linux/fs/xfs/xfs_icache.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_sb.h"
  24#include "xfs_mount.h"
  25#include "xfs_inode.h"
  26#include "xfs_error.h"
  27#include "xfs_trans.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_quota.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_bmap_util.h"
  34#include "xfs_dquot_item.h"
  35#include "xfs_dquot.h"
  36
  37#include <linux/kthread.h>
  38#include <linux/freezer.h>
  39
  40STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
  41                                struct xfs_perag *pag, struct xfs_inode *ip);
  42
  43/*
  44 * Allocate and initialise an xfs_inode.
  45 */
  46struct xfs_inode *
  47xfs_inode_alloc(
  48        struct xfs_mount        *mp,
  49        xfs_ino_t               ino)
  50{
  51        struct xfs_inode        *ip;
  52
  53        /*
  54         * if this didn't occur in transactions, we could use
  55         * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  56         * code up to do this anyway.
  57         */
  58        ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
  59        if (!ip)
  60                return NULL;
  61        if (inode_init_always(mp->m_super, VFS_I(ip))) {
  62                kmem_zone_free(xfs_inode_zone, ip);
  63                return NULL;
  64        }
  65
  66        /* VFS doesn't initialise i_mode! */
  67        VFS_I(ip)->i_mode = 0;
  68
  69        XFS_STATS_INC(mp, vn_active);
  70        ASSERT(atomic_read(&ip->i_pincount) == 0);
  71        ASSERT(!spin_is_locked(&ip->i_flags_lock));
  72        ASSERT(!xfs_isiflocked(ip));
  73        ASSERT(ip->i_ino == 0);
  74
  75        mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
  76
  77        /* initialise the xfs inode */
  78        ip->i_ino = ino;
  79        ip->i_mount = mp;
  80        memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  81        ip->i_afp = NULL;
  82        memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
  83        ip->i_flags = 0;
  84        ip->i_delayed_blks = 0;
  85        memset(&ip->i_d, 0, sizeof(ip->i_d));
  86
  87        return ip;
  88}
  89
  90STATIC void
  91xfs_inode_free_callback(
  92        struct rcu_head         *head)
  93{
  94        struct inode            *inode = container_of(head, struct inode, i_rcu);
  95        struct xfs_inode        *ip = XFS_I(inode);
  96
  97        kmem_zone_free(xfs_inode_zone, ip);
  98}
  99
 100void
 101xfs_inode_free(
 102        struct xfs_inode        *ip)
 103{
 104        switch (VFS_I(ip)->i_mode & S_IFMT) {
 105        case S_IFREG:
 106        case S_IFDIR:
 107        case S_IFLNK:
 108                xfs_idestroy_fork(ip, XFS_DATA_FORK);
 109                break;
 110        }
 111
 112        if (ip->i_afp)
 113                xfs_idestroy_fork(ip, XFS_ATTR_FORK);
 114
 115        if (ip->i_itemp) {
 116                ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
 117                xfs_inode_item_destroy(ip);
 118                ip->i_itemp = NULL;
 119        }
 120
 121        /*
 122         * Because we use RCU freeing we need to ensure the inode always
 123         * appears to be reclaimed with an invalid inode number when in the
 124         * free state. The ip->i_flags_lock provides the barrier against lookup
 125         * races.
 126         */
 127        spin_lock(&ip->i_flags_lock);
 128        ip->i_flags = XFS_IRECLAIM;
 129        ip->i_ino = 0;
 130        spin_unlock(&ip->i_flags_lock);
 131
 132        /* asserts to verify all state is correct here */
 133        ASSERT(atomic_read(&ip->i_pincount) == 0);
 134        ASSERT(!xfs_isiflocked(ip));
 135        XFS_STATS_DEC(ip->i_mount, vn_active);
 136
 137        call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 138}
 139
 140/*
 141 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 142 * part of the structure. This is made more complex by the fact we store
 143 * information about the on-disk values in the VFS inode and so we can't just
 144 * overwrite the values unconditionally. Hence we save the parameters we
 145 * need to retain across reinitialisation, and rewrite them into the VFS inode
 146 * after reinitialisation even if it fails.
 147 */
 148static int
 149xfs_reinit_inode(
 150        struct xfs_mount        *mp,
 151        struct inode            *inode)
 152{
 153        int             error;
 154        uint32_t        nlink = inode->i_nlink;
 155        uint32_t        generation = inode->i_generation;
 156        uint64_t        version = inode->i_version;
 157        umode_t         mode = inode->i_mode;
 158
 159        error = inode_init_always(mp->m_super, inode);
 160
 161        set_nlink(inode, nlink);
 162        inode->i_generation = generation;
 163        inode->i_version = version;
 164        inode->i_mode = mode;
 165        return error;
 166}
 167
 168/*
 169 * Check the validity of the inode we just found it the cache
 170 */
 171static int
 172xfs_iget_cache_hit(
 173        struct xfs_perag        *pag,
 174        struct xfs_inode        *ip,
 175        xfs_ino_t               ino,
 176        int                     flags,
 177        int                     lock_flags) __releases(RCU)
 178{
 179        struct inode            *inode = VFS_I(ip);
 180        struct xfs_mount        *mp = ip->i_mount;
 181        int                     error;
 182
 183        /*
 184         * check for re-use of an inode within an RCU grace period due to the
 185         * radix tree nodes not being updated yet. We monitor for this by
 186         * setting the inode number to zero before freeing the inode structure.
 187         * If the inode has been reallocated and set up, then the inode number
 188         * will not match, so check for that, too.
 189         */
 190        spin_lock(&ip->i_flags_lock);
 191        if (ip->i_ino != ino) {
 192                trace_xfs_iget_skip(ip);
 193                XFS_STATS_INC(mp, xs_ig_frecycle);
 194                error = -EAGAIN;
 195                goto out_error;
 196        }
 197
 198
 199        /*
 200         * If we are racing with another cache hit that is currently
 201         * instantiating this inode or currently recycling it out of
 202         * reclaimabe state, wait for the initialisation to complete
 203         * before continuing.
 204         *
 205         * XXX(hch): eventually we should do something equivalent to
 206         *           wait_on_inode to wait for these flags to be cleared
 207         *           instead of polling for it.
 208         */
 209        if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 210                trace_xfs_iget_skip(ip);
 211                XFS_STATS_INC(mp, xs_ig_frecycle);
 212                error = -EAGAIN;
 213                goto out_error;
 214        }
 215
 216        /*
 217         * If lookup is racing with unlink return an error immediately.
 218         */
 219        if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
 220                error = -ENOENT;
 221                goto out_error;
 222        }
 223
 224        /*
 225         * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 226         * Need to carefully get it back into useable state.
 227         */
 228        if (ip->i_flags & XFS_IRECLAIMABLE) {
 229                trace_xfs_iget_reclaim(ip);
 230
 231                /*
 232                 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 233                 * from stomping over us while we recycle the inode.  We can't
 234                 * clear the radix tree reclaimable tag yet as it requires
 235                 * pag_ici_lock to be held exclusive.
 236                 */
 237                ip->i_flags |= XFS_IRECLAIM;
 238
 239                spin_unlock(&ip->i_flags_lock);
 240                rcu_read_unlock();
 241
 242                error = xfs_reinit_inode(mp, inode);
 243                if (error) {
 244                        /*
 245                         * Re-initializing the inode failed, and we are in deep
 246                         * trouble.  Try to re-add it to the reclaim list.
 247                         */
 248                        rcu_read_lock();
 249                        spin_lock(&ip->i_flags_lock);
 250
 251                        ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 252                        ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 253                        trace_xfs_iget_reclaim_fail(ip);
 254                        goto out_error;
 255                }
 256
 257                spin_lock(&pag->pag_ici_lock);
 258                spin_lock(&ip->i_flags_lock);
 259
 260                /*
 261                 * Clear the per-lifetime state in the inode as we are now
 262                 * effectively a new inode and need to return to the initial
 263                 * state before reuse occurs.
 264                 */
 265                ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 266                ip->i_flags |= XFS_INEW;
 267                __xfs_inode_clear_reclaim_tag(mp, pag, ip);
 268                inode->i_state = I_NEW;
 269
 270                ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
 271                mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
 272
 273                spin_unlock(&ip->i_flags_lock);
 274                spin_unlock(&pag->pag_ici_lock);
 275        } else {
 276                /* If the VFS inode is being torn down, pause and try again. */
 277                if (!igrab(inode)) {
 278                        trace_xfs_iget_skip(ip);
 279                        error = -EAGAIN;
 280                        goto out_error;
 281                }
 282
 283                /* We've got a live one. */
 284                spin_unlock(&ip->i_flags_lock);
 285                rcu_read_unlock();
 286                trace_xfs_iget_hit(ip);
 287        }
 288
 289        if (lock_flags != 0)
 290                xfs_ilock(ip, lock_flags);
 291
 292        xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 293        XFS_STATS_INC(mp, xs_ig_found);
 294
 295        return 0;
 296
 297out_error:
 298        spin_unlock(&ip->i_flags_lock);
 299        rcu_read_unlock();
 300        return error;
 301}
 302
 303
 304static int
 305xfs_iget_cache_miss(
 306        struct xfs_mount        *mp,
 307        struct xfs_perag        *pag,
 308        xfs_trans_t             *tp,
 309        xfs_ino_t               ino,
 310        struct xfs_inode        **ipp,
 311        int                     flags,
 312        int                     lock_flags)
 313{
 314        struct xfs_inode        *ip;
 315        int                     error;
 316        xfs_agino_t             agino = XFS_INO_TO_AGINO(mp, ino);
 317        int                     iflags;
 318
 319        ip = xfs_inode_alloc(mp, ino);
 320        if (!ip)
 321                return -ENOMEM;
 322
 323        error = xfs_iread(mp, tp, ip, flags);
 324        if (error)
 325                goto out_destroy;
 326
 327        trace_xfs_iget_miss(ip);
 328
 329        if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
 330                error = -ENOENT;
 331                goto out_destroy;
 332        }
 333
 334        /*
 335         * Preload the radix tree so we can insert safely under the
 336         * write spinlock. Note that we cannot sleep inside the preload
 337         * region. Since we can be called from transaction context, don't
 338         * recurse into the file system.
 339         */
 340        if (radix_tree_preload(GFP_NOFS)) {
 341                error = -EAGAIN;
 342                goto out_destroy;
 343        }
 344
 345        /*
 346         * Because the inode hasn't been added to the radix-tree yet it can't
 347         * be found by another thread, so we can do the non-sleeping lock here.
 348         */
 349        if (lock_flags) {
 350                if (!xfs_ilock_nowait(ip, lock_flags))
 351                        BUG();
 352        }
 353
 354        /*
 355         * These values must be set before inserting the inode into the radix
 356         * tree as the moment it is inserted a concurrent lookup (allowed by the
 357         * RCU locking mechanism) can find it and that lookup must see that this
 358         * is an inode currently under construction (i.e. that XFS_INEW is set).
 359         * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 360         * memory barrier that ensures this detection works correctly at lookup
 361         * time.
 362         */
 363        iflags = XFS_INEW;
 364        if (flags & XFS_IGET_DONTCACHE)
 365                iflags |= XFS_IDONTCACHE;
 366        ip->i_udquot = NULL;
 367        ip->i_gdquot = NULL;
 368        ip->i_pdquot = NULL;
 369        xfs_iflags_set(ip, iflags);
 370
 371        /* insert the new inode */
 372        spin_lock(&pag->pag_ici_lock);
 373        error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 374        if (unlikely(error)) {
 375                WARN_ON(error != -EEXIST);
 376                XFS_STATS_INC(mp, xs_ig_dup);
 377                error = -EAGAIN;
 378                goto out_preload_end;
 379        }
 380        spin_unlock(&pag->pag_ici_lock);
 381        radix_tree_preload_end();
 382
 383        *ipp = ip;
 384        return 0;
 385
 386out_preload_end:
 387        spin_unlock(&pag->pag_ici_lock);
 388        radix_tree_preload_end();
 389        if (lock_flags)
 390                xfs_iunlock(ip, lock_flags);
 391out_destroy:
 392        __destroy_inode(VFS_I(ip));
 393        xfs_inode_free(ip);
 394        return error;
 395}
 396
 397/*
 398 * Look up an inode by number in the given file system.
 399 * The inode is looked up in the cache held in each AG.
 400 * If the inode is found in the cache, initialise the vfs inode
 401 * if necessary.
 402 *
 403 * If it is not in core, read it in from the file system's device,
 404 * add it to the cache and initialise the vfs inode.
 405 *
 406 * The inode is locked according to the value of the lock_flags parameter.
 407 * This flag parameter indicates how and if the inode's IO lock and inode lock
 408 * should be taken.
 409 *
 410 * mp -- the mount point structure for the current file system.  It points
 411 *       to the inode hash table.
 412 * tp -- a pointer to the current transaction if there is one.  This is
 413 *       simply passed through to the xfs_iread() call.
 414 * ino -- the number of the inode desired.  This is the unique identifier
 415 *        within the file system for the inode being requested.
 416 * lock_flags -- flags indicating how to lock the inode.  See the comment
 417 *               for xfs_ilock() for a list of valid values.
 418 */
 419int
 420xfs_iget(
 421        xfs_mount_t     *mp,
 422        xfs_trans_t     *tp,
 423        xfs_ino_t       ino,
 424        uint            flags,
 425        uint            lock_flags,
 426        xfs_inode_t     **ipp)
 427{
 428        xfs_inode_t     *ip;
 429        int             error;
 430        xfs_perag_t     *pag;
 431        xfs_agino_t     agino;
 432
 433        /*
 434         * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 435         * doesn't get freed while it's being referenced during a
 436         * radix tree traversal here.  It assumes this function
 437         * aqcuires only the ILOCK (and therefore it has no need to
 438         * involve the IOLOCK in this synchronization).
 439         */
 440        ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 441
 442        /* reject inode numbers outside existing AGs */
 443        if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 444                return -EINVAL;
 445
 446        XFS_STATS_INC(mp, xs_ig_attempts);
 447
 448        /* get the perag structure and ensure that it's inode capable */
 449        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 450        agino = XFS_INO_TO_AGINO(mp, ino);
 451
 452again:
 453        error = 0;
 454        rcu_read_lock();
 455        ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 456
 457        if (ip) {
 458                error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 459                if (error)
 460                        goto out_error_or_again;
 461        } else {
 462                rcu_read_unlock();
 463                XFS_STATS_INC(mp, xs_ig_missed);
 464
 465                error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 466                                                        flags, lock_flags);
 467                if (error)
 468                        goto out_error_or_again;
 469        }
 470        xfs_perag_put(pag);
 471
 472        *ipp = ip;
 473
 474        /*
 475         * If we have a real type for an on-disk inode, we can setup the inode
 476         * now.  If it's a new inode being created, xfs_ialloc will handle it.
 477         */
 478        if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 479                xfs_setup_existing_inode(ip);
 480        return 0;
 481
 482out_error_or_again:
 483        if (error == -EAGAIN) {
 484                delay(1);
 485                goto again;
 486        }
 487        xfs_perag_put(pag);
 488        return error;
 489}
 490
 491/*
 492 * The inode lookup is done in batches to keep the amount of lock traffic and
 493 * radix tree lookups to a minimum. The batch size is a trade off between
 494 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 495 * be too greedy.
 496 */
 497#define XFS_LOOKUP_BATCH        32
 498
 499STATIC int
 500xfs_inode_ag_walk_grab(
 501        struct xfs_inode        *ip)
 502{
 503        struct inode            *inode = VFS_I(ip);
 504
 505        ASSERT(rcu_read_lock_held());
 506
 507        /*
 508         * check for stale RCU freed inode
 509         *
 510         * If the inode has been reallocated, it doesn't matter if it's not in
 511         * the AG we are walking - we are walking for writeback, so if it
 512         * passes all the "valid inode" checks and is dirty, then we'll write
 513         * it back anyway.  If it has been reallocated and still being
 514         * initialised, the XFS_INEW check below will catch it.
 515         */
 516        spin_lock(&ip->i_flags_lock);
 517        if (!ip->i_ino)
 518                goto out_unlock_noent;
 519
 520        /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 521        if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
 522                goto out_unlock_noent;
 523        spin_unlock(&ip->i_flags_lock);
 524
 525        /* nothing to sync during shutdown */
 526        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 527                return -EFSCORRUPTED;
 528
 529        /* If we can't grab the inode, it must on it's way to reclaim. */
 530        if (!igrab(inode))
 531                return -ENOENT;
 532
 533        /* inode is valid */
 534        return 0;
 535
 536out_unlock_noent:
 537        spin_unlock(&ip->i_flags_lock);
 538        return -ENOENT;
 539}
 540
 541STATIC int
 542xfs_inode_ag_walk(
 543        struct xfs_mount        *mp,
 544        struct xfs_perag        *pag,
 545        int                     (*execute)(struct xfs_inode *ip, int flags,
 546                                           void *args),
 547        int                     flags,
 548        void                    *args,
 549        int                     tag)
 550{
 551        uint32_t                first_index;
 552        int                     last_error = 0;
 553        int                     skipped;
 554        int                     done;
 555        int                     nr_found;
 556
 557restart:
 558        done = 0;
 559        skipped = 0;
 560        first_index = 0;
 561        nr_found = 0;
 562        do {
 563                struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 564                int             error = 0;
 565                int             i;
 566
 567                rcu_read_lock();
 568
 569                if (tag == -1)
 570                        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 571                                        (void **)batch, first_index,
 572                                        XFS_LOOKUP_BATCH);
 573                else
 574                        nr_found = radix_tree_gang_lookup_tag(
 575                                        &pag->pag_ici_root,
 576                                        (void **) batch, first_index,
 577                                        XFS_LOOKUP_BATCH, tag);
 578
 579                if (!nr_found) {
 580                        rcu_read_unlock();
 581                        break;
 582                }
 583
 584                /*
 585                 * Grab the inodes before we drop the lock. if we found
 586                 * nothing, nr == 0 and the loop will be skipped.
 587                 */
 588                for (i = 0; i < nr_found; i++) {
 589                        struct xfs_inode *ip = batch[i];
 590
 591                        if (done || xfs_inode_ag_walk_grab(ip))
 592                                batch[i] = NULL;
 593
 594                        /*
 595                         * Update the index for the next lookup. Catch
 596                         * overflows into the next AG range which can occur if
 597                         * we have inodes in the last block of the AG and we
 598                         * are currently pointing to the last inode.
 599                         *
 600                         * Because we may see inodes that are from the wrong AG
 601                         * due to RCU freeing and reallocation, only update the
 602                         * index if it lies in this AG. It was a race that lead
 603                         * us to see this inode, so another lookup from the
 604                         * same index will not find it again.
 605                         */
 606                        if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 607                                continue;
 608                        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 609                        if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 610                                done = 1;
 611                }
 612
 613                /* unlock now we've grabbed the inodes. */
 614                rcu_read_unlock();
 615
 616                for (i = 0; i < nr_found; i++) {
 617                        if (!batch[i])
 618                                continue;
 619                        error = execute(batch[i], flags, args);
 620                        IRELE(batch[i]);
 621                        if (error == -EAGAIN) {
 622                                skipped++;
 623                                continue;
 624                        }
 625                        if (error && last_error != -EFSCORRUPTED)
 626                                last_error = error;
 627                }
 628
 629                /* bail out if the filesystem is corrupted.  */
 630                if (error == -EFSCORRUPTED)
 631                        break;
 632
 633                cond_resched();
 634
 635        } while (nr_found && !done);
 636
 637        if (skipped) {
 638                delay(1);
 639                goto restart;
 640        }
 641        return last_error;
 642}
 643
 644/*
 645 * Background scanning to trim post-EOF preallocated space. This is queued
 646 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 647 */
 648STATIC void
 649xfs_queue_eofblocks(
 650        struct xfs_mount *mp)
 651{
 652        rcu_read_lock();
 653        if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 654                queue_delayed_work(mp->m_eofblocks_workqueue,
 655                                   &mp->m_eofblocks_work,
 656                                   msecs_to_jiffies(xfs_eofb_secs * 1000));
 657        rcu_read_unlock();
 658}
 659
 660void
 661xfs_eofblocks_worker(
 662        struct work_struct *work)
 663{
 664        struct xfs_mount *mp = container_of(to_delayed_work(work),
 665                                struct xfs_mount, m_eofblocks_work);
 666        xfs_icache_free_eofblocks(mp, NULL);
 667        xfs_queue_eofblocks(mp);
 668}
 669
 670int
 671xfs_inode_ag_iterator(
 672        struct xfs_mount        *mp,
 673        int                     (*execute)(struct xfs_inode *ip, int flags,
 674                                           void *args),
 675        int                     flags,
 676        void                    *args)
 677{
 678        struct xfs_perag        *pag;
 679        int                     error = 0;
 680        int                     last_error = 0;
 681        xfs_agnumber_t          ag;
 682
 683        ag = 0;
 684        while ((pag = xfs_perag_get(mp, ag))) {
 685                ag = pag->pag_agno + 1;
 686                error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
 687                xfs_perag_put(pag);
 688                if (error) {
 689                        last_error = error;
 690                        if (error == -EFSCORRUPTED)
 691                                break;
 692                }
 693        }
 694        return last_error;
 695}
 696
 697int
 698xfs_inode_ag_iterator_tag(
 699        struct xfs_mount        *mp,
 700        int                     (*execute)(struct xfs_inode *ip, int flags,
 701                                           void *args),
 702        int                     flags,
 703        void                    *args,
 704        int                     tag)
 705{
 706        struct xfs_perag        *pag;
 707        int                     error = 0;
 708        int                     last_error = 0;
 709        xfs_agnumber_t          ag;
 710
 711        ag = 0;
 712        while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 713                ag = pag->pag_agno + 1;
 714                error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
 715                xfs_perag_put(pag);
 716                if (error) {
 717                        last_error = error;
 718                        if (error == -EFSCORRUPTED)
 719                                break;
 720                }
 721        }
 722        return last_error;
 723}
 724
 725/*
 726 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 727 * isn't a reclaim pass already in progress. By default it runs every 5s based
 728 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 729 * tunable, but that can be done if this method proves to be ineffective or too
 730 * aggressive.
 731 */
 732static void
 733xfs_reclaim_work_queue(
 734        struct xfs_mount        *mp)
 735{
 736
 737        rcu_read_lock();
 738        if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 739                queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 740                        msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 741        }
 742        rcu_read_unlock();
 743}
 744
 745/*
 746 * This is a fast pass over the inode cache to try to get reclaim moving on as
 747 * many inodes as possible in a short period of time. It kicks itself every few
 748 * seconds, as well as being kicked by the inode cache shrinker when memory
 749 * goes low. It scans as quickly as possible avoiding locked inodes or those
 750 * already being flushed, and once done schedules a future pass.
 751 */
 752void
 753xfs_reclaim_worker(
 754        struct work_struct *work)
 755{
 756        struct xfs_mount *mp = container_of(to_delayed_work(work),
 757                                        struct xfs_mount, m_reclaim_work);
 758
 759        xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 760        xfs_reclaim_work_queue(mp);
 761}
 762
 763static void
 764__xfs_inode_set_reclaim_tag(
 765        struct xfs_perag        *pag,
 766        struct xfs_inode        *ip)
 767{
 768        radix_tree_tag_set(&pag->pag_ici_root,
 769                           XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 770                           XFS_ICI_RECLAIM_TAG);
 771
 772        if (!pag->pag_ici_reclaimable) {
 773                /* propagate the reclaim tag up into the perag radix tree */
 774                spin_lock(&ip->i_mount->m_perag_lock);
 775                radix_tree_tag_set(&ip->i_mount->m_perag_tree,
 776                                XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 777                                XFS_ICI_RECLAIM_TAG);
 778                spin_unlock(&ip->i_mount->m_perag_lock);
 779
 780                /* schedule periodic background inode reclaim */
 781                xfs_reclaim_work_queue(ip->i_mount);
 782
 783                trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
 784                                                        -1, _RET_IP_);
 785        }
 786        pag->pag_ici_reclaimable++;
 787}
 788
 789/*
 790 * We set the inode flag atomically with the radix tree tag.
 791 * Once we get tag lookups on the radix tree, this inode flag
 792 * can go away.
 793 */
 794void
 795xfs_inode_set_reclaim_tag(
 796        xfs_inode_t     *ip)
 797{
 798        struct xfs_mount *mp = ip->i_mount;
 799        struct xfs_perag *pag;
 800
 801        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 802        spin_lock(&pag->pag_ici_lock);
 803        spin_lock(&ip->i_flags_lock);
 804        __xfs_inode_set_reclaim_tag(pag, ip);
 805        __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 806        spin_unlock(&ip->i_flags_lock);
 807        spin_unlock(&pag->pag_ici_lock);
 808        xfs_perag_put(pag);
 809}
 810
 811STATIC void
 812__xfs_inode_clear_reclaim(
 813        xfs_perag_t     *pag,
 814        xfs_inode_t     *ip)
 815{
 816        pag->pag_ici_reclaimable--;
 817        if (!pag->pag_ici_reclaimable) {
 818                /* clear the reclaim tag from the perag radix tree */
 819                spin_lock(&ip->i_mount->m_perag_lock);
 820                radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
 821                                XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 822                                XFS_ICI_RECLAIM_TAG);
 823                spin_unlock(&ip->i_mount->m_perag_lock);
 824                trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
 825                                                        -1, _RET_IP_);
 826        }
 827}
 828
 829STATIC void
 830__xfs_inode_clear_reclaim_tag(
 831        xfs_mount_t     *mp,
 832        xfs_perag_t     *pag,
 833        xfs_inode_t     *ip)
 834{
 835        radix_tree_tag_clear(&pag->pag_ici_root,
 836                        XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
 837        __xfs_inode_clear_reclaim(pag, ip);
 838}
 839
 840/*
 841 * Grab the inode for reclaim exclusively.
 842 * Return 0 if we grabbed it, non-zero otherwise.
 843 */
 844STATIC int
 845xfs_reclaim_inode_grab(
 846        struct xfs_inode        *ip,
 847        int                     flags)
 848{
 849        ASSERT(rcu_read_lock_held());
 850
 851        /* quick check for stale RCU freed inode */
 852        if (!ip->i_ino)
 853                return 1;
 854
 855        /*
 856         * If we are asked for non-blocking operation, do unlocked checks to
 857         * see if the inode already is being flushed or in reclaim to avoid
 858         * lock traffic.
 859         */
 860        if ((flags & SYNC_TRYLOCK) &&
 861            __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
 862                return 1;
 863
 864        /*
 865         * The radix tree lock here protects a thread in xfs_iget from racing
 866         * with us starting reclaim on the inode.  Once we have the
 867         * XFS_IRECLAIM flag set it will not touch us.
 868         *
 869         * Due to RCU lookup, we may find inodes that have been freed and only
 870         * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
 871         * aren't candidates for reclaim at all, so we must check the
 872         * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
 873         */
 874        spin_lock(&ip->i_flags_lock);
 875        if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 876            __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 877                /* not a reclaim candidate. */
 878                spin_unlock(&ip->i_flags_lock);
 879                return 1;
 880        }
 881        __xfs_iflags_set(ip, XFS_IRECLAIM);
 882        spin_unlock(&ip->i_flags_lock);
 883        return 0;
 884}
 885
 886/*
 887 * Inodes in different states need to be treated differently. The following
 888 * table lists the inode states and the reclaim actions necessary:
 889 *
 890 *      inode state          iflush ret         required action
 891 *      ---------------      ----------         ---------------
 892 *      bad                     -               reclaim
 893 *      shutdown                EIO             unpin and reclaim
 894 *      clean, unpinned         0               reclaim
 895 *      stale, unpinned         0               reclaim
 896 *      clean, pinned(*)        0               requeue
 897 *      stale, pinned           EAGAIN          requeue
 898 *      dirty, async            -               requeue
 899 *      dirty, sync             0               reclaim
 900 *
 901 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 902 * handled anyway given the order of checks implemented.
 903 *
 904 * Also, because we get the flush lock first, we know that any inode that has
 905 * been flushed delwri has had the flush completed by the time we check that
 906 * the inode is clean.
 907 *
 908 * Note that because the inode is flushed delayed write by AIL pushing, the
 909 * flush lock may already be held here and waiting on it can result in very
 910 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 911 * the caller should push the AIL first before trying to reclaim inodes to
 912 * minimise the amount of time spent waiting.  For background relaim, we only
 913 * bother to reclaim clean inodes anyway.
 914 *
 915 * Hence the order of actions after gaining the locks should be:
 916 *      bad             => reclaim
 917 *      shutdown        => unpin and reclaim
 918 *      pinned, async   => requeue
 919 *      pinned, sync    => unpin
 920 *      stale           => reclaim
 921 *      clean           => reclaim
 922 *      dirty, async    => requeue
 923 *      dirty, sync     => flush, wait and reclaim
 924 */
 925STATIC int
 926xfs_reclaim_inode(
 927        struct xfs_inode        *ip,
 928        struct xfs_perag        *pag,
 929        int                     sync_mode)
 930{
 931        struct xfs_buf          *bp = NULL;
 932        int                     error;
 933
 934restart:
 935        error = 0;
 936        xfs_ilock(ip, XFS_ILOCK_EXCL);
 937        if (!xfs_iflock_nowait(ip)) {
 938                if (!(sync_mode & SYNC_WAIT))
 939                        goto out;
 940                xfs_iflock(ip);
 941        }
 942
 943        if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 944                xfs_iunpin_wait(ip);
 945                xfs_iflush_abort(ip, false);
 946                goto reclaim;
 947        }
 948        if (xfs_ipincount(ip)) {
 949                if (!(sync_mode & SYNC_WAIT))
 950                        goto out_ifunlock;
 951                xfs_iunpin_wait(ip);
 952        }
 953        if (xfs_iflags_test(ip, XFS_ISTALE))
 954                goto reclaim;
 955        if (xfs_inode_clean(ip))
 956                goto reclaim;
 957
 958        /*
 959         * Never flush out dirty data during non-blocking reclaim, as it would
 960         * just contend with AIL pushing trying to do the same job.
 961         */
 962        if (!(sync_mode & SYNC_WAIT))
 963                goto out_ifunlock;
 964
 965        /*
 966         * Now we have an inode that needs flushing.
 967         *
 968         * Note that xfs_iflush will never block on the inode buffer lock, as
 969         * xfs_ifree_cluster() can lock the inode buffer before it locks the
 970         * ip->i_lock, and we are doing the exact opposite here.  As a result,
 971         * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
 972         * result in an ABBA deadlock with xfs_ifree_cluster().
 973         *
 974         * As xfs_ifree_cluser() must gather all inodes that are active in the
 975         * cache to mark them stale, if we hit this case we don't actually want
 976         * to do IO here - we want the inode marked stale so we can simply
 977         * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
 978         * inode, back off and try again.  Hopefully the next pass through will
 979         * see the stale flag set on the inode.
 980         */
 981        error = xfs_iflush(ip, &bp);
 982        if (error == -EAGAIN) {
 983                xfs_iunlock(ip, XFS_ILOCK_EXCL);
 984                /* backoff longer than in xfs_ifree_cluster */
 985                delay(2);
 986                goto restart;
 987        }
 988
 989        if (!error) {
 990                error = xfs_bwrite(bp);
 991                xfs_buf_relse(bp);
 992        }
 993
 994        xfs_iflock(ip);
 995reclaim:
 996        xfs_ifunlock(ip);
 997        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 998
 999        XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1000        /*
1001         * Remove the inode from the per-AG radix tree.
1002         *
1003         * Because radix_tree_delete won't complain even if the item was never
1004         * added to the tree assert that it's been there before to catch
1005         * problems with the inode life time early on.
1006         */
1007        spin_lock(&pag->pag_ici_lock);
1008        if (!radix_tree_delete(&pag->pag_ici_root,
1009                                XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
1010                ASSERT(0);
1011        __xfs_inode_clear_reclaim(pag, ip);
1012        spin_unlock(&pag->pag_ici_lock);
1013
1014        /*
1015         * Here we do an (almost) spurious inode lock in order to coordinate
1016         * with inode cache radix tree lookups.  This is because the lookup
1017         * can reference the inodes in the cache without taking references.
1018         *
1019         * We make that OK here by ensuring that we wait until the inode is
1020         * unlocked after the lookup before we go ahead and free it.
1021         */
1022        xfs_ilock(ip, XFS_ILOCK_EXCL);
1023        xfs_qm_dqdetach(ip);
1024        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1025
1026        xfs_inode_free(ip);
1027        return error;
1028
1029out_ifunlock:
1030        xfs_ifunlock(ip);
1031out:
1032        xfs_iflags_clear(ip, XFS_IRECLAIM);
1033        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1034        /*
1035         * We could return -EAGAIN here to make reclaim rescan the inode tree in
1036         * a short while. However, this just burns CPU time scanning the tree
1037         * waiting for IO to complete and the reclaim work never goes back to
1038         * the idle state. Instead, return 0 to let the next scheduled
1039         * background reclaim attempt to reclaim the inode again.
1040         */
1041        return 0;
1042}
1043
1044/*
1045 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1046 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1047 * then a shut down during filesystem unmount reclaim walk leak all the
1048 * unreclaimed inodes.
1049 */
1050STATIC int
1051xfs_reclaim_inodes_ag(
1052        struct xfs_mount        *mp,
1053        int                     flags,
1054        int                     *nr_to_scan)
1055{
1056        struct xfs_perag        *pag;
1057        int                     error = 0;
1058        int                     last_error = 0;
1059        xfs_agnumber_t          ag;
1060        int                     trylock = flags & SYNC_TRYLOCK;
1061        int                     skipped;
1062
1063restart:
1064        ag = 0;
1065        skipped = 0;
1066        while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1067                unsigned long   first_index = 0;
1068                int             done = 0;
1069                int             nr_found = 0;
1070
1071                ag = pag->pag_agno + 1;
1072
1073                if (trylock) {
1074                        if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1075                                skipped++;
1076                                xfs_perag_put(pag);
1077                                continue;
1078                        }
1079                        first_index = pag->pag_ici_reclaim_cursor;
1080                } else
1081                        mutex_lock(&pag->pag_ici_reclaim_lock);
1082
1083                do {
1084                        struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1085                        int     i;
1086
1087                        rcu_read_lock();
1088                        nr_found = radix_tree_gang_lookup_tag(
1089                                        &pag->pag_ici_root,
1090                                        (void **)batch, first_index,
1091                                        XFS_LOOKUP_BATCH,
1092                                        XFS_ICI_RECLAIM_TAG);
1093                        if (!nr_found) {
1094                                done = 1;
1095                                rcu_read_unlock();
1096                                break;
1097                        }
1098
1099                        /*
1100                         * Grab the inodes before we drop the lock. if we found
1101                         * nothing, nr == 0 and the loop will be skipped.
1102                         */
1103                        for (i = 0; i < nr_found; i++) {
1104                                struct xfs_inode *ip = batch[i];
1105
1106                                if (done || xfs_reclaim_inode_grab(ip, flags))
1107                                        batch[i] = NULL;
1108
1109                                /*
1110                                 * Update the index for the next lookup. Catch
1111                                 * overflows into the next AG range which can
1112                                 * occur if we have inodes in the last block of
1113                                 * the AG and we are currently pointing to the
1114                                 * last inode.
1115                                 *
1116                                 * Because we may see inodes that are from the
1117                                 * wrong AG due to RCU freeing and
1118                                 * reallocation, only update the index if it
1119                                 * lies in this AG. It was a race that lead us
1120                                 * to see this inode, so another lookup from
1121                                 * the same index will not find it again.
1122                                 */
1123                                if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1124                                                                pag->pag_agno)
1125                                        continue;
1126                                first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1127                                if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1128                                        done = 1;
1129                        }
1130
1131                        /* unlock now we've grabbed the inodes. */
1132                        rcu_read_unlock();
1133
1134                        for (i = 0; i < nr_found; i++) {
1135                                if (!batch[i])
1136                                        continue;
1137                                error = xfs_reclaim_inode(batch[i], pag, flags);
1138                                if (error && last_error != -EFSCORRUPTED)
1139                                        last_error = error;
1140                        }
1141
1142                        *nr_to_scan -= XFS_LOOKUP_BATCH;
1143
1144                        cond_resched();
1145
1146                } while (nr_found && !done && *nr_to_scan > 0);
1147
1148                if (trylock && !done)
1149                        pag->pag_ici_reclaim_cursor = first_index;
1150                else
1151                        pag->pag_ici_reclaim_cursor = 0;
1152                mutex_unlock(&pag->pag_ici_reclaim_lock);
1153                xfs_perag_put(pag);
1154        }
1155
1156        /*
1157         * if we skipped any AG, and we still have scan count remaining, do
1158         * another pass this time using blocking reclaim semantics (i.e
1159         * waiting on the reclaim locks and ignoring the reclaim cursors). This
1160         * ensure that when we get more reclaimers than AGs we block rather
1161         * than spin trying to execute reclaim.
1162         */
1163        if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1164                trylock = 0;
1165                goto restart;
1166        }
1167        return last_error;
1168}
1169
1170int
1171xfs_reclaim_inodes(
1172        xfs_mount_t     *mp,
1173        int             mode)
1174{
1175        int             nr_to_scan = INT_MAX;
1176
1177        return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1178}
1179
1180/*
1181 * Scan a certain number of inodes for reclaim.
1182 *
1183 * When called we make sure that there is a background (fast) inode reclaim in
1184 * progress, while we will throttle the speed of reclaim via doing synchronous
1185 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1186 * them to be cleaned, which we hope will not be very long due to the
1187 * background walker having already kicked the IO off on those dirty inodes.
1188 */
1189long
1190xfs_reclaim_inodes_nr(
1191        struct xfs_mount        *mp,
1192        int                     nr_to_scan)
1193{
1194        /* kick background reclaimer and push the AIL */
1195        xfs_reclaim_work_queue(mp);
1196        xfs_ail_push_all(mp->m_ail);
1197
1198        return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1199}
1200
1201/*
1202 * Return the number of reclaimable inodes in the filesystem for
1203 * the shrinker to determine how much to reclaim.
1204 */
1205int
1206xfs_reclaim_inodes_count(
1207        struct xfs_mount        *mp)
1208{
1209        struct xfs_perag        *pag;
1210        xfs_agnumber_t          ag = 0;
1211        int                     reclaimable = 0;
1212
1213        while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1214                ag = pag->pag_agno + 1;
1215                reclaimable += pag->pag_ici_reclaimable;
1216                xfs_perag_put(pag);
1217        }
1218        return reclaimable;
1219}
1220
1221STATIC int
1222xfs_inode_match_id(
1223        struct xfs_inode        *ip,
1224        struct xfs_eofblocks    *eofb)
1225{
1226        if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1227            !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1228                return 0;
1229
1230        if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1231            !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1232                return 0;
1233
1234        if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1235            xfs_get_projid(ip) != eofb->eof_prid)
1236                return 0;
1237
1238        return 1;
1239}
1240
1241/*
1242 * A union-based inode filtering algorithm. Process the inode if any of the
1243 * criteria match. This is for global/internal scans only.
1244 */
1245STATIC int
1246xfs_inode_match_id_union(
1247        struct xfs_inode        *ip,
1248        struct xfs_eofblocks    *eofb)
1249{
1250        if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1251            uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1252                return 1;
1253
1254        if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1255            gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1256                return 1;
1257
1258        if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1259            xfs_get_projid(ip) == eofb->eof_prid)
1260                return 1;
1261
1262        return 0;
1263}
1264
1265STATIC int
1266xfs_inode_free_eofblocks(
1267        struct xfs_inode        *ip,
1268        int                     flags,
1269        void                    *args)
1270{
1271        int ret;
1272        struct xfs_eofblocks *eofb = args;
1273        bool need_iolock = true;
1274        int match;
1275
1276        ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1277
1278        if (!xfs_can_free_eofblocks(ip, false)) {
1279                /* inode could be preallocated or append-only */
1280                trace_xfs_inode_free_eofblocks_invalid(ip);
1281                xfs_inode_clear_eofblocks_tag(ip);
1282                return 0;
1283        }
1284
1285        /*
1286         * If the mapping is dirty the operation can block and wait for some
1287         * time. Unless we are waiting, skip it.
1288         */
1289        if (!(flags & SYNC_WAIT) &&
1290            mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1291                return 0;
1292
1293        if (eofb) {
1294                if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1295                        match = xfs_inode_match_id_union(ip, eofb);
1296                else
1297                        match = xfs_inode_match_id(ip, eofb);
1298                if (!match)
1299                        return 0;
1300
1301                /* skip the inode if the file size is too small */
1302                if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1303                    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1304                        return 0;
1305
1306                /*
1307                 * A scan owner implies we already hold the iolock. Skip it in
1308                 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1309                 * the possibility of EAGAIN being returned.
1310                 */
1311                if (eofb->eof_scan_owner == ip->i_ino)
1312                        need_iolock = false;
1313        }
1314
1315        ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1316
1317        /* don't revisit the inode if we're not waiting */
1318        if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1319                ret = 0;
1320
1321        return ret;
1322}
1323
1324int
1325xfs_icache_free_eofblocks(
1326        struct xfs_mount        *mp,
1327        struct xfs_eofblocks    *eofb)
1328{
1329        int flags = SYNC_TRYLOCK;
1330
1331        if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1332                flags = SYNC_WAIT;
1333
1334        return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1335                                         eofb, XFS_ICI_EOFBLOCKS_TAG);
1336}
1337
1338/*
1339 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1340 * multiple quotas, we don't know exactly which quota caused an allocation
1341 * failure. We make a best effort by including each quota under low free space
1342 * conditions (less than 1% free space) in the scan.
1343 */
1344int
1345xfs_inode_free_quota_eofblocks(
1346        struct xfs_inode *ip)
1347{
1348        int scan = 0;
1349        struct xfs_eofblocks eofb = {0};
1350        struct xfs_dquot *dq;
1351
1352        ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1353
1354        /*
1355         * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1356         * can repeatedly trylock on the inode we're currently processing. We
1357         * run a sync scan to increase effectiveness and use the union filter to
1358         * cover all applicable quotas in a single scan.
1359         */
1360        eofb.eof_scan_owner = ip->i_ino;
1361        eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1362
1363        if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1364                dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1365                if (dq && xfs_dquot_lowsp(dq)) {
1366                        eofb.eof_uid = VFS_I(ip)->i_uid;
1367                        eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1368                        scan = 1;
1369                }
1370        }
1371
1372        if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1373                dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1374                if (dq && xfs_dquot_lowsp(dq)) {
1375                        eofb.eof_gid = VFS_I(ip)->i_gid;
1376                        eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1377                        scan = 1;
1378                }
1379        }
1380
1381        if (scan)
1382                xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1383
1384        return scan;
1385}
1386
1387void
1388xfs_inode_set_eofblocks_tag(
1389        xfs_inode_t     *ip)
1390{
1391        struct xfs_mount *mp = ip->i_mount;
1392        struct xfs_perag *pag;
1393        int tagged;
1394
1395        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1396        spin_lock(&pag->pag_ici_lock);
1397        trace_xfs_inode_set_eofblocks_tag(ip);
1398
1399        tagged = radix_tree_tagged(&pag->pag_ici_root,
1400                                   XFS_ICI_EOFBLOCKS_TAG);
1401        radix_tree_tag_set(&pag->pag_ici_root,
1402                           XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1403                           XFS_ICI_EOFBLOCKS_TAG);
1404        if (!tagged) {
1405                /* propagate the eofblocks tag up into the perag radix tree */
1406                spin_lock(&ip->i_mount->m_perag_lock);
1407                radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1408                                   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1409                                   XFS_ICI_EOFBLOCKS_TAG);
1410                spin_unlock(&ip->i_mount->m_perag_lock);
1411
1412                /* kick off background trimming */
1413                xfs_queue_eofblocks(ip->i_mount);
1414
1415                trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1416                                              -1, _RET_IP_);
1417        }
1418
1419        spin_unlock(&pag->pag_ici_lock);
1420        xfs_perag_put(pag);
1421}
1422
1423void
1424xfs_inode_clear_eofblocks_tag(
1425        xfs_inode_t     *ip)
1426{
1427        struct xfs_mount *mp = ip->i_mount;
1428        struct xfs_perag *pag;
1429
1430        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1431        spin_lock(&pag->pag_ici_lock);
1432        trace_xfs_inode_clear_eofblocks_tag(ip);
1433
1434        radix_tree_tag_clear(&pag->pag_ici_root,
1435                             XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1436                             XFS_ICI_EOFBLOCKS_TAG);
1437        if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1438                /* clear the eofblocks tag from the perag radix tree */
1439                spin_lock(&ip->i_mount->m_perag_lock);
1440                radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1441                                     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1442                                     XFS_ICI_EOFBLOCKS_TAG);
1443                spin_unlock(&ip->i_mount->m_perag_lock);
1444                trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1445                                               -1, _RET_IP_);
1446        }
1447
1448        spin_unlock(&pag->pag_ici_lock);
1449        xfs_perag_put(pag);
1450}
1451
1452