                                                     mmap_page, wc);
1712                if (ret == 1) {
1713                        ret = 0;
1714                        goto success;
1715                }
1716                if (ret < 0) {
1717                        mlog_errno(ret);
1718                        goto out;
1719                }
1720        }
1721
1722        /* Direct io change i_size late, should not zero tail here. */
1723        if (type != OCFS2_WRITE_DIRECT) {
1724                if (ocfs2_sparse_alloc(osb))
1725                        ret = ocfs2_zero_tail(inode, di_bh, pos);
1726                else
1727                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1728                                                           len, wc);
1729                if (ret) {
1730                        mlog_errno(ret);
1731                        goto out;
1732                }
1733        }
1734
1735        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736        if (ret < 0) {
1737                mlog_errno(ret);
1738                goto out;
1739        } else if (ret == 1) {
1740                clusters_need = wc->w_clen;
1741                ret = ocfs2_refcount_cow(inode, di_bh,
1742                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1743                if (ret) {
1744                        mlog_errno(ret);
1745                        goto out;
1746                }
1747        }
1748
1749        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750                                        &extents_to_split);
1751        if (ret) {
1752                mlog_errno(ret);
1753                goto out;
1754        }
1755        clusters_need += clusters_to_alloc;
1756
1757        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1758
1759        trace_ocfs2_write_begin_nolock(
1760                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1761                        (long long)i_size_read(inode),
1762                        le32_to_cpu(di->i_clusters),
1763                        pos, len, type, mmap_page,
1764                        clusters_to_alloc, extents_to_split);
1765
1766        /*
1767         * We set w_target_from, w_target_to here so that
1768         * ocfs2_write_end() knows which range in the target page to
1769         * write out. An allocation requires that we write the entire
1770         * cluster range.
1771         */
1772        if (clusters_to_alloc || extents_to_split) {
1773                /*
1774                 * XXX: We are stretching the limits of
1775                 * ocfs2_lock_allocators(). It greatly over-estimates
1776                 * the work to be done.
1777                 */
1778                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779                                              wc->w_di_bh);
1780                ret = ocfs2_lock_allocators(inode, &et,
1781                                            clusters_to_alloc, extents_to_split,
1782                                            &data_ac, &meta_ac);
1783                if (ret) {
1784                        mlog_errno(ret);
1785                        goto out;
1786                }
1787
1788                if (data_ac)
1789                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1790
1791                credits = ocfs2_calc_extend_credits(inode->i_sb,
1792                                                    &di->id2.i_list);
1793        } else if (type == OCFS2_WRITE_DIRECT)
1794                /* direct write needs not to start trans if no extents alloc. */
1795                goto success;
1796
1797        /*
1798         * We have to zero sparse allocated clusters, unwritten extent clusters,
1799         * and non-sparse clusters we just extended.  For non-sparse writes,
1800         * we know zeros will only be needed in the first and/or last cluster.
1801         */
1802        if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803                           wc->w_desc[wc->w_clen - 1].c_needs_zero))
1804                cluster_of_pages = 1;
1805        else
1806                cluster_of_pages = 0;
1807
1808        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1809
1810        handle = ocfs2_start_trans(osb, credits);
1811        if (IS_ERR(handle)) {
1812                ret = PTR_ERR(handle);
1813                mlog_errno(ret);
1814                goto out;
1815        }
1816
1817        wc->w_handle = handle;
1818
1819        if (clusters_to_alloc) {
1820                ret = dquot_alloc_space_nodirty(inode,
1821                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822                if (ret)
1823                        goto out_commit;
1824        }
1825
1826        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1827                                      OCFS2_JOURNAL_ACCESS_WRITE);
1828        if (ret) {
1829                mlog_errno(ret);
1830                goto out_quota;
1831        }
1832
1833        /*
1834         * Fill our page array first. That way we've grabbed enough so
1835         * that we can zero and flush if we error after adding the
1836         * extent.
1837         */
1838        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1839                                         cluster_of_pages, mmap_page);
1840        if (ret && ret != -EAGAIN) {
1841                mlog_errno(ret);
1842                goto out_quota;
1843        }
1844
1845        /*
1846         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1847         * the target page. In this case, we exit with no error and no target
1848         * page. This will trigger the caller, page_mkwrite(), to re-try
1849         * the operation.
1850         */
1851        if (ret == -EAGAIN) {
1852                BUG_ON(wc->w_target_page);
1853                ret = 0;
1854                goto out_quota;
1855        }
1856
1857        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1858                                          len);
1859        if (ret) {
1860                mlog_errno(ret);
1861                goto out_quota;
1862        }
1863
1864        if (data_ac)
1865                ocfs2_free_alloc_context(data_ac);
1866        if (meta_ac)
1867                ocfs2_free_alloc_context(meta_ac);
1868
1869success:
1870        if (pagep)
1871                *pagep = wc->w_target_page;
1872        *fsdata = wc;
1873        return 0;
1874out_quota:
1875        if (clusters_to_alloc)
1876                dquot_free_space(inode,
1877                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1878out_commit:
1879        ocfs2_commit_trans(osb, handle);
1880
1881out:
1882        ocfs2_free_write_ctxt(inode, wc);
1883
1884        if (data_ac) {
1885                ocfs2_free_alloc_context(data_ac);
1886                data_ac = NULL;
1887        }
1888        if (meta_ac) {
1889                ocfs2_free_alloc_context(meta_ac);
1890                meta_ac = NULL;
1891        }
1892
1893        if (ret == -ENOSPC && try_free) {
1894                /*
1895                 * Try to free some truncate log so that we can have enough
1896                 * clusters to allocate.
1897                 */
1898                try_free = 0;
1899
1900                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1901                if (ret1 == 1)
1902                        goto try_again;
1903
1904                if (ret1 < 0)
1905                        mlog_errno(ret1);
1906        }
1907
1908        return ret;
1909}
1910
1911static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1912                             loff_t pos, unsigned len, unsigned flags,
1913                             struct page **pagep, void **fsdata)
1914{
1915        int ret;
1916        struct buffer_head *di_bh = NULL;
1917        struct inode *inode = mapping->host;
1918
1919        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1920        if (ret) {
1921                mlog_errno(ret);
1922                return ret;
1923        }
1924
1925        /*
1926         * Take alloc sem here to prevent concurrent lookups. That way
1927         * the mapping, zeroing and tree manipulation within
1928         * ocfs2_write() will be safe against ->readpage(). This
1929         * should also serve to lock out allocation from a shared
1930         * writeable region.
1931         */
1932        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1933
1934        ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1935                                       pagep, fsdata, di_bh, NULL);
1936        if (ret) {
1937                mlog_errno(ret);
1938                goto out_fail;
1939        }
1940
1941        brelse(di_bh);
1942
1943        return 0;
1944
1945out_fail:
1946        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1947
1948        brelse(di_bh);
1949        ocfs2_inode_unlock(inode, 1);
1950
1951        return ret;
1952}
1953
1954static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1955                                   unsigned len, unsigned *copied,
1956                                   struct ocfs2_dinode *di,
1957                                   struct ocfs2_write_ctxt *wc)
1958{
1959        void *kaddr;
1960
1961        if (unlikely(*copied < len)) {
1962                if (!PageUptodate(wc->w_target_page)) {
1963                        *copied = 0;
1964                        return;
1965                }
1966        }
1967
1968        kaddr = kmap_atomic(wc->w_target_page);
1969        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1970        kunmap_atomic(kaddr);
1971
1972        trace_ocfs2_write_end_inline(
1973             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1974             (unsigned long long)pos, *copied,
1975             le16_to_cpu(di->id2.i_data.id_count),
1976             le16_to_cpu(di->i_dyn_features));
1977}
1978
1979int ocfs2_write_end_nolock(struct address_space *mapping,
1980                           loff_t pos, unsigned len, unsigned copied,
1981                           struct page *page, void *fsdata)
1982{
1983        int i, ret;
1984        unsigned from, to, start = pos & (PAGE_SIZE - 1);
1985        struct inode *inode = mapping->host;
1986        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1987        struct ocfs2_write_ctxt *wc = fsdata;
1988        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1989        handle_t *handle = wc->w_handle;
1990        struct page *tmppage;
1991
1992        BUG_ON(!list_empty(&wc->w_unwritten_list));
1993
1994        if (handle) {
1995                ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1996                                wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1997                if (ret) {
1998                        copied = ret;
1999                        mlog_errno(ret);
2000                        goto out;
2001                }
2002        }
2003
2004        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006                goto out_write_size;
2007        }
2008
2009        if (unlikely(copied < len) && wc->w_target_page) {
2010                if (!PageUptodate(wc->w_target_page))
2011                        copied = 0;
2012
2013                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014                                       start+len);
2015        }
2016        if (wc->w_target_page)
2017                flush_dcache_page(wc->w_target_page);
2018
2019        for(i = 0; i < wc->w_num_pages; i++) {
2020                tmppage = wc->w_pages[i];
2021
2022                /* This is the direct io target page. */
2023                if (tmppage == NULL)
2024                        continue;
2025
2026                if (tmppage == wc->w_target_page) {
2027                        from = wc->w_target_from;
2028                        to = wc->w_target_to;
2029
2030                        BUG_ON(from > PAGE_SIZE ||
2031                               to > PAGE_SIZE ||
2032                               to < from);
2033                } else {
2034                        /*
2035                         * Pages adjacent to the target (if any) imply
2036                         * a hole-filling write in which case we want
2037                         * to flush their entire range.
2038                         */
2039                        from = 0;
2040                        to = PAGE_SIZE;
2041                }
2042
2043                if (page_has_buffers(tmppage)) {
2044                        if (handle && ocfs2_should_order_data(inode))
2045                                ocfs2_jbd2_file_inode(handle, inode);
2046                        block_commit_write(tmppage, from, to);
2047                }
2048        }
2049
2050out_write_size:
2051        /* Direct io do not update i_size here. */
2052        if (wc->w_type != OCFS2_WRITE_DIRECT) {
2053                pos += copied;
2054                if (pos > i_size_read(inode)) {
2055                        i_size_write(inode, pos);
2056                        mark_inode_dirty(inode);
2057                }
2058                inode->i_blocks = ocfs2_inode_sector_count(inode);
2059                di->i_size = cpu_to_le64((u64)i_size_read(inode));
2060                inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2061                di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2062                di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2063                ocfs2_update_inode_fsync_trans(handle, inode, 1);
2064        }
2065        if (handle)
2066                ocfs2_journal_dirty(handle, wc->w_di_bh);
2067
2068out:
2069        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2070         * lock, or it will cause a deadlock since journal commit threads holds
2071         * this lock and will ask for the page lock when flushing the data.
2072         * put it here to preserve the unlock order.
2073         */
2074        ocfs2_unlock_pages(wc);
2075
2076        if (handle)
2077                ocfs2_commit_trans(osb, handle);
2078
2079        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2080
2081        brelse(wc->w_di_bh);
2082        kfree(wc);
2083
2084        return copied;
2085}
2086
2087static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2088                           loff_t pos, unsigned len, unsigned copied,
2089                           struct page *page, void *fsdata)
2090{
2091        int ret;
2092        struct inode *inode = mapping->host;
2093
2094        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2095
2096        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2097        ocfs2_inode_unlock(inode, 1);
2098
2099        return ret;
2100}
2101
2102struct ocfs2_dio_write_ctxt {
2103        struct list_head        dw_zero_list;
2104        unsigned                dw_zero_count;
2105        int                     dw_orphaned;
2106        pid_t                   dw_writer_pid;
2107};
2108
2109static struct ocfs2_dio_write_ctxt *
2110ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2111{
2112        struct ocfs2_dio_write_ctxt *dwc = NULL;
2113
2114        if (bh->b_private)
2115                return bh->b_private;
2116
2117        dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2118        if (dwc == NULL)
2119                return NULL;
2120        INIT_LIST_HEAD(&dwc->dw_zero_list);
2121        dwc->dw_zero_count = 0;
2122        dwc->dw_orphaned = 0;
2123        dwc->dw_writer_pid = task_pid_nr(current);
2124        bh->b_private = dwc;
2125        *alloc = 1;
2126
2127        return dwc;
2128}
2129
2130static void ocfs2_dio_free_write_ctx(struct inode *inode,
2131                                     struct ocfs2_dio_write_ctxt *dwc)
2132{
2133        ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2134        kfree(dwc);
2135}
2136
2137/*
2138 * TODO: Make this into a generic get_blocks function.
2139 *
2140 * From do_direct_io in direct-io.c:
2141 *  "So what we do is to permit the ->get_blocks function to populate
2142 *   bh.b_size with the size of IO which is permitted at this offset and
2143 *   this i_blkbits."
2144 *
2145 * This function is called directly from get_more_blocks in direct-io.c.
2146 *
2147 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2148 *                                      fs_count, map_bh, dio->rw == WRITE);
2149 */
2150static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2151                               struct buffer_head *bh_result, int create)
2152{
2153        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2154        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2155        struct ocfs2_write_ctxt *wc;
2156        struct ocfs2_write_cluster_desc *desc = NULL;
2157        struct ocfs2_dio_write_ctxt *dwc = NULL;
2158        struct buffer_head *di_bh = NULL;
2159        u64 p_blkno;
2160        loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2161        unsigned len, total_len = bh_result->b_size;
2162        int ret = 0, first_get_block = 0;
2163
2164        len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2165        len = min(total_len, len);
2166
2167        mlog(0, "get block of %lu at %llu:%u req %u\n",
2168                        inode->i_ino, pos, len, total_len);
2169
2170        /*
2171         * Because we need to change file size in ocfs2_dio_end_io_write(), or
2172         * we may need to add it to orphan dir. So can not fall to fast path
2173         * while file size will be changed.
2174         */
2175        if (pos + total_len <= i_size_read(inode)) {
2176                down_read(&oi->ip_alloc_sem);
2177                /* This is the fast path for re-write. */
2178                ret = ocfs2_get_block(inode, iblock, bh_result, create);
2179
2180                up_read(&oi->ip_alloc_sem);
2181
2182                if (buffer_mapped(bh_result) &&
2183                    !buffer_new(bh_result) &&
2184                    ret == 0)
2185                        goto out;
2186
2187                /* Clear state set by ocfs2_get_block. */
2188                bh_result->b_state = 0;
2189        }
2190
2191        dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2192        if (unlikely(dwc == NULL)) {
2193                ret = -ENOMEM;
2194                mlog_errno(ret);
2195                goto out;
2196        }
2197
2198        if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2199            ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2200            !dwc->dw_orphaned) {
2201                /*
2202                 * when we are going to alloc extents beyond file size, add the
2203                 * inode to orphan dir, so we can recall those spaces when
2204                 * system crashed during write.
2205                 */
2206                ret = ocfs2_add_inode_to_orphan(osb, inode);
2207                if (ret < 0) {
2208                        mlog_errno(ret);
2209                        goto out;
2210                }
2211                dwc->dw_orphaned = 1;
2212        }
2213
2214        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2215        if (ret) {
2216                mlog_errno(ret);
2217                goto out;
2218        }
2219
2220        down_write(&oi->ip_alloc_sem);
2221
2222        if (first_get_block) {
2223                if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2224                        ret = ocfs2_zero_tail(inode, di_bh, pos);
2225                else
2226                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2227                                                           total_len, NULL);
2228                if (ret < 0) {
2229                        mlog_errno(ret);
2230                        goto unlock;
2231                }
2232        }
2233
2234        ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2235                                       OCFS2_WRITE_DIRECT, NULL,
2236                                       (void **)&wc, di_bh, NULL);
2237        if (ret) {
2238                mlog_errno(ret);
2239                goto unlock;
2240        }
2241
2242        desc = &wc->w_desc[0];
2243
2244        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2245        BUG_ON(p_blkno == 0);
2246        p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2247
2248        map_bh(bh_result, inode->i_sb, p_blkno);
2249        bh_result->b_size = len;
2250        if (desc->c_needs_zero)
2251                set_buffer_new(bh_result);
2252
2253        /* May sleep in end_io. It should not happen in a irq context. So defer
2254         * it to dio work queue. */
2255        set_buffer_defer_completion(bh_result);
2256
2257        if (!list_empty(&wc->w_unwritten_list)) {
2258                struct ocfs2_unwritten_extent *ue = NULL;
2259
2260                ue = list_first_entry(&wc->w_unwritten_list,
2261                                      struct ocfs2_unwritten_extent,
2262                                      ue_node);
2263                BUG_ON(ue->ue_cpos != desc->c_cpos);
2264                /* The physical address may be 0, fill it. */
2265                ue->ue_phys = desc->c_phys;
2266
2267                list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2268                dwc->dw_zero_count++;
2269        }
2270
2271        ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, NULL, wc);
2272        BUG_ON(ret != len);
2273        ret = 0;
2274unlock:
2275        up_write(&oi->ip_alloc_sem);
2276        ocfs2_inode_unlock(inode, 1);
2277        brelse(di_bh);
2278out:
2279        if (ret < 0)
2280                ret = -EIO;
2281        return ret;
2282}
2283
2284static void ocfs2_dio_end_io_write(struct inode *inode,
2285                                   struct ocfs2_dio_write_ctxt *dwc,
2286                                   loff_t offset,
2287                                   ssize_t bytes)
2288{
2289        struct ocfs2_cached_dealloc_ctxt dealloc;
2290        struct ocfs2_extent_tree et;
2291        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2292        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2293        struct ocfs2_unwritten_extent *ue = NULL;
2294        struct buffer_head *di_bh = NULL;
2295        struct ocfs2_dinode *di;
2296        struct ocfs2_alloc_context *data_ac = NULL;
2297        struct ocfs2_alloc_context *meta_ac = NULL;
2298        handle_t *handle = NULL;
2299        loff_t end = offset + bytes;
2300        int ret = 0, credits = 0, locked = 0;
2301
2302        ocfs2_init_dealloc_ctxt(&dealloc);
2303
2304        /* We do clear unwritten, delete orphan, change i_size here. If neither
2305         * of these happen, we can skip all this. */
2306        if (list_empty(&dwc->dw_zero_list) &&
2307            end <= i_size_read(inode) &&
2308            !dwc->dw_orphaned)
2309                goto out;
2310
2311        /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2312         * are in that context. */
2313        if (dwc->dw_writer_pid != task_pid_nr(current)) {
2314                mutex_lock(&inode->i_mutex);
2315                locked = 1;
2316        }
2317
2318        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2319        if (ret < 0) {
2320                mlog_errno(ret);
2321                goto out;
2322        }
2323
2324        down_write(&oi->ip_alloc_sem);
2325
2326        /* Delete orphan before acquire i_mutex. */
2327        if (dwc->dw_orphaned) {
2328                BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2329
2330                end = end > i_size_read(inode) ? end : 0;
2331
2332                ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2333                                !!end, end);
2334                if (ret < 0)
2335                        mlog_errno(ret);
2336        }
2337
2338        di = (struct ocfs2_dinode *)di_bh;
2339
2340        ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2341
2342        ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2343                                    &data_ac, &meta_ac);
2344        if (ret) {
2345                mlog_errno(ret);
2346                goto unlock;
2347        }
2348
2349        credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2350
2351        handle = ocfs2_start_trans(osb, credits);
2352        if (IS_ERR(handle)) {
2353                ret = PTR_ERR(handle);
2354                mlog_errno(ret);
2355                goto unlock;
2356        }
2357        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2358                                      OCFS2_JOURNAL_ACCESS_WRITE);
2359        if (ret) {
2360                mlog_errno(ret);
2361                goto commit;
2362        }
2363
2364        list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2365                ret = ocfs2_mark_extent_written(inode, &et, handle,
2366                                                ue->ue_cpos, 1,
2367                                                ue->ue_phys,
2368                                                meta_ac, &dealloc);
2369                if (ret < 0) {
2370                        mlog_errno(ret);
2371                        break;
2372                }
2373        }
2374
2375        if (end > i_size_read(inode)) {
2376                ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2377                if (ret < 0)
2378                        mlog_errno(ret);
2379        }
2380commit:
2381        ocfs2_commit_trans(osb, handle);
2382unlock:
2383        up_write(&oi->ip_alloc_sem);
2384        ocfs2_inode_unlock(inode, 1);
2385        brelse(di_bh);
2386out:
2387        if (data_ac)
2388                ocfs2_free_alloc_context(data_ac);
2389        if (meta_ac)
2390                ocfs2_free_alloc_context(meta_ac);
2391        ocfs2_run_deallocs(osb, &dealloc);
2392        if (locked)
2393                mutex_unlock(&inode->i_mutex);
2394        ocfs2_dio_free_write_ctx(inode, dwc);
2395}
2396
2397/*
2398 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2399 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2400 * to protect io on one node from truncation on another.
2401 */
2402static int ocfs2_dio_end_io(struct kiocb *iocb,
2403                            loff_t offset,
2404                            ssize_t bytes,
2405                            void *private)
2406{
2407        struct inode *inode = file_inode(iocb->ki_filp);
2408        int level;
2409
2410        if (bytes <= 0)
2411                return 0;
2412
2413        /* this io's submitter should not have unlocked this before we could */
2414        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2415
2416        if (private)
2417                ocfs2_dio_end_io_write(inode, private, offset, bytes);
2418
2419        ocfs2_iocb_clear_rw_locked(iocb);
2420
2421        level = ocfs2_iocb_rw_locked_level(iocb);
2422        ocfs2_rw_unlock(inode, level);
2423        return 0;
2424}
2425
2426static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
2427                               loff_t offset)
2428{
2429        struct file *file = iocb->ki_filp;
2430        struct inode *inode = file_inode(file)->i_mapping->host;
2431        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2432        loff_t end = offset + iter->count;
2433        get_block_t *get_block;
2434
2435        /*
2436         * Fallback to buffered I/O if we see an inode without
2437         * extents.
2438         */
2439        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2440                return 0;
2441
2442        /* Fallback to buffered I/O if we do not support append dio. */
2443        if (end > i_size_read(inode) && !ocfs2_supports_append_dio(osb))
2444                return 0;
2445
2446        if (iov_iter_rw(iter) == READ)
2447                get_block = ocfs2_get_block;
2448        else
2449                get_block = ocfs2_dio_get_block;
2450
2451        return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2452                                    iter, offset, get_block,
2453                                    ocfs2_dio_end_io, NULL, 0);
2454}
2455
2456const struct address_space_operations ocfs2_aops = {
2457        .readpage               = ocfs2_readpage,
2458        .readpages              = ocfs2_readpages,
2459        .writepage              = ocfs2_writepage,
2460        .write_begin            = ocfs2_write_begin,
2461        .write_end              = ocfs2_write_end,
2462        .bmap                   = ocfs2_bmap,
2463        .direct_IO              = ocfs2_direct_IO,
2464        .invalidatepage         = block_invalidatepage,
2465        .releasepage            = ocfs2_releasepage,
2466        .migratepage            = buffer_migrate_page,
2467        .is_partially_uptodate  = block_is_partially_uptodate,
2468        .error_remove_page      = generic_error_remove_page,
2469};
2470