linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_sb.h"
  27#include "xfs_mount.h"
  28#include "xfs_inode.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_attr_sf.h"
  33#include "xfs_attr.h"
  34#include "xfs_trans_space.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_bmap_util.h"
  41#include "xfs_error.h"
  42#include "xfs_quota.h"
  43#include "xfs_filestream.h"
  44#include "xfs_cksum.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_symlink.h"
  48#include "xfs_trans_priv.h"
  49#include "xfs_log.h"
  50#include "xfs_bmap_btree.h"
  51
  52kmem_zone_t *xfs_inode_zone;
  53
  54/*
  55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  56 * freed from a file in a single transaction.
  57 */
  58#define XFS_ITRUNC_MAX_EXTENTS  2
  59
  60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  63
  64/*
  65 * helper function to extract extent size hint from inode
  66 */
  67xfs_extlen_t
  68xfs_get_extsz_hint(
  69        struct xfs_inode        *ip)
  70{
  71        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  72                return ip->i_d.di_extsize;
  73        if (XFS_IS_REALTIME_INODE(ip))
  74                return ip->i_mount->m_sb.sb_rextsize;
  75        return 0;
  76}
  77
  78/*
  79 * These two are wrapper routines around the xfs_ilock() routine used to
  80 * centralize some grungy code.  They are used in places that wish to lock the
  81 * inode solely for reading the extents.  The reason these places can't just
  82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  83 * bringing in of the extents from disk for a file in b-tree format.  If the
  84 * inode is in b-tree format, then we need to lock the inode exclusively until
  85 * the extents are read in.  Locking it exclusively all the time would limit
  86 * our parallelism unnecessarily, though.  What we do instead is check to see
  87 * if the extents have been read in yet, and only lock the inode exclusively
  88 * if they have not.
  89 *
  90 * The functions return a value which should be given to the corresponding
  91 * xfs_iunlock() call.
  92 */
  93uint
  94xfs_ilock_data_map_shared(
  95        struct xfs_inode        *ip)
  96{
  97        uint                    lock_mode = XFS_ILOCK_SHARED;
  98
  99        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 100            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 101                lock_mode = XFS_ILOCK_EXCL;
 102        xfs_ilock(ip, lock_mode);
 103        return lock_mode;
 104}
 105
 106uint
 107xfs_ilock_attr_map_shared(
 108        struct xfs_inode        *ip)
 109{
 110        uint                    lock_mode = XFS_ILOCK_SHARED;
 111
 112        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 113            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 114                lock_mode = XFS_ILOCK_EXCL;
 115        xfs_ilock(ip, lock_mode);
 116        return lock_mode;
 117}
 118
 119/*
 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 121 * the i_lock.  This routine allows various combinations of the locks to be
 122 * obtained.
 123 *
 124 * The 3 locks should always be ordered so that the IO lock is obtained first,
 125 * the mmap lock second and the ilock last in order to prevent deadlock.
 126 *
 127 * Basic locking order:
 128 *
 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 130 *
 131 * mmap_sem locking order:
 132 *
 133 * i_iolock -> page lock -> mmap_sem
 134 * mmap_sem -> i_mmap_lock -> page_lock
 135 *
 136 * The difference in mmap_sem locking order mean that we cannot hold the
 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 139 * in get_user_pages() to map the user pages into the kernel address space for
 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 141 * page faults already hold the mmap_sem.
 142 *
 143 * Hence to serialise fully against both syscall and mmap based IO, we need to
 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 145 * taken in places where we need to invalidate the page cache in a race
 146 * free manner (e.g. truncate, hole punch and other extent manipulation
 147 * functions).
 148 */
 149void
 150xfs_ilock(
 151        xfs_inode_t             *ip,
 152        uint                    lock_flags)
 153{
 154        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 155
 156        /*
 157         * You can't set both SHARED and EXCL for the same lock,
 158         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 159         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 160         */
 161        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 162               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 163        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 164               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 165        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 166               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 167        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 168
 169        if (lock_flags & XFS_IOLOCK_EXCL)
 170                mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 171        else if (lock_flags & XFS_IOLOCK_SHARED)
 172                mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 173
 174        if (lock_flags & XFS_MMAPLOCK_EXCL)
 175                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 176        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 177                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 178
 179        if (lock_flags & XFS_ILOCK_EXCL)
 180                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 181        else if (lock_flags & XFS_ILOCK_SHARED)
 182                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 183}
 184
 185/*
 186 * This is just like xfs_ilock(), except that the caller
 187 * is guaranteed not to sleep.  It returns 1 if it gets
 188 * the requested locks and 0 otherwise.  If the IO lock is
 189 * obtained but the inode lock cannot be, then the IO lock
 190 * is dropped before returning.
 191 *
 192 * ip -- the inode being locked
 193 * lock_flags -- this parameter indicates the inode's locks to be
 194 *       to be locked.  See the comment for xfs_ilock() for a list
 195 *       of valid values.
 196 */
 197int
 198xfs_ilock_nowait(
 199        xfs_inode_t             *ip,
 200        uint                    lock_flags)
 201{
 202        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 203
 204        /*
 205         * You can't set both SHARED and EXCL for the same lock,
 206         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 207         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 208         */
 209        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 210               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 211        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 212               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 213        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 214               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 215        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 216
 217        if (lock_flags & XFS_IOLOCK_EXCL) {
 218                if (!mrtryupdate(&ip->i_iolock))
 219                        goto out;
 220        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 221                if (!mrtryaccess(&ip->i_iolock))
 222                        goto out;
 223        }
 224
 225        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 226                if (!mrtryupdate(&ip->i_mmaplock))
 227                        goto out_undo_iolock;
 228        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 229                if (!mrtryaccess(&ip->i_mmaplock))
 230                        goto out_undo_iolock;
 231        }
 232
 233        if (lock_flags & XFS_ILOCK_EXCL) {
 234                if (!mrtryupdate(&ip->i_lock))
 235                        goto out_undo_mmaplock;
 236        } else if (lock_flags & XFS_ILOCK_SHARED) {
 237                if (!mrtryaccess(&ip->i_lock))
 238                        goto out_undo_mmaplock;
 239        }
 240        return 1;
 241
 242out_undo_mmaplock:
 243        if (lock_flags & XFS_MMAPLOCK_EXCL)
 244                mrunlock_excl(&ip->i_mmaplock);
 245        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 246                mrunlock_shared(&ip->i_mmaplock);
 247out_undo_iolock:
 248        if (lock_flags & XFS_IOLOCK_EXCL)
 249                mrunlock_excl(&ip->i_iolock);
 250        else if (lock_flags & XFS_IOLOCK_SHARED)
 251                mrunlock_shared(&ip->i_iolock);
 252out:
 253        return 0;
 254}
 255
 256/*
 257 * xfs_iunlock() is used to drop the inode locks acquired with
 258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 260 * that we know which locks to drop.
 261 *
 262 * ip -- the inode being unlocked
 263 * lock_flags -- this parameter indicates the inode's locks to be
 264 *       to be unlocked.  See the comment for xfs_ilock() for a list
 265 *       of valid values for this parameter.
 266 *
 267 */
 268void
 269xfs_iunlock(
 270        xfs_inode_t             *ip,
 271        uint                    lock_flags)
 272{
 273        /*
 274         * You can't set both SHARED and EXCL for the same lock,
 275         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 276         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 277         */
 278        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 279               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 280        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 281               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 282        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 283               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 284        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 285        ASSERT(lock_flags != 0);
 286
 287        if (lock_flags & XFS_IOLOCK_EXCL)
 288                mrunlock_excl(&ip->i_iolock);
 289        else if (lock_flags & XFS_IOLOCK_SHARED)
 290                mrunlock_shared(&ip->i_iolock);
 291
 292        if (lock_flags & XFS_MMAPLOCK_EXCL)
 293                mrunlock_excl(&ip->i_mmaplock);
 294        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 295                mrunlock_shared(&ip->i_mmaplock);
 296
 297        if (lock_flags & XFS_ILOCK_EXCL)
 298                mrunlock_excl(&ip->i_lock);
 299        else if (lock_flags & XFS_ILOCK_SHARED)
 300                mrunlock_shared(&ip->i_lock);
 301
 302        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 303}
 304
 305/*
 306 * give up write locks.  the i/o lock cannot be held nested
 307 * if it is being demoted.
 308 */
 309void
 310xfs_ilock_demote(
 311        xfs_inode_t             *ip,
 312        uint                    lock_flags)
 313{
 314        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 315        ASSERT((lock_flags &
 316                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 317
 318        if (lock_flags & XFS_ILOCK_EXCL)
 319                mrdemote(&ip->i_lock);
 320        if (lock_flags & XFS_MMAPLOCK_EXCL)
 321                mrdemote(&ip->i_mmaplock);
 322        if (lock_flags & XFS_IOLOCK_EXCL)
 323                mrdemote(&ip->i_iolock);
 324
 325        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 326}
 327
 328#if defined(DEBUG) || defined(XFS_WARN)
 329int
 330xfs_isilocked(
 331        xfs_inode_t             *ip,
 332        uint                    lock_flags)
 333{
 334        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 335                if (!(lock_flags & XFS_ILOCK_SHARED))
 336                        return !!ip->i_lock.mr_writer;
 337                return rwsem_is_locked(&ip->i_lock.mr_lock);
 338        }
 339
 340        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 341                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 342                        return !!ip->i_mmaplock.mr_writer;
 343                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 344        }
 345
 346        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 347                if (!(lock_flags & XFS_IOLOCK_SHARED))
 348                        return !!ip->i_iolock.mr_writer;
 349                return rwsem_is_locked(&ip->i_iolock.mr_lock);
 350        }
 351
 352        ASSERT(0);
 353        return 0;
 354}
 355#endif
 356
 357#ifdef DEBUG
 358int xfs_locked_n;
 359int xfs_small_retries;
 360int xfs_middle_retries;
 361int xfs_lots_retries;
 362int xfs_lock_delays;
 363#endif
 364
 365/*
 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 369 * errors and warnings.
 370 */
 371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 372static bool
 373xfs_lockdep_subclass_ok(
 374        int subclass)
 375{
 376        return subclass < MAX_LOCKDEP_SUBCLASSES;
 377}
 378#else
 379#define xfs_lockdep_subclass_ok(subclass)       (true)
 380#endif
 381
 382/*
 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 384 * value. This can be called for any type of inode lock combination, including
 385 * parent locking. Care must be taken to ensure we don't overrun the subclass
 386 * storage fields in the class mask we build.
 387 */
 388static inline int
 389xfs_lock_inumorder(int lock_mode, int subclass)
 390{
 391        int     class = 0;
 392
 393        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 394                              XFS_ILOCK_RTSUM)));
 395        ASSERT(xfs_lockdep_subclass_ok(subclass));
 396
 397        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 398                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 399                ASSERT(xfs_lockdep_subclass_ok(subclass +
 400                                                XFS_IOLOCK_PARENT_VAL));
 401                class += subclass << XFS_IOLOCK_SHIFT;
 402                if (lock_mode & XFS_IOLOCK_PARENT)
 403                        class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 404        }
 405
 406        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 407                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 408                class += subclass << XFS_MMAPLOCK_SHIFT;
 409        }
 410
 411        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 412                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 413                class += subclass << XFS_ILOCK_SHIFT;
 414        }
 415
 416        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 417}
 418
 419/*
 420 * The following routine will lock n inodes in exclusive mode.  We assume the
 421 * caller calls us with the inodes in i_ino order.
 422 *
 423 * We need to detect deadlock where an inode that we lock is in the AIL and we
 424 * start waiting for another inode that is locked by a thread in a long running
 425 * transaction (such as truncate). This can result in deadlock since the long
 426 * running trans might need to wait for the inode we just locked in order to
 427 * push the tail and free space in the log.
 428 *
 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 431 * lock more than one at a time, lockdep will report false positives saying we
 432 * have violated locking orders.
 433 */
 434void
 435xfs_lock_inodes(
 436        xfs_inode_t     **ips,
 437        int             inodes,
 438        uint            lock_mode)
 439{
 440        int             attempts = 0, i, j, try_lock;
 441        xfs_log_item_t  *lp;
 442
 443        /*
 444         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 445         * support an arbitrary depth of locking here, but absolute limits on
 446         * inodes depend on the the type of locking and the limits placed by
 447         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 448         * the asserts.
 449         */
 450        ASSERT(ips && inodes >= 2 && inodes <= 5);
 451        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 452                            XFS_ILOCK_EXCL));
 453        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 454                              XFS_ILOCK_SHARED)));
 455        ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 456                inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 457        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462        if (lock_mode & XFS_IOLOCK_EXCL) {
 463                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467        try_lock = 0;
 468        i = 0;
 469again:
 470        for (; i < inodes; i++) {
 471                ASSERT(ips[i]);
 472
 473                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 474                        continue;
 475
 476                /*
 477                 * If try_lock is not set yet, make sure all locked inodes are
 478                 * not in the AIL.  If any are, set try_lock to be used later.
 479                 */
 480                if (!try_lock) {
 481                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 483                                if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 484                                        try_lock++;
 485                        }
 486                }
 487
 488                /*
 489                 * If any of the previous locks we have locked is in the AIL,
 490                 * we must TRY to get the second and subsequent locks. If
 491                 * we can't get any, we must release all we have
 492                 * and try again.
 493                 */
 494                if (!try_lock) {
 495                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496                        continue;
 497                }
 498
 499                /* try_lock means we have an inode locked that is in the AIL. */
 500                ASSERT(i != 0);
 501                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502                        continue;
 503
 504                /*
 505                 * Unlock all previous guys and try again.  xfs_iunlock will try
 506                 * to push the tail if the inode is in the AIL.
 507                 */
 508                attempts++;
 509                for (j = i - 1; j >= 0; j--) {
 510                        /*
 511                         * Check to see if we've already unlocked this one.  Not
 512                         * the first one going back, and the inode ptr is the
 513                         * same.
 514                         */
 515                        if (j != (i - 1) && ips[j] == ips[j + 1])
 516                                continue;
 517
 518                        xfs_iunlock(ips[j], lock_mode);
 519                }
 520
 521                if ((attempts % 5) == 0) {
 522                        delay(1); /* Don't just spin the CPU */
 523#ifdef DEBUG
 524                        xfs_lock_delays++;
 525#endif
 526                }
 527                i = 0;
 528                try_lock = 0;
 529                goto again;
 530        }
 531
 532#ifdef DEBUG
 533        if (attempts) {
 534                if (attempts < 5) xfs_small_retries++;
 535                else if (attempts < 100) xfs_middle_retries++;
 536                else xfs_lots_retries++;
 537        } else {
 538                xfs_locked_n++;
 539        }
 540#endif
 541}
 542
 543/*
 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 546 * lock more than one at a time, lockdep will report false positives saying we
 547 * have violated locking orders.
 548 */
 549void
 550xfs_lock_two_inodes(
 551        xfs_inode_t             *ip0,
 552        xfs_inode_t             *ip1,
 553        uint                    lock_mode)
 554{
 555        xfs_inode_t             *temp;
 556        int                     attempts = 0;
 557        xfs_log_item_t          *lp;
 558
 559        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 560                ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562        } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 563                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564
 565        ASSERT(ip0->i_ino != ip1->i_ino);
 566
 567        if (ip0->i_ino > ip1->i_ino) {
 568                temp = ip0;
 569                ip0 = ip1;
 570                ip1 = temp;
 571        }
 572
 573 again:
 574        xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 575
 576        /*
 577         * If the first lock we have locked is in the AIL, we must TRY to get
 578         * the second lock. If we can't get it, we must release the first one
 579         * and try again.
 580         */
 581        lp = (xfs_log_item_t *)ip0->i_itemp;
 582        if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 583                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 584                        xfs_iunlock(ip0, lock_mode);
 585                        if ((++attempts % 5) == 0)
 586                                delay(1); /* Don't just spin the CPU */
 587                        goto again;
 588                }
 589        } else {
 590                xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 591        }
 592}
 593
 594
 595void
 596__xfs_iflock(
 597        struct xfs_inode        *ip)
 598{
 599        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602        do {
 603                prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 604                if (xfs_isiflocked(ip))
 605                        io_schedule();
 606        } while (!xfs_iflock_nowait(ip));
 607
 608        finish_wait(wq, &wait.wait);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613        __uint16_t              di_flags,
 614        uint64_t                di_flags2,
 615        bool                    has_attr)
 616{
 617        uint                    flags = 0;
 618
 619        if (di_flags & XFS_DIFLAG_ANY) {
 620                if (di_flags & XFS_DIFLAG_REALTIME)
 621                        flags |= FS_XFLAG_REALTIME;
 622                if (di_flags & XFS_DIFLAG_PREALLOC)
 623                        flags |= FS_XFLAG_PREALLOC;
 624                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625                        flags |= FS_XFLAG_IMMUTABLE;
 626                if (di_flags & XFS_DIFLAG_APPEND)
 627                        flags |= FS_XFLAG_APPEND;
 628                if (di_flags & XFS_DIFLAG_SYNC)
 629                        flags |= FS_XFLAG_SYNC;
 630                if (di_flags & XFS_DIFLAG_NOATIME)
 631                        flags |= FS_XFLAG_NOATIME;
 632                if (di_flags & XFS_DIFLAG_NODUMP)
 633                        flags |= FS_XFLAG_NODUMP;
 634                if (di_flags & XFS_DIFLAG_RTINHERIT)
 635                        flags |= FS_XFLAG_RTINHERIT;
 636                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637                        flags |= FS_XFLAG_PROJINHERIT;
 638                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639                        flags |= FS_XFLAG_NOSYMLINKS;
 640                if (di_flags & XFS_DIFLAG_EXTSIZE)
 641                        flags |= FS_XFLAG_EXTSIZE;
 642                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643                        flags |= FS_XFLAG_EXTSZINHERIT;
 644                if (di_flags & XFS_DIFLAG_NODEFRAG)
 645                        flags |= FS_XFLAG_NODEFRAG;
 646                if (di_flags & XFS_DIFLAG_FILESTREAM)
 647                        flags |= FS_XFLAG_FILESTREAM;
 648        }
 649
 650        if (di_flags2 & XFS_DIFLAG2_ANY) {
 651                if (di_flags2 & XFS_DIFLAG2_DAX)
 652                        flags |= FS_XFLAG_DAX;
 653        }
 654
 655        if (has_attr)
 656                flags |= FS_XFLAG_HASATTR;
 657
 658        return flags;
 659}
 660
 661uint
 662xfs_ip2xflags(
 663        struct xfs_inode        *ip)
 664{
 665        struct xfs_icdinode     *dic = &ip->i_d;
 666
 667        return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 668}
 669
 670uint
 671xfs_dic2xflags(
 672        struct xfs_dinode       *dip)
 673{
 674        return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
 675                                be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686        xfs_inode_t             *dp,
 687        struct xfs_name         *name,
 688        xfs_inode_t             **ipp,
 689        struct xfs_name         *ci_name)
 690{
 691        xfs_ino_t               inum;
 692        int                     error;
 693
 694        trace_xfs_lookup(dp, name);
 695
 696        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697                return -EIO;
 698
 699        xfs_ilock(dp, XFS_IOLOCK_SHARED);
 700        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 701        if (error)
 702                goto out_unlock;
 703
 704        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 705        if (error)
 706                goto out_free_name;
 707
 708        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 709        return 0;
 710
 711out_free_name:
 712        if (ci_name)
 713                kmem_free(ci_name->name);
 714out_unlock:
 715        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 716        *ipp = NULL;
 717        return error;
 718}
 719
 720/*
 721 * Allocate an inode on disk and return a copy of its in-core version.
 722 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 723 * appropriately within the inode.  The uid and gid for the inode are
 724 * set according to the contents of the given cred structure.
 725 *
 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 727 * has a free inode available, call xfs_iget() to obtain the in-core
 728 * version of the allocated inode.  Finally, fill in the inode and
 729 * log its initial contents.  In this case, ialloc_context would be
 730 * set to NULL.
 731 *
 732 * If xfs_dialloc() does not have an available inode, it will replenish
 733 * its supply by doing an allocation. Since we can only do one
 734 * allocation within a transaction without deadlocks, we must commit
 735 * the current transaction before returning the inode itself.
 736 * In this case, therefore, we will set ialloc_context and return.
 737 * The caller should then commit the current transaction, start a new
 738 * transaction, and call xfs_ialloc() again to actually get the inode.
 739 *
 740 * To ensure that some other process does not grab the inode that
 741 * was allocated during the first call to xfs_ialloc(), this routine
 742 * also returns the [locked] bp pointing to the head of the freelist
 743 * as ialloc_context.  The caller should hold this buffer across
 744 * the commit and pass it back into this routine on the second call.
 745 *
 746 * If we are allocating quota inodes, we do not have a parent inode
 747 * to attach to or associate with (i.e. pip == NULL) because they
 748 * are not linked into the directory structure - they are attached
 749 * directly to the superblock - and so have no parent.
 750 */
 751int
 752xfs_ialloc(
 753        xfs_trans_t     *tp,
 754        xfs_inode_t     *pip,
 755        umode_t         mode,
 756        xfs_nlink_t     nlink,
 757        xfs_dev_t       rdev,
 758        prid_t          prid,
 759        int             okalloc,
 760        xfs_buf_t       **ialloc_context,
 761        xfs_inode_t     **ipp)
 762{
 763        struct xfs_mount *mp = tp->t_mountp;
 764        xfs_ino_t       ino;
 765        xfs_inode_t     *ip;
 766        uint            flags;
 767        int             error;
 768        struct timespec tv;
 769        struct inode    *inode;
 770
 771        /*
 772         * Call the space management code to pick
 773         * the on-disk inode to be allocated.
 774         */
 775        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 776                            ialloc_context, &ino);
 777        if (error)
 778                return error;
 779        if (*ialloc_context || ino == NULLFSINO) {
 780                *ipp = NULL;
 781                return 0;
 782        }
 783        ASSERT(*ialloc_context == NULL);
 784
 785        /*
 786         * Get the in-core inode with the lock held exclusively.
 787         * This is because we're setting fields here we need
 788         * to prevent others from looking at until we're done.
 789         */
 790        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 791                         XFS_ILOCK_EXCL, &ip);
 792        if (error)
 793                return error;
 794        ASSERT(ip != NULL);
 795        inode = VFS_I(ip);
 796
 797        /*
 798         * We always convert v1 inodes to v2 now - we only support filesystems
 799         * with >= v2 inode capability, so there is no reason for ever leaving
 800         * an inode in v1 format.
 801         */
 802        if (ip->i_d.di_version == 1)
 803                ip->i_d.di_version = 2;
 804
 805        inode->i_mode = mode;
 806        set_nlink(inode, nlink);
 807        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 808        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 809        xfs_set_projid(ip, prid);
 810
 811        if (pip && XFS_INHERIT_GID(pip)) {
 812                ip->i_d.di_gid = pip->i_d.di_gid;
 813                if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 814                        inode->i_mode |= S_ISGID;
 815        }
 816
 817        /*
 818         * If the group ID of the new file does not match the effective group
 819         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 820         * (and only if the irix_sgid_inherit compatibility variable is set).
 821         */
 822        if ((irix_sgid_inherit) &&
 823            (inode->i_mode & S_ISGID) &&
 824            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 825                inode->i_mode &= ~S_ISGID;
 826
 827        ip->i_d.di_size = 0;
 828        ip->i_d.di_nextents = 0;
 829        ASSERT(ip->i_d.di_nblocks == 0);
 830
 831        tv = current_fs_time(mp->m_super);
 832        inode->i_mtime = tv;
 833        inode->i_atime = tv;
 834        inode->i_ctime = tv;
 835
 836        ip->i_d.di_extsize = 0;
 837        ip->i_d.di_dmevmask = 0;
 838        ip->i_d.di_dmstate = 0;
 839        ip->i_d.di_flags = 0;
 840
 841        if (ip->i_d.di_version == 3) {
 842                inode->i_version = 1;
 843                ip->i_d.di_flags2 = 0;
 844                ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
 845                ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
 846        }
 847
 848
 849        flags = XFS_ILOG_CORE;
 850        switch (mode & S_IFMT) {
 851        case S_IFIFO:
 852        case S_IFCHR:
 853        case S_IFBLK:
 854        case S_IFSOCK:
 855                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 856                ip->i_df.if_u2.if_rdev = rdev;
 857                ip->i_df.if_flags = 0;
 858                flags |= XFS_ILOG_DEV;
 859                break;
 860        case S_IFREG:
 861        case S_IFDIR:
 862                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 863                        uint64_t        di_flags2 = 0;
 864                        uint            di_flags = 0;
 865
 866                        if (S_ISDIR(mode)) {
 867                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 868                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 869                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 870                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 871                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 872                                }
 873                                if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 874                                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 875                        } else if (S_ISREG(mode)) {
 876                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 877                                        di_flags |= XFS_DIFLAG_REALTIME;
 878                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 879                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 880                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 881                                }
 882                        }
 883                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 884                            xfs_inherit_noatime)
 885                                di_flags |= XFS_DIFLAG_NOATIME;
 886                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 887                            xfs_inherit_nodump)
 888                                di_flags |= XFS_DIFLAG_NODUMP;
 889                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 890                            xfs_inherit_sync)
 891                                di_flags |= XFS_DIFLAG_SYNC;
 892                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 893                            xfs_inherit_nosymlinks)
 894                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 895                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 896                            xfs_inherit_nodefrag)
 897                                di_flags |= XFS_DIFLAG_NODEFRAG;
 898                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 899                                di_flags |= XFS_DIFLAG_FILESTREAM;
 900                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 901                                di_flags2 |= XFS_DIFLAG2_DAX;
 902
 903                        ip->i_d.di_flags |= di_flags;
 904                        ip->i_d.di_flags2 |= di_flags2;
 905                }
 906                /* FALLTHROUGH */
 907        case S_IFLNK:
 908                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 909                ip->i_df.if_flags = XFS_IFEXTENTS;
 910                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 911                ip->i_df.if_u1.if_extents = NULL;
 912                break;
 913        default:
 914                ASSERT(0);
 915        }
 916        /*
 917         * Attribute fork settings for new inode.
 918         */
 919        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 920        ip->i_d.di_anextents = 0;
 921
 922        /*
 923         * Log the new values stuffed into the inode.
 924         */
 925        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 926        xfs_trans_log_inode(tp, ip, flags);
 927
 928        /* now that we have an i_mode we can setup the inode structure */
 929        xfs_setup_inode(ip);
 930
 931        *ipp = ip;
 932        return 0;
 933}
 934
 935/*
 936 * Allocates a new inode from disk and return a pointer to the
 937 * incore copy. This routine will internally commit the current
 938 * transaction and allocate a new one if the Space Manager needed
 939 * to do an allocation to replenish the inode free-list.
 940 *
 941 * This routine is designed to be called from xfs_create and
 942 * xfs_create_dir.
 943 *
 944 */
 945int
 946xfs_dir_ialloc(
 947        xfs_trans_t     **tpp,          /* input: current transaction;
 948                                           output: may be a new transaction. */
 949        xfs_inode_t     *dp,            /* directory within whose allocate
 950                                           the inode. */
 951        umode_t         mode,
 952        xfs_nlink_t     nlink,
 953        xfs_dev_t       rdev,
 954        prid_t          prid,           /* project id */
 955        int             okalloc,        /* ok to allocate new space */
 956        xfs_inode_t     **ipp,          /* pointer to inode; it will be
 957                                           locked. */
 958        int             *committed)
 959
 960{
 961        xfs_trans_t     *tp;
 962        xfs_inode_t     *ip;
 963        xfs_buf_t       *ialloc_context = NULL;
 964        int             code;
 965        void            *dqinfo;
 966        uint            tflags;
 967
 968        tp = *tpp;
 969        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 970
 971        /*
 972         * xfs_ialloc will return a pointer to an incore inode if
 973         * the Space Manager has an available inode on the free
 974         * list. Otherwise, it will do an allocation and replenish
 975         * the freelist.  Since we can only do one allocation per
 976         * transaction without deadlocks, we will need to commit the
 977         * current transaction and start a new one.  We will then
 978         * need to call xfs_ialloc again to get the inode.
 979         *
 980         * If xfs_ialloc did an allocation to replenish the freelist,
 981         * it returns the bp containing the head of the freelist as
 982         * ialloc_context. We will hold a lock on it across the
 983         * transaction commit so that no other process can steal
 984         * the inode(s) that we've just allocated.
 985         */
 986        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 987                          &ialloc_context, &ip);
 988
 989        /*
 990         * Return an error if we were unable to allocate a new inode.
 991         * This should only happen if we run out of space on disk or
 992         * encounter a disk error.
 993         */
 994        if (code) {
 995                *ipp = NULL;
 996                return code;
 997        }
 998        if (!ialloc_context && !ip) {
 999                *ipp = NULL;
1000                return -ENOSPC;
1001        }
1002
1003        /*
1004         * If the AGI buffer is non-NULL, then we were unable to get an
1005         * inode in one operation.  We need to commit the current
1006         * transaction and call xfs_ialloc() again.  It is guaranteed
1007         * to succeed the second time.
1008         */
1009        if (ialloc_context) {
1010                /*
1011                 * Normally, xfs_trans_commit releases all the locks.
1012                 * We call bhold to hang on to the ialloc_context across
1013                 * the commit.  Holding this buffer prevents any other
1014                 * processes from doing any allocations in this
1015                 * allocation group.
1016                 */
1017                xfs_trans_bhold(tp, ialloc_context);
1018
1019                /*
1020                 * We want the quota changes to be associated with the next
1021                 * transaction, NOT this one. So, detach the dqinfo from this
1022                 * and attach it to the next transaction.
1023                 */
1024                dqinfo = NULL;
1025                tflags = 0;
1026                if (tp->t_dqinfo) {
1027                        dqinfo = (void *)tp->t_dqinfo;
1028                        tp->t_dqinfo = NULL;
1029                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031                }
1032
1033                code = xfs_trans_roll(&tp, 0);
1034                if (committed != NULL)
1035                        *committed = 1;
1036
1037                /*
1038                 * Re-attach the quota info that we detached from prev trx.
1039                 */
1040                if (dqinfo) {
1041                        tp->t_dqinfo = dqinfo;
1042                        tp->t_flags |= tflags;
1043                }
1044
1045                if (code) {
1046                        xfs_buf_relse(ialloc_context);
1047                        *tpp = tp;
1048                        *ipp = NULL;
1049                        return code;
1050                }
1051                xfs_trans_bjoin(tp, ialloc_context);
1052
1053                /*
1054                 * Call ialloc again. Since we've locked out all
1055                 * other allocations in this allocation group,
1056                 * this call should always succeed.
1057                 */
1058                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059                                  okalloc, &ialloc_context, &ip);
1060
1061                /*
1062                 * If we get an error at this point, return to the caller
1063                 * so that the current transaction can be aborted.
1064                 */
1065                if (code) {
1066                        *tpp = tp;
1067                        *ipp = NULL;
1068                        return code;
1069                }
1070                ASSERT(!ialloc_context && ip);
1071
1072        } else {
1073                if (committed != NULL)
1074                        *committed = 0;
1075        }
1076
1077        *ipp = ip;
1078        *tpp = tp;
1079
1080        return 0;
1081}
1082
1083/*
1084 * Decrement the link count on an inode & log the change.  If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1087 */
1088int                             /* error */
1089xfs_droplink(
1090        xfs_trans_t *tp,
1091        xfs_inode_t *ip)
1092{
1093        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094
1095        drop_nlink(VFS_I(ip));
1096        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098        if (VFS_I(ip)->i_nlink)
1099                return 0;
1100
1101        return xfs_iunlink(tp, ip);
1102}
1103
1104/*
1105 * Increment the link count on an inode & log the change.
1106 */
1107int
1108xfs_bumplink(
1109        xfs_trans_t *tp,
1110        xfs_inode_t *ip)
1111{
1112        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113
1114        ASSERT(ip->i_d.di_version > 1);
1115        inc_nlink(VFS_I(ip));
1116        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117        return 0;
1118}
1119
1120int
1121xfs_create(
1122        xfs_inode_t             *dp,
1123        struct xfs_name         *name,
1124        umode_t                 mode,
1125        xfs_dev_t               rdev,
1126        xfs_inode_t             **ipp)
1127{
1128        int                     is_dir = S_ISDIR(mode);
1129        struct xfs_mount        *mp = dp->i_mount;
1130        struct xfs_inode        *ip = NULL;
1131        struct xfs_trans        *tp = NULL;
1132        int                     error;
1133        xfs_bmap_free_t         free_list;
1134        xfs_fsblock_t           first_block;
1135        bool                    unlock_dp_on_error = false;
1136        prid_t                  prid;
1137        struct xfs_dquot        *udqp = NULL;
1138        struct xfs_dquot        *gdqp = NULL;
1139        struct xfs_dquot        *pdqp = NULL;
1140        struct xfs_trans_res    *tres;
1141        uint                    resblks;
1142
1143        trace_xfs_create(dp, name);
1144
1145        if (XFS_FORCED_SHUTDOWN(mp))
1146                return -EIO;
1147
1148        prid = xfs_get_initial_prid(dp);
1149
1150        /*
1151         * Make sure that we have allocated dquot(s) on disk.
1152         */
1153        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154                                        xfs_kgid_to_gid(current_fsgid()), prid,
1155                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156                                        &udqp, &gdqp, &pdqp);
1157        if (error)
1158                return error;
1159
1160        if (is_dir) {
1161                rdev = 0;
1162                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163                tres = &M_RES(mp)->tr_mkdir;
1164                tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165        } else {
1166                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167                tres = &M_RES(mp)->tr_create;
1168                tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1169        }
1170
1171        /*
1172         * Initially assume that the file does not exist and
1173         * reserve the resources for that case.  If that is not
1174         * the case we'll drop the one we have and get a more
1175         * appropriate transaction later.
1176         */
1177        error = xfs_trans_reserve(tp, tres, resblks, 0);
1178        if (error == -ENOSPC) {
1179                /* flush outstanding delalloc blocks and retry */
1180                xfs_flush_inodes(mp);
1181                error = xfs_trans_reserve(tp, tres, resblks, 0);
1182        }
1183        if (error == -ENOSPC) {
1184                /* No space at all so try a "no-allocation" reservation */
1185                resblks = 0;
1186                error = xfs_trans_reserve(tp, tres, 0, 0);
1187        }
1188        if (error)
1189                goto out_trans_cancel;
1190
1191
1192        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193                      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194        unlock_dp_on_error = true;
1195
1196        xfs_bmap_init(&free_list, &first_block);
1197
1198        /*
1199         * Reserve disk quota and the inode.
1200         */
1201        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202                                                pdqp, resblks, 1, 0);
1203        if (error)
1204                goto out_trans_cancel;
1205
1206        if (!resblks) {
1207                error = xfs_dir_canenter(tp, dp, name);
1208                if (error)
1209                        goto out_trans_cancel;
1210        }
1211
1212        /*
1213         * A newly created regular or special file just has one directory
1214         * entry pointing to them, but a directory also the "." entry
1215         * pointing to itself.
1216         */
1217        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218                               prid, resblks > 0, &ip, NULL);
1219        if (error)
1220                goto out_trans_cancel;
1221
1222        /*
1223         * Now we join the directory inode to the transaction.  We do not do it
1224         * earlier because xfs_dir_ialloc might commit the previous transaction
1225         * (and release all the locks).  An error from here on will result in
1226         * the transaction cancel unlocking dp so don't do it explicitly in the
1227         * error path.
1228         */
1229        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230        unlock_dp_on_error = false;
1231
1232        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233                                        &first_block, &free_list, resblks ?
1234                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235        if (error) {
1236                ASSERT(error != -ENOSPC);
1237                goto out_trans_cancel;
1238        }
1239        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241
1242        if (is_dir) {
1243                error = xfs_dir_init(tp, ip, dp);
1244                if (error)
1245                        goto out_bmap_cancel;
1246
1247                error = xfs_bumplink(tp, dp);
1248                if (error)
1249                        goto out_bmap_cancel;
1250        }
1251
1252        /*
1253         * If this is a synchronous mount, make sure that the
1254         * create transaction goes to disk before returning to
1255         * the user.
1256         */
1257        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258                xfs_trans_set_sync(tp);
1259
1260        /*
1261         * Attach the dquot(s) to the inodes and modify them incore.
1262         * These ids of the inode couldn't have changed since the new
1263         * inode has been locked ever since it was created.
1264         */
1265        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266
1267        error = xfs_bmap_finish(&tp, &free_list, NULL);
1268        if (error)
1269                goto out_bmap_cancel;
1270
1271        error = xfs_trans_commit(tp);
1272        if (error)
1273                goto out_release_inode;
1274
1275        xfs_qm_dqrele(udqp);
1276        xfs_qm_dqrele(gdqp);
1277        xfs_qm_dqrele(pdqp);
1278
1279        *ipp = ip;
1280        return 0;
1281
1282 out_bmap_cancel:
1283        xfs_bmap_cancel(&free_list);
1284 out_trans_cancel:
1285        xfs_trans_cancel(tp);
1286 out_release_inode:
1287        /*
1288         * Wait until after the current transaction is aborted to finish the
1289         * setup of the inode and release the inode.  This prevents recursive
1290         * transactions and deadlocks from xfs_inactive.
1291         */
1292        if (ip) {
1293                xfs_finish_inode_setup(ip);
1294                IRELE(ip);
1295        }
1296
1297        xfs_qm_dqrele(udqp);
1298        xfs_qm_dqrele(gdqp);
1299        xfs_qm_dqrele(pdqp);
1300
1301        if (unlock_dp_on_error)
1302                xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303        return error;
1304}
1305
1306int
1307xfs_create_tmpfile(
1308        struct xfs_inode        *dp,
1309        struct dentry           *dentry,
1310        umode_t                 mode,
1311        struct xfs_inode        **ipp)
1312{
1313        struct xfs_mount        *mp = dp->i_mount;
1314        struct xfs_inode        *ip = NULL;
1315        struct xfs_trans        *tp = NULL;
1316        int                     error;
1317        prid_t                  prid;
1318        struct xfs_dquot        *udqp = NULL;
1319        struct xfs_dquot        *gdqp = NULL;
1320        struct xfs_dquot        *pdqp = NULL;
1321        struct xfs_trans_res    *tres;
1322        uint                    resblks;
1323
1324        if (XFS_FORCED_SHUTDOWN(mp))
1325                return -EIO;
1326
1327        prid = xfs_get_initial_prid(dp);
1328
1329        /*
1330         * Make sure that we have allocated dquot(s) on disk.
1331         */
1332        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333                                xfs_kgid_to_gid(current_fsgid()), prid,
1334                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335                                &udqp, &gdqp, &pdqp);
1336        if (error)
1337                return error;
1338
1339        resblks = XFS_IALLOC_SPACE_RES(mp);
1340        tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1341
1342        tres = &M_RES(mp)->tr_create_tmpfile;
1343        error = xfs_trans_reserve(tp, tres, resblks, 0);
1344        if (error == -ENOSPC) {
1345                /* No space at all so try a "no-allocation" reservation */
1346                resblks = 0;
1347                error = xfs_trans_reserve(tp, tres, 0, 0);
1348        }
1349        if (error)
1350                goto out_trans_cancel;
1351
1352        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353                                                pdqp, resblks, 1, 0);
1354        if (error)
1355                goto out_trans_cancel;
1356
1357        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358                                prid, resblks > 0, &ip, NULL);
1359        if (error)
1360                goto out_trans_cancel;
1361
1362        if (mp->m_flags & XFS_MOUNT_WSYNC)
1363                xfs_trans_set_sync(tp);
1364
1365        /*
1366         * Attach the dquot(s) to the inodes and modify them incore.
1367         * These ids of the inode couldn't have changed since the new
1368         * inode has been locked ever since it was created.
1369         */
1370        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371
1372        error = xfs_iunlink(tp, ip);
1373        if (error)
1374                goto out_trans_cancel;
1375
1376        error = xfs_trans_commit(tp);
1377        if (error)
1378                goto out_release_inode;
1379
1380        xfs_qm_dqrele(udqp);
1381        xfs_qm_dqrele(gdqp);
1382        xfs_qm_dqrele(pdqp);
1383
1384        *ipp = ip;
1385        return 0;
1386
1387 out_trans_cancel:
1388        xfs_trans_cancel(tp);
1389 out_release_inode:
1390        /*
1391         * Wait until after the current transaction is aborted to finish the
1392         * setup of the inode and release the inode.  This prevents recursive
1393         * transactions and deadlocks from xfs_inactive.
1394         */
1395        if (ip) {
1396                xfs_finish_inode_setup(ip);
1397                IRELE(ip);
1398        }
1399
1400        xfs_qm_dqrele(udqp);
1401        xfs_qm_dqrele(gdqp);
1402        xfs_qm_dqrele(pdqp);
1403
1404        return error;
1405}
1406
1407int
1408xfs_link(
1409        xfs_inode_t             *tdp,
1410        xfs_inode_t             *sip,
1411        struct xfs_name         *target_name)
1412{
1413        xfs_mount_t             *mp = tdp->i_mount;
1414        xfs_trans_t             *tp;
1415        int                     error;
1416        xfs_bmap_free_t         free_list;
1417        xfs_fsblock_t           first_block;
1418        int                     resblks;
1419
1420        trace_xfs_link(tdp, target_name);
1421
1422        ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423
1424        if (XFS_FORCED_SHUTDOWN(mp))
1425                return -EIO;
1426
1427        error = xfs_qm_dqattach(sip, 0);
1428        if (error)
1429                goto std_return;
1430
1431        error = xfs_qm_dqattach(tdp, 0);
1432        if (error)
1433                goto std_return;
1434
1435        tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438        if (error == -ENOSPC) {
1439                resblks = 0;
1440                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1441        }
1442        if (error)
1443                goto error_return;
1444
1445        xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446        xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1447
1448        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449        xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1450
1451        /*
1452         * If we are using project inheritance, we only allow hard link
1453         * creation in our tree when the project IDs are the same; else
1454         * the tree quota mechanism could be circumvented.
1455         */
1456        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458                error = -EXDEV;
1459                goto error_return;
1460        }
1461
1462        if (!resblks) {
1463                error = xfs_dir_canenter(tp, tdp, target_name);
1464                if (error)
1465                        goto error_return;
1466        }
1467
1468        xfs_bmap_init(&free_list, &first_block);
1469
1470        /*
1471         * Handle initial link state of O_TMPFILE inode
1472         */
1473        if (VFS_I(sip)->i_nlink == 0) {
1474                error = xfs_iunlink_remove(tp, sip);
1475                if (error)
1476                        goto error_return;
1477        }
1478
1479        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480                                        &first_block, &free_list, resblks);
1481        if (error)
1482                goto error_return;
1483        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485
1486        error = xfs_bumplink(tp, sip);
1487        if (error)
1488                goto error_return;
1489
1490        /*
1491         * If this is a synchronous mount, make sure that the
1492         * link transaction goes to disk before returning to
1493         * the user.
1494         */
1495        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496                xfs_trans_set_sync(tp);
1497
1498        error = xfs_bmap_finish(&tp, &free_list, NULL);
1499        if (error) {
1500                xfs_bmap_cancel(&free_list);
1501                goto error_return;
1502        }
1503
1504        return xfs_trans_commit(tp);
1505
1506 error_return:
1507        xfs_trans_cancel(tp);
1508 std_return:
1509        return error;
1510}
1511
1512/*
1513 * Free up the underlying blocks past new_size.  The new size must be smaller
1514 * than the current size.  This routine can be used both for the attribute and
1515 * data fork, and does not modify the inode size, which is left to the caller.
1516 *
1517 * The transaction passed to this routine must have made a permanent log
1518 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1519 * given transaction and start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here.  Some transaction will be
1521 * returned to the caller to be committed.  The incoming transaction must
1522 * already include the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction.  On return the inode
1524 * will be "held" within the returned transaction.  This routine does NOT
1525 * require any disk space to be reserved for it within the transaction.
1526 *
1527 * If we get an error, we must return with the inode locked and linked into the
1528 * current transaction. This keeps things simple for the higher level code,
1529 * because it always knows that the inode is locked and held in the transaction
1530 * that returns to it whether errors occur or not.  We don't mark the inode
1531 * dirty on error so that transactions can be easily aborted if possible.
1532 */
1533int
1534xfs_itruncate_extents(
1535        struct xfs_trans        **tpp,
1536        struct xfs_inode        *ip,
1537        int                     whichfork,
1538        xfs_fsize_t             new_size)
1539{
1540        struct xfs_mount        *mp = ip->i_mount;
1541        struct xfs_trans        *tp = *tpp;
1542        xfs_bmap_free_t         free_list;
1543        xfs_fsblock_t           first_block;
1544        xfs_fileoff_t           first_unmap_block;
1545        xfs_fileoff_t           last_block;
1546        xfs_filblks_t           unmap_len;
1547        int                     error = 0;
1548        int                     done = 0;
1549
1550        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553        ASSERT(new_size <= XFS_ISIZE(ip));
1554        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555        ASSERT(ip->i_itemp != NULL);
1556        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1558
1559        trace_xfs_itruncate_extents_start(ip, new_size);
1560
1561        /*
1562         * Since it is possible for space to become allocated beyond
1563         * the end of the file (in a crash where the space is allocated
1564         * but the inode size is not yet updated), simply remove any
1565         * blocks which show up between the new EOF and the maximum
1566         * possible file size.  If the first block to be removed is
1567         * beyond the maximum file size (ie it is the same as last_block),
1568         * then there is nothing to do.
1569         */
1570        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572        if (first_unmap_block == last_block)
1573                return 0;
1574
1575        ASSERT(first_unmap_block < last_block);
1576        unmap_len = last_block - first_unmap_block + 1;
1577        while (!done) {
1578                xfs_bmap_init(&free_list, &first_block);
1579                error = xfs_bunmapi(tp, ip,
1580                                    first_unmap_block, unmap_len,
1581                                    xfs_bmapi_aflag(whichfork),
1582                                    XFS_ITRUNC_MAX_EXTENTS,
1583                                    &first_block, &free_list,
1584                                    &done);
1585                if (error)
1586                        goto out_bmap_cancel;
1587
1588                /*
1589                 * Duplicate the transaction that has the permanent
1590                 * reservation and commit the old transaction.
1591                 */
1592                error = xfs_bmap_finish(&tp, &free_list, ip);
1593                if (error)
1594                        goto out_bmap_cancel;
1595
1596                error = xfs_trans_roll(&tp, ip);
1597                if (error)
1598                        goto out;
1599        }
1600
1601        /*
1602         * Always re-log the inode so that our permanent transaction can keep
1603         * on rolling it forward in the log.
1604         */
1605        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1606
1607        trace_xfs_itruncate_extents_end(ip, new_size);
1608
1609out:
1610        *tpp = tp;
1611        return error;
1612out_bmap_cancel:
1613        /*
1614         * If the bunmapi call encounters an error, return to the caller where
1615         * the transaction can be properly aborted.  We just need to make sure
1616         * we're not holding any resources that we were not when we came in.
1617         */
1618        xfs_bmap_cancel(&free_list);
1619        goto out;
1620}
1621
1622int
1623xfs_release(
1624        xfs_inode_t     *ip)
1625{
1626        xfs_mount_t     *mp = ip->i_mount;
1627        int             error;
1628
1629        if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630                return 0;
1631
1632        /* If this is a read-only mount, don't do this (would generate I/O) */
1633        if (mp->m_flags & XFS_MOUNT_RDONLY)
1634                return 0;
1635
1636        if (!XFS_FORCED_SHUTDOWN(mp)) {
1637                int truncated;
1638
1639                /*
1640                 * If we previously truncated this file and removed old data
1641                 * in the process, we want to initiate "early" writeout on
1642                 * the last close.  This is an attempt to combat the notorious
1643                 * NULL files problem which is particularly noticeable from a
1644                 * truncate down, buffered (re-)write (delalloc), followed by
1645                 * a crash.  What we are effectively doing here is
1646                 * significantly reducing the time window where we'd otherwise
1647                 * be exposed to that problem.
1648                 */
1649                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650                if (truncated) {
1651                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652                        if (ip->i_delayed_blks > 0) {
1653                                error = filemap_flush(VFS_I(ip)->i_mapping);
1654                                if (error)
1655                                        return error;
1656                        }
1657                }
1658        }
1659
1660        if (VFS_I(ip)->i_nlink == 0)
1661                return 0;
1662
1663        if (xfs_can_free_eofblocks(ip, false)) {
1664
1665                /*
1666                 * If we can't get the iolock just skip truncating the blocks
1667                 * past EOF because we could deadlock with the mmap_sem
1668                 * otherwise.  We'll get another chance to drop them once the
1669                 * last reference to the inode is dropped, so we'll never leak
1670                 * blocks permanently.
1671                 *
1672                 * Further, check if the inode is being opened, written and
1673                 * closed frequently and we have delayed allocation blocks
1674                 * outstanding (e.g. streaming writes from the NFS server),
1675                 * truncating the blocks past EOF will cause fragmentation to
1676                 * occur.
1677                 *
1678                 * In this case don't do the truncation, either, but we have to
1679                 * be careful how we detect this case. Blocks beyond EOF show
1680                 * up as i_delayed_blks even when the inode is clean, so we
1681                 * need to truncate them away first before checking for a dirty
1682                 * release. Hence on the first dirty close we will still remove
1683                 * the speculative allocation, but after that we will leave it
1684                 * in place.
1685                 */
1686                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687                        return 0;
1688
1689                error = xfs_free_eofblocks(mp, ip, true);
1690                if (error && error != -EAGAIN)
1691                        return error;
1692
1693                /* delalloc blocks after truncation means it really is dirty */
1694                if (ip->i_delayed_blks)
1695                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1696        }
1697        return 0;
1698}
1699
1700/*
1701 * xfs_inactive_truncate
1702 *
1703 * Called to perform a truncate when an inode becomes unlinked.
1704 */
1705STATIC int
1706xfs_inactive_truncate(
1707        struct xfs_inode *ip)
1708{
1709        struct xfs_mount        *mp = ip->i_mount;
1710        struct xfs_trans        *tp;
1711        int                     error;
1712
1713        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715        if (error) {
1716                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717                xfs_trans_cancel(tp);
1718                return error;
1719        }
1720
1721        xfs_ilock(ip, XFS_ILOCK_EXCL);
1722        xfs_trans_ijoin(tp, ip, 0);
1723
1724        /*
1725         * Log the inode size first to prevent stale data exposure in the event
1726         * of a system crash before the truncate completes. See the related
1727         * comment in xfs_setattr_size() for details.
1728         */
1729        ip->i_d.di_size = 0;
1730        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1731
1732        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733        if (error)
1734                goto error_trans_cancel;
1735
1736        ASSERT(ip->i_d.di_nextents == 0);
1737
1738        error = xfs_trans_commit(tp);
1739        if (error)
1740                goto error_unlock;
1741
1742        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743        return 0;
1744
1745error_trans_cancel:
1746        xfs_trans_cancel(tp);
1747error_unlock:
1748        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749        return error;
1750}
1751
1752/*
1753 * xfs_inactive_ifree()
1754 *
1755 * Perform the inode free when an inode is unlinked.
1756 */
1757STATIC int
1758xfs_inactive_ifree(
1759        struct xfs_inode *ip)
1760{
1761        xfs_bmap_free_t         free_list;
1762        xfs_fsblock_t           first_block;
1763        struct xfs_mount        *mp = ip->i_mount;
1764        struct xfs_trans        *tp;
1765        int                     error;
1766
1767        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1768
1769        /*
1770         * The ifree transaction might need to allocate blocks for record
1771         * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772         * allow ifree to dip into the reserved block pool if necessary.
1773         *
1774         * Freeing large sets of inodes generally means freeing inode chunks,
1775         * directory and file data blocks, so this should be relatively safe.
1776         * Only under severe circumstances should it be possible to free enough
1777         * inodes to exhaust the reserve block pool via finobt expansion while
1778         * at the same time not creating free space in the filesystem.
1779         *
1780         * Send a warning if the reservation does happen to fail, as the inode
1781         * now remains allocated and sits on the unlinked list until the fs is
1782         * repaired.
1783         */
1784        tp->t_flags |= XFS_TRANS_RESERVE;
1785        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786                                  XFS_IFREE_SPACE_RES(mp), 0);
1787        if (error) {
1788                if (error == -ENOSPC) {
1789                        xfs_warn_ratelimited(mp,
1790                        "Failed to remove inode(s) from unlinked list. "
1791                        "Please free space, unmount and run xfs_repair.");
1792                } else {
1793                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1794                }
1795                xfs_trans_cancel(tp);
1796                return error;
1797        }
1798
1799        xfs_ilock(ip, XFS_ILOCK_EXCL);
1800        xfs_trans_ijoin(tp, ip, 0);
1801
1802        xfs_bmap_init(&free_list, &first_block);
1803        error = xfs_ifree(tp, ip, &free_list);
1804        if (error) {
1805                /*
1806                 * If we fail to free the inode, shut down.  The cancel
1807                 * might do that, we need to make sure.  Otherwise the
1808                 * inode might be lost for a long time or forever.
1809                 */
1810                if (!XFS_FORCED_SHUTDOWN(mp)) {
1811                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812                                __func__, error);
1813                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1814                }
1815                xfs_trans_cancel(tp);
1816                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817                return error;
1818        }
1819
1820        /*
1821         * Credit the quota account(s). The inode is gone.
1822         */
1823        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1824
1825        /*
1826         * Just ignore errors at this point.  There is nothing we can do except
1827         * to try to keep going. Make sure it's not a silent error.
1828         */
1829        error = xfs_bmap_finish(&tp, &free_list, NULL);
1830        if (error) {
1831                xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832                        __func__, error);
1833                xfs_bmap_cancel(&free_list);
1834        }
1835        error = xfs_trans_commit(tp);
1836        if (error)
1837                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838                        __func__, error);
1839
1840        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841        return 0;
1842}
1843
1844/*
1845 * xfs_inactive
1846 *
1847 * This is called when the vnode reference count for the vnode
1848 * goes to zero.  If the file has been unlinked, then it must
1849 * now be truncated.  Also, we clear all of the read-ahead state
1850 * kept for the inode here since the file is now closed.
1851 */
1852void
1853xfs_inactive(
1854        xfs_inode_t     *ip)
1855{
1856        struct xfs_mount        *mp;
1857        int                     error;
1858        int                     truncate = 0;
1859
1860        /*
1861         * If the inode is already free, then there can be nothing
1862         * to clean up here.
1863         */
1864        if (VFS_I(ip)->i_mode == 0) {
1865                ASSERT(ip->i_df.if_real_bytes == 0);
1866                ASSERT(ip->i_df.if_broot_bytes == 0);
1867                return;
1868        }
1869
1870        mp = ip->i_mount;
1871
1872        /* If this is a read-only mount, don't do this (would generate I/O) */
1873        if (mp->m_flags & XFS_MOUNT_RDONLY)
1874                return;
1875
1876        if (VFS_I(ip)->i_nlink != 0) {
1877                /*
1878                 * force is true because we are evicting an inode from the
1879                 * cache. Post-eof blocks must be freed, lest we end up with
1880                 * broken free space accounting.
1881                 */
1882                if (xfs_can_free_eofblocks(ip, true))
1883                        xfs_free_eofblocks(mp, ip, false);
1884
1885                return;
1886        }
1887
1888        if (S_ISREG(VFS_I(ip)->i_mode) &&
1889            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891                truncate = 1;
1892
1893        error = xfs_qm_dqattach(ip, 0);
1894        if (error)
1895                return;
1896
1897        if (S_ISLNK(VFS_I(ip)->i_mode))
1898                error = xfs_inactive_symlink(ip);
1899        else if (truncate)
1900                error = xfs_inactive_truncate(ip);
1901        if (error)
1902                return;
1903
1904        /*
1905         * If there are attributes associated with the file then blow them away
1906         * now.  The code calls a routine that recursively deconstructs the
1907         * attribute fork. If also blows away the in-core attribute fork.
1908         */
1909        if (XFS_IFORK_Q(ip)) {
1910                error = xfs_attr_inactive(ip);
1911                if (error)
1912                        return;
1913        }
1914
1915        ASSERT(!ip->i_afp);
1916        ASSERT(ip->i_d.di_anextents == 0);
1917        ASSERT(ip->i_d.di_forkoff == 0);
1918
1919        /*
1920         * Free the inode.
1921         */
1922        error = xfs_inactive_ifree(ip);
1923        if (error)
1924                return;
1925
1926        /*
1927         * Release the dquots held by inode, if any.
1928         */
1929        xfs_qm_dqdetach(ip);
1930}
1931
1932/*
1933 * This is called when the inode's link count goes to 0 or we are creating a
1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935 * set to true as the link count is dropped to zero by the VFS after we've
1936 * created the file successfully, so we have to add it to the unlinked list
1937 * while the link count is non-zero.
1938 *
1939 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1940 * list when the inode is freed.
1941 */
1942STATIC int
1943xfs_iunlink(
1944        struct xfs_trans *tp,
1945        struct xfs_inode *ip)
1946{
1947        xfs_mount_t     *mp = tp->t_mountp;
1948        xfs_agi_t       *agi;
1949        xfs_dinode_t    *dip;
1950        xfs_buf_t       *agibp;
1951        xfs_buf_t       *ibp;
1952        xfs_agino_t     agino;
1953        short           bucket_index;
1954        int             offset;
1955        int             error;
1956
1957        ASSERT(VFS_I(ip)->i_mode != 0);
1958
1959        /*
1960         * Get the agi buffer first.  It ensures lock ordering
1961         * on the list.
1962         */
1963        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964        if (error)
1965                return error;
1966        agi = XFS_BUF_TO_AGI(agibp);
1967
1968        /*
1969         * Get the index into the agi hash table for the
1970         * list this inode will go on.
1971         */
1972        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973        ASSERT(agino != 0);
1974        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975        ASSERT(agi->agi_unlinked[bucket_index]);
1976        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1977
1978        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1979                /*
1980                 * There is already another inode in the bucket we need
1981                 * to add ourselves to.  Add us at the front of the list.
1982                 * Here we put the head pointer into our next pointer,
1983                 * and then we fall through to point the head at us.
1984                 */
1985                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986                                       0, 0);
1987                if (error)
1988                        return error;
1989
1990                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992                offset = ip->i_imap.im_boffset +
1993                        offsetof(xfs_dinode_t, di_next_unlinked);
1994
1995                /* need to recalc the inode CRC if appropriate */
1996                xfs_dinode_calc_crc(mp, dip);
1997
1998                xfs_trans_inode_buf(tp, ibp);
1999                xfs_trans_log_buf(tp, ibp, offset,
2000                                  (offset + sizeof(xfs_agino_t) - 1));
2001                xfs_inobp_check(mp, ibp);
2002        }
2003
2004        /*
2005         * Point the bucket head pointer at the inode being inserted.
2006         */
2007        ASSERT(agino != 0);
2008        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009        offset = offsetof(xfs_agi_t, agi_unlinked) +
2010                (sizeof(xfs_agino_t) * bucket_index);
2011        xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012        xfs_trans_log_buf(tp, agibp, offset,
2013                          (offset + sizeof(xfs_agino_t) - 1));
2014        return 0;
2015}
2016
2017/*
2018 * Pull the on-disk inode from the AGI unlinked list.
2019 */
2020STATIC int
2021xfs_iunlink_remove(
2022        xfs_trans_t     *tp,
2023        xfs_inode_t     *ip)
2024{
2025        xfs_ino_t       next_ino;
2026        xfs_mount_t     *mp;
2027        xfs_agi_t       *agi;
2028        xfs_dinode_t    *dip;
2029        xfs_buf_t       *agibp;
2030        xfs_buf_t       *ibp;
2031        xfs_agnumber_t  agno;
2032        xfs_agino_t     agino;
2033        xfs_agino_t     next_agino;
2034        xfs_buf_t       *last_ibp;
2035        xfs_dinode_t    *last_dip = NULL;
2036        short           bucket_index;
2037        int             offset, last_offset = 0;
2038        int             error;
2039
2040        mp = tp->t_mountp;
2041        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2042
2043        /*
2044         * Get the agi buffer first.  It ensures lock ordering
2045         * on the list.
2046         */
2047        error = xfs_read_agi(mp, tp, agno, &agibp);
2048        if (error)
2049                return error;
2050
2051        agi = XFS_BUF_TO_AGI(agibp);
2052
2053        /*
2054         * Get the index into the agi hash table for the
2055         * list this inode will go on.
2056         */
2057        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058        ASSERT(agino != 0);
2059        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060        ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061        ASSERT(agi->agi_unlinked[bucket_index]);
2062
2063        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064                /*
2065                 * We're at the head of the list.  Get the inode's on-disk
2066                 * buffer to see if there is anyone after us on the list.
2067                 * Only modify our next pointer if it is not already NULLAGINO.
2068                 * This saves us the overhead of dealing with the buffer when
2069                 * there is no need to change it.
2070                 */
2071                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072                                       0, 0);
2073                if (error) {
2074                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075                                __func__, error);
2076                        return error;
2077                }
2078                next_agino = be32_to_cpu(dip->di_next_unlinked);
2079                ASSERT(next_agino != 0);
2080                if (next_agino != NULLAGINO) {
2081                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082                        offset = ip->i_imap.im_boffset +
2083                                offsetof(xfs_dinode_t, di_next_unlinked);
2084
2085                        /* need to recalc the inode CRC if appropriate */
2086                        xfs_dinode_calc_crc(mp, dip);
2087
2088                        xfs_trans_inode_buf(tp, ibp);
2089                        xfs_trans_log_buf(tp, ibp, offset,
2090                                          (offset + sizeof(xfs_agino_t) - 1));
2091                        xfs_inobp_check(mp, ibp);
2092                } else {
2093                        xfs_trans_brelse(tp, ibp);
2094                }
2095                /*
2096                 * Point the bucket head pointer at the next inode.
2097                 */
2098                ASSERT(next_agino != 0);
2099                ASSERT(next_agino != agino);
2100                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101                offset = offsetof(xfs_agi_t, agi_unlinked) +
2102                        (sizeof(xfs_agino_t) * bucket_index);
2103                xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104                xfs_trans_log_buf(tp, agibp, offset,
2105                                  (offset + sizeof(xfs_agino_t) - 1));
2106        } else {
2107                /*
2108                 * We need to search the list for the inode being freed.
2109                 */
2110                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111                last_ibp = NULL;
2112                while (next_agino != agino) {
2113                        struct xfs_imap imap;
2114
2115                        if (last_ibp)
2116                                xfs_trans_brelse(tp, last_ibp);
2117
2118                        imap.im_blkno = 0;
2119                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120
2121                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122                        if (error) {
2123                                xfs_warn(mp,
2124        "%s: xfs_imap returned error %d.",
2125                                         __func__, error);
2126                                return error;
2127                        }
2128
2129                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130                                               &last_ibp, 0, 0);
2131                        if (error) {
2132                                xfs_warn(mp,
2133        "%s: xfs_imap_to_bp returned error %d.",
2134                                        __func__, error);
2135                                return error;
2136                        }
2137
2138                        last_offset = imap.im_boffset;
2139                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140                        ASSERT(next_agino != NULLAGINO);
2141                        ASSERT(next_agino != 0);
2142                }
2143
2144                /*
2145                 * Now last_ibp points to the buffer previous to us on the
2146                 * unlinked list.  Pull us from the list.
2147                 */
2148                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149                                       0, 0);
2150                if (error) {
2151                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152                                __func__, error);
2153                        return error;
2154                }
2155                next_agino = be32_to_cpu(dip->di_next_unlinked);
2156                ASSERT(next_agino != 0);
2157                ASSERT(next_agino != agino);
2158                if (next_agino != NULLAGINO) {
2159                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160                        offset = ip->i_imap.im_boffset +
2161                                offsetof(xfs_dinode_t, di_next_unlinked);
2162
2163                        /* need to recalc the inode CRC if appropriate */
2164                        xfs_dinode_calc_crc(mp, dip);
2165
2166                        xfs_trans_inode_buf(tp, ibp);
2167                        xfs_trans_log_buf(tp, ibp, offset,
2168                                          (offset + sizeof(xfs_agino_t) - 1));
2169                        xfs_inobp_check(mp, ibp);
2170                } else {
2171                        xfs_trans_brelse(tp, ibp);
2172                }
2173                /*
2174                 * Point the previous inode on the list to the next inode.
2175                 */
2176                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177                ASSERT(next_agino != 0);
2178                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2179
2180                /* need to recalc the inode CRC if appropriate */
2181                xfs_dinode_calc_crc(mp, last_dip);
2182
2183                xfs_trans_inode_buf(tp, last_ibp);
2184                xfs_trans_log_buf(tp, last_ibp, offset,
2185                                  (offset + sizeof(xfs_agino_t) - 1));
2186                xfs_inobp_check(mp, last_ibp);
2187        }
2188        return 0;
2189}
2190
2191/*
2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193 * inodes that are in memory - they all must be marked stale and attached to
2194 * the cluster buffer.
2195 */
2196STATIC int
2197xfs_ifree_cluster(
2198        xfs_inode_t             *free_ip,
2199        xfs_trans_t             *tp,
2200        struct xfs_icluster     *xic)
2201{
2202        xfs_mount_t             *mp = free_ip->i_mount;
2203        int                     blks_per_cluster;
2204        int                     inodes_per_cluster;
2205        int                     nbufs;
2206        int                     i, j;
2207        int                     ioffset;
2208        xfs_daddr_t             blkno;
2209        xfs_buf_t               *bp;
2210        xfs_inode_t             *ip;
2211        xfs_inode_log_item_t    *iip;
2212        xfs_log_item_t          *lip;
2213        struct xfs_perag        *pag;
2214        xfs_ino_t               inum;
2215
2216        inum = xic->first_ino;
2217        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218        blks_per_cluster = xfs_icluster_size_fsb(mp);
2219        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2221
2222        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2223                /*
2224                 * The allocation bitmap tells us which inodes of the chunk were
2225                 * physically allocated. Skip the cluster if an inode falls into
2226                 * a sparse region.
2227                 */
2228                ioffset = inum - xic->first_ino;
2229                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230                        ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231                        continue;
2232                }
2233
2234                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235                                         XFS_INO_TO_AGBNO(mp, inum));
2236
2237                /*
2238                 * We obtain and lock the backing buffer first in the process
2239                 * here, as we have to ensure that any dirty inode that we
2240                 * can't get the flush lock on is attached to the buffer.
2241                 * If we scan the in-memory inodes first, then buffer IO can
2242                 * complete before we get a lock on it, and hence we may fail
2243                 * to mark all the active inodes on the buffer stale.
2244                 */
2245                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246                                        mp->m_bsize * blks_per_cluster,
2247                                        XBF_UNMAPPED);
2248
2249                if (!bp)
2250                        return -ENOMEM;
2251
2252                /*
2253                 * This buffer may not have been correctly initialised as we
2254                 * didn't read it from disk. That's not important because we are
2255                 * only using to mark the buffer as stale in the log, and to
2256                 * attach stale cached inodes on it. That means it will never be
2257                 * dispatched for IO. If it is, we want to know about it, and we
2258                 * want it to fail. We can acheive this by adding a write
2259                 * verifier to the buffer.
2260                 */
2261                 bp->b_ops = &xfs_inode_buf_ops;
2262
2263                /*
2264                 * Walk the inodes already attached to the buffer and mark them
2265                 * stale. These will all have the flush locks held, so an
2266                 * in-memory inode walk can't lock them. By marking them all
2267                 * stale first, we will not attempt to lock them in the loop
2268                 * below as the XFS_ISTALE flag will be set.
2269                 */
2270                lip = bp->b_fspriv;
2271                while (lip) {
2272                        if (lip->li_type == XFS_LI_INODE) {
2273                                iip = (xfs_inode_log_item_t *)lip;
2274                                ASSERT(iip->ili_logged == 1);
2275                                lip->li_cb = xfs_istale_done;
2276                                xfs_trans_ail_copy_lsn(mp->m_ail,
2277                                                        &iip->ili_flush_lsn,
2278                                                        &iip->ili_item.li_lsn);
2279                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280                        }
2281                        lip = lip->li_bio_list;
2282                }
2283
2284
2285                /*
2286                 * For each inode in memory attempt to add it to the inode
2287                 * buffer and set it up for being staled on buffer IO
2288                 * completion.  This is safe as we've locked out tail pushing
2289                 * and flushing by locking the buffer.
2290                 *
2291                 * We have already marked every inode that was part of a
2292                 * transaction stale above, which means there is no point in
2293                 * even trying to lock them.
2294                 */
2295                for (i = 0; i < inodes_per_cluster; i++) {
2296retry:
2297                        rcu_read_lock();
2298                        ip = radix_tree_lookup(&pag->pag_ici_root,
2299                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2300
2301                        /* Inode not in memory, nothing to do */
2302                        if (!ip) {
2303                                rcu_read_unlock();
2304                                continue;
2305                        }
2306
2307                        /*
2308                         * because this is an RCU protected lookup, we could
2309                         * find a recently freed or even reallocated inode
2310                         * during the lookup. We need to check under the
2311                         * i_flags_lock for a valid inode here. Skip it if it
2312                         * is not valid, the wrong inode or stale.
2313                         */
2314                        spin_lock(&ip->i_flags_lock);
2315                        if (ip->i_ino != inum + i ||
2316                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2317                                spin_unlock(&ip->i_flags_lock);
2318                                rcu_read_unlock();
2319                                continue;
2320                        }
2321                        spin_unlock(&ip->i_flags_lock);
2322
2323                        /*
2324                         * Don't try to lock/unlock the current inode, but we
2325                         * _cannot_ skip the other inodes that we did not find
2326                         * in the list attached to the buffer and are not
2327                         * already marked stale. If we can't lock it, back off
2328                         * and retry.
2329                         */
2330                        if (ip != free_ip &&
2331                            !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332                                rcu_read_unlock();
2333                                delay(1);
2334                                goto retry;
2335                        }
2336                        rcu_read_unlock();
2337
2338                        xfs_iflock(ip);
2339                        xfs_iflags_set(ip, XFS_ISTALE);
2340
2341                        /*
2342                         * we don't need to attach clean inodes or those only
2343                         * with unlogged changes (which we throw away, anyway).
2344                         */
2345                        iip = ip->i_itemp;
2346                        if (!iip || xfs_inode_clean(ip)) {
2347                                ASSERT(ip != free_ip);
2348                                xfs_ifunlock(ip);
2349                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350                                continue;
2351                        }
2352
2353                        iip->ili_last_fields = iip->ili_fields;
2354                        iip->ili_fields = 0;
2355                        iip->ili_fsync_fields = 0;
2356                        iip->ili_logged = 1;
2357                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358                                                &iip->ili_item.li_lsn);
2359
2360                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2361                                                  &iip->ili_item);
2362
2363                        if (ip != free_ip)
2364                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365                }
2366
2367                xfs_trans_stale_inode_buf(tp, bp);
2368                xfs_trans_binval(tp, bp);
2369        }
2370
2371        xfs_perag_put(pag);
2372        return 0;
2373}
2374
2375/*
2376 * This is called to return an inode to the inode free list.
2377 * The inode should already be truncated to 0 length and have
2378 * no pages associated with it.  This routine also assumes that
2379 * the inode is already a part of the transaction.
2380 *
2381 * The on-disk copy of the inode will have been added to the list
2382 * of unlinked inodes in the AGI. We need to remove the inode from
2383 * that list atomically with respect to freeing it here.
2384 */
2385int
2386xfs_ifree(
2387        xfs_trans_t     *tp,
2388        xfs_inode_t     *ip,
2389        xfs_bmap_free_t *flist)
2390{
2391        int                     error;
2392        struct xfs_icluster     xic = { 0 };
2393
2394        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395        ASSERT(VFS_I(ip)->i_nlink == 0);
2396        ASSERT(ip->i_d.di_nextents == 0);
2397        ASSERT(ip->i_d.di_anextents == 0);
2398        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399        ASSERT(ip->i_d.di_nblocks == 0);
2400
2401        /*
2402         * Pull the on-disk inode from the AGI unlinked list.
2403         */
2404        error = xfs_iunlink_remove(tp, ip);
2405        if (error)
2406                return error;
2407
2408        error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409        if (error)
2410                return error;
2411
2412        VFS_I(ip)->i_mode = 0;          /* mark incore inode as free */
2413        ip->i_d.di_flags = 0;
2414        ip->i_d.di_dmevmask = 0;
2415        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2416        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2418        /*
2419         * Bump the generation count so no one will be confused
2420         * by reincarnations of this inode.
2421         */
2422        VFS_I(ip)->i_generation++;
2423        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2424
2425        if (xic.deleted)
2426                error = xfs_ifree_cluster(ip, tp, &xic);
2427
2428        return error;
2429}
2430
2431/*
2432 * This is called to unpin an inode.  The caller must have the inode locked
2433 * in at least shared mode so that the buffer cannot be subsequently pinned
2434 * once someone is waiting for it to be unpinned.
2435 */
2436static void
2437xfs_iunpin(
2438        struct xfs_inode        *ip)
2439{
2440        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2441
2442        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2443
2444        /* Give the log a push to start the unpinning I/O */
2445        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2446
2447}
2448
2449static void
2450__xfs_iunpin_wait(
2451        struct xfs_inode        *ip)
2452{
2453        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2455
2456        xfs_iunpin(ip);
2457
2458        do {
2459                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460                if (xfs_ipincount(ip))
2461                        io_schedule();
2462        } while (xfs_ipincount(ip));
2463        finish_wait(wq, &wait.wait);
2464}
2465
2466void
2467xfs_iunpin_wait(
2468        struct xfs_inode        *ip)
2469{
2470        if (xfs_ipincount(ip))
2471                __xfs_iunpin_wait(ip);
2472}
2473
2474/*
2475 * Removing an inode from the namespace involves removing the directory entry
2476 * and dropping the link count on the inode. Removing the directory entry can
2477 * result in locking an AGF (directory blocks were freed) and removing a link
2478 * count can result in placing the inode on an unlinked list which results in
2479 * locking an AGI.
2480 *
2481 * The big problem here is that we have an ordering constraint on AGF and AGI
2482 * locking - inode allocation locks the AGI, then can allocate a new extent for
2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484 * removes the inode from the unlinked list, requiring that we lock the AGI
2485 * first, and then freeing the inode can result in an inode chunk being freed
2486 * and hence freeing disk space requiring that we lock an AGF.
2487 *
2488 * Hence the ordering that is imposed by other parts of the code is AGI before
2489 * AGF. This means we cannot remove the directory entry before we drop the inode
2490 * reference count and put it on the unlinked list as this results in a lock
2491 * order of AGF then AGI, and this can deadlock against inode allocation and
2492 * freeing. Therefore we must drop the link counts before we remove the
2493 * directory entry.
2494 *
2495 * This is still safe from a transactional point of view - it is not until we
2496 * get to xfs_bmap_finish() that we have the possibility of multiple
2497 * transactions in this operation. Hence as long as we remove the directory
2498 * entry and drop the link count in the first transaction of the remove
2499 * operation, there are no transactional constraints on the ordering here.
2500 */
2501int
2502xfs_remove(
2503        xfs_inode_t             *dp,
2504        struct xfs_name         *name,
2505        xfs_inode_t             *ip)
2506{
2507        xfs_mount_t             *mp = dp->i_mount;
2508        xfs_trans_t             *tp = NULL;
2509        int                     is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510        int                     error = 0;
2511        xfs_bmap_free_t         free_list;
2512        xfs_fsblock_t           first_block;
2513        uint                    resblks;
2514
2515        trace_xfs_remove(dp, name);
2516
2517        if (XFS_FORCED_SHUTDOWN(mp))
2518                return -EIO;
2519
2520        error = xfs_qm_dqattach(dp, 0);
2521        if (error)
2522                goto std_return;
2523
2524        error = xfs_qm_dqattach(ip, 0);
2525        if (error)
2526                goto std_return;
2527
2528        if (is_dir)
2529                tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530        else
2531                tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2532
2533        /*
2534         * We try to get the real space reservation first,
2535         * allowing for directory btree deletion(s) implying
2536         * possible bmap insert(s).  If we can't get the space
2537         * reservation then we use 0 instead, and avoid the bmap
2538         * btree insert(s) in the directory code by, if the bmap
2539         * insert tries to happen, instead trimming the LAST
2540         * block from the directory.
2541         */
2542        resblks = XFS_REMOVE_SPACE_RES(mp);
2543        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544        if (error == -ENOSPC) {
2545                resblks = 0;
2546                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2547        }
2548        if (error) {
2549                ASSERT(error != -ENOSPC);
2550                goto out_trans_cancel;
2551        }
2552
2553        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554        xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2555
2556        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2558
2559        /*
2560         * If we're removing a directory perform some additional validation.
2561         */
2562        if (is_dir) {
2563                ASSERT(VFS_I(ip)->i_nlink >= 2);
2564                if (VFS_I(ip)->i_nlink != 2) {
2565                        error = -ENOTEMPTY;
2566                        goto out_trans_cancel;
2567                }
2568                if (!xfs_dir_isempty(ip)) {
2569                        error = -ENOTEMPTY;
2570                        goto out_trans_cancel;
2571                }
2572
2573                /* Drop the link from ip's "..".  */
2574                error = xfs_droplink(tp, dp);
2575                if (error)
2576                        goto out_trans_cancel;
2577
2578                /* Drop the "." link from ip to self.  */
2579                error = xfs_droplink(tp, ip);
2580                if (error)
2581                        goto out_trans_cancel;
2582        } else {
2583                /*
2584                 * When removing a non-directory we need to log the parent
2585                 * inode here.  For a directory this is done implicitly
2586                 * by the xfs_droplink call for the ".." entry.
2587                 */
2588                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2589        }
2590        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2591
2592        /* Drop the link from dp to ip. */
2593        error = xfs_droplink(tp, ip);
2594        if (error)
2595                goto out_trans_cancel;
2596
2597        xfs_bmap_init(&free_list, &first_block);
2598        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599                                        &first_block, &free_list, resblks);
2600        if (error) {
2601                ASSERT(error != -ENOENT);
2602                goto out_bmap_cancel;
2603        }
2604
2605        /*
2606         * If this is a synchronous mount, make sure that the
2607         * remove transaction goes to disk before returning to
2608         * the user.
2609         */
2610        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611                xfs_trans_set_sync(tp);
2612
2613        error = xfs_bmap_finish(&tp, &free_list, NULL);
2614        if (error)
2615                goto out_bmap_cancel;
2616
2617        error = xfs_trans_commit(tp);
2618        if (error)
2619                goto std_return;
2620
2621        if (is_dir && xfs_inode_is_filestream(ip))
2622                xfs_filestream_deassociate(ip);
2623
2624        return 0;
2625
2626 out_bmap_cancel:
2627        xfs_bmap_cancel(&free_list);
2628 out_trans_cancel:
2629        xfs_trans_cancel(tp);
2630 std_return:
2631        return error;
2632}
2633
2634/*
2635 * Enter all inodes for a rename transaction into a sorted array.
2636 */
2637#define __XFS_SORT_INODES       5
2638STATIC void
2639xfs_sort_for_rename(
2640        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2641        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2642        struct xfs_inode        *ip1,   /* in: inode of old entry */
2643        struct xfs_inode        *ip2,   /* in: inode of new entry */
2644        struct xfs_inode        *wip,   /* in: whiteout inode */
2645        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2646        int                     *num_inodes)  /* in/out: inodes in array */
2647{
2648        int                     i, j;
2649
2650        ASSERT(*num_inodes == __XFS_SORT_INODES);
2651        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2652
2653        /*
2654         * i_tab contains a list of pointers to inodes.  We initialize
2655         * the table here & we'll sort it.  We will then use it to
2656         * order the acquisition of the inode locks.
2657         *
2658         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2659         */
2660        i = 0;
2661        i_tab[i++] = dp1;
2662        i_tab[i++] = dp2;
2663        i_tab[i++] = ip1;
2664        if (ip2)
2665                i_tab[i++] = ip2;
2666        if (wip)
2667                i_tab[i++] = wip;
2668        *num_inodes = i;
2669
2670        /*
2671         * Sort the elements via bubble sort.  (Remember, there are at
2672         * most 5 elements to sort, so this is adequate.)
2673         */
2674        for (i = 0; i < *num_inodes; i++) {
2675                for (j = 1; j < *num_inodes; j++) {
2676                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677                                struct xfs_inode *temp = i_tab[j];
2678                                i_tab[j] = i_tab[j-1];
2679                                i_tab[j-1] = temp;
2680                        }
2681                }
2682        }
2683}
2684
2685static int
2686xfs_finish_rename(
2687        struct xfs_trans        *tp,
2688        struct xfs_bmap_free    *free_list)
2689{
2690        int                     error;
2691
2692        /*
2693         * If this is a synchronous mount, make sure that the rename transaction
2694         * goes to disk before returning to the user.
2695         */
2696        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697                xfs_trans_set_sync(tp);
2698
2699        error = xfs_bmap_finish(&tp, free_list, NULL);
2700        if (error) {
2701                xfs_bmap_cancel(free_list);
2702                xfs_trans_cancel(tp);
2703                return error;
2704        }
2705
2706        return xfs_trans_commit(tp);
2707}
2708
2709/*
2710 * xfs_cross_rename()
2711 *
2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2713 */
2714STATIC int
2715xfs_cross_rename(
2716        struct xfs_trans        *tp,
2717        struct xfs_inode        *dp1,
2718        struct xfs_name         *name1,
2719        struct xfs_inode        *ip1,
2720        struct xfs_inode        *dp2,
2721        struct xfs_name         *name2,
2722        struct xfs_inode        *ip2,
2723        struct xfs_bmap_free    *free_list,
2724        xfs_fsblock_t           *first_block,
2725        int                     spaceres)
2726{
2727        int             error = 0;
2728        int             ip1_flags = 0;
2729        int             ip2_flags = 0;
2730        int             dp2_flags = 0;
2731
2732        /* Swap inode number for dirent in first parent */
2733        error = xfs_dir_replace(tp, dp1, name1,
2734                                ip2->i_ino,
2735                                first_block, free_list, spaceres);
2736        if (error)
2737                goto out_trans_abort;
2738
2739        /* Swap inode number for dirent in second parent */
2740        error = xfs_dir_replace(tp, dp2, name2,
2741                                ip1->i_ino,
2742                                first_block, free_list, spaceres);
2743        if (error)
2744                goto out_trans_abort;
2745
2746        /*
2747         * If we're renaming one or more directories across different parents,
2748         * update the respective ".." entries (and link counts) to match the new
2749         * parents.
2750         */
2751        if (dp1 != dp2) {
2752                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2753
2754                if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756                                                dp1->i_ino, first_block,
2757                                                free_list, spaceres);
2758                        if (error)
2759                                goto out_trans_abort;
2760
2761                        /* transfer ip2 ".." reference to dp1 */
2762                        if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763                                error = xfs_droplink(tp, dp2);
2764                                if (error)
2765                                        goto out_trans_abort;
2766                                error = xfs_bumplink(tp, dp1);
2767                                if (error)
2768                                        goto out_trans_abort;
2769                        }
2770
2771                        /*
2772                         * Although ip1 isn't changed here, userspace needs
2773                         * to be warned about the change, so that applications
2774                         * relying on it (like backup ones), will properly
2775                         * notify the change
2776                         */
2777                        ip1_flags |= XFS_ICHGTIME_CHG;
2778                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2779                }
2780
2781                if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783                                                dp2->i_ino, first_block,
2784                                                free_list, spaceres);
2785                        if (error)
2786                                goto out_trans_abort;
2787
2788                        /* transfer ip1 ".." reference to dp2 */
2789                        if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790                                error = xfs_droplink(tp, dp1);
2791                                if (error)
2792                                        goto out_trans_abort;
2793                                error = xfs_bumplink(tp, dp2);
2794                                if (error)
2795                                        goto out_trans_abort;
2796                        }
2797
2798                        /*
2799                         * Although ip2 isn't changed here, userspace needs
2800                         * to be warned about the change, so that applications
2801                         * relying on it (like backup ones), will properly
2802                         * notify the change
2803                         */
2804                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805                        ip2_flags |= XFS_ICHGTIME_CHG;
2806                }
2807        }
2808
2809        if (ip1_flags) {
2810                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2812        }
2813        if (ip2_flags) {
2814                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2816        }
2817        if (dp2_flags) {
2818                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2820        }
2821        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823        return xfs_finish_rename(tp, free_list);
2824
2825out_trans_abort:
2826        xfs_bmap_cancel(free_list);
2827        xfs_trans_cancel(tp);
2828        return error;
2829}
2830
2831/*
2832 * xfs_rename_alloc_whiteout()
2833 *
2834 * Return a referenced, unlinked, unlocked inode that that can be used as a
2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836 * crash between allocating the inode and linking it into the rename transaction
2837 * recovery will free the inode and we won't leak it.
2838 */
2839static int
2840xfs_rename_alloc_whiteout(
2841        struct xfs_inode        *dp,
2842        struct xfs_inode        **wip)
2843{
2844        struct xfs_inode        *tmpfile;
2845        int                     error;
2846
2847        error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2848        if (error)
2849                return error;
2850
2851        /*
2852         * Prepare the tmpfile inode as if it were created through the VFS.
2853         * Otherwise, the link increment paths will complain about nlink 0->1.
2854         * Drop the link count as done by d_tmpfile(), complete the inode setup
2855         * and flag it as linkable.
2856         */
2857        drop_nlink(VFS_I(tmpfile));
2858        xfs_finish_inode_setup(tmpfile);
2859        VFS_I(tmpfile)->i_state |= I_LINKABLE;
2860
2861        *wip = tmpfile;
2862        return 0;
2863}
2864
2865/*
2866 * xfs_rename
2867 */
2868int
2869xfs_rename(
2870        struct xfs_inode        *src_dp,
2871        struct xfs_name         *src_name,
2872        struct xfs_inode        *src_ip,
2873        struct xfs_inode        *target_dp,
2874        struct xfs_name         *target_name,
2875        struct xfs_inode        *target_ip,
2876        unsigned int            flags)
2877{
2878        struct xfs_mount        *mp = src_dp->i_mount;
2879        struct xfs_trans        *tp;
2880        struct xfs_bmap_free    free_list;
2881        xfs_fsblock_t           first_block;
2882        struct xfs_inode        *wip = NULL;            /* whiteout inode */
2883        struct xfs_inode        *inodes[__XFS_SORT_INODES];
2884        int                     num_inodes = __XFS_SORT_INODES;
2885        bool                    new_parent = (src_dp != target_dp);
2886        bool                    src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887        int                     spaceres;
2888        int                     error;
2889
2890        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2891
2892        if ((flags & RENAME_EXCHANGE) && !target_ip)
2893                return -EINVAL;
2894
2895        /*
2896         * If we are doing a whiteout operation, allocate the whiteout inode
2897         * we will be placing at the target and ensure the type is set
2898         * appropriately.
2899         */
2900        if (flags & RENAME_WHITEOUT) {
2901                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902                error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903                if (error)
2904                        return error;
2905
2906                /* setup target dirent info as whiteout */
2907                src_name->type = XFS_DIR3_FT_CHRDEV;
2908        }
2909
2910        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911                                inodes, &num_inodes);
2912
2913        tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916        if (error == -ENOSPC) {
2917                spaceres = 0;
2918                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2919        }
2920        if (error)
2921                goto out_trans_cancel;
2922
2923        /*
2924         * Attach the dquots to the inodes
2925         */
2926        error = xfs_qm_vop_rename_dqattach(inodes);
2927        if (error)
2928                goto out_trans_cancel;
2929
2930        /*
2931         * Lock all the participating inodes. Depending upon whether
2932         * the target_name exists in the target directory, and
2933         * whether the target directory is the same as the source
2934         * directory, we can lock from 2 to 4 inodes.
2935         */
2936        if (!new_parent)
2937                xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938        else
2939                xfs_lock_two_inodes(src_dp, target_dp,
2940                                    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2941
2942        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2943
2944        /*
2945         * Join all the inodes to the transaction. From this point on,
2946         * we can rely on either trans_commit or trans_cancel to unlock
2947         * them.
2948         */
2949        xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950        if (new_parent)
2951                xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953        if (target_ip)
2954                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955        if (wip)
2956                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2957
2958        /*
2959         * If we are using project inheritance, we only allow renames
2960         * into our tree when the project IDs are the same; else the
2961         * tree quota mechanism would be circumvented.
2962         */
2963        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965                error = -EXDEV;
2966                goto out_trans_cancel;
2967        }
2968
2969        xfs_bmap_init(&free_list, &first_block);
2970
2971        /* RENAME_EXCHANGE is unique from here on. */
2972        if (flags & RENAME_EXCHANGE)
2973                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974                                        target_dp, target_name, target_ip,
2975                                        &free_list, &first_block, spaceres);
2976
2977        /*
2978         * Set up the target.
2979         */
2980        if (target_ip == NULL) {
2981                /*
2982                 * If there's no space reservation, check the entry will
2983                 * fit before actually inserting it.
2984                 */
2985                if (!spaceres) {
2986                        error = xfs_dir_canenter(tp, target_dp, target_name);
2987                        if (error)
2988                                goto out_trans_cancel;
2989                }
2990                /*
2991                 * If target does not exist and the rename crosses
2992                 * directories, adjust the target directory link count
2993                 * to account for the ".." reference from the new entry.
2994                 */
2995                error = xfs_dir_createname(tp, target_dp, target_name,
2996                                                src_ip->i_ino, &first_block,
2997                                                &free_list, spaceres);
2998                if (error)
2999                        goto out_bmap_cancel;
3000
3001                xfs_trans_ichgtime(tp, target_dp,
3002                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3003
3004                if (new_parent && src_is_directory) {
3005                        error = xfs_bumplink(tp, target_dp);
3006                        if (error)
3007                                goto out_bmap_cancel;
3008                }
3009        } else { /* target_ip != NULL */
3010                /*
3011                 * If target exists and it's a directory, check that both
3012                 * target and source are directories and that target can be
3013                 * destroyed, or that neither is a directory.
3014                 */
3015                if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3016                        /*
3017                         * Make sure target dir is empty.
3018                         */
3019                        if (!(xfs_dir_isempty(target_ip)) ||
3020                            (VFS_I(target_ip)->i_nlink > 2)) {
3021                                error = -EEXIST;
3022                                goto out_trans_cancel;
3023                        }
3024                }
3025
3026                /*
3027                 * Link the source inode under the target name.
3028                 * If the source inode is a directory and we are moving
3029                 * it across directories, its ".." entry will be
3030                 * inconsistent until we replace that down below.
3031                 *
3032                 * In case there is already an entry with the same
3033                 * name at the destination directory, remove it first.
3034                 */
3035                error = xfs_dir_replace(tp, target_dp, target_name,
3036                                        src_ip->i_ino,
3037                                        &first_block, &free_list, spaceres);
3038                if (error)
3039                        goto out_bmap_cancel;
3040
3041                xfs_trans_ichgtime(tp, target_dp,
3042                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3043
3044                /*
3045                 * Decrement the link count on the target since the target
3046                 * dir no longer points to it.
3047                 */
3048                error = xfs_droplink(tp, target_ip);
3049                if (error)
3050                        goto out_bmap_cancel;
3051
3052                if (src_is_directory) {
3053                        /*
3054                         * Drop the link from the old "." entry.
3055                         */
3056                        error = xfs_droplink(tp, target_ip);
3057                        if (error)
3058                                goto out_bmap_cancel;
3059                }
3060        } /* target_ip != NULL */
3061
3062        /*
3063         * Remove the source.
3064         */
3065        if (new_parent && src_is_directory) {
3066                /*
3067                 * Rewrite the ".." entry to point to the new
3068                 * directory.
3069                 */
3070                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071                                        target_dp->i_ino,
3072                                        &first_block, &free_list, spaceres);
3073                ASSERT(error != -EEXIST);
3074                if (error)
3075                        goto out_bmap_cancel;
3076        }
3077
3078        /*
3079         * We always want to hit the ctime on the source inode.
3080         *
3081         * This isn't strictly required by the standards since the source
3082         * inode isn't really being changed, but old unix file systems did
3083         * it and some incremental backup programs won't work without it.
3084         */
3085        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3087
3088        /*
3089         * Adjust the link count on src_dp.  This is necessary when
3090         * renaming a directory, either within one parent when
3091         * the target existed, or across two parent directories.
3092         */
3093        if (src_is_directory && (new_parent || target_ip != NULL)) {
3094
3095                /*
3096                 * Decrement link count on src_directory since the
3097                 * entry that's moved no longer points to it.
3098                 */
3099                error = xfs_droplink(tp, src_dp);
3100                if (error)
3101                        goto out_bmap_cancel;
3102        }
3103
3104        /*
3105         * For whiteouts, we only need to update the source dirent with the
3106         * inode number of the whiteout inode rather than removing it
3107         * altogether.
3108         */
3109        if (wip) {
3110                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111                                        &first_block, &free_list, spaceres);
3112        } else
3113                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114                                           &first_block, &free_list, spaceres);
3115        if (error)
3116                goto out_bmap_cancel;
3117
3118        /*
3119         * For whiteouts, we need to bump the link count on the whiteout inode.
3120         * This means that failures all the way up to this point leave the inode
3121         * on the unlinked list and so cleanup is a simple matter of dropping
3122         * the remaining reference to it. If we fail here after bumping the link
3123         * count, we're shutting down the filesystem so we'll never see the
3124         * intermediate state on disk.
3125         */
3126        if (wip) {
3127                ASSERT(VFS_I(wip)->i_nlink == 0);
3128                error = xfs_bumplink(tp, wip);
3129                if (error)
3130                        goto out_bmap_cancel;
3131                error = xfs_iunlink_remove(tp, wip);
3132                if (error)
3133                        goto out_bmap_cancel;
3134                xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3135
3136                /*
3137                 * Now we have a real link, clear the "I'm a tmpfile" state
3138                 * flag from the inode so it doesn't accidentally get misused in
3139                 * future.
3140                 */
3141                VFS_I(wip)->i_state &= ~I_LINKABLE;
3142        }
3143
3144        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146        if (new_parent)
3147                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3148
3149        error = xfs_finish_rename(tp, &free_list);
3150        if (wip)
3151                IRELE(wip);
3152        return error;
3153
3154out_bmap_cancel:
3155        xfs_bmap_cancel(&free_list);
3156out_trans_cancel:
3157        xfs_trans_cancel(tp);
3158        if (wip)
3159                IRELE(wip);
3160        return error;
3161}
3162
3163STATIC int
3164xfs_iflush_cluster(
3165        xfs_inode_t     *ip,
3166        xfs_buf_t       *bp)
3167{
3168        xfs_mount_t             *mp = ip->i_mount;
3169        struct xfs_perag        *pag;
3170        unsigned long           first_index, mask;
3171        unsigned long           inodes_per_cluster;
3172        int                     ilist_size;
3173        xfs_inode_t             **ilist;
3174        xfs_inode_t             *iq;
3175        int                     nr_found;
3176        int                     clcount = 0;
3177        int                     bufwasdelwri;
3178        int                     i;
3179
3180        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3181
3182        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183        ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184        ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185        if (!ilist)
3186                goto out_put;
3187
3188        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190        rcu_read_lock();
3191        /* really need a gang lookup range call here */
3192        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193                                        first_index, inodes_per_cluster);
3194        if (nr_found == 0)
3195                goto out_free;
3196
3197        for (i = 0; i < nr_found; i++) {
3198                iq = ilist[i];
3199                if (iq == ip)
3200                        continue;
3201
3202                /*
3203                 * because this is an RCU protected lookup, we could find a
3204                 * recently freed or even reallocated inode during the lookup.
3205                 * We need to check under the i_flags_lock for a valid inode
3206                 * here. Skip it if it is not valid or the wrong inode.
3207                 */
3208                spin_lock(&ip->i_flags_lock);
3209                if (!ip->i_ino ||
3210                    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211                        spin_unlock(&ip->i_flags_lock);
3212                        continue;
3213                }
3214                spin_unlock(&ip->i_flags_lock);
3215
3216                /*
3217                 * Do an un-protected check to see if the inode is dirty and
3218                 * is a candidate for flushing.  These checks will be repeated
3219                 * later after the appropriate locks are acquired.
3220                 */
3221                if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222                        continue;
3223
3224                /*
3225                 * Try to get locks.  If any are unavailable or it is pinned,
3226                 * then this inode cannot be flushed and is skipped.
3227                 */
3228
3229                if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230                        continue;
3231                if (!xfs_iflock_nowait(iq)) {
3232                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233                        continue;
3234                }
3235                if (xfs_ipincount(iq)) {
3236                        xfs_ifunlock(iq);
3237                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238                        continue;
3239                }
3240
3241                /*
3242                 * arriving here means that this inode can be flushed.  First
3243                 * re-check that it's dirty before flushing.
3244                 */
3245                if (!xfs_inode_clean(iq)) {
3246                        int     error;
3247                        error = xfs_iflush_int(iq, bp);
3248                        if (error) {
3249                                xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250                                goto cluster_corrupt_out;
3251                        }
3252                        clcount++;
3253                } else {
3254                        xfs_ifunlock(iq);
3255                }
3256                xfs_iunlock(iq, XFS_ILOCK_SHARED);
3257        }
3258
3259        if (clcount) {
3260                XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261                XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3262        }
3263
3264out_free:
3265        rcu_read_unlock();
3266        kmem_free(ilist);
3267out_put:
3268        xfs_perag_put(pag);
3269        return 0;
3270
3271
3272cluster_corrupt_out:
3273        /*
3274         * Corruption detected in the clustering loop.  Invalidate the
3275         * inode buffer and shut down the filesystem.
3276         */
3277        rcu_read_unlock();
3278        /*
3279         * Clean up the buffer.  If it was delwri, just release it --
3280         * brelse can handle it with no problems.  If not, shut down the
3281         * filesystem before releasing the buffer.
3282         */
3283        bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284        if (bufwasdelwri)
3285                xfs_buf_relse(bp);
3286
3287        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288
3289        if (!bufwasdelwri) {
3290                /*
3291                 * Just like incore_relse: if we have b_iodone functions,
3292                 * mark the buffer as an error and call them.  Otherwise
3293                 * mark it as stale and brelse.
3294                 */
3295                if (bp->b_iodone) {
3296                        bp->b_flags &= ~XBF_DONE;
3297                        xfs_buf_stale(bp);
3298                        xfs_buf_ioerror(bp, -EIO);
3299                        xfs_buf_ioend(bp);
3300                } else {
3301                        xfs_buf_stale(bp);
3302                        xfs_buf_relse(bp);
3303                }
3304        }
3305
3306        /*
3307         * Unlocks the flush lock
3308         */
3309        xfs_iflush_abort(iq, false);
3310        kmem_free(ilist);
3311        xfs_perag_put(pag);
3312        return -EFSCORRUPTED;
3313}
3314
3315/*
3316 * Flush dirty inode metadata into the backing buffer.
3317 *
3318 * The caller must have the inode lock and the inode flush lock held.  The
3319 * inode lock will still be held upon return to the caller, and the inode
3320 * flush lock will be released after the inode has reached the disk.
3321 *
3322 * The caller must write out the buffer returned in *bpp and release it.
3323 */
3324int
3325xfs_iflush(
3326        struct xfs_inode        *ip,
3327        struct xfs_buf          **bpp)
3328{
3329        struct xfs_mount        *mp = ip->i_mount;
3330        struct xfs_buf          *bp;
3331        struct xfs_dinode       *dip;
3332        int                     error;
3333
3334        XFS_STATS_INC(mp, xs_iflush_count);
3335
3336        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337        ASSERT(xfs_isiflocked(ip));
3338        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340
3341        *bpp = NULL;
3342
3343        xfs_iunpin_wait(ip);
3344
3345        /*
3346         * For stale inodes we cannot rely on the backing buffer remaining
3347         * stale in cache for the remaining life of the stale inode and so
3348         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349         * inodes below. We have to check this after ensuring the inode is
3350         * unpinned so that it is safe to reclaim the stale inode after the
3351         * flush call.
3352         */
3353        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354                xfs_ifunlock(ip);
3355                return 0;
3356        }
3357
3358        /*
3359         * This may have been unpinned because the filesystem is shutting
3360         * down forcibly. If that's the case we must not write this inode
3361         * to disk, because the log record didn't make it to disk.
3362         *
3363         * We also have to remove the log item from the AIL in this case,
3364         * as we wait for an empty AIL as part of the unmount process.
3365         */
3366        if (XFS_FORCED_SHUTDOWN(mp)) {
3367                error = -EIO;
3368                goto abort_out;
3369        }
3370
3371        /*
3372         * Get the buffer containing the on-disk inode.
3373         */
3374        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375                               0);
3376        if (error || !bp) {
3377                xfs_ifunlock(ip);
3378                return error;
3379        }
3380
3381        /*
3382         * First flush out the inode that xfs_iflush was called with.
3383         */
3384        error = xfs_iflush_int(ip, bp);
3385        if (error)
3386                goto corrupt_out;
3387
3388        /*
3389         * If the buffer is pinned then push on the log now so we won't
3390         * get stuck waiting in the write for too long.
3391         */
3392        if (xfs_buf_ispinned(bp))
3393                xfs_log_force(mp, 0);
3394
3395        /*
3396         * inode clustering:
3397         * see if other inodes can be gathered into this write
3398         */
3399        error = xfs_iflush_cluster(ip, bp);
3400        if (error)
3401                goto cluster_corrupt_out;
3402
3403        *bpp = bp;
3404        return 0;
3405
3406corrupt_out:
3407        xfs_buf_relse(bp);
3408        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409cluster_corrupt_out:
3410        error = -EFSCORRUPTED;
3411abort_out:
3412        /*
3413         * Unlocks the flush lock
3414         */
3415        xfs_iflush_abort(ip, false);
3416        return error;
3417}
3418
3419STATIC int
3420xfs_iflush_int(
3421        struct xfs_inode        *ip,
3422        struct xfs_buf          *bp)
3423{
3424        struct xfs_inode_log_item *iip = ip->i_itemp;
3425        struct xfs_dinode       *dip;
3426        struct xfs_mount        *mp = ip->i_mount;
3427
3428        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429        ASSERT(xfs_isiflocked(ip));
3430        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432        ASSERT(iip != NULL && iip->ili_fields != 0);
3433        ASSERT(ip->i_d.di_version > 1);
3434
3435        /* set *dip = inode's place in the buffer */
3436        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3437
3438        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441                        "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443                goto corrupt_out;
3444        }
3445        if (S_ISREG(VFS_I(ip)->i_mode)) {
3446                if (XFS_TEST_ERROR(
3447                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449                    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451                                "%s: Bad regular inode %Lu, ptr 0x%p",
3452                                __func__, ip->i_ino, ip);
3453                        goto corrupt_out;
3454                }
3455        } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456                if (XFS_TEST_ERROR(
3457                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460                    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462                                "%s: Bad directory inode %Lu, ptr 0x%p",
3463                                __func__, ip->i_ino, ip);
3464                        goto corrupt_out;
3465                }
3466        }
3467        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469                                XFS_RANDOM_IFLUSH_5)) {
3470                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471                        "%s: detected corrupt incore inode %Lu, "
3472                        "total extents = %d, nblocks = %Ld, ptr 0x%p",
3473                        __func__, ip->i_ino,
3474                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3475                        ip->i_d.di_nblocks, ip);
3476                goto corrupt_out;
3477        }
3478        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479                                mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481                        "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483                goto corrupt_out;
3484        }
3485
3486        /*
3487         * Inode item log recovery for v2 inodes are dependent on the
3488         * di_flushiter count for correct sequencing. We bump the flush
3489         * iteration count so we can detect flushes which postdate a log record
3490         * during recovery. This is redundant as we now log every change and
3491         * hence this can't happen but we need to still do it to ensure
3492         * backwards compatibility with old kernels that predate logging all
3493         * inode changes.
3494         */
3495        if (ip->i_d.di_version < 3)
3496                ip->i_d.di_flushiter++;
3497
3498        /*
3499         * Copy the dirty parts of the inode into the on-disk inode.  We always
3500         * copy out the core of the inode, because if the inode is dirty at all
3501         * the core must be.
3502         */
3503        xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3504
3505        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3506        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507                ip->i_d.di_flushiter = 0;
3508
3509        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3510        if (XFS_IFORK_Q(ip))
3511                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512        xfs_inobp_check(mp, bp);
3513
3514        /*
3515         * We've recorded everything logged in the inode, so we'd like to clear
3516         * the ili_fields bits so we don't log and flush things unnecessarily.
3517         * However, we can't stop logging all this information until the data
3518         * we've copied into the disk buffer is written to disk.  If we did we
3519         * might overwrite the copy of the inode in the log with all the data
3520         * after re-logging only part of it, and in the face of a crash we
3521         * wouldn't have all the data we need to recover.
3522         *
3523         * What we do is move the bits to the ili_last_fields field.  When
3524         * logging the inode, these bits are moved back to the ili_fields field.
3525         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526         * know that the information those bits represent is permanently on
3527         * disk.  As long as the flush completes before the inode is logged
3528         * again, then both ili_fields and ili_last_fields will be cleared.
3529         *
3530         * We can play with the ili_fields bits here, because the inode lock
3531         * must be held exclusively in order to set bits there and the flush
3532         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3533         * done routine can tell whether or not to look in the AIL.  Also, store
3534         * the current LSN of the inode so that we can tell whether the item has
3535         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3536         * need the AIL lock, because it is a 64 bit value that cannot be read
3537         * atomically.
3538         */
3539        iip->ili_last_fields = iip->ili_fields;
3540        iip->ili_fields = 0;
3541        iip->ili_fsync_fields = 0;
3542        iip->ili_logged = 1;
3543
3544        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545                                &iip->ili_item.li_lsn);
3546
3547        /*
3548         * Attach the function xfs_iflush_done to the inode's
3549         * buffer.  This will remove the inode from the AIL
3550         * and unlock the inode's flush lock when the inode is
3551         * completely written to disk.
3552         */
3553        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3554
3555        /* generate the checksum. */
3556        xfs_dinode_calc_crc(mp, dip);
3557
3558        ASSERT(bp->b_fspriv != NULL);
3559        ASSERT(bp->b_iodone != NULL);
3560        return 0;
3561
3562corrupt_out:
3563        return -EFSCORRUPTED;
3564}
3565