linux/fs/ubifs/lpt_commit.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements commit-related functionality of the LEB properties
  25 * subsystem.
  26 */
  27
  28#include <linux/crc16.h>
  29#include <linux/slab.h>
  30#include <linux/random.h>
  31#include "ubifs.h"
  32
  33static int dbg_populate_lsave(struct ubifs_info *c);
  34
  35/**
  36 * first_dirty_cnode - find first dirty cnode.
  37 * @c: UBIFS file-system description object
  38 * @nnode: nnode at which to start
  39 *
  40 * This function returns the first dirty cnode or %NULL if there is not one.
  41 */
  42static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
  43{
  44        ubifs_assert(nnode);
  45        while (1) {
  46                int i, cont = 0;
  47
  48                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
  49                        struct ubifs_cnode *cnode;
  50
  51                        cnode = nnode->nbranch[i].cnode;
  52                        if (cnode &&
  53                            test_bit(DIRTY_CNODE, &cnode->flags)) {
  54                                if (cnode->level == 0)
  55                                        return cnode;
  56                                nnode = (struct ubifs_nnode *)cnode;
  57                                cont = 1;
  58                                break;
  59                        }
  60                }
  61                if (!cont)
  62                        return (struct ubifs_cnode *)nnode;
  63        }
  64}
  65
  66/**
  67 * next_dirty_cnode - find next dirty cnode.
  68 * @cnode: cnode from which to begin searching
  69 *
  70 * This function returns the next dirty cnode or %NULL if there is not one.
  71 */
  72static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
  73{
  74        struct ubifs_nnode *nnode;
  75        int i;
  76
  77        ubifs_assert(cnode);
  78        nnode = cnode->parent;
  79        if (!nnode)
  80                return NULL;
  81        for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
  82                cnode = nnode->nbranch[i].cnode;
  83                if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
  84                        if (cnode->level == 0)
  85                                return cnode; /* cnode is a pnode */
  86                        /* cnode is a nnode */
  87                        return first_dirty_cnode((struct ubifs_nnode *)cnode);
  88                }
  89        }
  90        return (struct ubifs_cnode *)nnode;
  91}
  92
  93/**
  94 * get_cnodes_to_commit - create list of dirty cnodes to commit.
  95 * @c: UBIFS file-system description object
  96 *
  97 * This function returns the number of cnodes to commit.
  98 */
  99static int get_cnodes_to_commit(struct ubifs_info *c)
 100{
 101        struct ubifs_cnode *cnode, *cnext;
 102        int cnt = 0;
 103
 104        if (!c->nroot)
 105                return 0;
 106
 107        if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
 108                return 0;
 109
 110        c->lpt_cnext = first_dirty_cnode(c->nroot);
 111        cnode = c->lpt_cnext;
 112        if (!cnode)
 113                return 0;
 114        cnt += 1;
 115        while (1) {
 116                ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
 117                __set_bit(COW_CNODE, &cnode->flags);
 118                cnext = next_dirty_cnode(cnode);
 119                if (!cnext) {
 120                        cnode->cnext = c->lpt_cnext;
 121                        break;
 122                }
 123                cnode->cnext = cnext;
 124                cnode = cnext;
 125                cnt += 1;
 126        }
 127        dbg_cmt("committing %d cnodes", cnt);
 128        dbg_lp("committing %d cnodes", cnt);
 129        ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
 130        return cnt;
 131}
 132
 133/**
 134 * upd_ltab - update LPT LEB properties.
 135 * @c: UBIFS file-system description object
 136 * @lnum: LEB number
 137 * @free: amount of free space
 138 * @dirty: amount of dirty space to add
 139 */
 140static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 141{
 142        dbg_lp("LEB %d free %d dirty %d to %d +%d",
 143               lnum, c->ltab[lnum - c->lpt_first].free,
 144               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 145        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 146        c->ltab[lnum - c->lpt_first].free = free;
 147        c->ltab[lnum - c->lpt_first].dirty += dirty;
 148}
 149
 150/**
 151 * alloc_lpt_leb - allocate an LPT LEB that is empty.
 152 * @c: UBIFS file-system description object
 153 * @lnum: LEB number is passed and returned here
 154 *
 155 * This function finds the next empty LEB in the ltab starting from @lnum. If a
 156 * an empty LEB is found it is returned in @lnum and the function returns %0.
 157 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
 158 * never to run out of space.
 159 */
 160static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
 161{
 162        int i, n;
 163
 164        n = *lnum - c->lpt_first + 1;
 165        for (i = n; i < c->lpt_lebs; i++) {
 166                if (c->ltab[i].tgc || c->ltab[i].cmt)
 167                        continue;
 168                if (c->ltab[i].free == c->leb_size) {
 169                        c->ltab[i].cmt = 1;
 170                        *lnum = i + c->lpt_first;
 171                        return 0;
 172                }
 173        }
 174
 175        for (i = 0; i < n; i++) {
 176                if (c->ltab[i].tgc || c->ltab[i].cmt)
 177                        continue;
 178                if (c->ltab[i].free == c->leb_size) {
 179                        c->ltab[i].cmt = 1;
 180                        *lnum = i + c->lpt_first;
 181                        return 0;
 182                }
 183        }
 184        return -ENOSPC;
 185}
 186
 187/**
 188 * layout_cnodes - layout cnodes for commit.
 189 * @c: UBIFS file-system description object
 190 *
 191 * This function returns %0 on success and a negative error code on failure.
 192 */
 193static int layout_cnodes(struct ubifs_info *c)
 194{
 195        int lnum, offs, len, alen, done_lsave, done_ltab, err;
 196        struct ubifs_cnode *cnode;
 197
 198        err = dbg_chk_lpt_sz(c, 0, 0);
 199        if (err)
 200                return err;
 201        cnode = c->lpt_cnext;
 202        if (!cnode)
 203                return 0;
 204        lnum = c->nhead_lnum;
 205        offs = c->nhead_offs;
 206        /* Try to place lsave and ltab nicely */
 207        done_lsave = !c->big_lpt;
 208        done_ltab = 0;
 209        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 210                done_lsave = 1;
 211                c->lsave_lnum = lnum;
 212                c->lsave_offs = offs;
 213                offs += c->lsave_sz;
 214                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 215        }
 216
 217        if (offs + c->ltab_sz <= c->leb_size) {
 218                done_ltab = 1;
 219                c->ltab_lnum = lnum;
 220                c->ltab_offs = offs;
 221                offs += c->ltab_sz;
 222                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 223        }
 224
 225        do {
 226                if (cnode->level) {
 227                        len = c->nnode_sz;
 228                        c->dirty_nn_cnt -= 1;
 229                } else {
 230                        len = c->pnode_sz;
 231                        c->dirty_pn_cnt -= 1;
 232                }
 233                while (offs + len > c->leb_size) {
 234                        alen = ALIGN(offs, c->min_io_size);
 235                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 236                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 237                        err = alloc_lpt_leb(c, &lnum);
 238                        if (err)
 239                                goto no_space;
 240                        offs = 0;
 241                        ubifs_assert(lnum >= c->lpt_first &&
 242                                     lnum <= c->lpt_last);
 243                        /* Try to place lsave and ltab nicely */
 244                        if (!done_lsave) {
 245                                done_lsave = 1;
 246                                c->lsave_lnum = lnum;
 247                                c->lsave_offs = offs;
 248                                offs += c->lsave_sz;
 249                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 250                                continue;
 251                        }
 252                        if (!done_ltab) {
 253                                done_ltab = 1;
 254                                c->ltab_lnum = lnum;
 255                                c->ltab_offs = offs;
 256                                offs += c->ltab_sz;
 257                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 258                                continue;
 259                        }
 260                        break;
 261                }
 262                if (cnode->parent) {
 263                        cnode->parent->nbranch[cnode->iip].lnum = lnum;
 264                        cnode->parent->nbranch[cnode->iip].offs = offs;
 265                } else {
 266                        c->lpt_lnum = lnum;
 267                        c->lpt_offs = offs;
 268                }
 269                offs += len;
 270                dbg_chk_lpt_sz(c, 1, len);
 271                cnode = cnode->cnext;
 272        } while (cnode && cnode != c->lpt_cnext);
 273
 274        /* Make sure to place LPT's save table */
 275        if (!done_lsave) {
 276                if (offs + c->lsave_sz > c->leb_size) {
 277                        alen = ALIGN(offs, c->min_io_size);
 278                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 279                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 280                        err = alloc_lpt_leb(c, &lnum);
 281                        if (err)
 282                                goto no_space;
 283                        offs = 0;
 284                        ubifs_assert(lnum >= c->lpt_first &&
 285                                     lnum <= c->lpt_last);
 286                }
 287                done_lsave = 1;
 288                c->lsave_lnum = lnum;
 289                c->lsave_offs = offs;
 290                offs += c->lsave_sz;
 291                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 292        }
 293
 294        /* Make sure to place LPT's own lprops table */
 295        if (!done_ltab) {
 296                if (offs + c->ltab_sz > c->leb_size) {
 297                        alen = ALIGN(offs, c->min_io_size);
 298                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 299                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 300                        err = alloc_lpt_leb(c, &lnum);
 301                        if (err)
 302                                goto no_space;
 303                        offs = 0;
 304                        ubifs_assert(lnum >= c->lpt_first &&
 305                                     lnum <= c->lpt_last);
 306                }
 307                c->ltab_lnum = lnum;
 308                c->ltab_offs = offs;
 309                offs += c->ltab_sz;
 310                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 311        }
 312
 313        alen = ALIGN(offs, c->min_io_size);
 314        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 315        dbg_chk_lpt_sz(c, 4, alen - offs);
 316        err = dbg_chk_lpt_sz(c, 3, alen);
 317        if (err)
 318                return err;
 319        return 0;
 320
 321no_space:
 322        ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 323                  lnum, offs, len, done_ltab, done_lsave);
 324        ubifs_dump_lpt_info(c);
 325        ubifs_dump_lpt_lebs(c);
 326        dump_stack();
 327        return err;
 328}
 329
 330/**
 331 * realloc_lpt_leb - allocate an LPT LEB that is empty.
 332 * @c: UBIFS file-system description object
 333 * @lnum: LEB number is passed and returned here
 334 *
 335 * This function duplicates exactly the results of the function alloc_lpt_leb.
 336 * It is used during end commit to reallocate the same LEB numbers that were
 337 * allocated by alloc_lpt_leb during start commit.
 338 *
 339 * This function finds the next LEB that was allocated by the alloc_lpt_leb
 340 * function starting from @lnum. If a LEB is found it is returned in @lnum and
 341 * the function returns %0. Otherwise the function returns -ENOSPC.
 342 * Note however, that LPT is designed never to run out of space.
 343 */
 344static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
 345{
 346        int i, n;
 347
 348        n = *lnum - c->lpt_first + 1;
 349        for (i = n; i < c->lpt_lebs; i++)
 350                if (c->ltab[i].cmt) {
 351                        c->ltab[i].cmt = 0;
 352                        *lnum = i + c->lpt_first;
 353                        return 0;
 354                }
 355
 356        for (i = 0; i < n; i++)
 357                if (c->ltab[i].cmt) {
 358                        c->ltab[i].cmt = 0;
 359                        *lnum = i + c->lpt_first;
 360                        return 0;
 361                }
 362        return -ENOSPC;
 363}
 364
 365/**
 366 * write_cnodes - write cnodes for commit.
 367 * @c: UBIFS file-system description object
 368 *
 369 * This function returns %0 on success and a negative error code on failure.
 370 */
 371static int write_cnodes(struct ubifs_info *c)
 372{
 373        int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
 374        struct ubifs_cnode *cnode;
 375        void *buf = c->lpt_buf;
 376
 377        cnode = c->lpt_cnext;
 378        if (!cnode)
 379                return 0;
 380        lnum = c->nhead_lnum;
 381        offs = c->nhead_offs;
 382        from = offs;
 383        /* Ensure empty LEB is unmapped */
 384        if (offs == 0) {
 385                err = ubifs_leb_unmap(c, lnum);
 386                if (err)
 387                        return err;
 388        }
 389        /* Try to place lsave and ltab nicely */
 390        done_lsave = !c->big_lpt;
 391        done_ltab = 0;
 392        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 393                done_lsave = 1;
 394                ubifs_pack_lsave(c, buf + offs, c->lsave);
 395                offs += c->lsave_sz;
 396                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 397        }
 398
 399        if (offs + c->ltab_sz <= c->leb_size) {
 400                done_ltab = 1;
 401                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 402                offs += c->ltab_sz;
 403                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 404        }
 405
 406        /* Loop for each cnode */
 407        do {
 408                if (cnode->level)
 409                        len = c->nnode_sz;
 410                else
 411                        len = c->pnode_sz;
 412                while (offs + len > c->leb_size) {
 413                        wlen = offs - from;
 414                        if (wlen) {
 415                                alen = ALIGN(wlen, c->min_io_size);
 416                                memset(buf + offs, 0xff, alen - wlen);
 417                                err = ubifs_leb_write(c, lnum, buf + from, from,
 418                                                       alen);
 419                                if (err)
 420                                        return err;
 421                        }
 422                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 423                        err = realloc_lpt_leb(c, &lnum);
 424                        if (err)
 425                                goto no_space;
 426                        offs = from = 0;
 427                        ubifs_assert(lnum >= c->lpt_first &&
 428                                     lnum <= c->lpt_last);
 429                        err = ubifs_leb_unmap(c, lnum);
 430                        if (err)
 431                                return err;
 432                        /* Try to place lsave and ltab nicely */
 433                        if (!done_lsave) {
 434                                done_lsave = 1;
 435                                ubifs_pack_lsave(c, buf + offs, c->lsave);
 436                                offs += c->lsave_sz;
 437                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 438                                continue;
 439                        }
 440                        if (!done_ltab) {
 441                                done_ltab = 1;
 442                                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 443                                offs += c->ltab_sz;
 444                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 445                                continue;
 446                        }
 447                        break;
 448                }
 449                if (cnode->level)
 450                        ubifs_pack_nnode(c, buf + offs,
 451                                         (struct ubifs_nnode *)cnode);
 452                else
 453                        ubifs_pack_pnode(c, buf + offs,
 454                                         (struct ubifs_pnode *)cnode);
 455                /*
 456                 * The reason for the barriers is the same as in case of TNC.
 457                 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
 458                 * 'dirty_cow_pnode()' are the functions for which this is
 459                 * important.
 460                 */
 461                clear_bit(DIRTY_CNODE, &cnode->flags);
 462                smp_mb__before_atomic();
 463                clear_bit(COW_CNODE, &cnode->flags);
 464                smp_mb__after_atomic();
 465                offs += len;
 466                dbg_chk_lpt_sz(c, 1, len);
 467                cnode = cnode->cnext;
 468        } while (cnode && cnode != c->lpt_cnext);
 469
 470        /* Make sure to place LPT's save table */
 471        if (!done_lsave) {
 472                if (offs + c->lsave_sz > c->leb_size) {
 473                        wlen = offs - from;
 474                        alen = ALIGN(wlen, c->min_io_size);
 475                        memset(buf + offs, 0xff, alen - wlen);
 476                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 477                        if (err)
 478                                return err;
 479                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 480                        err = realloc_lpt_leb(c, &lnum);
 481                        if (err)
 482                                goto no_space;
 483                        offs = from = 0;
 484                        ubifs_assert(lnum >= c->lpt_first &&
 485                                     lnum <= c->lpt_last);
 486                        err = ubifs_leb_unmap(c, lnum);
 487                        if (err)
 488                                return err;
 489                }
 490                done_lsave = 1;
 491                ubifs_pack_lsave(c, buf + offs, c->lsave);
 492                offs += c->lsave_sz;
 493                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 494        }
 495
 496        /* Make sure to place LPT's own lprops table */
 497        if (!done_ltab) {
 498                if (offs + c->ltab_sz > c->leb_size) {
 499                        wlen = offs - from;
 500                        alen = ALIGN(wlen, c->min_io_size);
 501                        memset(buf + offs, 0xff, alen - wlen);
 502                        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 503                        if (err)
 504                                return err;
 505                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 506                        err = realloc_lpt_leb(c, &lnum);
 507                        if (err)
 508                                goto no_space;
 509                        offs = from = 0;
 510                        ubifs_assert(lnum >= c->lpt_first &&
 511                                     lnum <= c->lpt_last);
 512                        err = ubifs_leb_unmap(c, lnum);
 513                        if (err)
 514                                return err;
 515                }
 516                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 517                offs += c->ltab_sz;
 518                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 519        }
 520
 521        /* Write remaining data in buffer */
 522        wlen = offs - from;
 523        alen = ALIGN(wlen, c->min_io_size);
 524        memset(buf + offs, 0xff, alen - wlen);
 525        err = ubifs_leb_write(c, lnum, buf + from, from, alen);
 526        if (err)
 527                return err;
 528
 529        dbg_chk_lpt_sz(c, 4, alen - wlen);
 530        err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
 531        if (err)
 532                return err;
 533
 534        c->nhead_lnum = lnum;
 535        c->nhead_offs = ALIGN(offs, c->min_io_size);
 536
 537        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 538        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 539        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 540        if (c->big_lpt)
 541                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 542
 543        return 0;
 544
 545no_space:
 546        ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
 547                  lnum, offs, len, done_ltab, done_lsave);
 548        ubifs_dump_lpt_info(c);
 549        ubifs_dump_lpt_lebs(c);
 550        dump_stack();
 551        return err;
 552}
 553
 554/**
 555 * next_pnode_to_dirty - find next pnode to dirty.
 556 * @c: UBIFS file-system description object
 557 * @pnode: pnode
 558 *
 559 * This function returns the next pnode to dirty or %NULL if there are no more
 560 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
 561 * skipped.
 562 */
 563static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
 564                                               struct ubifs_pnode *pnode)
 565{
 566        struct ubifs_nnode *nnode;
 567        int iip;
 568
 569        /* Try to go right */
 570        nnode = pnode->parent;
 571        for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
 572                if (nnode->nbranch[iip].lnum)
 573                        return ubifs_get_pnode(c, nnode, iip);
 574        }
 575
 576        /* Go up while can't go right */
 577        do {
 578                iip = nnode->iip + 1;
 579                nnode = nnode->parent;
 580                if (!nnode)
 581                        return NULL;
 582                for (; iip < UBIFS_LPT_FANOUT; iip++) {
 583                        if (nnode->nbranch[iip].lnum)
 584                                break;
 585                }
 586        } while (iip >= UBIFS_LPT_FANOUT);
 587
 588        /* Go right */
 589        nnode = ubifs_get_nnode(c, nnode, iip);
 590        if (IS_ERR(nnode))
 591                return (void *)nnode;
 592
 593        /* Go down to level 1 */
 594        while (nnode->level > 1) {
 595                for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
 596                        if (nnode->nbranch[iip].lnum)
 597                                break;
 598                }
 599                if (iip >= UBIFS_LPT_FANOUT) {
 600                        /*
 601                         * Should not happen, but we need to keep going
 602                         * if it does.
 603                         */
 604                        iip = 0;
 605                }
 606                nnode = ubifs_get_nnode(c, nnode, iip);
 607                if (IS_ERR(nnode))
 608                        return (void *)nnode;
 609        }
 610
 611        for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
 612                if (nnode->nbranch[iip].lnum)
 613                        break;
 614        if (iip >= UBIFS_LPT_FANOUT)
 615                /* Should not happen, but we need to keep going if it does */
 616                iip = 0;
 617        return ubifs_get_pnode(c, nnode, iip);
 618}
 619
 620/**
 621 * pnode_lookup - lookup a pnode in the LPT.
 622 * @c: UBIFS file-system description object
 623 * @i: pnode number (0 to main_lebs - 1)
 624 *
 625 * This function returns a pointer to the pnode on success or a negative
 626 * error code on failure.
 627 */
 628static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
 629{
 630        int err, h, iip, shft;
 631        struct ubifs_nnode *nnode;
 632
 633        if (!c->nroot) {
 634                err = ubifs_read_nnode(c, NULL, 0);
 635                if (err)
 636                        return ERR_PTR(err);
 637        }
 638        i <<= UBIFS_LPT_FANOUT_SHIFT;
 639        nnode = c->nroot;
 640        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
 641        for (h = 1; h < c->lpt_hght; h++) {
 642                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 643                shft -= UBIFS_LPT_FANOUT_SHIFT;
 644                nnode = ubifs_get_nnode(c, nnode, iip);
 645                if (IS_ERR(nnode))
 646                        return ERR_CAST(nnode);
 647        }
 648        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 649        return ubifs_get_pnode(c, nnode, iip);
 650}
 651
 652/**
 653 * add_pnode_dirt - add dirty space to LPT LEB properties.
 654 * @c: UBIFS file-system description object
 655 * @pnode: pnode for which to add dirt
 656 */
 657static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 658{
 659        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 660                           c->pnode_sz);
 661}
 662
 663/**
 664 * do_make_pnode_dirty - mark a pnode dirty.
 665 * @c: UBIFS file-system description object
 666 * @pnode: pnode to mark dirty
 667 */
 668static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
 669{
 670        /* Assumes cnext list is empty i.e. not called during commit */
 671        if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
 672                struct ubifs_nnode *nnode;
 673
 674                c->dirty_pn_cnt += 1;
 675                add_pnode_dirt(c, pnode);
 676                /* Mark parent and ancestors dirty too */
 677                nnode = pnode->parent;
 678                while (nnode) {
 679                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 680                                c->dirty_nn_cnt += 1;
 681                                ubifs_add_nnode_dirt(c, nnode);
 682                                nnode = nnode->parent;
 683                        } else
 684                                break;
 685                }
 686        }
 687}
 688
 689/**
 690 * make_tree_dirty - mark the entire LEB properties tree dirty.
 691 * @c: UBIFS file-system description object
 692 *
 693 * This function is used by the "small" LPT model to cause the entire LEB
 694 * properties tree to be written.  The "small" LPT model does not use LPT
 695 * garbage collection because it is more efficient to write the entire tree
 696 * (because it is small).
 697 *
 698 * This function returns %0 on success and a negative error code on failure.
 699 */
 700static int make_tree_dirty(struct ubifs_info *c)
 701{
 702        struct ubifs_pnode *pnode;
 703
 704        pnode = pnode_lookup(c, 0);
 705        if (IS_ERR(pnode))
 706                return PTR_ERR(pnode);
 707
 708        while (pnode) {
 709                do_make_pnode_dirty(c, pnode);
 710                pnode = next_pnode_to_dirty(c, pnode);
 711                if (IS_ERR(pnode))
 712                        return PTR_ERR(pnode);
 713        }
 714        return 0;
 715}
 716
 717/**
 718 * need_write_all - determine if the LPT area is running out of free space.
 719 * @c: UBIFS file-system description object
 720 *
 721 * This function returns %1 if the LPT area is running out of free space and %0
 722 * if it is not.
 723 */
 724static int need_write_all(struct ubifs_info *c)
 725{
 726        long long free = 0;
 727        int i;
 728
 729        for (i = 0; i < c->lpt_lebs; i++) {
 730                if (i + c->lpt_first == c->nhead_lnum)
 731                        free += c->leb_size - c->nhead_offs;
 732                else if (c->ltab[i].free == c->leb_size)
 733                        free += c->leb_size;
 734                else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
 735                        free += c->leb_size;
 736        }
 737        /* Less than twice the size left */
 738        if (free <= c->lpt_sz * 2)
 739                return 1;
 740        return 0;
 741}
 742
 743/**
 744 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
 745 * @c: UBIFS file-system description object
 746 *
 747 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 748 * free space and so may be reused as soon as the next commit is completed.
 749 * This function is called during start commit to mark LPT LEBs for trivial GC.
 750 */
 751static void lpt_tgc_start(struct ubifs_info *c)
 752{
 753        int i;
 754
 755        for (i = 0; i < c->lpt_lebs; i++) {
 756                if (i + c->lpt_first == c->nhead_lnum)
 757                        continue;
 758                if (c->ltab[i].dirty > 0 &&
 759                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
 760                        c->ltab[i].tgc = 1;
 761                        c->ltab[i].free = c->leb_size;
 762                        c->ltab[i].dirty = 0;
 763                        dbg_lp("LEB %d", i + c->lpt_first);
 764                }
 765        }
 766}
 767
 768/**
 769 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
 770 * @c: UBIFS file-system description object
 771 *
 772 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 773 * free space and so may be reused as soon as the next commit is completed.
 774 * This function is called after the commit is completed (master node has been
 775 * written) and un-maps LPT LEBs that were marked for trivial GC.
 776 */
 777static int lpt_tgc_end(struct ubifs_info *c)
 778{
 779        int i, err;
 780
 781        for (i = 0; i < c->lpt_lebs; i++)
 782                if (c->ltab[i].tgc) {
 783                        err = ubifs_leb_unmap(c, i + c->lpt_first);
 784                        if (err)
 785                                return err;
 786                        c->ltab[i].tgc = 0;
 787                        dbg_lp("LEB %d", i + c->lpt_first);
 788                }
 789        return 0;
 790}
 791
 792/**
 793 * populate_lsave - fill the lsave array with important LEB numbers.
 794 * @c: the UBIFS file-system description object
 795 *
 796 * This function is only called for the "big" model. It records a small number
 797 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
 798 * most important to least important): empty, freeable, freeable index, dirty
 799 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
 800 * their pnodes into memory.  That will stop us from having to scan the LPT
 801 * straight away. For the "small" model we assume that scanning the LPT is no
 802 * big deal.
 803 */
 804static void populate_lsave(struct ubifs_info *c)
 805{
 806        struct ubifs_lprops *lprops;
 807        struct ubifs_lpt_heap *heap;
 808        int i, cnt = 0;
 809
 810        ubifs_assert(c->big_lpt);
 811        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
 812                c->lpt_drty_flgs |= LSAVE_DIRTY;
 813                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
 814        }
 815
 816        if (dbg_populate_lsave(c))
 817                return;
 818
 819        list_for_each_entry(lprops, &c->empty_list, list) {
 820                c->lsave[cnt++] = lprops->lnum;
 821                if (cnt >= c->lsave_cnt)
 822                        return;
 823        }
 824        list_for_each_entry(lprops, &c->freeable_list, list) {
 825                c->lsave[cnt++] = lprops->lnum;
 826                if (cnt >= c->lsave_cnt)
 827                        return;
 828        }
 829        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 830                c->lsave[cnt++] = lprops->lnum;
 831                if (cnt >= c->lsave_cnt)
 832                        return;
 833        }
 834        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 835        for (i = 0; i < heap->cnt; i++) {
 836                c->lsave[cnt++] = heap->arr[i]->lnum;
 837                if (cnt >= c->lsave_cnt)
 838                        return;
 839        }
 840        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 841        for (i = 0; i < heap->cnt; i++) {
 842                c->lsave[cnt++] = heap->arr[i]->lnum;
 843                if (cnt >= c->lsave_cnt)
 844                        return;
 845        }
 846        heap = &c->lpt_heap[LPROPS_FREE - 1];
 847        for (i = 0; i < heap->cnt; i++) {
 848                c->lsave[cnt++] = heap->arr[i]->lnum;
 849                if (cnt >= c->lsave_cnt)
 850                        return;
 851        }
 852        /* Fill it up completely */
 853        while (cnt < c->lsave_cnt)
 854                c->lsave[cnt++] = c->main_first;
 855}
 856
 857/**
 858 * nnode_lookup - lookup a nnode in the LPT.
 859 * @c: UBIFS file-system description object
 860 * @i: nnode number
 861 *
 862 * This function returns a pointer to the nnode on success or a negative
 863 * error code on failure.
 864 */
 865static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
 866{
 867        int err, iip;
 868        struct ubifs_nnode *nnode;
 869
 870        if (!c->nroot) {
 871                err = ubifs_read_nnode(c, NULL, 0);
 872                if (err)
 873                        return ERR_PTR(err);
 874        }
 875        nnode = c->nroot;
 876        while (1) {
 877                iip = i & (UBIFS_LPT_FANOUT - 1);
 878                i >>= UBIFS_LPT_FANOUT_SHIFT;
 879                if (!i)
 880                        break;
 881                nnode = ubifs_get_nnode(c, nnode, iip);
 882                if (IS_ERR(nnode))
 883                        return nnode;
 884        }
 885        return nnode;
 886}
 887
 888/**
 889 * make_nnode_dirty - find a nnode and, if found, make it dirty.
 890 * @c: UBIFS file-system description object
 891 * @node_num: nnode number of nnode to make dirty
 892 * @lnum: LEB number where nnode was written
 893 * @offs: offset where nnode was written
 894 *
 895 * This function is used by LPT garbage collection.  LPT garbage collection is
 896 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 897 * simply involves marking all the nodes in the LEB being garbage-collected as
 898 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 899 * to be reused.
 900 *
 901 * This function returns %0 on success and a negative error code on failure.
 902 */
 903static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 904                            int offs)
 905{
 906        struct ubifs_nnode *nnode;
 907
 908        nnode = nnode_lookup(c, node_num);
 909        if (IS_ERR(nnode))
 910                return PTR_ERR(nnode);
 911        if (nnode->parent) {
 912                struct ubifs_nbranch *branch;
 913
 914                branch = &nnode->parent->nbranch[nnode->iip];
 915                if (branch->lnum != lnum || branch->offs != offs)
 916                        return 0; /* nnode is obsolete */
 917        } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
 918                        return 0; /* nnode is obsolete */
 919        /* Assumes cnext list is empty i.e. not called during commit */
 920        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 921                c->dirty_nn_cnt += 1;
 922                ubifs_add_nnode_dirt(c, nnode);
 923                /* Mark parent and ancestors dirty too */
 924                nnode = nnode->parent;
 925                while (nnode) {
 926                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 927                                c->dirty_nn_cnt += 1;
 928                                ubifs_add_nnode_dirt(c, nnode);
 929                                nnode = nnode->parent;
 930                        } else
 931                                break;
 932                }
 933        }
 934        return 0;
 935}
 936
 937/**
 938 * make_pnode_dirty - find a pnode and, if found, make it dirty.
 939 * @c: UBIFS file-system description object
 940 * @node_num: pnode number of pnode to make dirty
 941 * @lnum: LEB number where pnode was written
 942 * @offs: offset where pnode was written
 943 *
 944 * This function is used by LPT garbage collection.  LPT garbage collection is
 945 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 946 * simply involves marking all the nodes in the LEB being garbage-collected as
 947 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 948 * to be reused.
 949 *
 950 * This function returns %0 on success and a negative error code on failure.
 951 */
 952static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 953                            int offs)
 954{
 955        struct ubifs_pnode *pnode;
 956        struct ubifs_nbranch *branch;
 957
 958        pnode = pnode_lookup(c, node_num);
 959        if (IS_ERR(pnode))
 960                return PTR_ERR(pnode);
 961        branch = &pnode->parent->nbranch[pnode->iip];
 962        if (branch->lnum != lnum || branch->offs != offs)
 963                return 0;
 964        do_make_pnode_dirty(c, pnode);
 965        return 0;
 966}
 967
 968/**
 969 * make_ltab_dirty - make ltab node dirty.
 970 * @c: UBIFS file-system description object
 971 * @lnum: LEB number where ltab was written
 972 * @offs: offset where ltab was written
 973 *
 974 * This function is used by LPT garbage collection.  LPT garbage collection is
 975 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 976 * simply involves marking all the nodes in the LEB being garbage-collected as
 977 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 978 * to be reused.
 979 *
 980 * This function returns %0 on success and a negative error code on failure.
 981 */
 982static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
 983{
 984        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
 985                return 0; /* This ltab node is obsolete */
 986        if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 987                c->lpt_drty_flgs |= LTAB_DIRTY;
 988                ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 989        }
 990        return 0;
 991}
 992
 993/**
 994 * make_lsave_dirty - make lsave node dirty.
 995 * @c: UBIFS file-system description object
 996 * @lnum: LEB number where lsave was written
 997 * @offs: offset where lsave was written
 998 *
 999 * This function is used by LPT garbage collection.  LPT garbage collection is
1000 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1001 * simply involves marking all the nodes in the LEB being garbage-collected as
1002 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1003 * to be reused.
1004 *
1005 * This function returns %0 on success and a negative error code on failure.
1006 */
1007static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1008{
1009        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1010                return 0; /* This lsave node is obsolete */
1011        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1012                c->lpt_drty_flgs |= LSAVE_DIRTY;
1013                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1014        }
1015        return 0;
1016}
1017
1018/**
1019 * make_node_dirty - make node dirty.
1020 * @c: UBIFS file-system description object
1021 * @node_type: LPT node type
1022 * @node_num: node number
1023 * @lnum: LEB number where node was written
1024 * @offs: offset where node was written
1025 *
1026 * This function is used by LPT garbage collection.  LPT garbage collection is
1027 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1028 * simply involves marking all the nodes in the LEB being garbage-collected as
1029 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1030 * to be reused.
1031 *
1032 * This function returns %0 on success and a negative error code on failure.
1033 */
1034static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1035                           int lnum, int offs)
1036{
1037        switch (node_type) {
1038        case UBIFS_LPT_NNODE:
1039                return make_nnode_dirty(c, node_num, lnum, offs);
1040        case UBIFS_LPT_PNODE:
1041                return make_pnode_dirty(c, node_num, lnum, offs);
1042        case UBIFS_LPT_LTAB:
1043                return make_ltab_dirty(c, lnum, offs);
1044        case UBIFS_LPT_LSAVE:
1045                return make_lsave_dirty(c, lnum, offs);
1046        }
1047        return -EINVAL;
1048}
1049
1050/**
1051 * get_lpt_node_len - return the length of a node based on its type.
1052 * @c: UBIFS file-system description object
1053 * @node_type: LPT node type
1054 */
1055static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1056{
1057        switch (node_type) {
1058        case UBIFS_LPT_NNODE:
1059                return c->nnode_sz;
1060        case UBIFS_LPT_PNODE:
1061                return c->pnode_sz;
1062        case UBIFS_LPT_LTAB:
1063                return c->ltab_sz;
1064        case UBIFS_LPT_LSAVE:
1065                return c->lsave_sz;
1066        }
1067        return 0;
1068}
1069
1070/**
1071 * get_pad_len - return the length of padding in a buffer.
1072 * @c: UBIFS file-system description object
1073 * @buf: buffer
1074 * @len: length of buffer
1075 */
1076static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1077{
1078        int offs, pad_len;
1079
1080        if (c->min_io_size == 1)
1081                return 0;
1082        offs = c->leb_size - len;
1083        pad_len = ALIGN(offs, c->min_io_size) - offs;
1084        return pad_len;
1085}
1086
1087/**
1088 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1089 * @c: UBIFS file-system description object
1090 * @buf: buffer
1091 * @node_num: node number is returned here
1092 */
1093static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1094                             int *node_num)
1095{
1096        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1097        int pos = 0, node_type;
1098
1099        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1100        *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1101        return node_type;
1102}
1103
1104/**
1105 * is_a_node - determine if a buffer contains a node.
1106 * @c: UBIFS file-system description object
1107 * @buf: buffer
1108 * @len: length of buffer
1109 *
1110 * This function returns %1 if the buffer contains a node or %0 if it does not.
1111 */
1112static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1113{
1114        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1115        int pos = 0, node_type, node_len;
1116        uint16_t crc, calc_crc;
1117
1118        if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1119                return 0;
1120        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1121        if (node_type == UBIFS_LPT_NOT_A_NODE)
1122                return 0;
1123        node_len = get_lpt_node_len(c, node_type);
1124        if (!node_len || node_len > len)
1125                return 0;
1126        pos = 0;
1127        addr = buf;
1128        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1129        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1130                         node_len - UBIFS_LPT_CRC_BYTES);
1131        if (crc != calc_crc)
1132                return 0;
1133        return 1;
1134}
1135
1136/**
1137 * lpt_gc_lnum - garbage collect a LPT LEB.
1138 * @c: UBIFS file-system description object
1139 * @lnum: LEB number to garbage collect
1140 *
1141 * LPT garbage collection is used only for the "big" LPT model
1142 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1143 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1144 * next commit, after which the LEB is free to be reused.
1145 *
1146 * This function returns %0 on success and a negative error code on failure.
1147 */
1148static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1149{
1150        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1151        void *buf = c->lpt_buf;
1152
1153        dbg_lp("LEB %d", lnum);
1154
1155        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1156        if (err)
1157                return err;
1158
1159        while (1) {
1160                if (!is_a_node(c, buf, len)) {
1161                        int pad_len;
1162
1163                        pad_len = get_pad_len(c, buf, len);
1164                        if (pad_len) {
1165                                buf += pad_len;
1166                                len -= pad_len;
1167                                continue;
1168                        }
1169                        return 0;
1170                }
1171                node_type = get_lpt_node_type(c, buf, &node_num);
1172                node_len = get_lpt_node_len(c, node_type);
1173                offs = c->leb_size - len;
1174                ubifs_assert(node_len != 0);
1175                mutex_lock(&c->lp_mutex);
1176                err = make_node_dirty(c, node_type, node_num, lnum, offs);
1177                mutex_unlock(&c->lp_mutex);
1178                if (err)
1179                        return err;
1180                buf += node_len;
1181                len -= node_len;
1182        }
1183        return 0;
1184}
1185
1186/**
1187 * lpt_gc - LPT garbage collection.
1188 * @c: UBIFS file-system description object
1189 *
1190 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1191 * Returns %0 on success and a negative error code on failure.
1192 */
1193static int lpt_gc(struct ubifs_info *c)
1194{
1195        int i, lnum = -1, dirty = 0;
1196
1197        mutex_lock(&c->lp_mutex);
1198        for (i = 0; i < c->lpt_lebs; i++) {
1199                ubifs_assert(!c->ltab[i].tgc);
1200                if (i + c->lpt_first == c->nhead_lnum ||
1201                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1202                        continue;
1203                if (c->ltab[i].dirty > dirty) {
1204                        dirty = c->ltab[i].dirty;
1205                        lnum = i + c->lpt_first;
1206                }
1207        }
1208        mutex_unlock(&c->lp_mutex);
1209        if (lnum == -1)
1210                return -ENOSPC;
1211        return lpt_gc_lnum(c, lnum);
1212}
1213
1214/**
1215 * ubifs_lpt_start_commit - UBIFS commit starts.
1216 * @c: the UBIFS file-system description object
1217 *
1218 * This function has to be called when UBIFS starts the commit operation.
1219 * This function "freezes" all currently dirty LEB properties and does not
1220 * change them anymore. Further changes are saved and tracked separately
1221 * because they are not part of this commit. This function returns zero in case
1222 * of success and a negative error code in case of failure.
1223 */
1224int ubifs_lpt_start_commit(struct ubifs_info *c)
1225{
1226        int err, cnt;
1227
1228        dbg_lp("");
1229
1230        mutex_lock(&c->lp_mutex);
1231        err = dbg_chk_lpt_free_spc(c);
1232        if (err)
1233                goto out;
1234        err = dbg_check_ltab(c);
1235        if (err)
1236                goto out;
1237
1238        if (c->check_lpt_free) {
1239                /*
1240                 * We ensure there is enough free space in
1241                 * ubifs_lpt_post_commit() by marking nodes dirty. That
1242                 * information is lost when we unmount, so we also need
1243                 * to check free space once after mounting also.
1244                 */
1245                c->check_lpt_free = 0;
1246                while (need_write_all(c)) {
1247                        mutex_unlock(&c->lp_mutex);
1248                        err = lpt_gc(c);
1249                        if (err)
1250                                return err;
1251                        mutex_lock(&c->lp_mutex);
1252                }
1253        }
1254
1255        lpt_tgc_start(c);
1256
1257        if (!c->dirty_pn_cnt) {
1258                dbg_cmt("no cnodes to commit");
1259                err = 0;
1260                goto out;
1261        }
1262
1263        if (!c->big_lpt && need_write_all(c)) {
1264                /* If needed, write everything */
1265                err = make_tree_dirty(c);
1266                if (err)
1267                        goto out;
1268                lpt_tgc_start(c);
1269        }
1270
1271        if (c->big_lpt)
1272                populate_lsave(c);
1273
1274        cnt = get_cnodes_to_commit(c);
1275        ubifs_assert(cnt != 0);
1276
1277        err = layout_cnodes(c);
1278        if (err)
1279                goto out;
1280
1281        /* Copy the LPT's own lprops for end commit to write */
1282        memcpy(c->ltab_cmt, c->ltab,
1283               sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1284        c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1285
1286out:
1287        mutex_unlock(&c->lp_mutex);
1288        return err;
1289}
1290
1291/**
1292 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1293 * @c: UBIFS file-system description object
1294 */
1295static void free_obsolete_cnodes(struct ubifs_info *c)
1296{
1297        struct ubifs_cnode *cnode, *cnext;
1298
1299        cnext = c->lpt_cnext;
1300        if (!cnext)
1301                return;
1302        do {
1303                cnode = cnext;
1304                cnext = cnode->cnext;
1305                if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1306                        kfree(cnode);
1307                else
1308                        cnode->cnext = NULL;
1309        } while (cnext != c->lpt_cnext);
1310        c->lpt_cnext = NULL;
1311}
1312
1313/**
1314 * ubifs_lpt_end_commit - finish the commit operation.
1315 * @c: the UBIFS file-system description object
1316 *
1317 * This function has to be called when the commit operation finishes. It
1318 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1319 * the media. Returns zero in case of success and a negative error code in case
1320 * of failure.
1321 */
1322int ubifs_lpt_end_commit(struct ubifs_info *c)
1323{
1324        int err;
1325
1326        dbg_lp("");
1327
1328        if (!c->lpt_cnext)
1329                return 0;
1330
1331        err = write_cnodes(c);
1332        if (err)
1333                return err;
1334
1335        mutex_lock(&c->lp_mutex);
1336        free_obsolete_cnodes(c);
1337        mutex_unlock(&c->lp_mutex);
1338
1339        return 0;
1340}
1341
1342/**
1343 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1344 * @c: UBIFS file-system description object
1345 *
1346 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1347 * commit for the "big" LPT model.
1348 */
1349int ubifs_lpt_post_commit(struct ubifs_info *c)
1350{
1351        int err;
1352
1353        mutex_lock(&c->lp_mutex);
1354        err = lpt_tgc_end(c);
1355        if (err)
1356                goto out;
1357        if (c->big_lpt)
1358                while (need_write_all(c)) {
1359                        mutex_unlock(&c->lp_mutex);
1360                        err = lpt_gc(c);
1361                        if (err)
1362                                return err;
1363                        mutex_lock(&c->lp_mutex);
1364                }
1365out:
1366        mutex_unlock(&c->lp_mutex);
1367        return err;
1368}
1369
1370/**
1371 * first_nnode - find the first nnode in memory.
1372 * @c: UBIFS file-system description object
1373 * @hght: height of tree where nnode found is returned here
1374 *
1375 * This function returns a pointer to the nnode found or %NULL if no nnode is
1376 * found. This function is a helper to 'ubifs_lpt_free()'.
1377 */
1378static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1379{
1380        struct ubifs_nnode *nnode;
1381        int h, i, found;
1382
1383        nnode = c->nroot;
1384        *hght = 0;
1385        if (!nnode)
1386                return NULL;
1387        for (h = 1; h < c->lpt_hght; h++) {
1388                found = 0;
1389                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1390                        if (nnode->nbranch[i].nnode) {
1391                                found = 1;
1392                                nnode = nnode->nbranch[i].nnode;
1393                                *hght = h;
1394                                break;
1395                        }
1396                }
1397                if (!found)
1398                        break;
1399        }
1400        return nnode;
1401}
1402
1403/**
1404 * next_nnode - find the next nnode in memory.
1405 * @c: UBIFS file-system description object
1406 * @nnode: nnode from which to start.
1407 * @hght: height of tree where nnode is, is passed and returned here
1408 *
1409 * This function returns a pointer to the nnode found or %NULL if no nnode is
1410 * found. This function is a helper to 'ubifs_lpt_free()'.
1411 */
1412static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1413                                      struct ubifs_nnode *nnode, int *hght)
1414{
1415        struct ubifs_nnode *parent;
1416        int iip, h, i, found;
1417
1418        parent = nnode->parent;
1419        if (!parent)
1420                return NULL;
1421        if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1422                *hght -= 1;
1423                return parent;
1424        }
1425        for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1426                nnode = parent->nbranch[iip].nnode;
1427                if (nnode)
1428                        break;
1429        }
1430        if (!nnode) {
1431                *hght -= 1;
1432                return parent;
1433        }
1434        for (h = *hght + 1; h < c->lpt_hght; h++) {
1435                found = 0;
1436                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1437                        if (nnode->nbranch[i].nnode) {
1438                                found = 1;
1439                                nnode = nnode->nbranch[i].nnode;
1440                                *hght = h;
1441                                break;
1442                        }
1443                }
1444                if (!found)
1445                        break;
1446        }
1447        return nnode;
1448}
1449
1450/**
1451 * ubifs_lpt_free - free resources owned by the LPT.
1452 * @c: UBIFS file-system description object
1453 * @wr_only: free only resources used for writing
1454 */
1455void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1456{
1457        struct ubifs_nnode *nnode;
1458        int i, hght;
1459
1460        /* Free write-only things first */
1461
1462        free_obsolete_cnodes(c); /* Leftover from a failed commit */
1463
1464        vfree(c->ltab_cmt);
1465        c->ltab_cmt = NULL;
1466        vfree(c->lpt_buf);
1467        c->lpt_buf = NULL;
1468        kfree(c->lsave);
1469        c->lsave = NULL;
1470
1471        if (wr_only)
1472                return;
1473
1474        /* Now free the rest */
1475
1476        nnode = first_nnode(c, &hght);
1477        while (nnode) {
1478                for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1479                        kfree(nnode->nbranch[i].nnode);
1480                nnode = next_nnode(c, nnode, &hght);
1481        }
1482        for (i = 0; i < LPROPS_HEAP_CNT; i++)
1483                kfree(c->lpt_heap[i].arr);
1484        kfree(c->dirty_idx.arr);
1485        kfree(c->nroot);
1486        vfree(c->ltab);
1487        kfree(c->lpt_nod_buf);
1488}
1489
1490/*
1491 * Everything below is related to debugging.
1492 */
1493
1494/**
1495 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1496 * @buf: buffer
1497 * @len: buffer length
1498 */
1499static int dbg_is_all_ff(uint8_t *buf, int len)
1500{
1501        int i;
1502
1503        for (i = 0; i < len; i++)
1504                if (buf[i] != 0xff)
1505                        return 0;
1506        return 1;
1507}
1508
1509/**
1510 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1511 * @c: the UBIFS file-system description object
1512 * @lnum: LEB number where nnode was written
1513 * @offs: offset where nnode was written
1514 */
1515static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1516{
1517        struct ubifs_nnode *nnode;
1518        int hght;
1519
1520        /* Entire tree is in memory so first_nnode / next_nnode are OK */
1521        nnode = first_nnode(c, &hght);
1522        for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1523                struct ubifs_nbranch *branch;
1524
1525                cond_resched();
1526                if (nnode->parent) {
1527                        branch = &nnode->parent->nbranch[nnode->iip];
1528                        if (branch->lnum != lnum || branch->offs != offs)
1529                                continue;
1530                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1531                                return 1;
1532                        return 0;
1533                } else {
1534                        if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1535                                continue;
1536                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1537                                return 1;
1538                        return 0;
1539                }
1540        }
1541        return 1;
1542}
1543
1544/**
1545 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1546 * @c: the UBIFS file-system description object
1547 * @lnum: LEB number where pnode was written
1548 * @offs: offset where pnode was written
1549 */
1550static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1551{
1552        int i, cnt;
1553
1554        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1555        for (i = 0; i < cnt; i++) {
1556                struct ubifs_pnode *pnode;
1557                struct ubifs_nbranch *branch;
1558
1559                cond_resched();
1560                pnode = pnode_lookup(c, i);
1561                if (IS_ERR(pnode))
1562                        return PTR_ERR(pnode);
1563                branch = &pnode->parent->nbranch[pnode->iip];
1564                if (branch->lnum != lnum || branch->offs != offs)
1565                        continue;
1566                if (test_bit(DIRTY_CNODE, &pnode->flags))
1567                        return 1;
1568                return 0;
1569        }
1570        return 1;
1571}
1572
1573/**
1574 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1575 * @c: the UBIFS file-system description object
1576 * @lnum: LEB number where ltab node was written
1577 * @offs: offset where ltab node was written
1578 */
1579static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1580{
1581        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1582                return 1;
1583        return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1584}
1585
1586/**
1587 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1588 * @c: the UBIFS file-system description object
1589 * @lnum: LEB number where lsave node was written
1590 * @offs: offset where lsave node was written
1591 */
1592static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1593{
1594        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1595                return 1;
1596        return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1597}
1598
1599/**
1600 * dbg_is_node_dirty - determine if a node is dirty.
1601 * @c: the UBIFS file-system description object
1602 * @node_type: node type
1603 * @lnum: LEB number where node was written
1604 * @offs: offset where node was written
1605 */
1606static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1607                             int offs)
1608{
1609        switch (node_type) {
1610        case UBIFS_LPT_NNODE:
1611                return dbg_is_nnode_dirty(c, lnum, offs);
1612        case UBIFS_LPT_PNODE:
1613                return dbg_is_pnode_dirty(c, lnum, offs);
1614        case UBIFS_LPT_LTAB:
1615                return dbg_is_ltab_dirty(c, lnum, offs);
1616        case UBIFS_LPT_LSAVE:
1617                return dbg_is_lsave_dirty(c, lnum, offs);
1618        }
1619        return 1;
1620}
1621
1622/**
1623 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1624 * @c: the UBIFS file-system description object
1625 * @lnum: LEB number where node was written
1626 * @offs: offset where node was written
1627 *
1628 * This function returns %0 on success and a negative error code on failure.
1629 */
1630static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1631{
1632        int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1633        int ret;
1634        void *buf, *p;
1635
1636        if (!dbg_is_chk_lprops(c))
1637                return 0;
1638
1639        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1640        if (!buf) {
1641                ubifs_err(c, "cannot allocate memory for ltab checking");
1642                return 0;
1643        }
1644
1645        dbg_lp("LEB %d", lnum);
1646
1647        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1648        if (err)
1649                goto out;
1650
1651        while (1) {
1652                if (!is_a_node(c, p, len)) {
1653                        int i, pad_len;
1654
1655                        pad_len = get_pad_len(c, p, len);
1656                        if (pad_len) {
1657                                p += pad_len;
1658                                len -= pad_len;
1659                                dirty += pad_len;
1660                                continue;
1661                        }
1662                        if (!dbg_is_all_ff(p, len)) {
1663                                ubifs_err(c, "invalid empty space in LEB %d at %d",
1664                                          lnum, c->leb_size - len);
1665                                err = -EINVAL;
1666                        }
1667                        i = lnum - c->lpt_first;
1668                        if (len != c->ltab[i].free) {
1669                                ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1670                                          lnum, len, c->ltab[i].free);
1671                                err = -EINVAL;
1672                        }
1673                        if (dirty != c->ltab[i].dirty) {
1674                                ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1675                                          lnum, dirty, c->ltab[i].dirty);
1676                                err = -EINVAL;
1677                        }
1678                        goto out;
1679                }
1680                node_type = get_lpt_node_type(c, p, &node_num);
1681                node_len = get_lpt_node_len(c, node_type);
1682                ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1683                if (ret == 1)
1684                        dirty += node_len;
1685                p += node_len;
1686                len -= node_len;
1687        }
1688
1689        err = 0;
1690out:
1691        vfree(buf);
1692        return err;
1693}
1694
1695/**
1696 * dbg_check_ltab - check the free and dirty space in the ltab.
1697 * @c: the UBIFS file-system description object
1698 *
1699 * This function returns %0 on success and a negative error code on failure.
1700 */
1701int dbg_check_ltab(struct ubifs_info *c)
1702{
1703        int lnum, err, i, cnt;
1704
1705        if (!dbg_is_chk_lprops(c))
1706                return 0;
1707
1708        /* Bring the entire tree into memory */
1709        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1710        for (i = 0; i < cnt; i++) {
1711                struct ubifs_pnode *pnode;
1712
1713                pnode = pnode_lookup(c, i);
1714                if (IS_ERR(pnode))
1715                        return PTR_ERR(pnode);
1716                cond_resched();
1717        }
1718
1719        /* Check nodes */
1720        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1721        if (err)
1722                return err;
1723
1724        /* Check each LEB */
1725        for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1726                err = dbg_check_ltab_lnum(c, lnum);
1727                if (err) {
1728                        ubifs_err(c, "failed at LEB %d", lnum);
1729                        return err;
1730                }
1731        }
1732
1733        dbg_lp("succeeded");
1734        return 0;
1735}
1736
1737/**
1738 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1739 * @c: the UBIFS file-system description object
1740 *
1741 * This function returns %0 on success and a negative error code on failure.
1742 */
1743int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1744{
1745        long long free = 0;
1746        int i;
1747
1748        if (!dbg_is_chk_lprops(c))
1749                return 0;
1750
1751        for (i = 0; i < c->lpt_lebs; i++) {
1752                if (c->ltab[i].tgc || c->ltab[i].cmt)
1753                        continue;
1754                if (i + c->lpt_first == c->nhead_lnum)
1755                        free += c->leb_size - c->nhead_offs;
1756                else if (c->ltab[i].free == c->leb_size)
1757                        free += c->leb_size;
1758        }
1759        if (free < c->lpt_sz) {
1760                ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1761                          free, c->lpt_sz);
1762                ubifs_dump_lpt_info(c);
1763                ubifs_dump_lpt_lebs(c);
1764                dump_stack();
1765                return -EINVAL;
1766        }
1767        return 0;
1768}
1769
1770/**
1771 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1772 * @c: the UBIFS file-system description object
1773 * @action: what to do
1774 * @len: length written
1775 *
1776 * This function returns %0 on success and a negative error code on failure.
1777 * The @action argument may be one of:
1778 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1779 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1780 *   o %2 - switched to a different LEB and wasted @len bytes;
1781 *   o %3 - check that we've written the right number of bytes.
1782 *   o %4 - wasted @len bytes;
1783 */
1784int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1785{
1786        struct ubifs_debug_info *d = c->dbg;
1787        long long chk_lpt_sz, lpt_sz;
1788        int err = 0;
1789
1790        if (!dbg_is_chk_lprops(c))
1791                return 0;
1792
1793        switch (action) {
1794        case 0:
1795                d->chk_lpt_sz = 0;
1796                d->chk_lpt_sz2 = 0;
1797                d->chk_lpt_lebs = 0;
1798                d->chk_lpt_wastage = 0;
1799                if (c->dirty_pn_cnt > c->pnode_cnt) {
1800                        ubifs_err(c, "dirty pnodes %d exceed max %d",
1801                                  c->dirty_pn_cnt, c->pnode_cnt);
1802                        err = -EINVAL;
1803                }
1804                if (c->dirty_nn_cnt > c->nnode_cnt) {
1805                        ubifs_err(c, "dirty nnodes %d exceed max %d",
1806                                  c->dirty_nn_cnt, c->nnode_cnt);
1807                        err = -EINVAL;
1808                }
1809                return err;
1810        case 1:
1811                d->chk_lpt_sz += len;
1812                return 0;
1813        case 2:
1814                d->chk_lpt_sz += len;
1815                d->chk_lpt_wastage += len;
1816                d->chk_lpt_lebs += 1;
1817                return 0;
1818        case 3:
1819                chk_lpt_sz = c->leb_size;
1820                chk_lpt_sz *= d->chk_lpt_lebs;
1821                chk_lpt_sz += len - c->nhead_offs;
1822                if (d->chk_lpt_sz != chk_lpt_sz) {
1823                        ubifs_err(c, "LPT wrote %lld but space used was %lld",
1824                                  d->chk_lpt_sz, chk_lpt_sz);
1825                        err = -EINVAL;
1826                }
1827                if (d->chk_lpt_sz > c->lpt_sz) {
1828                        ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1829                                  d->chk_lpt_sz, c->lpt_sz);
1830                        err = -EINVAL;
1831                }
1832                if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1833                        ubifs_err(c, "LPT layout size %lld but wrote %lld",
1834                                  d->chk_lpt_sz, d->chk_lpt_sz2);
1835                        err = -EINVAL;
1836                }
1837                if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1838                        ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1839                                  d->new_nhead_offs, len);
1840                        err = -EINVAL;
1841                }
1842                lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1843                lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1844                lpt_sz += c->ltab_sz;
1845                if (c->big_lpt)
1846                        lpt_sz += c->lsave_sz;
1847                if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1848                        ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1849                                  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1850                        err = -EINVAL;
1851                }
1852                if (err) {
1853                        ubifs_dump_lpt_info(c);
1854                        ubifs_dump_lpt_lebs(c);
1855                        dump_stack();
1856                }
1857                d->chk_lpt_sz2 = d->chk_lpt_sz;
1858                d->chk_lpt_sz = 0;
1859                d->chk_lpt_wastage = 0;
1860                d->chk_lpt_lebs = 0;
1861                d->new_nhead_offs = len;
1862                return err;
1863        case 4:
1864                d->chk_lpt_sz += len;
1865                d->chk_lpt_wastage += len;
1866                return 0;
1867        default:
1868                return -EINVAL;
1869        }
1870}
1871
1872/**
1873 * ubifs_dump_lpt_leb - dump an LPT LEB.
1874 * @c: UBIFS file-system description object
1875 * @lnum: LEB number to dump
1876 *
1877 * This function dumps an LEB from LPT area. Nodes in this area are very
1878 * different to nodes in the main area (e.g., they do not have common headers,
1879 * they do not have 8-byte alignments, etc), so we have a separate function to
1880 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1881 */
1882static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1883{
1884        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1885        void *buf, *p;
1886
1887        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1888        buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1889        if (!buf) {
1890                ubifs_err(c, "cannot allocate memory to dump LPT");
1891                return;
1892        }
1893
1894        err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1895        if (err)
1896                goto out;
1897
1898        while (1) {
1899                offs = c->leb_size - len;
1900                if (!is_a_node(c, p, len)) {
1901                        int pad_len;
1902
1903                        pad_len = get_pad_len(c, p, len);
1904                        if (pad_len) {
1905                                pr_err("LEB %d:%d, pad %d bytes\n",
1906                                       lnum, offs, pad_len);
1907                                p += pad_len;
1908                                len -= pad_len;
1909                                continue;
1910                        }
1911                        if (len)
1912                                pr_err("LEB %d:%d, free %d bytes\n",
1913                                       lnum, offs, len);
1914                        break;
1915                }
1916
1917                node_type = get_lpt_node_type(c, p, &node_num);
1918                switch (node_type) {
1919                case UBIFS_LPT_PNODE:
1920                {
1921                        node_len = c->pnode_sz;
1922                        if (c->big_lpt)
1923                                pr_err("LEB %d:%d, pnode num %d\n",
1924                                       lnum, offs, node_num);
1925                        else
1926                                pr_err("LEB %d:%d, pnode\n", lnum, offs);
1927                        break;
1928                }
1929                case UBIFS_LPT_NNODE:
1930                {
1931                        int i;
1932                        struct ubifs_nnode nnode;
1933
1934                        node_len = c->nnode_sz;
1935                        if (c->big_lpt)
1936                                pr_err("LEB %d:%d, nnode num %d, ",
1937                                       lnum, offs, node_num);
1938                        else
1939                                pr_err("LEB %d:%d, nnode, ",
1940                                       lnum, offs);
1941                        err = ubifs_unpack_nnode(c, p, &nnode);
1942                        if (err) {
1943                                pr_err("failed to unpack_node, error %d\n",
1944                                       err);
1945                                break;
1946                        }
1947                        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1948                                pr_cont("%d:%d", nnode.nbranch[i].lnum,
1949                                       nnode.nbranch[i].offs);
1950                                if (i != UBIFS_LPT_FANOUT - 1)
1951                                        pr_cont(", ");
1952                        }
1953                        pr_cont("\n");
1954                        break;
1955                }
1956                case UBIFS_LPT_LTAB:
1957                        node_len = c->ltab_sz;
1958                        pr_err("LEB %d:%d, ltab\n", lnum, offs);
1959                        break;
1960                case UBIFS_LPT_LSAVE:
1961                        node_len = c->lsave_sz;
1962                        pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1963                        break;
1964                default:
1965                        ubifs_err(c, "LPT node type %d not recognized", node_type);
1966                        goto out;
1967                }
1968
1969                p += node_len;
1970                len -= node_len;
1971        }
1972
1973        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1974out:
1975        vfree(buf);
1976        return;
1977}
1978
1979/**
1980 * ubifs_dump_lpt_lebs - dump LPT lebs.
1981 * @c: UBIFS file-system description object
1982 *
1983 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1984 * locked.
1985 */
1986void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1987{
1988        int i;
1989
1990        pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1991        for (i = 0; i < c->lpt_lebs; i++)
1992                dump_lpt_leb(c, i + c->lpt_first);
1993        pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1994}
1995
1996/**
1997 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1998 * @c: UBIFS file-system description object
1999 *
2000 * This is a debugging version for 'populate_lsave()' which populates lsave
2001 * with random LEBs instead of useful LEBs, which is good for test coverage.
2002 * Returns zero if lsave has not been populated (this debugging feature is
2003 * disabled) an non-zero if lsave has been populated.
2004 */
2005static int dbg_populate_lsave(struct ubifs_info *c)
2006{
2007        struct ubifs_lprops *lprops;
2008        struct ubifs_lpt_heap *heap;
2009        int i;
2010
2011        if (!dbg_is_chk_gen(c))
2012                return 0;
2013        if (prandom_u32() & 3)
2014                return 0;
2015
2016        for (i = 0; i < c->lsave_cnt; i++)
2017                c->lsave[i] = c->main_first;
2018
2019        list_for_each_entry(lprops, &c->empty_list, list)
2020                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2021        list_for_each_entry(lprops, &c->freeable_list, list)
2022                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2023        list_for_each_entry(lprops, &c->frdi_idx_list, list)
2024                c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2025
2026        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2027        for (i = 0; i < heap->cnt; i++)
2028                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2029        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2030        for (i = 0; i < heap->cnt; i++)
2031                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2032        heap = &c->lpt_heap[LPROPS_FREE - 1];
2033        for (i = 0; i < heap->cnt; i++)
2034                c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2035
2036        return 1;
2037}
2038