linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
  25#include "xfs_error.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_log.h"
  29#include "xfs_log_priv.h"
  30#include "xfs_log_recover.h"
  31#include "xfs_inode.h"
  32#include "xfs_trace.h"
  33#include "xfs_fsops.h"
  34#include "xfs_cksum.h"
  35#include "xfs_sysfs.h"
  36#include "xfs_sb.h"
  37
  38kmem_zone_t     *xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43        struct xlog             *log,
  44        struct xlog_ticket      *ticket,
  45        struct xlog_in_core     **iclog,
  46        xfs_lsn_t               *commitlsnp);
  47
  48STATIC struct xlog *
  49xlog_alloc_log(
  50        struct xfs_mount        *mp,
  51        struct xfs_buftarg      *log_target,
  52        xfs_daddr_t             blk_offset,
  53        int                     num_bblks);
  54STATIC int
  55xlog_space_left(
  56        struct xlog             *log,
  57        atomic64_t              *head);
  58STATIC int
  59xlog_sync(
  60        struct xlog             *log,
  61        struct xlog_in_core     *iclog);
  62STATIC void
  63xlog_dealloc_log(
  64        struct xlog             *log);
  65
  66/* local state machine functions */
  67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  68STATIC void
  69xlog_state_do_callback(
  70        struct xlog             *log,
  71        int                     aborted,
  72        struct xlog_in_core     *iclog);
  73STATIC int
  74xlog_state_get_iclog_space(
  75        struct xlog             *log,
  76        int                     len,
  77        struct xlog_in_core     **iclog,
  78        struct xlog_ticket      *ticket,
  79        int                     *continued_write,
  80        int                     *logoffsetp);
  81STATIC int
  82xlog_state_release_iclog(
  83        struct xlog             *log,
  84        struct xlog_in_core     *iclog);
  85STATIC void
  86xlog_state_switch_iclogs(
  87        struct xlog             *log,
  88        struct xlog_in_core     *iclog,
  89        int                     eventual_size);
  90STATIC void
  91xlog_state_want_sync(
  92        struct xlog             *log,
  93        struct xlog_in_core     *iclog);
  94
  95STATIC void
  96xlog_grant_push_ail(
  97        struct xlog             *log,
  98        int                     need_bytes);
  99STATIC void
 100xlog_regrant_reserve_log_space(
 101        struct xlog             *log,
 102        struct xlog_ticket      *ticket);
 103STATIC void
 104xlog_ungrant_log_space(
 105        struct xlog             *log,
 106        struct xlog_ticket      *ticket);
 107
 108#if defined(DEBUG)
 109STATIC void
 110xlog_verify_dest_ptr(
 111        struct xlog             *log,
 112        void                    *ptr);
 113STATIC void
 114xlog_verify_grant_tail(
 115        struct xlog *log);
 116STATIC void
 117xlog_verify_iclog(
 118        struct xlog             *log,
 119        struct xlog_in_core     *iclog,
 120        int                     count,
 121        bool                    syncing);
 122STATIC void
 123xlog_verify_tail_lsn(
 124        struct xlog             *log,
 125        struct xlog_in_core     *iclog,
 126        xfs_lsn_t               tail_lsn);
 127#else
 128#define xlog_verify_dest_ptr(a,b)
 129#define xlog_verify_grant_tail(a)
 130#define xlog_verify_iclog(a,b,c,d)
 131#define xlog_verify_tail_lsn(a,b,c)
 132#endif
 133
 134STATIC int
 135xlog_iclogs_empty(
 136        struct xlog             *log);
 137
 138static void
 139xlog_grant_sub_space(
 140        struct xlog             *log,
 141        atomic64_t              *head,
 142        int                     bytes)
 143{
 144        int64_t head_val = atomic64_read(head);
 145        int64_t new, old;
 146
 147        do {
 148                int     cycle, space;
 149
 150                xlog_crack_grant_head_val(head_val, &cycle, &space);
 151
 152                space -= bytes;
 153                if (space < 0) {
 154                        space += log->l_logsize;
 155                        cycle--;
 156                }
 157
 158                old = head_val;
 159                new = xlog_assign_grant_head_val(cycle, space);
 160                head_val = atomic64_cmpxchg(head, old, new);
 161        } while (head_val != old);
 162}
 163
 164static void
 165xlog_grant_add_space(
 166        struct xlog             *log,
 167        atomic64_t              *head,
 168        int                     bytes)
 169{
 170        int64_t head_val = atomic64_read(head);
 171        int64_t new, old;
 172
 173        do {
 174                int             tmp;
 175                int             cycle, space;
 176
 177                xlog_crack_grant_head_val(head_val, &cycle, &space);
 178
 179                tmp = log->l_logsize - space;
 180                if (tmp > bytes)
 181                        space += bytes;
 182                else {
 183                        space = bytes - tmp;
 184                        cycle++;
 185                }
 186
 187                old = head_val;
 188                new = xlog_assign_grant_head_val(cycle, space);
 189                head_val = atomic64_cmpxchg(head, old, new);
 190        } while (head_val != old);
 191}
 192
 193STATIC void
 194xlog_grant_head_init(
 195        struct xlog_grant_head  *head)
 196{
 197        xlog_assign_grant_head(&head->grant, 1, 0);
 198        INIT_LIST_HEAD(&head->waiters);
 199        spin_lock_init(&head->lock);
 200}
 201
 202STATIC void
 203xlog_grant_head_wake_all(
 204        struct xlog_grant_head  *head)
 205{
 206        struct xlog_ticket      *tic;
 207
 208        spin_lock(&head->lock);
 209        list_for_each_entry(tic, &head->waiters, t_queue)
 210                wake_up_process(tic->t_task);
 211        spin_unlock(&head->lock);
 212}
 213
 214static inline int
 215xlog_ticket_reservation(
 216        struct xlog             *log,
 217        struct xlog_grant_head  *head,
 218        struct xlog_ticket      *tic)
 219{
 220        if (head == &log->l_write_head) {
 221                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 222                return tic->t_unit_res;
 223        } else {
 224                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 225                        return tic->t_unit_res * tic->t_cnt;
 226                else
 227                        return tic->t_unit_res;
 228        }
 229}
 230
 231STATIC bool
 232xlog_grant_head_wake(
 233        struct xlog             *log,
 234        struct xlog_grant_head  *head,
 235        int                     *free_bytes)
 236{
 237        struct xlog_ticket      *tic;
 238        int                     need_bytes;
 239
 240        list_for_each_entry(tic, &head->waiters, t_queue) {
 241                need_bytes = xlog_ticket_reservation(log, head, tic);
 242                if (*free_bytes < need_bytes)
 243                        return false;
 244
 245                *free_bytes -= need_bytes;
 246                trace_xfs_log_grant_wake_up(log, tic);
 247                wake_up_process(tic->t_task);
 248        }
 249
 250        return true;
 251}
 252
 253STATIC int
 254xlog_grant_head_wait(
 255        struct xlog             *log,
 256        struct xlog_grant_head  *head,
 257        struct xlog_ticket      *tic,
 258        int                     need_bytes) __releases(&head->lock)
 259                                            __acquires(&head->lock)
 260{
 261        list_add_tail(&tic->t_queue, &head->waiters);
 262
 263        do {
 264                if (XLOG_FORCED_SHUTDOWN(log))
 265                        goto shutdown;
 266                xlog_grant_push_ail(log, need_bytes);
 267
 268                __set_current_state(TASK_UNINTERRUPTIBLE);
 269                spin_unlock(&head->lock);
 270
 271                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 272
 273                trace_xfs_log_grant_sleep(log, tic);
 274                schedule();
 275                trace_xfs_log_grant_wake(log, tic);
 276
 277                spin_lock(&head->lock);
 278                if (XLOG_FORCED_SHUTDOWN(log))
 279                        goto shutdown;
 280        } while (xlog_space_left(log, &head->grant) < need_bytes);
 281
 282        list_del_init(&tic->t_queue);
 283        return 0;
 284shutdown:
 285        list_del_init(&tic->t_queue);
 286        return -EIO;
 287}
 288
 289/*
 290 * Atomically get the log space required for a log ticket.
 291 *
 292 * Once a ticket gets put onto head->waiters, it will only return after the
 293 * needed reservation is satisfied.
 294 *
 295 * This function is structured so that it has a lock free fast path. This is
 296 * necessary because every new transaction reservation will come through this
 297 * path. Hence any lock will be globally hot if we take it unconditionally on
 298 * every pass.
 299 *
 300 * As tickets are only ever moved on and off head->waiters under head->lock, we
 301 * only need to take that lock if we are going to add the ticket to the queue
 302 * and sleep. We can avoid taking the lock if the ticket was never added to
 303 * head->waiters because the t_queue list head will be empty and we hold the
 304 * only reference to it so it can safely be checked unlocked.
 305 */
 306STATIC int
 307xlog_grant_head_check(
 308        struct xlog             *log,
 309        struct xlog_grant_head  *head,
 310        struct xlog_ticket      *tic,
 311        int                     *need_bytes)
 312{
 313        int                     free_bytes;
 314        int                     error = 0;
 315
 316        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 317
 318        /*
 319         * If there are other waiters on the queue then give them a chance at
 320         * logspace before us.  Wake up the first waiters, if we do not wake
 321         * up all the waiters then go to sleep waiting for more free space,
 322         * otherwise try to get some space for this transaction.
 323         */
 324        *need_bytes = xlog_ticket_reservation(log, head, tic);
 325        free_bytes = xlog_space_left(log, &head->grant);
 326        if (!list_empty_careful(&head->waiters)) {
 327                spin_lock(&head->lock);
 328                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 329                    free_bytes < *need_bytes) {
 330                        error = xlog_grant_head_wait(log, head, tic,
 331                                                     *need_bytes);
 332                }
 333                spin_unlock(&head->lock);
 334        } else if (free_bytes < *need_bytes) {
 335                spin_lock(&head->lock);
 336                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 337                spin_unlock(&head->lock);
 338        }
 339
 340        return error;
 341}
 342
 343static void
 344xlog_tic_reset_res(xlog_ticket_t *tic)
 345{
 346        tic->t_res_num = 0;
 347        tic->t_res_arr_sum = 0;
 348        tic->t_res_num_ophdrs = 0;
 349}
 350
 351static void
 352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 353{
 354        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 355                /* add to overflow and start again */
 356                tic->t_res_o_flow += tic->t_res_arr_sum;
 357                tic->t_res_num = 0;
 358                tic->t_res_arr_sum = 0;
 359        }
 360
 361        tic->t_res_arr[tic->t_res_num].r_len = len;
 362        tic->t_res_arr[tic->t_res_num].r_type = type;
 363        tic->t_res_arr_sum += len;
 364        tic->t_res_num++;
 365}
 366
 367/*
 368 * Replenish the byte reservation required by moving the grant write head.
 369 */
 370int
 371xfs_log_regrant(
 372        struct xfs_mount        *mp,
 373        struct xlog_ticket      *tic)
 374{
 375        struct xlog             *log = mp->m_log;
 376        int                     need_bytes;
 377        int                     error = 0;
 378
 379        if (XLOG_FORCED_SHUTDOWN(log))
 380                return -EIO;
 381
 382        XFS_STATS_INC(mp, xs_try_logspace);
 383
 384        /*
 385         * This is a new transaction on the ticket, so we need to change the
 386         * transaction ID so that the next transaction has a different TID in
 387         * the log. Just add one to the existing tid so that we can see chains
 388         * of rolling transactions in the log easily.
 389         */
 390        tic->t_tid++;
 391
 392        xlog_grant_push_ail(log, tic->t_unit_res);
 393
 394        tic->t_curr_res = tic->t_unit_res;
 395        xlog_tic_reset_res(tic);
 396
 397        if (tic->t_cnt > 0)
 398                return 0;
 399
 400        trace_xfs_log_regrant(log, tic);
 401
 402        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 403                                      &need_bytes);
 404        if (error)
 405                goto out_error;
 406
 407        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 408        trace_xfs_log_regrant_exit(log, tic);
 409        xlog_verify_grant_tail(log);
 410        return 0;
 411
 412out_error:
 413        /*
 414         * If we are failing, make sure the ticket doesn't have any current
 415         * reservations.  We don't want to add this back when the ticket/
 416         * transaction gets cancelled.
 417         */
 418        tic->t_curr_res = 0;
 419        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 420        return error;
 421}
 422
 423/*
 424 * Reserve log space and return a ticket corresponding the reservation.
 425 *
 426 * Each reservation is going to reserve extra space for a log record header.
 427 * When writes happen to the on-disk log, we don't subtract the length of the
 428 * log record header from any reservation.  By wasting space in each
 429 * reservation, we prevent over allocation problems.
 430 */
 431int
 432xfs_log_reserve(
 433        struct xfs_mount        *mp,
 434        int                     unit_bytes,
 435        int                     cnt,
 436        struct xlog_ticket      **ticp,
 437        __uint8_t               client,
 438        bool                    permanent,
 439        uint                    t_type)
 440{
 441        struct xlog             *log = mp->m_log;
 442        struct xlog_ticket      *tic;
 443        int                     need_bytes;
 444        int                     error = 0;
 445
 446        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 447
 448        if (XLOG_FORCED_SHUTDOWN(log))
 449                return -EIO;
 450
 451        XFS_STATS_INC(mp, xs_try_logspace);
 452
 453        ASSERT(*ticp == NULL);
 454        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 455                                KM_SLEEP | KM_MAYFAIL);
 456        if (!tic)
 457                return -ENOMEM;
 458
 459        tic->t_trans_type = t_type;
 460        *ticp = tic;
 461
 462        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 463                                            : tic->t_unit_res);
 464
 465        trace_xfs_log_reserve(log, tic);
 466
 467        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 468                                      &need_bytes);
 469        if (error)
 470                goto out_error;
 471
 472        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 473        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 474        trace_xfs_log_reserve_exit(log, tic);
 475        xlog_verify_grant_tail(log);
 476        return 0;
 477
 478out_error:
 479        /*
 480         * If we are failing, make sure the ticket doesn't have any current
 481         * reservations.  We don't want to add this back when the ticket/
 482         * transaction gets cancelled.
 483         */
 484        tic->t_curr_res = 0;
 485        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 486        return error;
 487}
 488
 489
 490/*
 491 * NOTES:
 492 *
 493 *      1. currblock field gets updated at startup and after in-core logs
 494 *              marked as with WANT_SYNC.
 495 */
 496
 497/*
 498 * This routine is called when a user of a log manager ticket is done with
 499 * the reservation.  If the ticket was ever used, then a commit record for
 500 * the associated transaction is written out as a log operation header with
 501 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 502 * a given ticket.  If the ticket was one with a permanent reservation, then
 503 * a few operations are done differently.  Permanent reservation tickets by
 504 * default don't release the reservation.  They just commit the current
 505 * transaction with the belief that the reservation is still needed.  A flag
 506 * must be passed in before permanent reservations are actually released.
 507 * When these type of tickets are not released, they need to be set into
 508 * the inited state again.  By doing this, a start record will be written
 509 * out when the next write occurs.
 510 */
 511xfs_lsn_t
 512xfs_log_done(
 513        struct xfs_mount        *mp,
 514        struct xlog_ticket      *ticket,
 515        struct xlog_in_core     **iclog,
 516        bool                    regrant)
 517{
 518        struct xlog             *log = mp->m_log;
 519        xfs_lsn_t               lsn = 0;
 520
 521        if (XLOG_FORCED_SHUTDOWN(log) ||
 522            /*
 523             * If nothing was ever written, don't write out commit record.
 524             * If we get an error, just continue and give back the log ticket.
 525             */
 526            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 527             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 528                lsn = (xfs_lsn_t) -1;
 529                regrant = false;
 530        }
 531
 532
 533        if (!regrant) {
 534                trace_xfs_log_done_nonperm(log, ticket);
 535
 536                /*
 537                 * Release ticket if not permanent reservation or a specific
 538                 * request has been made to release a permanent reservation.
 539                 */
 540                xlog_ungrant_log_space(log, ticket);
 541        } else {
 542                trace_xfs_log_done_perm(log, ticket);
 543
 544                xlog_regrant_reserve_log_space(log, ticket);
 545                /* If this ticket was a permanent reservation and we aren't
 546                 * trying to release it, reset the inited flags; so next time
 547                 * we write, a start record will be written out.
 548                 */
 549                ticket->t_flags |= XLOG_TIC_INITED;
 550        }
 551
 552        xfs_log_ticket_put(ticket);
 553        return lsn;
 554}
 555
 556/*
 557 * Attaches a new iclog I/O completion callback routine during
 558 * transaction commit.  If the log is in error state, a non-zero
 559 * return code is handed back and the caller is responsible for
 560 * executing the callback at an appropriate time.
 561 */
 562int
 563xfs_log_notify(
 564        struct xfs_mount        *mp,
 565        struct xlog_in_core     *iclog,
 566        xfs_log_callback_t      *cb)
 567{
 568        int     abortflg;
 569
 570        spin_lock(&iclog->ic_callback_lock);
 571        abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 572        if (!abortflg) {
 573                ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 574                              (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 575                cb->cb_next = NULL;
 576                *(iclog->ic_callback_tail) = cb;
 577                iclog->ic_callback_tail = &(cb->cb_next);
 578        }
 579        spin_unlock(&iclog->ic_callback_lock);
 580        return abortflg;
 581}
 582
 583int
 584xfs_log_release_iclog(
 585        struct xfs_mount        *mp,
 586        struct xlog_in_core     *iclog)
 587{
 588        if (xlog_state_release_iclog(mp->m_log, iclog)) {
 589                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 590                return -EIO;
 591        }
 592
 593        return 0;
 594}
 595
 596/*
 597 * Mount a log filesystem
 598 *
 599 * mp           - ubiquitous xfs mount point structure
 600 * log_target   - buftarg of on-disk log device
 601 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 602 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 603 *
 604 * Return error or zero.
 605 */
 606int
 607xfs_log_mount(
 608        xfs_mount_t     *mp,
 609        xfs_buftarg_t   *log_target,
 610        xfs_daddr_t     blk_offset,
 611        int             num_bblks)
 612{
 613        int             error = 0;
 614        int             min_logfsbs;
 615
 616        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 617                xfs_notice(mp, "Mounting V%d Filesystem",
 618                           XFS_SB_VERSION_NUM(&mp->m_sb));
 619        } else {
 620                xfs_notice(mp,
 621"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 622                           XFS_SB_VERSION_NUM(&mp->m_sb));
 623                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 624        }
 625
 626        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 627        if (IS_ERR(mp->m_log)) {
 628                error = PTR_ERR(mp->m_log);
 629                goto out;
 630        }
 631
 632        /*
 633         * Validate the given log space and drop a critical message via syslog
 634         * if the log size is too small that would lead to some unexpected
 635         * situations in transaction log space reservation stage.
 636         *
 637         * Note: we can't just reject the mount if the validation fails.  This
 638         * would mean that people would have to downgrade their kernel just to
 639         * remedy the situation as there is no way to grow the log (short of
 640         * black magic surgery with xfs_db).
 641         *
 642         * We can, however, reject mounts for CRC format filesystems, as the
 643         * mkfs binary being used to make the filesystem should never create a
 644         * filesystem with a log that is too small.
 645         */
 646        min_logfsbs = xfs_log_calc_minimum_size(mp);
 647
 648        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 649                xfs_warn(mp,
 650                "Log size %d blocks too small, minimum size is %d blocks",
 651                         mp->m_sb.sb_logblocks, min_logfsbs);
 652                error = -EINVAL;
 653        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 654                xfs_warn(mp,
 655                "Log size %d blocks too large, maximum size is %lld blocks",
 656                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 657                error = -EINVAL;
 658        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 659                xfs_warn(mp,
 660                "log size %lld bytes too large, maximum size is %lld bytes",
 661                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 662                         XFS_MAX_LOG_BYTES);
 663                error = -EINVAL;
 664        }
 665        if (error) {
 666                if (xfs_sb_version_hascrc(&mp->m_sb)) {
 667                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 668                        ASSERT(0);
 669                        goto out_free_log;
 670                }
 671                xfs_crit(mp, "Log size out of supported range.");
 672                xfs_crit(mp,
 673"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 674        }
 675
 676        /*
 677         * Initialize the AIL now we have a log.
 678         */
 679        error = xfs_trans_ail_init(mp);
 680        if (error) {
 681                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 682                goto out_free_log;
 683        }
 684        mp->m_log->l_ailp = mp->m_ail;
 685
 686        /*
 687         * skip log recovery on a norecovery mount.  pretend it all
 688         * just worked.
 689         */
 690        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 691                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 692
 693                if (readonly)
 694                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 695
 696                error = xlog_recover(mp->m_log);
 697
 698                if (readonly)
 699                        mp->m_flags |= XFS_MOUNT_RDONLY;
 700                if (error) {
 701                        xfs_warn(mp, "log mount/recovery failed: error %d",
 702                                error);
 703                        xlog_recover_cancel(mp->m_log);
 704                        goto out_destroy_ail;
 705                }
 706        }
 707
 708        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 709                               "log");
 710        if (error)
 711                goto out_destroy_ail;
 712
 713        /* Normal transactions can now occur */
 714        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 715
 716        /*
 717         * Now the log has been fully initialised and we know were our
 718         * space grant counters are, we can initialise the permanent ticket
 719         * needed for delayed logging to work.
 720         */
 721        xlog_cil_init_post_recovery(mp->m_log);
 722
 723        return 0;
 724
 725out_destroy_ail:
 726        xfs_trans_ail_destroy(mp);
 727out_free_log:
 728        xlog_dealloc_log(mp->m_log);
 729out:
 730        return error;
 731}
 732
 733/*
 734 * Finish the recovery of the file system.  This is separate from the
 735 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 736 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 737 * here.
 738 *
 739 * If we finish recovery successfully, start the background log work. If we are
 740 * not doing recovery, then we have a RO filesystem and we don't need to start
 741 * it.
 742 */
 743int
 744xfs_log_mount_finish(
 745        struct xfs_mount        *mp)
 746{
 747        int     error = 0;
 748
 749        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 750                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 751                return 0;
 752        }
 753
 754        error = xlog_recover_finish(mp->m_log);
 755        if (!error)
 756                xfs_log_work_queue(mp);
 757
 758        return error;
 759}
 760
 761/*
 762 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 763 * the log.
 764 */
 765int
 766xfs_log_mount_cancel(
 767        struct xfs_mount        *mp)
 768{
 769        int                     error;
 770
 771        error = xlog_recover_cancel(mp->m_log);
 772        xfs_log_unmount(mp);
 773
 774        return error;
 775}
 776
 777/*
 778 * Final log writes as part of unmount.
 779 *
 780 * Mark the filesystem clean as unmount happens.  Note that during relocation
 781 * this routine needs to be executed as part of source-bag while the
 782 * deallocation must not be done until source-end.
 783 */
 784
 785/*
 786 * Unmount record used to have a string "Unmount filesystem--" in the
 787 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 788 * We just write the magic number now since that particular field isn't
 789 * currently architecture converted and "Unmount" is a bit foo.
 790 * As far as I know, there weren't any dependencies on the old behaviour.
 791 */
 792
 793int
 794xfs_log_unmount_write(xfs_mount_t *mp)
 795{
 796        struct xlog      *log = mp->m_log;
 797        xlog_in_core_t   *iclog;
 798#ifdef DEBUG
 799        xlog_in_core_t   *first_iclog;
 800#endif
 801        xlog_ticket_t   *tic = NULL;
 802        xfs_lsn_t        lsn;
 803        int              error;
 804
 805        /*
 806         * Don't write out unmount record on read-only mounts.
 807         * Or, if we are doing a forced umount (typically because of IO errors).
 808         */
 809        if (mp->m_flags & XFS_MOUNT_RDONLY)
 810                return 0;
 811
 812        error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 813        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 814
 815#ifdef DEBUG
 816        first_iclog = iclog = log->l_iclog;
 817        do {
 818                if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 819                        ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 820                        ASSERT(iclog->ic_offset == 0);
 821                }
 822                iclog = iclog->ic_next;
 823        } while (iclog != first_iclog);
 824#endif
 825        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 826                error = xfs_log_reserve(mp, 600, 1, &tic,
 827                                        XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
 828                if (!error) {
 829                        /* the data section must be 32 bit size aligned */
 830                        struct {
 831                            __uint16_t magic;
 832                            __uint16_t pad1;
 833                            __uint32_t pad2; /* may as well make it 64 bits */
 834                        } magic = {
 835                                .magic = XLOG_UNMOUNT_TYPE,
 836                        };
 837                        struct xfs_log_iovec reg = {
 838                                .i_addr = &magic,
 839                                .i_len = sizeof(magic),
 840                                .i_type = XLOG_REG_TYPE_UNMOUNT,
 841                        };
 842                        struct xfs_log_vec vec = {
 843                                .lv_niovecs = 1,
 844                                .lv_iovecp = &reg,
 845                        };
 846
 847                        /* remove inited flag, and account for space used */
 848                        tic->t_flags = 0;
 849                        tic->t_curr_res -= sizeof(magic);
 850                        error = xlog_write(log, &vec, tic, &lsn,
 851                                           NULL, XLOG_UNMOUNT_TRANS);
 852                        /*
 853                         * At this point, we're umounting anyway,
 854                         * so there's no point in transitioning log state
 855                         * to IOERROR. Just continue...
 856                         */
 857                }
 858
 859                if (error)
 860                        xfs_alert(mp, "%s: unmount record failed", __func__);
 861
 862
 863                spin_lock(&log->l_icloglock);
 864                iclog = log->l_iclog;
 865                atomic_inc(&iclog->ic_refcnt);
 866                xlog_state_want_sync(log, iclog);
 867                spin_unlock(&log->l_icloglock);
 868                error = xlog_state_release_iclog(log, iclog);
 869
 870                spin_lock(&log->l_icloglock);
 871                if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 872                      iclog->ic_state == XLOG_STATE_DIRTY)) {
 873                        if (!XLOG_FORCED_SHUTDOWN(log)) {
 874                                xlog_wait(&iclog->ic_force_wait,
 875                                                        &log->l_icloglock);
 876                        } else {
 877                                spin_unlock(&log->l_icloglock);
 878                        }
 879                } else {
 880                        spin_unlock(&log->l_icloglock);
 881                }
 882                if (tic) {
 883                        trace_xfs_log_umount_write(log, tic);
 884                        xlog_ungrant_log_space(log, tic);
 885                        xfs_log_ticket_put(tic);
 886                }
 887        } else {
 888                /*
 889                 * We're already in forced_shutdown mode, couldn't
 890                 * even attempt to write out the unmount transaction.
 891                 *
 892                 * Go through the motions of sync'ing and releasing
 893                 * the iclog, even though no I/O will actually happen,
 894                 * we need to wait for other log I/Os that may already
 895                 * be in progress.  Do this as a separate section of
 896                 * code so we'll know if we ever get stuck here that
 897                 * we're in this odd situation of trying to unmount
 898                 * a file system that went into forced_shutdown as
 899                 * the result of an unmount..
 900                 */
 901                spin_lock(&log->l_icloglock);
 902                iclog = log->l_iclog;
 903                atomic_inc(&iclog->ic_refcnt);
 904
 905                xlog_state_want_sync(log, iclog);
 906                spin_unlock(&log->l_icloglock);
 907                error =  xlog_state_release_iclog(log, iclog);
 908
 909                spin_lock(&log->l_icloglock);
 910
 911                if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 912                        || iclog->ic_state == XLOG_STATE_DIRTY
 913                        || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 914
 915                                xlog_wait(&iclog->ic_force_wait,
 916                                                        &log->l_icloglock);
 917                } else {
 918                        spin_unlock(&log->l_icloglock);
 919                }
 920        }
 921
 922        return error;
 923}       /* xfs_log_unmount_write */
 924
 925/*
 926 * Empty the log for unmount/freeze.
 927 *
 928 * To do this, we first need to shut down the background log work so it is not
 929 * trying to cover the log as we clean up. We then need to unpin all objects in
 930 * the log so we can then flush them out. Once they have completed their IO and
 931 * run the callbacks removing themselves from the AIL, we can write the unmount
 932 * record.
 933 */
 934void
 935xfs_log_quiesce(
 936        struct xfs_mount        *mp)
 937{
 938        cancel_delayed_work_sync(&mp->m_log->l_work);
 939        xfs_log_force(mp, XFS_LOG_SYNC);
 940
 941        /*
 942         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 943         * will push it, xfs_wait_buftarg() will not wait for it. Further,
 944         * xfs_buf_iowait() cannot be used because it was pushed with the
 945         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 946         * the IO to complete.
 947         */
 948        xfs_ail_push_all_sync(mp->m_ail);
 949        xfs_wait_buftarg(mp->m_ddev_targp);
 950        xfs_buf_lock(mp->m_sb_bp);
 951        xfs_buf_unlock(mp->m_sb_bp);
 952
 953        xfs_log_unmount_write(mp);
 954}
 955
 956/*
 957 * Shut down and release the AIL and Log.
 958 *
 959 * During unmount, we need to ensure we flush all the dirty metadata objects
 960 * from the AIL so that the log is empty before we write the unmount record to
 961 * the log. Once this is done, we can tear down the AIL and the log.
 962 */
 963void
 964xfs_log_unmount(
 965        struct xfs_mount        *mp)
 966{
 967        xfs_log_quiesce(mp);
 968
 969        xfs_trans_ail_destroy(mp);
 970
 971        xfs_sysfs_del(&mp->m_log->l_kobj);
 972
 973        xlog_dealloc_log(mp->m_log);
 974}
 975
 976void
 977xfs_log_item_init(
 978        struct xfs_mount        *mp,
 979        struct xfs_log_item     *item,
 980        int                     type,
 981        const struct xfs_item_ops *ops)
 982{
 983        item->li_mountp = mp;
 984        item->li_ailp = mp->m_ail;
 985        item->li_type = type;
 986        item->li_ops = ops;
 987        item->li_lv = NULL;
 988
 989        INIT_LIST_HEAD(&item->li_ail);
 990        INIT_LIST_HEAD(&item->li_cil);
 991}
 992
 993/*
 994 * Wake up processes waiting for log space after we have moved the log tail.
 995 */
 996void
 997xfs_log_space_wake(
 998        struct xfs_mount        *mp)
 999{
1000        struct xlog             *log = mp->m_log;
1001        int                     free_bytes;
1002
1003        if (XLOG_FORCED_SHUTDOWN(log))
1004                return;
1005
1006        if (!list_empty_careful(&log->l_write_head.waiters)) {
1007                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008
1009                spin_lock(&log->l_write_head.lock);
1010                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012                spin_unlock(&log->l_write_head.lock);
1013        }
1014
1015        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017
1018                spin_lock(&log->l_reserve_head.lock);
1019                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021                spin_unlock(&log->l_reserve_head.lock);
1022        }
1023}
1024
1025/*
1026 * Determine if we have a transaction that has gone to disk that needs to be
1027 * covered. To begin the transition to the idle state firstly the log needs to
1028 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029 * we start attempting to cover the log.
1030 *
1031 * Only if we are then in a state where covering is needed, the caller is
1032 * informed that dummy transactions are required to move the log into the idle
1033 * state.
1034 *
1035 * If there are any items in the AIl or CIL, then we do not want to attempt to
1036 * cover the log as we may be in a situation where there isn't log space
1037 * available to run a dummy transaction and this can lead to deadlocks when the
1038 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1039 * there's no point in running a dummy transaction at this point because we
1040 * can't start trying to idle the log until both the CIL and AIL are empty.
1041 */
1042int
1043xfs_log_need_covered(xfs_mount_t *mp)
1044{
1045        struct xlog     *log = mp->m_log;
1046        int             needed = 0;
1047
1048        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049                return 0;
1050
1051        if (!xlog_cil_empty(log))
1052                return 0;
1053
1054        spin_lock(&log->l_icloglock);
1055        switch (log->l_covered_state) {
1056        case XLOG_STATE_COVER_DONE:
1057        case XLOG_STATE_COVER_DONE2:
1058        case XLOG_STATE_COVER_IDLE:
1059                break;
1060        case XLOG_STATE_COVER_NEED:
1061        case XLOG_STATE_COVER_NEED2:
1062                if (xfs_ail_min_lsn(log->l_ailp))
1063                        break;
1064                if (!xlog_iclogs_empty(log))
1065                        break;
1066
1067                needed = 1;
1068                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1070                else
1071                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072                break;
1073        default:
1074                needed = 1;
1075                break;
1076        }
1077        spin_unlock(&log->l_icloglock);
1078        return needed;
1079}
1080
1081/*
1082 * We may be holding the log iclog lock upon entering this routine.
1083 */
1084xfs_lsn_t
1085xlog_assign_tail_lsn_locked(
1086        struct xfs_mount        *mp)
1087{
1088        struct xlog             *log = mp->m_log;
1089        struct xfs_log_item     *lip;
1090        xfs_lsn_t               tail_lsn;
1091
1092        assert_spin_locked(&mp->m_ail->xa_lock);
1093
1094        /*
1095         * To make sure we always have a valid LSN for the log tail we keep
1096         * track of the last LSN which was committed in log->l_last_sync_lsn,
1097         * and use that when the AIL was empty.
1098         */
1099        lip = xfs_ail_min(mp->m_ail);
1100        if (lip)
1101                tail_lsn = lip->li_lsn;
1102        else
1103                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105        atomic64_set(&log->l_tail_lsn, tail_lsn);
1106        return tail_lsn;
1107}
1108
1109xfs_lsn_t
1110xlog_assign_tail_lsn(
1111        struct xfs_mount        *mp)
1112{
1113        xfs_lsn_t               tail_lsn;
1114
1115        spin_lock(&mp->m_ail->xa_lock);
1116        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117        spin_unlock(&mp->m_ail->xa_lock);
1118
1119        return tail_lsn;
1120}
1121
1122/*
1123 * Return the space in the log between the tail and the head.  The head
1124 * is passed in the cycle/bytes formal parms.  In the special case where
1125 * the reserve head has wrapped passed the tail, this calculation is no
1126 * longer valid.  In this case, just return 0 which means there is no space
1127 * in the log.  This works for all places where this function is called
1128 * with the reserve head.  Of course, if the write head were to ever
1129 * wrap the tail, we should blow up.  Rather than catch this case here,
1130 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1131 *
1132 * This code also handles the case where the reservation head is behind
1133 * the tail.  The details of this case are described below, but the end
1134 * result is that we return the size of the log as the amount of space left.
1135 */
1136STATIC int
1137xlog_space_left(
1138        struct xlog     *log,
1139        atomic64_t      *head)
1140{
1141        int             free_bytes;
1142        int             tail_bytes;
1143        int             tail_cycle;
1144        int             head_cycle;
1145        int             head_bytes;
1146
1147        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149        tail_bytes = BBTOB(tail_bytes);
1150        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152        else if (tail_cycle + 1 < head_cycle)
1153                return 0;
1154        else if (tail_cycle < head_cycle) {
1155                ASSERT(tail_cycle == (head_cycle - 1));
1156                free_bytes = tail_bytes - head_bytes;
1157        } else {
1158                /*
1159                 * The reservation head is behind the tail.
1160                 * In this case we just want to return the size of the
1161                 * log as the amount of space left.
1162                 */
1163                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164                xfs_alert(log->l_mp,
1165                          "  tail_cycle = %d, tail_bytes = %d",
1166                          tail_cycle, tail_bytes);
1167                xfs_alert(log->l_mp,
1168                          "  GH   cycle = %d, GH   bytes = %d",
1169                          head_cycle, head_bytes);
1170                ASSERT(0);
1171                free_bytes = log->l_logsize;
1172        }
1173        return free_bytes;
1174}
1175
1176
1177/*
1178 * Log function which is called when an io completes.
1179 *
1180 * The log manager needs its own routine, in order to control what
1181 * happens with the buffer after the write completes.
1182 */
1183void
1184xlog_iodone(xfs_buf_t *bp)
1185{
1186        struct xlog_in_core     *iclog = bp->b_fspriv;
1187        struct xlog             *l = iclog->ic_log;
1188        int                     aborted = 0;
1189
1190        /*
1191         * Race to shutdown the filesystem if we see an error or the iclog is in
1192         * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1193         * CRC errors into log recovery.
1194         */
1195        if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1196                           XFS_RANDOM_IODONE_IOERR) ||
1197            iclog->ic_state & XLOG_STATE_IOABORT) {
1198                if (iclog->ic_state & XLOG_STATE_IOABORT)
1199                        iclog->ic_state &= ~XLOG_STATE_IOABORT;
1200
1201                xfs_buf_ioerror_alert(bp, __func__);
1202                xfs_buf_stale(bp);
1203                xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1204                /*
1205                 * This flag will be propagated to the trans-committed
1206                 * callback routines to let them know that the log-commit
1207                 * didn't succeed.
1208                 */
1209                aborted = XFS_LI_ABORTED;
1210        } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1211                aborted = XFS_LI_ABORTED;
1212        }
1213
1214        /* log I/O is always issued ASYNC */
1215        ASSERT(bp->b_flags & XBF_ASYNC);
1216        xlog_state_done_syncing(iclog, aborted);
1217
1218        /*
1219         * drop the buffer lock now that we are done. Nothing references
1220         * the buffer after this, so an unmount waiting on this lock can now
1221         * tear it down safely. As such, it is unsafe to reference the buffer
1222         * (bp) after the unlock as we could race with it being freed.
1223         */
1224        xfs_buf_unlock(bp);
1225}
1226
1227/*
1228 * Return size of each in-core log record buffer.
1229 *
1230 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1231 *
1232 * If the filesystem blocksize is too large, we may need to choose a
1233 * larger size since the directory code currently logs entire blocks.
1234 */
1235
1236STATIC void
1237xlog_get_iclog_buffer_size(
1238        struct xfs_mount        *mp,
1239        struct xlog             *log)
1240{
1241        int size;
1242        int xhdrs;
1243
1244        if (mp->m_logbufs <= 0)
1245                log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1246        else
1247                log->l_iclog_bufs = mp->m_logbufs;
1248
1249        /*
1250         * Buffer size passed in from mount system call.
1251         */
1252        if (mp->m_logbsize > 0) {
1253                size = log->l_iclog_size = mp->m_logbsize;
1254                log->l_iclog_size_log = 0;
1255                while (size != 1) {
1256                        log->l_iclog_size_log++;
1257                        size >>= 1;
1258                }
1259
1260                if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1261                        /* # headers = size / 32k
1262                         * one header holds cycles from 32k of data
1263                         */
1264
1265                        xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1266                        if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1267                                xhdrs++;
1268                        log->l_iclog_hsize = xhdrs << BBSHIFT;
1269                        log->l_iclog_heads = xhdrs;
1270                } else {
1271                        ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1272                        log->l_iclog_hsize = BBSIZE;
1273                        log->l_iclog_heads = 1;
1274                }
1275                goto done;
1276        }
1277
1278        /* All machines use 32kB buffers by default. */
1279        log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1280        log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1281
1282        /* the default log size is 16k or 32k which is one header sector */
1283        log->l_iclog_hsize = BBSIZE;
1284        log->l_iclog_heads = 1;
1285
1286done:
1287        /* are we being asked to make the sizes selected above visible? */
1288        if (mp->m_logbufs == 0)
1289                mp->m_logbufs = log->l_iclog_bufs;
1290        if (mp->m_logbsize == 0)
1291                mp->m_logbsize = log->l_iclog_size;
1292}       /* xlog_get_iclog_buffer_size */
1293
1294
1295void
1296xfs_log_work_queue(
1297        struct xfs_mount        *mp)
1298{
1299        queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1300                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1301}
1302
1303/*
1304 * Every sync period we need to unpin all items in the AIL and push them to
1305 * disk. If there is nothing dirty, then we might need to cover the log to
1306 * indicate that the filesystem is idle.
1307 */
1308void
1309xfs_log_worker(
1310        struct work_struct      *work)
1311{
1312        struct xlog             *log = container_of(to_delayed_work(work),
1313                                                struct xlog, l_work);
1314        struct xfs_mount        *mp = log->l_mp;
1315
1316        /* dgc: errors ignored - not fatal and nowhere to report them */
1317        if (xfs_log_need_covered(mp)) {
1318                /*
1319                 * Dump a transaction into the log that contains no real change.
1320                 * This is needed to stamp the current tail LSN into the log
1321                 * during the covering operation.
1322                 *
1323                 * We cannot use an inode here for this - that will push dirty
1324                 * state back up into the VFS and then periodic inode flushing
1325                 * will prevent log covering from making progress. Hence we
1326                 * synchronously log the superblock instead to ensure the
1327                 * superblock is immediately unpinned and can be written back.
1328                 */
1329                xfs_sync_sb(mp, true);
1330        } else
1331                xfs_log_force(mp, 0);
1332
1333        /* start pushing all the metadata that is currently dirty */
1334        xfs_ail_push_all(mp->m_ail);
1335
1336        /* queue us up again */
1337        xfs_log_work_queue(mp);
1338}
1339
1340/*
1341 * This routine initializes some of the log structure for a given mount point.
1342 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1343 * some other stuff may be filled in too.
1344 */
1345STATIC struct xlog *
1346xlog_alloc_log(
1347        struct xfs_mount        *mp,
1348        struct xfs_buftarg      *log_target,
1349        xfs_daddr_t             blk_offset,
1350        int                     num_bblks)
1351{
1352        struct xlog             *log;
1353        xlog_rec_header_t       *head;
1354        xlog_in_core_t          **iclogp;
1355        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1356        xfs_buf_t               *bp;
1357        int                     i;
1358        int                     error = -ENOMEM;
1359        uint                    log2_size = 0;
1360
1361        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1362        if (!log) {
1363                xfs_warn(mp, "Log allocation failed: No memory!");
1364                goto out;
1365        }
1366
1367        log->l_mp          = mp;
1368        log->l_targ        = log_target;
1369        log->l_logsize     = BBTOB(num_bblks);
1370        log->l_logBBstart  = blk_offset;
1371        log->l_logBBsize   = num_bblks;
1372        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1373        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1374        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1375
1376        log->l_prev_block  = -1;
1377        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1378        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1379        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1380        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1381
1382        xlog_grant_head_init(&log->l_reserve_head);
1383        xlog_grant_head_init(&log->l_write_head);
1384
1385        error = -EFSCORRUPTED;
1386        if (xfs_sb_version_hassector(&mp->m_sb)) {
1387                log2_size = mp->m_sb.sb_logsectlog;
1388                if (log2_size < BBSHIFT) {
1389                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1390                                log2_size, BBSHIFT);
1391                        goto out_free_log;
1392                }
1393
1394                log2_size -= BBSHIFT;
1395                if (log2_size > mp->m_sectbb_log) {
1396                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1397                                log2_size, mp->m_sectbb_log);
1398                        goto out_free_log;
1399                }
1400
1401                /* for larger sector sizes, must have v2 or external log */
1402                if (log2_size && log->l_logBBstart > 0 &&
1403                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1404                        xfs_warn(mp,
1405                "log sector size (0x%x) invalid for configuration.",
1406                                log2_size);
1407                        goto out_free_log;
1408                }
1409        }
1410        log->l_sectBBsize = 1 << log2_size;
1411
1412        xlog_get_iclog_buffer_size(mp, log);
1413
1414        /*
1415         * Use a NULL block for the extra log buffer used during splits so that
1416         * it will trigger errors if we ever try to do IO on it without first
1417         * having set it up properly.
1418         */
1419        error = -ENOMEM;
1420        bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1421                           BTOBB(log->l_iclog_size), 0);
1422        if (!bp)
1423                goto out_free_log;
1424
1425        /*
1426         * The iclogbuf buffer locks are held over IO but we are not going to do
1427         * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1428         * when appropriately.
1429         */
1430        ASSERT(xfs_buf_islocked(bp));
1431        xfs_buf_unlock(bp);
1432
1433        /* use high priority wq for log I/O completion */
1434        bp->b_ioend_wq = mp->m_log_workqueue;
1435        bp->b_iodone = xlog_iodone;
1436        log->l_xbuf = bp;
1437
1438        spin_lock_init(&log->l_icloglock);
1439        init_waitqueue_head(&log->l_flush_wait);
1440
1441        iclogp = &log->l_iclog;
1442        /*
1443         * The amount of memory to allocate for the iclog structure is
1444         * rather funky due to the way the structure is defined.  It is
1445         * done this way so that we can use different sizes for machines
1446         * with different amounts of memory.  See the definition of
1447         * xlog_in_core_t in xfs_log_priv.h for details.
1448         */
1449        ASSERT(log->l_iclog_size >= 4096);
1450        for (i=0; i < log->l_iclog_bufs; i++) {
1451                *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1452                if (!*iclogp)
1453                        goto out_free_iclog;
1454
1455                iclog = *iclogp;
1456                iclog->ic_prev = prev_iclog;
1457                prev_iclog = iclog;
1458
1459                bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1460                                                BTOBB(log->l_iclog_size), 0);
1461                if (!bp)
1462                        goto out_free_iclog;
1463
1464                ASSERT(xfs_buf_islocked(bp));
1465                xfs_buf_unlock(bp);
1466
1467                /* use high priority wq for log I/O completion */
1468                bp->b_ioend_wq = mp->m_log_workqueue;
1469                bp->b_iodone = xlog_iodone;
1470                iclog->ic_bp = bp;
1471                iclog->ic_data = bp->b_addr;
1472#ifdef DEBUG
1473                log->l_iclog_bak[i] = &iclog->ic_header;
1474#endif
1475                head = &iclog->ic_header;
1476                memset(head, 0, sizeof(xlog_rec_header_t));
1477                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1478                head->h_version = cpu_to_be32(
1479                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1480                head->h_size = cpu_to_be32(log->l_iclog_size);
1481                /* new fields */
1482                head->h_fmt = cpu_to_be32(XLOG_FMT);
1483                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1484
1485                iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1486                iclog->ic_state = XLOG_STATE_ACTIVE;
1487                iclog->ic_log = log;
1488                atomic_set(&iclog->ic_refcnt, 0);
1489                spin_lock_init(&iclog->ic_callback_lock);
1490                iclog->ic_callback_tail = &(iclog->ic_callback);
1491                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1492
1493                init_waitqueue_head(&iclog->ic_force_wait);
1494                init_waitqueue_head(&iclog->ic_write_wait);
1495
1496                iclogp = &iclog->ic_next;
1497        }
1498        *iclogp = log->l_iclog;                 /* complete ring */
1499        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1500
1501        error = xlog_cil_init(log);
1502        if (error)
1503                goto out_free_iclog;
1504        return log;
1505
1506out_free_iclog:
1507        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1508                prev_iclog = iclog->ic_next;
1509                if (iclog->ic_bp)
1510                        xfs_buf_free(iclog->ic_bp);
1511                kmem_free(iclog);
1512        }
1513        spinlock_destroy(&log->l_icloglock);
1514        xfs_buf_free(log->l_xbuf);
1515out_free_log:
1516        kmem_free(log);
1517out:
1518        return ERR_PTR(error);
1519}       /* xlog_alloc_log */
1520
1521
1522/*
1523 * Write out the commit record of a transaction associated with the given
1524 * ticket.  Return the lsn of the commit record.
1525 */
1526STATIC int
1527xlog_commit_record(
1528        struct xlog             *log,
1529        struct xlog_ticket      *ticket,
1530        struct xlog_in_core     **iclog,
1531        xfs_lsn_t               *commitlsnp)
1532{
1533        struct xfs_mount *mp = log->l_mp;
1534        int     error;
1535        struct xfs_log_iovec reg = {
1536                .i_addr = NULL,
1537                .i_len = 0,
1538                .i_type = XLOG_REG_TYPE_COMMIT,
1539        };
1540        struct xfs_log_vec vec = {
1541                .lv_niovecs = 1,
1542                .lv_iovecp = &reg,
1543        };
1544
1545        ASSERT_ALWAYS(iclog);
1546        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1547                                        XLOG_COMMIT_TRANS);
1548        if (error)
1549                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1550        return error;
1551}
1552
1553/*
1554 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1555 * log space.  This code pushes on the lsn which would supposedly free up
1556 * the 25% which we want to leave free.  We may need to adopt a policy which
1557 * pushes on an lsn which is further along in the log once we reach the high
1558 * water mark.  In this manner, we would be creating a low water mark.
1559 */
1560STATIC void
1561xlog_grant_push_ail(
1562        struct xlog     *log,
1563        int             need_bytes)
1564{
1565        xfs_lsn_t       threshold_lsn = 0;
1566        xfs_lsn_t       last_sync_lsn;
1567        int             free_blocks;
1568        int             free_bytes;
1569        int             threshold_block;
1570        int             threshold_cycle;
1571        int             free_threshold;
1572
1573        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1574
1575        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1576        free_blocks = BTOBBT(free_bytes);
1577
1578        /*
1579         * Set the threshold for the minimum number of free blocks in the
1580         * log to the maximum of what the caller needs, one quarter of the
1581         * log, and 256 blocks.
1582         */
1583        free_threshold = BTOBB(need_bytes);
1584        free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1585        free_threshold = MAX(free_threshold, 256);
1586        if (free_blocks >= free_threshold)
1587                return;
1588
1589        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1590                                                &threshold_block);
1591        threshold_block += free_threshold;
1592        if (threshold_block >= log->l_logBBsize) {
1593                threshold_block -= log->l_logBBsize;
1594                threshold_cycle += 1;
1595        }
1596        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1597                                        threshold_block);
1598        /*
1599         * Don't pass in an lsn greater than the lsn of the last
1600         * log record known to be on disk. Use a snapshot of the last sync lsn
1601         * so that it doesn't change between the compare and the set.
1602         */
1603        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1604        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1605                threshold_lsn = last_sync_lsn;
1606
1607        /*
1608         * Get the transaction layer to kick the dirty buffers out to
1609         * disk asynchronously. No point in trying to do this if
1610         * the filesystem is shutting down.
1611         */
1612        if (!XLOG_FORCED_SHUTDOWN(log))
1613                xfs_ail_push(log->l_ailp, threshold_lsn);
1614}
1615
1616/*
1617 * Stamp cycle number in every block
1618 */
1619STATIC void
1620xlog_pack_data(
1621        struct xlog             *log,
1622        struct xlog_in_core     *iclog,
1623        int                     roundoff)
1624{
1625        int                     i, j, k;
1626        int                     size = iclog->ic_offset + roundoff;
1627        __be32                  cycle_lsn;
1628        char                    *dp;
1629
1630        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1631
1632        dp = iclog->ic_datap;
1633        for (i = 0; i < BTOBB(size); i++) {
1634                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1635                        break;
1636                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1637                *(__be32 *)dp = cycle_lsn;
1638                dp += BBSIZE;
1639        }
1640
1641        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642                xlog_in_core_2_t *xhdr = iclog->ic_data;
1643
1644                for ( ; i < BTOBB(size); i++) {
1645                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1646                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1647                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1648                        *(__be32 *)dp = cycle_lsn;
1649                        dp += BBSIZE;
1650                }
1651
1652                for (i = 1; i < log->l_iclog_heads; i++)
1653                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1654        }
1655}
1656
1657/*
1658 * Calculate the checksum for a log buffer.
1659 *
1660 * This is a little more complicated than it should be because the various
1661 * headers and the actual data are non-contiguous.
1662 */
1663__le32
1664xlog_cksum(
1665        struct xlog             *log,
1666        struct xlog_rec_header  *rhead,
1667        char                    *dp,
1668        int                     size)
1669{
1670        __uint32_t              crc;
1671
1672        /* first generate the crc for the record header ... */
1673        crc = xfs_start_cksum((char *)rhead,
1674                              sizeof(struct xlog_rec_header),
1675                              offsetof(struct xlog_rec_header, h_crc));
1676
1677        /* ... then for additional cycle data for v2 logs ... */
1678        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1679                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1680                int             i;
1681                int             xheads;
1682
1683                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1684                if (size % XLOG_HEADER_CYCLE_SIZE)
1685                        xheads++;
1686
1687                for (i = 1; i < xheads; i++) {
1688                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1689                                     sizeof(struct xlog_rec_ext_header));
1690                }
1691        }
1692
1693        /* ... and finally for the payload */
1694        crc = crc32c(crc, dp, size);
1695
1696        return xfs_end_cksum(crc);
1697}
1698
1699/*
1700 * The bdstrat callback function for log bufs. This gives us a central
1701 * place to trap bufs in case we get hit by a log I/O error and need to
1702 * shutdown. Actually, in practice, even when we didn't get a log error,
1703 * we transition the iclogs to IOERROR state *after* flushing all existing
1704 * iclogs to disk. This is because we don't want anymore new transactions to be
1705 * started or completed afterwards.
1706 *
1707 * We lock the iclogbufs here so that we can serialise against IO completion
1708 * during unmount. We might be processing a shutdown triggered during unmount,
1709 * and that can occur asynchronously to the unmount thread, and hence we need to
1710 * ensure that completes before tearing down the iclogbufs. Hence we need to
1711 * hold the buffer lock across the log IO to acheive that.
1712 */
1713STATIC int
1714xlog_bdstrat(
1715        struct xfs_buf          *bp)
1716{
1717        struct xlog_in_core     *iclog = bp->b_fspriv;
1718
1719        xfs_buf_lock(bp);
1720        if (iclog->ic_state & XLOG_STATE_IOERROR) {
1721                xfs_buf_ioerror(bp, -EIO);
1722                xfs_buf_stale(bp);
1723                xfs_buf_ioend(bp);
1724                /*
1725                 * It would seem logical to return EIO here, but we rely on
1726                 * the log state machine to propagate I/O errors instead of
1727                 * doing it here. Similarly, IO completion will unlock the
1728                 * buffer, so we don't do it here.
1729                 */
1730                return 0;
1731        }
1732
1733        xfs_buf_submit(bp);
1734        return 0;
1735}
1736
1737/*
1738 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1739 * fashion.  Previously, we should have moved the current iclog
1740 * ptr in the log to point to the next available iclog.  This allows further
1741 * write to continue while this code syncs out an iclog ready to go.
1742 * Before an in-core log can be written out, the data section must be scanned
1743 * to save away the 1st word of each BBSIZE block into the header.  We replace
1744 * it with the current cycle count.  Each BBSIZE block is tagged with the
1745 * cycle count because there in an implicit assumption that drives will
1746 * guarantee that entire 512 byte blocks get written at once.  In other words,
1747 * we can't have part of a 512 byte block written and part not written.  By
1748 * tagging each block, we will know which blocks are valid when recovering
1749 * after an unclean shutdown.
1750 *
1751 * This routine is single threaded on the iclog.  No other thread can be in
1752 * this routine with the same iclog.  Changing contents of iclog can there-
1753 * fore be done without grabbing the state machine lock.  Updating the global
1754 * log will require grabbing the lock though.
1755 *
1756 * The entire log manager uses a logical block numbering scheme.  Only
1757 * log_sync (and then only bwrite()) know about the fact that the log may
1758 * not start with block zero on a given device.  The log block start offset
1759 * is added immediately before calling bwrite().
1760 */
1761
1762STATIC int
1763xlog_sync(
1764        struct xlog             *log,
1765        struct xlog_in_core     *iclog)
1766{
1767        xfs_buf_t       *bp;
1768        int             i;
1769        uint            count;          /* byte count of bwrite */
1770        uint            count_init;     /* initial count before roundup */
1771        int             roundoff;       /* roundoff to BB or stripe */
1772        int             split = 0;      /* split write into two regions */
1773        int             error;
1774        int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1775        int             size;
1776
1777        XFS_STATS_INC(log->l_mp, xs_log_writes);
1778        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1779
1780        /* Add for LR header */
1781        count_init = log->l_iclog_hsize + iclog->ic_offset;
1782
1783        /* Round out the log write size */
1784        if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1785                /* we have a v2 stripe unit to use */
1786                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1787        } else {
1788                count = BBTOB(BTOBB(count_init));
1789        }
1790        roundoff = count - count_init;
1791        ASSERT(roundoff >= 0);
1792        ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1793                roundoff < log->l_mp->m_sb.sb_logsunit)
1794                || 
1795                (log->l_mp->m_sb.sb_logsunit <= 1 && 
1796                 roundoff < BBTOB(1)));
1797
1798        /* move grant heads by roundoff in sync */
1799        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1800        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1801
1802        /* put cycle number in every block */
1803        xlog_pack_data(log, iclog, roundoff); 
1804
1805        /* real byte length */
1806        size = iclog->ic_offset;
1807        if (v2)
1808                size += roundoff;
1809        iclog->ic_header.h_len = cpu_to_be32(size);
1810
1811        bp = iclog->ic_bp;
1812        XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1813
1814        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1815
1816        /* Do we need to split this write into 2 parts? */
1817        if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1818                char            *dptr;
1819
1820                split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1821                count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1822                iclog->ic_bwritecnt = 2;
1823
1824                /*
1825                 * Bump the cycle numbers at the start of each block in the
1826                 * part of the iclog that ends up in the buffer that gets
1827                 * written to the start of the log.
1828                 *
1829                 * Watch out for the header magic number case, though.
1830                 */
1831                dptr = (char *)&iclog->ic_header + count;
1832                for (i = 0; i < split; i += BBSIZE) {
1833                        __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1834                        if (++cycle == XLOG_HEADER_MAGIC_NUM)
1835                                cycle++;
1836                        *(__be32 *)dptr = cpu_to_be32(cycle);
1837
1838                        dptr += BBSIZE;
1839                }
1840        } else {
1841                iclog->ic_bwritecnt = 1;
1842        }
1843
1844        /* calculcate the checksum */
1845        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1846                                            iclog->ic_datap, size);
1847#ifdef DEBUG
1848        /*
1849         * Intentionally corrupt the log record CRC based on the error injection
1850         * frequency, if defined. This facilitates testing log recovery in the
1851         * event of torn writes. Hence, set the IOABORT state to abort the log
1852         * write on I/O completion and shutdown the fs. The subsequent mount
1853         * detects the bad CRC and attempts to recover.
1854         */
1855        if (log->l_badcrc_factor &&
1856            (prandom_u32() % log->l_badcrc_factor == 0)) {
1857                iclog->ic_header.h_crc &= 0xAAAAAAAA;
1858                iclog->ic_state |= XLOG_STATE_IOABORT;
1859                xfs_warn(log->l_mp,
1860        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1861                         be64_to_cpu(iclog->ic_header.h_lsn));
1862        }
1863#endif
1864
1865        bp->b_io_length = BTOBB(count);
1866        bp->b_fspriv = iclog;
1867        bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1868        bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1869
1870        if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1871                bp->b_flags |= XBF_FUA;
1872
1873                /*
1874                 * Flush the data device before flushing the log to make
1875                 * sure all meta data written back from the AIL actually made
1876                 * it to disk before stamping the new log tail LSN into the
1877                 * log buffer.  For an external log we need to issue the
1878                 * flush explicitly, and unfortunately synchronously here;
1879                 * for an internal log we can simply use the block layer
1880                 * state machine for preflushes.
1881                 */
1882                if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1883                        xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1884                else
1885                        bp->b_flags |= XBF_FLUSH;
1886        }
1887
1888        ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1889        ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1890
1891        xlog_verify_iclog(log, iclog, count, true);
1892
1893        /* account for log which doesn't start at block #0 */
1894        XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1895
1896        /*
1897         * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1898         * is shutting down.
1899         */
1900        error = xlog_bdstrat(bp);
1901        if (error) {
1902                xfs_buf_ioerror_alert(bp, "xlog_sync");
1903                return error;
1904        }
1905        if (split) {
1906                bp = iclog->ic_log->l_xbuf;
1907                XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1908                xfs_buf_associate_memory(bp,
1909                                (char *)&iclog->ic_header + count, split);
1910                bp->b_fspriv = iclog;
1911                bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1912                bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1913                if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1914                        bp->b_flags |= XBF_FUA;
1915
1916                ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1917                ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1918
1919                /* account for internal log which doesn't start at block #0 */
1920                XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1921                error = xlog_bdstrat(bp);
1922                if (error) {
1923                        xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1924                        return error;
1925                }
1926        }
1927        return 0;
1928}       /* xlog_sync */
1929
1930/*
1931 * Deallocate a log structure
1932 */
1933STATIC void
1934xlog_dealloc_log(
1935        struct xlog     *log)
1936{
1937        xlog_in_core_t  *iclog, *next_iclog;
1938        int             i;
1939
1940        xlog_cil_destroy(log);
1941
1942        /*
1943         * Cycle all the iclogbuf locks to make sure all log IO completion
1944         * is done before we tear down these buffers.
1945         */
1946        iclog = log->l_iclog;
1947        for (i = 0; i < log->l_iclog_bufs; i++) {
1948                xfs_buf_lock(iclog->ic_bp);
1949                xfs_buf_unlock(iclog->ic_bp);
1950                iclog = iclog->ic_next;
1951        }
1952
1953        /*
1954         * Always need to ensure that the extra buffer does not point to memory
1955         * owned by another log buffer before we free it. Also, cycle the lock
1956         * first to ensure we've completed IO on it.
1957         */
1958        xfs_buf_lock(log->l_xbuf);
1959        xfs_buf_unlock(log->l_xbuf);
1960        xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1961        xfs_buf_free(log->l_xbuf);
1962
1963        iclog = log->l_iclog;
1964        for (i = 0; i < log->l_iclog_bufs; i++) {
1965                xfs_buf_free(iclog->ic_bp);
1966                next_iclog = iclog->ic_next;
1967                kmem_free(iclog);
1968                iclog = next_iclog;
1969        }
1970        spinlock_destroy(&log->l_icloglock);
1971
1972        log->l_mp->m_log = NULL;
1973        kmem_free(log);
1974}       /* xlog_dealloc_log */
1975
1976/*
1977 * Update counters atomically now that memcpy is done.
1978 */
1979/* ARGSUSED */
1980static inline void
1981xlog_state_finish_copy(
1982        struct xlog             *log,
1983        struct xlog_in_core     *iclog,
1984        int                     record_cnt,
1985        int                     copy_bytes)
1986{
1987        spin_lock(&log->l_icloglock);
1988
1989        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1990        iclog->ic_offset += copy_bytes;
1991
1992        spin_unlock(&log->l_icloglock);
1993}       /* xlog_state_finish_copy */
1994
1995
1996
1997
1998/*
1999 * print out info relating to regions written which consume
2000 * the reservation
2001 */
2002void
2003xlog_print_tic_res(
2004        struct xfs_mount        *mp,
2005        struct xlog_ticket      *ticket)
2006{
2007        uint i;
2008        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2009
2010        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2011#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2012        static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2013            REG_TYPE_STR(BFORMAT, "bformat"),
2014            REG_TYPE_STR(BCHUNK, "bchunk"),
2015            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2016            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2017            REG_TYPE_STR(IFORMAT, "iformat"),
2018            REG_TYPE_STR(ICORE, "icore"),
2019            REG_TYPE_STR(IEXT, "iext"),
2020            REG_TYPE_STR(IBROOT, "ibroot"),
2021            REG_TYPE_STR(ILOCAL, "ilocal"),
2022            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2023            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2024            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2025            REG_TYPE_STR(QFORMAT, "qformat"),
2026            REG_TYPE_STR(DQUOT, "dquot"),
2027            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2028            REG_TYPE_STR(LRHEADER, "LR header"),
2029            REG_TYPE_STR(UNMOUNT, "unmount"),
2030            REG_TYPE_STR(COMMIT, "commit"),
2031            REG_TYPE_STR(TRANSHDR, "trans header"),
2032            REG_TYPE_STR(ICREATE, "inode create")
2033        };
2034#undef REG_TYPE_STR
2035#define TRANS_TYPE_STR(type)    [XFS_TRANS_##type] = #type
2036        static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2037            TRANS_TYPE_STR(SETATTR_NOT_SIZE),
2038            TRANS_TYPE_STR(SETATTR_SIZE),
2039            TRANS_TYPE_STR(INACTIVE),
2040            TRANS_TYPE_STR(CREATE),
2041            TRANS_TYPE_STR(CREATE_TRUNC),
2042            TRANS_TYPE_STR(TRUNCATE_FILE),
2043            TRANS_TYPE_STR(REMOVE),
2044            TRANS_TYPE_STR(LINK),
2045            TRANS_TYPE_STR(RENAME),
2046            TRANS_TYPE_STR(MKDIR),
2047            TRANS_TYPE_STR(RMDIR),
2048            TRANS_TYPE_STR(SYMLINK),
2049            TRANS_TYPE_STR(SET_DMATTRS),
2050            TRANS_TYPE_STR(GROWFS),
2051            TRANS_TYPE_STR(STRAT_WRITE),
2052            TRANS_TYPE_STR(DIOSTRAT),
2053            TRANS_TYPE_STR(WRITEID),
2054            TRANS_TYPE_STR(ADDAFORK),
2055            TRANS_TYPE_STR(ATTRINVAL),
2056            TRANS_TYPE_STR(ATRUNCATE),
2057            TRANS_TYPE_STR(ATTR_SET),
2058            TRANS_TYPE_STR(ATTR_RM),
2059            TRANS_TYPE_STR(ATTR_FLAG),
2060            TRANS_TYPE_STR(CLEAR_AGI_BUCKET),
2061            TRANS_TYPE_STR(SB_CHANGE),
2062            TRANS_TYPE_STR(DUMMY1),
2063            TRANS_TYPE_STR(DUMMY2),
2064            TRANS_TYPE_STR(QM_QUOTAOFF),
2065            TRANS_TYPE_STR(QM_DQALLOC),
2066            TRANS_TYPE_STR(QM_SETQLIM),
2067            TRANS_TYPE_STR(QM_DQCLUSTER),
2068            TRANS_TYPE_STR(QM_QINOCREATE),
2069            TRANS_TYPE_STR(QM_QUOTAOFF_END),
2070            TRANS_TYPE_STR(FSYNC_TS),
2071            TRANS_TYPE_STR(GROWFSRT_ALLOC),
2072            TRANS_TYPE_STR(GROWFSRT_ZERO),
2073            TRANS_TYPE_STR(GROWFSRT_FREE),
2074            TRANS_TYPE_STR(SWAPEXT),
2075            TRANS_TYPE_STR(CHECKPOINT),
2076            TRANS_TYPE_STR(ICREATE),
2077            TRANS_TYPE_STR(CREATE_TMPFILE)
2078        };
2079#undef TRANS_TYPE_STR
2080
2081        xfs_warn(mp, "xlog_write: reservation summary:");
2082        xfs_warn(mp, "  trans type  = %s (%u)",
2083                 ((ticket->t_trans_type <= 0 ||
2084                   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2085                  "bad-trans-type" : trans_type_str[ticket->t_trans_type]),
2086                 ticket->t_trans_type);
2087        xfs_warn(mp, "  unit res    = %d bytes",
2088                 ticket->t_unit_res);
2089        xfs_warn(mp, "  current res = %d bytes",
2090                 ticket->t_curr_res);
2091        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2092                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2093        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2094                 ticket->t_res_num_ophdrs, ophdr_spc);
2095        xfs_warn(mp, "  ophdr + reg = %u bytes",
2096                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2097        xfs_warn(mp, "  num regions = %u",
2098                 ticket->t_res_num);
2099
2100        for (i = 0; i < ticket->t_res_num; i++) {
2101                uint r_type = ticket->t_res_arr[i].r_type;
2102                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2103                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2104                            "bad-rtype" : res_type_str[r_type]),
2105                            ticket->t_res_arr[i].r_len);
2106        }
2107
2108        xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2109                "xlog_write: reservation ran out. Need to up reservation");
2110        xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2111}
2112
2113/*
2114 * Calculate the potential space needed by the log vector.  Each region gets
2115 * its own xlog_op_header_t and may need to be double word aligned.
2116 */
2117static int
2118xlog_write_calc_vec_length(
2119        struct xlog_ticket      *ticket,
2120        struct xfs_log_vec      *log_vector)
2121{
2122        struct xfs_log_vec      *lv;
2123        int                     headers = 0;
2124        int                     len = 0;
2125        int                     i;
2126
2127        /* acct for start rec of xact */
2128        if (ticket->t_flags & XLOG_TIC_INITED)
2129                headers++;
2130
2131        for (lv = log_vector; lv; lv = lv->lv_next) {
2132                /* we don't write ordered log vectors */
2133                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2134                        continue;
2135
2136                headers += lv->lv_niovecs;
2137
2138                for (i = 0; i < lv->lv_niovecs; i++) {
2139                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2140
2141                        len += vecp->i_len;
2142                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2143                }
2144        }
2145
2146        ticket->t_res_num_ophdrs += headers;
2147        len += headers * sizeof(struct xlog_op_header);
2148
2149        return len;
2150}
2151
2152/*
2153 * If first write for transaction, insert start record  We can't be trying to
2154 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2155 */
2156static int
2157xlog_write_start_rec(
2158        struct xlog_op_header   *ophdr,
2159        struct xlog_ticket      *ticket)
2160{
2161        if (!(ticket->t_flags & XLOG_TIC_INITED))
2162                return 0;
2163
2164        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2165        ophdr->oh_clientid = ticket->t_clientid;
2166        ophdr->oh_len = 0;
2167        ophdr->oh_flags = XLOG_START_TRANS;
2168        ophdr->oh_res2 = 0;
2169
2170        ticket->t_flags &= ~XLOG_TIC_INITED;
2171
2172        return sizeof(struct xlog_op_header);
2173}
2174
2175static xlog_op_header_t *
2176xlog_write_setup_ophdr(
2177        struct xlog             *log,
2178        struct xlog_op_header   *ophdr,
2179        struct xlog_ticket      *ticket,
2180        uint                    flags)
2181{
2182        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2183        ophdr->oh_clientid = ticket->t_clientid;
2184        ophdr->oh_res2 = 0;
2185
2186        /* are we copying a commit or unmount record? */
2187        ophdr->oh_flags = flags;
2188
2189        /*
2190         * We've seen logs corrupted with bad transaction client ids.  This
2191         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2192         * and shut down the filesystem.
2193         */
2194        switch (ophdr->oh_clientid)  {
2195        case XFS_TRANSACTION:
2196        case XFS_VOLUME:
2197        case XFS_LOG:
2198                break;
2199        default:
2200                xfs_warn(log->l_mp,
2201                        "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2202                        ophdr->oh_clientid, ticket);
2203                return NULL;
2204        }
2205
2206        return ophdr;
2207}
2208
2209/*
2210 * Set up the parameters of the region copy into the log. This has
2211 * to handle region write split across multiple log buffers - this
2212 * state is kept external to this function so that this code can
2213 * be written in an obvious, self documenting manner.
2214 */
2215static int
2216xlog_write_setup_copy(
2217        struct xlog_ticket      *ticket,
2218        struct xlog_op_header   *ophdr,
2219        int                     space_available,
2220        int                     space_required,
2221        int                     *copy_off,
2222        int                     *copy_len,
2223        int                     *last_was_partial_copy,
2224        int                     *bytes_consumed)
2225{
2226        int                     still_to_copy;
2227
2228        still_to_copy = space_required - *bytes_consumed;
2229        *copy_off = *bytes_consumed;
2230
2231        if (still_to_copy <= space_available) {
2232                /* write of region completes here */
2233                *copy_len = still_to_copy;
2234                ophdr->oh_len = cpu_to_be32(*copy_len);
2235                if (*last_was_partial_copy)
2236                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2237                *last_was_partial_copy = 0;
2238                *bytes_consumed = 0;
2239                return 0;
2240        }
2241
2242        /* partial write of region, needs extra log op header reservation */
2243        *copy_len = space_available;
2244        ophdr->oh_len = cpu_to_be32(*copy_len);
2245        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2246        if (*last_was_partial_copy)
2247                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2248        *bytes_consumed += *copy_len;
2249        (*last_was_partial_copy)++;
2250
2251        /* account for new log op header */
2252        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2253        ticket->t_res_num_ophdrs++;
2254
2255        return sizeof(struct xlog_op_header);
2256}
2257
2258static int
2259xlog_write_copy_finish(
2260        struct xlog             *log,
2261        struct xlog_in_core     *iclog,
2262        uint                    flags,
2263        int                     *record_cnt,
2264        int                     *data_cnt,
2265        int                     *partial_copy,
2266        int                     *partial_copy_len,
2267        int                     log_offset,
2268        struct xlog_in_core     **commit_iclog)
2269{
2270        if (*partial_copy) {
2271                /*
2272                 * This iclog has already been marked WANT_SYNC by
2273                 * xlog_state_get_iclog_space.
2274                 */
2275                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2276                *record_cnt = 0;
2277                *data_cnt = 0;
2278                return xlog_state_release_iclog(log, iclog);
2279        }
2280
2281        *partial_copy = 0;
2282        *partial_copy_len = 0;
2283
2284        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2285                /* no more space in this iclog - push it. */
2286                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2287                *record_cnt = 0;
2288                *data_cnt = 0;
2289
2290                spin_lock(&log->l_icloglock);
2291                xlog_state_want_sync(log, iclog);
2292                spin_unlock(&log->l_icloglock);
2293
2294                if (!commit_iclog)
2295                        return xlog_state_release_iclog(log, iclog);
2296                ASSERT(flags & XLOG_COMMIT_TRANS);
2297                *commit_iclog = iclog;
2298        }
2299
2300        return 0;
2301}
2302
2303/*
2304 * Write some region out to in-core log
2305 *
2306 * This will be called when writing externally provided regions or when
2307 * writing out a commit record for a given transaction.
2308 *
2309 * General algorithm:
2310 *      1. Find total length of this write.  This may include adding to the
2311 *              lengths passed in.
2312 *      2. Check whether we violate the tickets reservation.
2313 *      3. While writing to this iclog
2314 *          A. Reserve as much space in this iclog as can get
2315 *          B. If this is first write, save away start lsn
2316 *          C. While writing this region:
2317 *              1. If first write of transaction, write start record
2318 *              2. Write log operation header (header per region)
2319 *              3. Find out if we can fit entire region into this iclog
2320 *              4. Potentially, verify destination memcpy ptr
2321 *              5. Memcpy (partial) region
2322 *              6. If partial copy, release iclog; otherwise, continue
2323 *                      copying more regions into current iclog
2324 *      4. Mark want sync bit (in simulation mode)
2325 *      5. Release iclog for potential flush to on-disk log.
2326 *
2327 * ERRORS:
2328 * 1.   Panic if reservation is overrun.  This should never happen since
2329 *      reservation amounts are generated internal to the filesystem.
2330 * NOTES:
2331 * 1. Tickets are single threaded data structures.
2332 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2333 *      syncing routine.  When a single log_write region needs to span
2334 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2335 *      on all log operation writes which don't contain the end of the
2336 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2337 *      operation which contains the end of the continued log_write region.
2338 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2339 *      we don't really know exactly how much space will be used.  As a result,
2340 *      we don't update ic_offset until the end when we know exactly how many
2341 *      bytes have been written out.
2342 */
2343int
2344xlog_write(
2345        struct xlog             *log,
2346        struct xfs_log_vec      *log_vector,
2347        struct xlog_ticket      *ticket,
2348        xfs_lsn_t               *start_lsn,
2349        struct xlog_in_core     **commit_iclog,
2350        uint                    flags)
2351{
2352        struct xlog_in_core     *iclog = NULL;
2353        struct xfs_log_iovec    *vecp;
2354        struct xfs_log_vec      *lv;
2355        int                     len;
2356        int                     index;
2357        int                     partial_copy = 0;
2358        int                     partial_copy_len = 0;
2359        int                     contwr = 0;
2360        int                     record_cnt = 0;
2361        int                     data_cnt = 0;
2362        int                     error;
2363
2364        *start_lsn = 0;
2365
2366        len = xlog_write_calc_vec_length(ticket, log_vector);
2367
2368        /*
2369         * Region headers and bytes are already accounted for.
2370         * We only need to take into account start records and
2371         * split regions in this function.
2372         */
2373        if (ticket->t_flags & XLOG_TIC_INITED)
2374                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2375
2376        /*
2377         * Commit record headers need to be accounted for. These
2378         * come in as separate writes so are easy to detect.
2379         */
2380        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2381                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2382
2383        if (ticket->t_curr_res < 0)
2384                xlog_print_tic_res(log->l_mp, ticket);
2385
2386        index = 0;
2387        lv = log_vector;
2388        vecp = lv->lv_iovecp;
2389        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390                void            *ptr;
2391                int             log_offset;
2392
2393                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394                                                   &contwr, &log_offset);
2395                if (error)
2396                        return error;
2397
2398                ASSERT(log_offset <= iclog->ic_size - 1);
2399                ptr = iclog->ic_datap + log_offset;
2400
2401                /* start_lsn is the first lsn written to. That's all we need. */
2402                if (!*start_lsn)
2403                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404
2405                /*
2406                 * This loop writes out as many regions as can fit in the amount
2407                 * of space which was allocated by xlog_state_get_iclog_space().
2408                 */
2409                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410                        struct xfs_log_iovec    *reg;
2411                        struct xlog_op_header   *ophdr;
2412                        int                     start_rec_copy;
2413                        int                     copy_len;
2414                        int                     copy_off;
2415                        bool                    ordered = false;
2416
2417                        /* ordered log vectors have no regions to write */
2418                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419                                ASSERT(lv->lv_niovecs == 0);
2420                                ordered = true;
2421                                goto next_lv;
2422                        }
2423
2424                        reg = &vecp[index];
2425                        ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2426                        ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2427
2428                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429                        if (start_rec_copy) {
2430                                record_cnt++;
2431                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432                                                   start_rec_copy);
2433                        }
2434
2435                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436                        if (!ophdr)
2437                                return -EIO;
2438
2439                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440                                           sizeof(struct xlog_op_header));
2441
2442                        len += xlog_write_setup_copy(ticket, ophdr,
2443                                                     iclog->ic_size-log_offset,
2444                                                     reg->i_len,
2445                                                     &copy_off, &copy_len,
2446                                                     &partial_copy,
2447                                                     &partial_copy_len);
2448                        xlog_verify_dest_ptr(log, ptr);
2449
2450                        /*
2451                         * Copy region.
2452                         *
2453                         * Unmount records just log an opheader, so can have
2454                         * empty payloads with no data region to copy. Hence we
2455                         * only copy the payload if the vector says it has data
2456                         * to copy.
2457                         */
2458                        ASSERT(copy_len >= 0);
2459                        if (copy_len > 0) {
2460                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462                                                   copy_len);
2463                        }
2464                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465                        record_cnt++;
2466                        data_cnt += contwr ? copy_len : 0;
2467
2468                        error = xlog_write_copy_finish(log, iclog, flags,
2469                                                       &record_cnt, &data_cnt,
2470                                                       &partial_copy,
2471                                                       &partial_copy_len,
2472                                                       log_offset,
2473                                                       commit_iclog);
2474                        if (error)
2475                                return error;
2476
2477                        /*
2478                         * if we had a partial copy, we need to get more iclog
2479                         * space but we don't want to increment the region
2480                         * index because there is still more is this region to
2481                         * write.
2482                         *
2483                         * If we completed writing this region, and we flushed
2484                         * the iclog (indicated by resetting of the record
2485                         * count), then we also need to get more log space. If
2486                         * this was the last record, though, we are done and
2487                         * can just return.
2488                         */
2489                        if (partial_copy)
2490                                break;
2491
2492                        if (++index == lv->lv_niovecs) {
2493next_lv:
2494                                lv = lv->lv_next;
2495                                index = 0;
2496                                if (lv)
2497                                        vecp = lv->lv_iovecp;
2498                        }
2499                        if (record_cnt == 0 && ordered == false) {
2500                                if (!lv)
2501                                        return 0;
2502                                break;
2503                        }
2504                }
2505        }
2506
2507        ASSERT(len == 0);
2508
2509        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510        if (!commit_iclog)
2511                return xlog_state_release_iclog(log, iclog);
2512
2513        ASSERT(flags & XLOG_COMMIT_TRANS);
2514        *commit_iclog = iclog;
2515        return 0;
2516}
2517
2518
2519/*****************************************************************************
2520 *
2521 *              State Machine functions
2522 *
2523 *****************************************************************************
2524 */
2525
2526/* Clean iclogs starting from the head.  This ordering must be
2527 * maintained, so an iclog doesn't become ACTIVE beyond one that
2528 * is SYNCING.  This is also required to maintain the notion that we use
2529 * a ordered wait queue to hold off would be writers to the log when every
2530 * iclog is trying to sync to disk.
2531 *
2532 * State Change: DIRTY -> ACTIVE
2533 */
2534STATIC void
2535xlog_state_clean_log(
2536        struct xlog *log)
2537{
2538        xlog_in_core_t  *iclog;
2539        int changed = 0;
2540
2541        iclog = log->l_iclog;
2542        do {
2543                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2544                        iclog->ic_state = XLOG_STATE_ACTIVE;
2545                        iclog->ic_offset       = 0;
2546                        ASSERT(iclog->ic_callback == NULL);
2547                        /*
2548                         * If the number of ops in this iclog indicate it just
2549                         * contains the dummy transaction, we can
2550                         * change state into IDLE (the second time around).
2551                         * Otherwise we should change the state into
2552                         * NEED a dummy.
2553                         * We don't need to cover the dummy.
2554                         */
2555                        if (!changed &&
2556                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2557                                        XLOG_COVER_OPS)) {
2558                                changed = 1;
2559                        } else {
2560                                /*
2561                                 * We have two dirty iclogs so start over
2562                                 * This could also be num of ops indicates
2563                                 * this is not the dummy going out.
2564                                 */
2565                                changed = 2;
2566                        }
2567                        iclog->ic_header.h_num_logops = 0;
2568                        memset(iclog->ic_header.h_cycle_data, 0,
2569                              sizeof(iclog->ic_header.h_cycle_data));
2570                        iclog->ic_header.h_lsn = 0;
2571                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2572                        /* do nothing */;
2573                else
2574                        break;  /* stop cleaning */
2575                iclog = iclog->ic_next;
2576        } while (iclog != log->l_iclog);
2577
2578        /* log is locked when we are called */
2579        /*
2580         * Change state for the dummy log recording.
2581         * We usually go to NEED. But we go to NEED2 if the changed indicates
2582         * we are done writing the dummy record.
2583         * If we are done with the second dummy recored (DONE2), then
2584         * we go to IDLE.
2585         */
2586        if (changed) {
2587                switch (log->l_covered_state) {
2588                case XLOG_STATE_COVER_IDLE:
2589                case XLOG_STATE_COVER_NEED:
2590                case XLOG_STATE_COVER_NEED2:
2591                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2592                        break;
2593
2594                case XLOG_STATE_COVER_DONE:
2595                        if (changed == 1)
2596                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2597                        else
2598                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2599                        break;
2600
2601                case XLOG_STATE_COVER_DONE2:
2602                        if (changed == 1)
2603                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2604                        else
2605                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2606                        break;
2607
2608                default:
2609                        ASSERT(0);
2610                }
2611        }
2612}       /* xlog_state_clean_log */
2613
2614STATIC xfs_lsn_t
2615xlog_get_lowest_lsn(
2616        struct xlog     *log)
2617{
2618        xlog_in_core_t  *lsn_log;
2619        xfs_lsn_t       lowest_lsn, lsn;
2620
2621        lsn_log = log->l_iclog;
2622        lowest_lsn = 0;
2623        do {
2624            if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2625                lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2626                if ((lsn && !lowest_lsn) ||
2627                    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2628                        lowest_lsn = lsn;
2629                }
2630            }
2631            lsn_log = lsn_log->ic_next;
2632        } while (lsn_log != log->l_iclog);
2633        return lowest_lsn;
2634}
2635
2636
2637STATIC void
2638xlog_state_do_callback(
2639        struct xlog             *log,
2640        int                     aborted,
2641        struct xlog_in_core     *ciclog)
2642{
2643        xlog_in_core_t     *iclog;
2644        xlog_in_core_t     *first_iclog;        /* used to know when we've
2645                                                 * processed all iclogs once */
2646        xfs_log_callback_t *cb, *cb_next;
2647        int                flushcnt = 0;
2648        xfs_lsn_t          lowest_lsn;
2649        int                ioerrors;    /* counter: iclogs with errors */
2650        int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2651        int                funcdidcallbacks; /* flag: function did callbacks */
2652        int                repeats;     /* for issuing console warnings if
2653                                         * looping too many times */
2654        int                wake = 0;
2655
2656        spin_lock(&log->l_icloglock);
2657        first_iclog = iclog = log->l_iclog;
2658        ioerrors = 0;
2659        funcdidcallbacks = 0;
2660        repeats = 0;
2661
2662        do {
2663                /*
2664                 * Scan all iclogs starting with the one pointed to by the
2665                 * log.  Reset this starting point each time the log is
2666                 * unlocked (during callbacks).
2667                 *
2668                 * Keep looping through iclogs until one full pass is made
2669                 * without running any callbacks.
2670                 */
2671                first_iclog = log->l_iclog;
2672                iclog = log->l_iclog;
2673                loopdidcallbacks = 0;
2674                repeats++;
2675
2676                do {
2677
2678                        /* skip all iclogs in the ACTIVE & DIRTY states */
2679                        if (iclog->ic_state &
2680                            (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2681                                iclog = iclog->ic_next;
2682                                continue;
2683                        }
2684
2685                        /*
2686                         * Between marking a filesystem SHUTDOWN and stopping
2687                         * the log, we do flush all iclogs to disk (if there
2688                         * wasn't a log I/O error). So, we do want things to
2689                         * go smoothly in case of just a SHUTDOWN  w/o a
2690                         * LOG_IO_ERROR.
2691                         */
2692                        if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2693                                /*
2694                                 * Can only perform callbacks in order.  Since
2695                                 * this iclog is not in the DONE_SYNC/
2696                                 * DO_CALLBACK state, we skip the rest and
2697                                 * just try to clean up.  If we set our iclog
2698                                 * to DO_CALLBACK, we will not process it when
2699                                 * we retry since a previous iclog is in the
2700                                 * CALLBACK and the state cannot change since
2701                                 * we are holding the l_icloglock.
2702                                 */
2703                                if (!(iclog->ic_state &
2704                                        (XLOG_STATE_DONE_SYNC |
2705                                                 XLOG_STATE_DO_CALLBACK))) {
2706                                        if (ciclog && (ciclog->ic_state ==
2707                                                        XLOG_STATE_DONE_SYNC)) {
2708                                                ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2709                                        }
2710                                        break;
2711                                }
2712                                /*
2713                                 * We now have an iclog that is in either the
2714                                 * DO_CALLBACK or DONE_SYNC states. The other
2715                                 * states (WANT_SYNC, SYNCING, or CALLBACK were
2716                                 * caught by the above if and are going to
2717                                 * clean (i.e. we aren't doing their callbacks)
2718                                 * see the above if.
2719                                 */
2720
2721                                /*
2722                                 * We will do one more check here to see if we
2723                                 * have chased our tail around.
2724                                 */
2725
2726                                lowest_lsn = xlog_get_lowest_lsn(log);
2727                                if (lowest_lsn &&
2728                                    XFS_LSN_CMP(lowest_lsn,
2729                                                be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2730                                        iclog = iclog->ic_next;
2731                                        continue; /* Leave this iclog for
2732                                                   * another thread */
2733                                }
2734
2735                                iclog->ic_state = XLOG_STATE_CALLBACK;
2736
2737
2738                                /*
2739                                 * Completion of a iclog IO does not imply that
2740                                 * a transaction has completed, as transactions
2741                                 * can be large enough to span many iclogs. We
2742                                 * cannot change the tail of the log half way
2743                                 * through a transaction as this may be the only
2744                                 * transaction in the log and moving th etail to
2745                                 * point to the middle of it will prevent
2746                                 * recovery from finding the start of the
2747                                 * transaction. Hence we should only update the
2748                                 * last_sync_lsn if this iclog contains
2749                                 * transaction completion callbacks on it.
2750                                 *
2751                                 * We have to do this before we drop the
2752                                 * icloglock to ensure we are the only one that
2753                                 * can update it.
2754                                 */
2755                                ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2756                                        be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2757                                if (iclog->ic_callback)
2758                                        atomic64_set(&log->l_last_sync_lsn,
2759                                                be64_to_cpu(iclog->ic_header.h_lsn));
2760
2761                        } else
2762                                ioerrors++;
2763
2764                        spin_unlock(&log->l_icloglock);
2765
2766                        /*
2767                         * Keep processing entries in the callback list until
2768                         * we come around and it is empty.  We need to
2769                         * atomically see that the list is empty and change the
2770                         * state to DIRTY so that we don't miss any more
2771                         * callbacks being added.
2772                         */
2773                        spin_lock(&iclog->ic_callback_lock);
2774                        cb = iclog->ic_callback;
2775                        while (cb) {
2776                                iclog->ic_callback_tail = &(iclog->ic_callback);
2777                                iclog->ic_callback = NULL;
2778                                spin_unlock(&iclog->ic_callback_lock);
2779
2780                                /* perform callbacks in the order given */
2781                                for (; cb; cb = cb_next) {
2782                                        cb_next = cb->cb_next;
2783                                        cb->cb_func(cb->cb_arg, aborted);
2784                                }
2785                                spin_lock(&iclog->ic_callback_lock);
2786                                cb = iclog->ic_callback;
2787                        }
2788
2789                        loopdidcallbacks++;
2790                        funcdidcallbacks++;
2791
2792                        spin_lock(&log->l_icloglock);
2793                        ASSERT(iclog->ic_callback == NULL);
2794                        spin_unlock(&iclog->ic_callback_lock);
2795                        if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2796                                iclog->ic_state = XLOG_STATE_DIRTY;
2797
2798                        /*
2799                         * Transition from DIRTY to ACTIVE if applicable.
2800                         * NOP if STATE_IOERROR.
2801                         */
2802                        xlog_state_clean_log(log);
2803
2804                        /* wake up threads waiting in xfs_log_force() */
2805                        wake_up_all(&iclog->ic_force_wait);
2806
2807                        iclog = iclog->ic_next;
2808                } while (first_iclog != iclog);
2809
2810                if (repeats > 5000) {
2811                        flushcnt += repeats;
2812                        repeats = 0;
2813                        xfs_warn(log->l_mp,
2814                                "%s: possible infinite loop (%d iterations)",
2815                                __func__, flushcnt);
2816                }
2817        } while (!ioerrors && loopdidcallbacks);
2818
2819#ifdef DEBUG
2820        /*
2821         * Make one last gasp attempt to see if iclogs are being left in limbo.
2822         * If the above loop finds an iclog earlier than the current iclog and
2823         * in one of the syncing states, the current iclog is put into
2824         * DO_CALLBACK and the callbacks are deferred to the completion of the
2825         * earlier iclog. Walk the iclogs in order and make sure that no iclog
2826         * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2827         * states.
2828         *
2829         * Note that SYNCING|IOABORT is a valid state so we cannot just check
2830         * for ic_state == SYNCING.
2831         */
2832        if (funcdidcallbacks) {
2833                first_iclog = iclog = log->l_iclog;
2834                do {
2835                        ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2836                        /*
2837                         * Terminate the loop if iclogs are found in states
2838                         * which will cause other threads to clean up iclogs.
2839                         *
2840                         * SYNCING - i/o completion will go through logs
2841                         * DONE_SYNC - interrupt thread should be waiting for
2842                         *              l_icloglock
2843                         * IOERROR - give up hope all ye who enter here
2844                         */
2845                        if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2846                            iclog->ic_state & XLOG_STATE_SYNCING ||
2847                            iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2848                            iclog->ic_state == XLOG_STATE_IOERROR )
2849                                break;
2850                        iclog = iclog->ic_next;
2851                } while (first_iclog != iclog);
2852        }
2853#endif
2854
2855        if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2856                wake = 1;
2857        spin_unlock(&log->l_icloglock);
2858
2859        if (wake)
2860                wake_up_all(&log->l_flush_wait);
2861}
2862
2863
2864/*
2865 * Finish transitioning this iclog to the dirty state.
2866 *
2867 * Make sure that we completely execute this routine only when this is
2868 * the last call to the iclog.  There is a good chance that iclog flushes,
2869 * when we reach the end of the physical log, get turned into 2 separate
2870 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2871 * routine.  By using the reference count bwritecnt, we guarantee that only
2872 * the second completion goes through.
2873 *
2874 * Callbacks could take time, so they are done outside the scope of the
2875 * global state machine log lock.
2876 */
2877STATIC void
2878xlog_state_done_syncing(
2879        xlog_in_core_t  *iclog,
2880        int             aborted)
2881{
2882        struct xlog        *log = iclog->ic_log;
2883
2884        spin_lock(&log->l_icloglock);
2885
2886        ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2887               iclog->ic_state == XLOG_STATE_IOERROR);
2888        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2889        ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2890
2891
2892        /*
2893         * If we got an error, either on the first buffer, or in the case of
2894         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2895         * and none should ever be attempted to be written to disk
2896         * again.
2897         */
2898        if (iclog->ic_state != XLOG_STATE_IOERROR) {
2899                if (--iclog->ic_bwritecnt == 1) {
2900                        spin_unlock(&log->l_icloglock);
2901                        return;
2902                }
2903                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2904        }
2905
2906        /*
2907         * Someone could be sleeping prior to writing out the next
2908         * iclog buffer, we wake them all, one will get to do the
2909         * I/O, the others get to wait for the result.
2910         */
2911        wake_up_all(&iclog->ic_write_wait);
2912        spin_unlock(&log->l_icloglock);
2913        xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2914}       /* xlog_state_done_syncing */
2915
2916
2917/*
2918 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2919 * sleep.  We wait on the flush queue on the head iclog as that should be
2920 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2921 * we will wait here and all new writes will sleep until a sync completes.
2922 *
2923 * The in-core logs are used in a circular fashion. They are not used
2924 * out-of-order even when an iclog past the head is free.
2925 *
2926 * return:
2927 *      * log_offset where xlog_write() can start writing into the in-core
2928 *              log's data space.
2929 *      * in-core log pointer to which xlog_write() should write.
2930 *      * boolean indicating this is a continued write to an in-core log.
2931 *              If this is the last write, then the in-core log's offset field
2932 *              needs to be incremented, depending on the amount of data which
2933 *              is copied.
2934 */
2935STATIC int
2936xlog_state_get_iclog_space(
2937        struct xlog             *log,
2938        int                     len,
2939        struct xlog_in_core     **iclogp,
2940        struct xlog_ticket      *ticket,
2941        int                     *continued_write,
2942        int                     *logoffsetp)
2943{
2944        int               log_offset;
2945        xlog_rec_header_t *head;
2946        xlog_in_core_t    *iclog;
2947        int               error;
2948
2949restart:
2950        spin_lock(&log->l_icloglock);
2951        if (XLOG_FORCED_SHUTDOWN(log)) {
2952                spin_unlock(&log->l_icloglock);
2953                return -EIO;
2954        }
2955
2956        iclog = log->l_iclog;
2957        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2958                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2959
2960                /* Wait for log writes to have flushed */
2961                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2962                goto restart;
2963        }
2964
2965        head = &iclog->ic_header;
2966
2967        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2968        log_offset = iclog->ic_offset;
2969
2970        /* On the 1st write to an iclog, figure out lsn.  This works
2971         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2972         * committing to.  If the offset is set, that's how many blocks
2973         * must be written.
2974         */
2975        if (log_offset == 0) {
2976                ticket->t_curr_res -= log->l_iclog_hsize;
2977                xlog_tic_add_region(ticket,
2978                                    log->l_iclog_hsize,
2979                                    XLOG_REG_TYPE_LRHEADER);
2980                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2981                head->h_lsn = cpu_to_be64(
2982                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2983                ASSERT(log->l_curr_block >= 0);
2984        }
2985
2986        /* If there is enough room to write everything, then do it.  Otherwise,
2987         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2988         * bit is on, so this will get flushed out.  Don't update ic_offset
2989         * until you know exactly how many bytes get copied.  Therefore, wait
2990         * until later to update ic_offset.
2991         *
2992         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2993         * can fit into remaining data section.
2994         */
2995        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2996                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997
2998                /*
2999                 * If I'm the only one writing to this iclog, sync it to disk.
3000                 * We need to do an atomic compare and decrement here to avoid
3001                 * racing with concurrent atomic_dec_and_lock() calls in
3002                 * xlog_state_release_iclog() when there is more than one
3003                 * reference to the iclog.
3004                 */
3005                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3006                        /* we are the only one */
3007                        spin_unlock(&log->l_icloglock);
3008                        error = xlog_state_release_iclog(log, iclog);
3009                        if (error)
3010                                return error;
3011                } else {
3012                        spin_unlock(&log->l_icloglock);
3013                }
3014                goto restart;
3015        }
3016
3017        /* Do we have enough room to write the full amount in the remainder
3018         * of this iclog?  Or must we continue a write on the next iclog and
3019         * mark this iclog as completely taken?  In the case where we switch
3020         * iclogs (to mark it taken), this particular iclog will release/sync
3021         * to disk in xlog_write().
3022         */
3023        if (len <= iclog->ic_size - iclog->ic_offset) {
3024                *continued_write = 0;
3025                iclog->ic_offset += len;
3026        } else {
3027                *continued_write = 1;
3028                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3029        }
3030        *iclogp = iclog;
3031
3032        ASSERT(iclog->ic_offset <= iclog->ic_size);
3033        spin_unlock(&log->l_icloglock);
3034
3035        *logoffsetp = log_offset;
3036        return 0;
3037}       /* xlog_state_get_iclog_space */
3038
3039/* The first cnt-1 times through here we don't need to
3040 * move the grant write head because the permanent
3041 * reservation has reserved cnt times the unit amount.
3042 * Release part of current permanent unit reservation and
3043 * reset current reservation to be one units worth.  Also
3044 * move grant reservation head forward.
3045 */
3046STATIC void
3047xlog_regrant_reserve_log_space(
3048        struct xlog             *log,
3049        struct xlog_ticket      *ticket)
3050{
3051        trace_xfs_log_regrant_reserve_enter(log, ticket);
3052
3053        if (ticket->t_cnt > 0)
3054                ticket->t_cnt--;
3055
3056        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3057                                        ticket->t_curr_res);
3058        xlog_grant_sub_space(log, &log->l_write_head.grant,
3059                                        ticket->t_curr_res);
3060        ticket->t_curr_res = ticket->t_unit_res;
3061        xlog_tic_reset_res(ticket);
3062
3063        trace_xfs_log_regrant_reserve_sub(log, ticket);
3064
3065        /* just return if we still have some of the pre-reserved space */
3066        if (ticket->t_cnt > 0)
3067                return;
3068
3069        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3070                                        ticket->t_unit_res);
3071
3072        trace_xfs_log_regrant_reserve_exit(log, ticket);
3073
3074        ticket->t_curr_res = ticket->t_unit_res;
3075        xlog_tic_reset_res(ticket);
3076}       /* xlog_regrant_reserve_log_space */
3077
3078
3079/*
3080 * Give back the space left from a reservation.
3081 *
3082 * All the information we need to make a correct determination of space left
3083 * is present.  For non-permanent reservations, things are quite easy.  The
3084 * count should have been decremented to zero.  We only need to deal with the
3085 * space remaining in the current reservation part of the ticket.  If the
3086 * ticket contains a permanent reservation, there may be left over space which
3087 * needs to be released.  A count of N means that N-1 refills of the current
3088 * reservation can be done before we need to ask for more space.  The first
3089 * one goes to fill up the first current reservation.  Once we run out of
3090 * space, the count will stay at zero and the only space remaining will be
3091 * in the current reservation field.
3092 */
3093STATIC void
3094xlog_ungrant_log_space(
3095        struct xlog             *log,
3096        struct xlog_ticket      *ticket)
3097{
3098        int     bytes;
3099
3100        if (ticket->t_cnt > 0)
3101                ticket->t_cnt--;
3102
3103        trace_xfs_log_ungrant_enter(log, ticket);
3104        trace_xfs_log_ungrant_sub(log, ticket);
3105
3106        /*
3107         * If this is a permanent reservation ticket, we may be able to free
3108         * up more space based on the remaining count.
3109         */
3110        bytes = ticket->t_curr_res;
3111        if (ticket->t_cnt > 0) {
3112                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3113                bytes += ticket->t_unit_res*ticket->t_cnt;
3114        }
3115
3116        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3117        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3118
3119        trace_xfs_log_ungrant_exit(log, ticket);
3120
3121        xfs_log_space_wake(log->l_mp);
3122}
3123
3124/*
3125 * Flush iclog to disk if this is the last reference to the given iclog and
3126 * the WANT_SYNC bit is set.
3127 *
3128 * When this function is entered, the iclog is not necessarily in the
3129 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3130 *
3131 *
3132 */
3133STATIC int
3134xlog_state_release_iclog(
3135        struct xlog             *log,
3136        struct xlog_in_core     *iclog)
3137{
3138        int             sync = 0;       /* do we sync? */
3139
3140        if (iclog->ic_state & XLOG_STATE_IOERROR)
3141                return -EIO;
3142
3143        ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3144        if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3145                return 0;
3146
3147        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3148                spin_unlock(&log->l_icloglock);
3149                return -EIO;
3150        }
3151        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3152               iclog->ic_state == XLOG_STATE_WANT_SYNC);
3153
3154        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3155                /* update tail before writing to iclog */
3156                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3157                sync++;
3158                iclog->ic_state = XLOG_STATE_SYNCING;
3159                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3160                xlog_verify_tail_lsn(log, iclog, tail_lsn);
3161                /* cycle incremented when incrementing curr_block */
3162        }
3163        spin_unlock(&log->l_icloglock);
3164
3165        /*
3166         * We let the log lock go, so it's possible that we hit a log I/O
3167         * error or some other SHUTDOWN condition that marks the iclog
3168         * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3169         * this iclog has consistent data, so we ignore IOERROR
3170         * flags after this point.
3171         */
3172        if (sync)
3173                return xlog_sync(log, iclog);
3174        return 0;
3175}       /* xlog_state_release_iclog */
3176
3177
3178/*
3179 * This routine will mark the current iclog in the ring as WANT_SYNC
3180 * and move the current iclog pointer to the next iclog in the ring.
3181 * When this routine is called from xlog_state_get_iclog_space(), the
3182 * exact size of the iclog has not yet been determined.  All we know is
3183 * that every data block.  We have run out of space in this log record.
3184 */
3185STATIC void
3186xlog_state_switch_iclogs(
3187        struct xlog             *log,
3188        struct xlog_in_core     *iclog,
3189        int                     eventual_size)
3190{
3191        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3192        if (!eventual_size)
3193                eventual_size = iclog->ic_offset;
3194        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3195        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3196        log->l_prev_block = log->l_curr_block;
3197        log->l_prev_cycle = log->l_curr_cycle;
3198
3199        /* roll log?: ic_offset changed later */
3200        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3201
3202        /* Round up to next log-sunit */
3203        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3204            log->l_mp->m_sb.sb_logsunit > 1) {
3205                __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3206                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3207        }
3208
3209        if (log->l_curr_block >= log->l_logBBsize) {
3210                /*
3211                 * Rewind the current block before the cycle is bumped to make
3212                 * sure that the combined LSN never transiently moves forward
3213                 * when the log wraps to the next cycle. This is to support the
3214                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3215                 * other cases should acquire l_icloglock.
3216                 */
3217                log->l_curr_block -= log->l_logBBsize;
3218                ASSERT(log->l_curr_block >= 0);
3219                smp_wmb();
3220                log->l_curr_cycle++;
3221                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3222                        log->l_curr_cycle++;
3223        }
3224        ASSERT(iclog == log->l_iclog);
3225        log->l_iclog = iclog->ic_next;
3226}       /* xlog_state_switch_iclogs */
3227
3228/*
3229 * Write out all data in the in-core log as of this exact moment in time.
3230 *
3231 * Data may be written to the in-core log during this call.  However,
3232 * we don't guarantee this data will be written out.  A change from past
3233 * implementation means this routine will *not* write out zero length LRs.
3234 *
3235 * Basically, we try and perform an intelligent scan of the in-core logs.
3236 * If we determine there is no flushable data, we just return.  There is no
3237 * flushable data if:
3238 *
3239 *      1. the current iclog is active and has no data; the previous iclog
3240 *              is in the active or dirty state.
3241 *      2. the current iclog is drity, and the previous iclog is in the
3242 *              active or dirty state.
3243 *
3244 * We may sleep if:
3245 *
3246 *      1. the current iclog is not in the active nor dirty state.
3247 *      2. the current iclog dirty, and the previous iclog is not in the
3248 *              active nor dirty state.
3249 *      3. the current iclog is active, and there is another thread writing
3250 *              to this particular iclog.
3251 *      4. a) the current iclog is active and has no other writers
3252 *         b) when we return from flushing out this iclog, it is still
3253 *              not in the active nor dirty state.
3254 */
3255int
3256_xfs_log_force(
3257        struct xfs_mount        *mp,
3258        uint                    flags,
3259        int                     *log_flushed)
3260{
3261        struct xlog             *log = mp->m_log;
3262        struct xlog_in_core     *iclog;
3263        xfs_lsn_t               lsn;
3264
3265        XFS_STATS_INC(mp, xs_log_force);
3266
3267        xlog_cil_force(log);
3268
3269        spin_lock(&log->l_icloglock);
3270
3271        iclog = log->l_iclog;
3272        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3273                spin_unlock(&log->l_icloglock);
3274                return -EIO;
3275        }
3276
3277        /* If the head iclog is not active nor dirty, we just attach
3278         * ourselves to the head and go to sleep.
3279         */
3280        if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3281            iclog->ic_state == XLOG_STATE_DIRTY) {
3282                /*
3283                 * If the head is dirty or (active and empty), then
3284                 * we need to look at the previous iclog.  If the previous
3285                 * iclog is active or dirty we are done.  There is nothing
3286                 * to sync out.  Otherwise, we attach ourselves to the
3287                 * previous iclog and go to sleep.
3288                 */
3289                if (iclog->ic_state == XLOG_STATE_DIRTY ||
3290                    (atomic_read(&iclog->ic_refcnt) == 0
3291                     && iclog->ic_offset == 0)) {
3292                        iclog = iclog->ic_prev;
3293                        if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3294                            iclog->ic_state == XLOG_STATE_DIRTY)
3295                                goto no_sleep;
3296                        else
3297                                goto maybe_sleep;
3298                } else {
3299                        if (atomic_read(&iclog->ic_refcnt) == 0) {
3300                                /* We are the only one with access to this
3301                                 * iclog.  Flush it out now.  There should
3302                                 * be a roundoff of zero to show that someone
3303                                 * has already taken care of the roundoff from
3304                                 * the previous sync.
3305                                 */
3306                                atomic_inc(&iclog->ic_refcnt);
3307                                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3308                                xlog_state_switch_iclogs(log, iclog, 0);
3309                                spin_unlock(&log->l_icloglock);
3310
3311                                if (xlog_state_release_iclog(log, iclog))
3312                                        return -EIO;
3313
3314                                if (log_flushed)
3315                                        *log_flushed = 1;
3316                                spin_lock(&log->l_icloglock);
3317                                if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3318                                    iclog->ic_state != XLOG_STATE_DIRTY)
3319                                        goto maybe_sleep;
3320                                else
3321                                        goto no_sleep;
3322                        } else {
3323                                /* Someone else is writing to this iclog.
3324                                 * Use its call to flush out the data.  However,
3325                                 * the other thread may not force out this LR,
3326                                 * so we mark it WANT_SYNC.
3327                                 */
3328                                xlog_state_switch_iclogs(log, iclog, 0);
3329                                goto maybe_sleep;
3330                        }
3331                }
3332        }
3333
3334        /* By the time we come around again, the iclog could've been filled
3335         * which would give it another lsn.  If we have a new lsn, just
3336         * return because the relevant data has been flushed.
3337         */
3338maybe_sleep:
3339        if (flags & XFS_LOG_SYNC) {
3340                /*
3341                 * We must check if we're shutting down here, before
3342                 * we wait, while we're holding the l_icloglock.
3343                 * Then we check again after waking up, in case our
3344                 * sleep was disturbed by a bad news.
3345                 */
3346                if (iclog->ic_state & XLOG_STATE_IOERROR) {
3347                        spin_unlock(&log->l_icloglock);
3348                        return -EIO;
3349                }
3350                XFS_STATS_INC(mp, xs_log_force_sleep);
3351                xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3352                /*
3353                 * No need to grab the log lock here since we're
3354                 * only deciding whether or not to return EIO
3355                 * and the memory read should be atomic.
3356                 */
3357                if (iclog->ic_state & XLOG_STATE_IOERROR)
3358                        return -EIO;
3359                if (log_flushed)
3360                        *log_flushed = 1;
3361        } else {
3362
3363no_sleep:
3364                spin_unlock(&log->l_icloglock);
3365        }
3366        return 0;
3367}
3368
3369/*
3370 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3371 * about errors or whether the log was flushed or not. This is the normal
3372 * interface to use when trying to unpin items or move the log forward.
3373 */
3374void
3375xfs_log_force(
3376        xfs_mount_t     *mp,
3377        uint            flags)
3378{
3379        int     error;
3380
3381        trace_xfs_log_force(mp, 0);
3382        error = _xfs_log_force(mp, flags, NULL);
3383        if (error)
3384                xfs_warn(mp, "%s: error %d returned.", __func__, error);
3385}
3386
3387/*
3388 * Force the in-core log to disk for a specific LSN.
3389 *
3390 * Find in-core log with lsn.
3391 *      If it is in the DIRTY state, just return.
3392 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3393 *              state and go to sleep or return.
3394 *      If it is in any other state, go to sleep or return.
3395 *
3396 * Synchronous forces are implemented with a signal variable. All callers
3397 * to force a given lsn to disk will wait on a the sv attached to the
3398 * specific in-core log.  When given in-core log finally completes its
3399 * write to disk, that thread will wake up all threads waiting on the
3400 * sv.
3401 */
3402int
3403_xfs_log_force_lsn(
3404        struct xfs_mount        *mp,
3405        xfs_lsn_t               lsn,
3406        uint                    flags,
3407        int                     *log_flushed)
3408{
3409        struct xlog             *log = mp->m_log;
3410        struct xlog_in_core     *iclog;
3411        int                     already_slept = 0;
3412
3413        ASSERT(lsn != 0);
3414
3415        XFS_STATS_INC(mp, xs_log_force);
3416
3417        lsn = xlog_cil_force_lsn(log, lsn);
3418        if (lsn == NULLCOMMITLSN)
3419                return 0;
3420
3421try_again:
3422        spin_lock(&log->l_icloglock);
3423        iclog = log->l_iclog;
3424        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3425                spin_unlock(&log->l_icloglock);
3426                return -EIO;
3427        }
3428
3429        do {
3430                if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3431                        iclog = iclog->ic_next;
3432                        continue;
3433                }
3434
3435                if (iclog->ic_state == XLOG_STATE_DIRTY) {
3436                        spin_unlock(&log->l_icloglock);
3437                        return 0;
3438                }
3439
3440                if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3441                        /*
3442                         * We sleep here if we haven't already slept (e.g.
3443                         * this is the first time we've looked at the correct
3444                         * iclog buf) and the buffer before us is going to
3445                         * be sync'ed. The reason for this is that if we
3446                         * are doing sync transactions here, by waiting for
3447                         * the previous I/O to complete, we can allow a few
3448                         * more transactions into this iclog before we close
3449                         * it down.
3450                         *
3451                         * Otherwise, we mark the buffer WANT_SYNC, and bump
3452                         * up the refcnt so we can release the log (which
3453                         * drops the ref count).  The state switch keeps new
3454                         * transaction commits from using this buffer.  When
3455                         * the current commits finish writing into the buffer,
3456                         * the refcount will drop to zero and the buffer will
3457                         * go out then.
3458                         */
3459                        if (!already_slept &&
3460                            (iclog->ic_prev->ic_state &
3461                             (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3462                                ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3463
3464                                XFS_STATS_INC(mp, xs_log_force_sleep);
3465
3466                                xlog_wait(&iclog->ic_prev->ic_write_wait,
3467                                                        &log->l_icloglock);
3468                                if (log_flushed)
3469                                        *log_flushed = 1;
3470                                already_slept = 1;
3471                                goto try_again;
3472                        }
3473                        atomic_inc(&iclog->ic_refcnt);
3474                        xlog_state_switch_iclogs(log, iclog, 0);
3475                        spin_unlock(&log->l_icloglock);
3476                        if (xlog_state_release_iclog(log, iclog))
3477                                return -EIO;
3478                        if (log_flushed)
3479                                *log_flushed = 1;
3480                        spin_lock(&log->l_icloglock);
3481                }
3482
3483                if ((flags & XFS_LOG_SYNC) && /* sleep */
3484                    !(iclog->ic_state &
3485                      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3486                        /*
3487                         * Don't wait on completion if we know that we've
3488                         * gotten a log write error.
3489                         */
3490                        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3491                                spin_unlock(&log->l_icloglock);
3492                                return -EIO;
3493                        }
3494                        XFS_STATS_INC(mp, xs_log_force_sleep);
3495                        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3496                        /*
3497                         * No need to grab the log lock here since we're
3498                         * only deciding whether or not to return EIO
3499                         * and the memory read should be atomic.
3500                         */
3501                        if (iclog->ic_state & XLOG_STATE_IOERROR)
3502                                return -EIO;
3503
3504                        if (log_flushed)
3505                                *log_flushed = 1;
3506                } else {                /* just return */
3507                        spin_unlock(&log->l_icloglock);
3508                }
3509
3510                return 0;
3511        } while (iclog != log->l_iclog);
3512
3513        spin_unlock(&log->l_icloglock);
3514        return 0;
3515}
3516
3517/*
3518 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3519 * about errors or whether the log was flushed or not. This is the normal
3520 * interface to use when trying to unpin items or move the log forward.
3521 */
3522void
3523xfs_log_force_lsn(
3524        xfs_mount_t     *mp,
3525        xfs_lsn_t       lsn,
3526        uint            flags)
3527{
3528        int     error;
3529
3530        trace_xfs_log_force(mp, lsn);
3531        error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3532        if (error)
3533                xfs_warn(mp, "%s: error %d returned.", __func__, error);
3534}
3535
3536/*
3537 * Called when we want to mark the current iclog as being ready to sync to
3538 * disk.
3539 */
3540STATIC void
3541xlog_state_want_sync(
3542        struct xlog             *log,
3543        struct xlog_in_core     *iclog)
3544{
3545        assert_spin_locked(&log->l_icloglock);
3546
3547        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3548                xlog_state_switch_iclogs(log, iclog, 0);
3549        } else {
3550                ASSERT(iclog->ic_state &
3551                        (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3552        }
3553}
3554
3555
3556/*****************************************************************************
3557 *
3558 *              TICKET functions
3559 *
3560 *****************************************************************************
3561 */
3562
3563/*
3564 * Free a used ticket when its refcount falls to zero.
3565 */
3566void
3567xfs_log_ticket_put(
3568        xlog_ticket_t   *ticket)
3569{
3570        ASSERT(atomic_read(&ticket->t_ref) > 0);
3571        if (atomic_dec_and_test(&ticket->t_ref))
3572                kmem_zone_free(xfs_log_ticket_zone, ticket);
3573}
3574
3575xlog_ticket_t *
3576xfs_log_ticket_get(
3577        xlog_ticket_t   *ticket)
3578{
3579        ASSERT(atomic_read(&ticket->t_ref) > 0);
3580        atomic_inc(&ticket->t_ref);
3581        return ticket;
3582}
3583
3584/*
3585 * Figure out the total log space unit (in bytes) that would be
3586 * required for a log ticket.
3587 */
3588int
3589xfs_log_calc_unit_res(
3590        struct xfs_mount        *mp,
3591        int                     unit_bytes)
3592{
3593        struct xlog             *log = mp->m_log;
3594        int                     iclog_space;
3595        uint                    num_headers;
3596
3597        /*
3598         * Permanent reservations have up to 'cnt'-1 active log operations
3599         * in the log.  A unit in this case is the amount of space for one
3600         * of these log operations.  Normal reservations have a cnt of 1
3601         * and their unit amount is the total amount of space required.
3602         *
3603         * The following lines of code account for non-transaction data
3604         * which occupy space in the on-disk log.
3605         *
3606         * Normal form of a transaction is:
3607         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3608         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3609         *
3610         * We need to account for all the leadup data and trailer data
3611         * around the transaction data.
3612         * And then we need to account for the worst case in terms of using
3613         * more space.
3614         * The worst case will happen if:
3615         * - the placement of the transaction happens to be such that the
3616         *   roundoff is at its maximum
3617         * - the transaction data is synced before the commit record is synced
3618         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3619         *   Therefore the commit record is in its own Log Record.
3620         *   This can happen as the commit record is called with its
3621         *   own region to xlog_write().
3622         *   This then means that in the worst case, roundoff can happen for
3623         *   the commit-rec as well.
3624         *   The commit-rec is smaller than padding in this scenario and so it is
3625         *   not added separately.
3626         */
3627
3628        /* for trans header */
3629        unit_bytes += sizeof(xlog_op_header_t);
3630        unit_bytes += sizeof(xfs_trans_header_t);
3631
3632        /* for start-rec */
3633        unit_bytes += sizeof(xlog_op_header_t);
3634
3635        /*
3636         * for LR headers - the space for data in an iclog is the size minus
3637         * the space used for the headers. If we use the iclog size, then we
3638         * undercalculate the number of headers required.
3639         *
3640         * Furthermore - the addition of op headers for split-recs might
3641         * increase the space required enough to require more log and op
3642         * headers, so take that into account too.
3643         *
3644         * IMPORTANT: This reservation makes the assumption that if this
3645         * transaction is the first in an iclog and hence has the LR headers
3646         * accounted to it, then the remaining space in the iclog is
3647         * exclusively for this transaction.  i.e. if the transaction is larger
3648         * than the iclog, it will be the only thing in that iclog.
3649         * Fundamentally, this means we must pass the entire log vector to
3650         * xlog_write to guarantee this.
3651         */
3652        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3653        num_headers = howmany(unit_bytes, iclog_space);
3654
3655        /* for split-recs - ophdrs added when data split over LRs */
3656        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3657
3658        /* add extra header reservations if we overrun */
3659        while (!num_headers ||
3660               howmany(unit_bytes, iclog_space) > num_headers) {
3661                unit_bytes += sizeof(xlog_op_header_t);
3662                num_headers++;
3663        }
3664        unit_bytes += log->l_iclog_hsize * num_headers;
3665
3666        /* for commit-rec LR header - note: padding will subsume the ophdr */
3667        unit_bytes += log->l_iclog_hsize;
3668
3669        /* for roundoff padding for transaction data and one for commit record */
3670        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3671                /* log su roundoff */
3672                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3673        } else {
3674                /* BB roundoff */
3675                unit_bytes += 2 * BBSIZE;
3676        }
3677
3678        return unit_bytes;
3679}
3680
3681/*
3682 * Allocate and initialise a new log ticket.
3683 */
3684struct xlog_ticket *
3685xlog_ticket_alloc(
3686        struct xlog             *log,
3687        int                     unit_bytes,
3688        int                     cnt,
3689        char                    client,
3690        bool                    permanent,
3691        xfs_km_flags_t          alloc_flags)
3692{
3693        struct xlog_ticket      *tic;
3694        int                     unit_res;
3695
3696        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3697        if (!tic)
3698                return NULL;
3699
3700        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3701
3702        atomic_set(&tic->t_ref, 1);
3703        tic->t_task             = current;
3704        INIT_LIST_HEAD(&tic->t_queue);
3705        tic->t_unit_res         = unit_res;
3706        tic->t_curr_res         = unit_res;
3707        tic->t_cnt              = cnt;
3708        tic->t_ocnt             = cnt;
3709        tic->t_tid              = prandom_u32();
3710        tic->t_clientid         = client;
3711        tic->t_flags            = XLOG_TIC_INITED;
3712        tic->t_trans_type       = 0;
3713        if (permanent)
3714                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3715
3716        xlog_tic_reset_res(tic);
3717
3718        return tic;
3719}
3720
3721
3722/******************************************************************************
3723 *
3724 *              Log debug routines
3725 *
3726 ******************************************************************************
3727 */
3728#if defined(DEBUG)
3729/*
3730 * Make sure that the destination ptr is within the valid data region of
3731 * one of the iclogs.  This uses backup pointers stored in a different
3732 * part of the log in case we trash the log structure.
3733 */
3734void
3735xlog_verify_dest_ptr(
3736        struct xlog     *log,
3737        void            *ptr)
3738{
3739        int i;
3740        int good_ptr = 0;
3741
3742        for (i = 0; i < log->l_iclog_bufs; i++) {
3743                if (ptr >= log->l_iclog_bak[i] &&
3744                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3745                        good_ptr++;
3746        }
3747
3748        if (!good_ptr)
3749                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3750}
3751
3752/*
3753 * Check to make sure the grant write head didn't just over lap the tail.  If
3754 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3755 * the cycles differ by exactly one and check the byte count.
3756 *
3757 * This check is run unlocked, so can give false positives. Rather than assert
3758 * on failures, use a warn-once flag and a panic tag to allow the admin to
3759 * determine if they want to panic the machine when such an error occurs. For
3760 * debug kernels this will have the same effect as using an assert but, unlinke
3761 * an assert, it can be turned off at runtime.
3762 */
3763STATIC void
3764xlog_verify_grant_tail(
3765        struct xlog     *log)
3766{
3767        int             tail_cycle, tail_blocks;
3768        int             cycle, space;
3769
3770        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3771        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3772        if (tail_cycle != cycle) {
3773                if (cycle - 1 != tail_cycle &&
3774                    !(log->l_flags & XLOG_TAIL_WARN)) {
3775                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3776                                "%s: cycle - 1 != tail_cycle", __func__);
3777                        log->l_flags |= XLOG_TAIL_WARN;
3778                }
3779
3780                if (space > BBTOB(tail_blocks) &&
3781                    !(log->l_flags & XLOG_TAIL_WARN)) {
3782                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3783                                "%s: space > BBTOB(tail_blocks)", __func__);
3784                        log->l_flags |= XLOG_TAIL_WARN;
3785                }
3786        }
3787}
3788
3789/* check if it will fit */
3790STATIC void
3791xlog_verify_tail_lsn(
3792        struct xlog             *log,
3793        struct xlog_in_core     *iclog,
3794        xfs_lsn_t               tail_lsn)
3795{
3796    int blocks;
3797
3798    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3799        blocks =
3800            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3801        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3802                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3803    } else {
3804        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3805
3806        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3807                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3808
3809        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3810        if (blocks < BTOBB(iclog->ic_offset) + 1)
3811                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3812    }
3813}       /* xlog_verify_tail_lsn */
3814
3815/*
3816 * Perform a number of checks on the iclog before writing to disk.
3817 *
3818 * 1. Make sure the iclogs are still circular
3819 * 2. Make sure we have a good magic number
3820 * 3. Make sure we don't have magic numbers in the data
3821 * 4. Check fields of each log operation header for:
3822 *      A. Valid client identifier
3823 *      B. tid ptr value falls in valid ptr space (user space code)
3824 *      C. Length in log record header is correct according to the
3825 *              individual operation headers within record.
3826 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3827 *      log, check the preceding blocks of the physical log to make sure all
3828 *      the cycle numbers agree with the current cycle number.
3829 */
3830STATIC void
3831xlog_verify_iclog(
3832        struct xlog             *log,
3833        struct xlog_in_core     *iclog,
3834        int                     count,
3835        bool                    syncing)
3836{
3837        xlog_op_header_t        *ophead;
3838        xlog_in_core_t          *icptr;
3839        xlog_in_core_2_t        *xhdr;
3840        void                    *base_ptr, *ptr, *p;
3841        ptrdiff_t               field_offset;
3842        __uint8_t               clientid;
3843        int                     len, i, j, k, op_len;
3844        int                     idx;
3845
3846        /* check validity of iclog pointers */
3847        spin_lock(&log->l_icloglock);
3848        icptr = log->l_iclog;
3849        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3850                ASSERT(icptr);
3851
3852        if (icptr != log->l_iclog)
3853                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3854        spin_unlock(&log->l_icloglock);
3855
3856        /* check log magic numbers */
3857        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3858                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3859
3860        base_ptr = ptr = &iclog->ic_header;
3861        p = &iclog->ic_header;
3862        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3863                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3864                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3865                                __func__);
3866        }
3867
3868        /* check fields */
3869        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3870        base_ptr = ptr = iclog->ic_datap;
3871        ophead = ptr;
3872        xhdr = iclog->ic_data;
3873        for (i = 0; i < len; i++) {
3874                ophead = ptr;
3875
3876                /* clientid is only 1 byte */
3877                p = &ophead->oh_clientid;
3878                field_offset = p - base_ptr;
3879                if (!syncing || (field_offset & 0x1ff)) {
3880                        clientid = ophead->oh_clientid;
3881                } else {
3882                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3883                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3884                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3885                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3886                                clientid = xlog_get_client_id(
3887                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3888                        } else {
3889                                clientid = xlog_get_client_id(
3890                                        iclog->ic_header.h_cycle_data[idx]);
3891                        }
3892                }
3893                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3894                        xfs_warn(log->l_mp,
3895                                "%s: invalid clientid %d op 0x%p offset 0x%lx",
3896                                __func__, clientid, ophead,
3897                                (unsigned long)field_offset);
3898
3899                /* check length */
3900                p = &ophead->oh_len;
3901                field_offset = p - base_ptr;
3902                if (!syncing || (field_offset & 0x1ff)) {
3903                        op_len = be32_to_cpu(ophead->oh_len);
3904                } else {
3905                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3906                                    (uintptr_t)iclog->ic_datap);
3907                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3908                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3909                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3910                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3911                        } else {
3912                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3913                        }
3914                }
3915                ptr += sizeof(xlog_op_header_t) + op_len;
3916        }
3917}       /* xlog_verify_iclog */
3918#endif
3919
3920/*
3921 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3922 */
3923STATIC int
3924xlog_state_ioerror(
3925        struct xlog     *log)
3926{
3927        xlog_in_core_t  *iclog, *ic;
3928
3929        iclog = log->l_iclog;
3930        if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3931                /*
3932                 * Mark all the incore logs IOERROR.
3933                 * From now on, no log flushes will result.
3934                 */
3935                ic = iclog;
3936                do {
3937                        ic->ic_state = XLOG_STATE_IOERROR;
3938                        ic = ic->ic_next;
3939                } while (ic != iclog);
3940                return 0;
3941        }
3942        /*
3943         * Return non-zero, if state transition has already happened.
3944         */
3945        return 1;
3946}
3947
3948/*
3949 * This is called from xfs_force_shutdown, when we're forcibly
3950 * shutting down the filesystem, typically because of an IO error.
3951 * Our main objectives here are to make sure that:
3952 *      a. if !logerror, flush the logs to disk. Anything modified
3953 *         after this is ignored.
3954 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3955 *         parties to find out, 'atomically'.
3956 *      c. those who're sleeping on log reservations, pinned objects and
3957 *          other resources get woken up, and be told the bad news.
3958 *      d. nothing new gets queued up after (b) and (c) are done.
3959 *
3960 * Note: for the !logerror case we need to flush the regions held in memory out
3961 * to disk first. This needs to be done before the log is marked as shutdown,
3962 * otherwise the iclog writes will fail.
3963 */
3964int
3965xfs_log_force_umount(
3966        struct xfs_mount        *mp,
3967        int                     logerror)
3968{
3969        struct xlog     *log;
3970        int             retval;
3971
3972        log = mp->m_log;
3973
3974        /*
3975         * If this happens during log recovery, don't worry about
3976         * locking; the log isn't open for business yet.
3977         */
3978        if (!log ||
3979            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3980                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3981                if (mp->m_sb_bp)
3982                        mp->m_sb_bp->b_flags |= XBF_DONE;
3983                return 0;
3984        }
3985
3986        /*
3987         * Somebody could've already done the hard work for us.
3988         * No need to get locks for this.
3989         */
3990        if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3991                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3992                return 1;
3993        }
3994
3995        /*
3996         * Flush all the completed transactions to disk before marking the log
3997         * being shut down. We need to do it in this order to ensure that
3998         * completed operations are safely on disk before we shut down, and that
3999         * we don't have to issue any buffer IO after the shutdown flags are set
4000         * to guarantee this.
4001         */
4002        if (!logerror)
4003                _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4004
4005        /*
4006         * mark the filesystem and the as in a shutdown state and wake
4007         * everybody up to tell them the bad news.
4008         */
4009        spin_lock(&log->l_icloglock);
4010        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4011        if (mp->m_sb_bp)
4012                mp->m_sb_bp->b_flags |= XBF_DONE;
4013
4014        /*
4015         * Mark the log and the iclogs with IO error flags to prevent any
4016         * further log IO from being issued or completed.
4017         */
4018        log->l_flags |= XLOG_IO_ERROR;
4019        retval = xlog_state_ioerror(log);
4020        spin_unlock(&log->l_icloglock);
4021
4022        /*
4023         * We don't want anybody waiting for log reservations after this. That
4024         * means we have to wake up everybody queued up on reserveq as well as
4025         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4026         * we don't enqueue anything once the SHUTDOWN flag is set, and this
4027         * action is protected by the grant locks.
4028         */
4029        xlog_grant_head_wake_all(&log->l_reserve_head);
4030        xlog_grant_head_wake_all(&log->l_write_head);
4031
4032        /*
4033         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4034         * as if the log writes were completed. The abort handling in the log
4035         * item committed callback functions will do this again under lock to
4036         * avoid races.
4037         */
4038        wake_up_all(&log->l_cilp->xc_commit_wait);
4039        xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4040
4041#ifdef XFSERRORDEBUG
4042        {
4043                xlog_in_core_t  *iclog;
4044
4045                spin_lock(&log->l_icloglock);
4046                iclog = log->l_iclog;
4047                do {
4048                        ASSERT(iclog->ic_callback == 0);
4049                        iclog = iclog->ic_next;
4050                } while (iclog != log->l_iclog);
4051                spin_unlock(&log->l_icloglock);
4052        }
4053#endif
4054        /* return non-zero if log IOERROR transition had already happened */
4055        return retval;
4056}
4057
4058STATIC int
4059xlog_iclogs_empty(
4060        struct xlog     *log)
4061{
4062        xlog_in_core_t  *iclog;
4063
4064        iclog = log->l_iclog;
4065        do {
4066                /* endianness does not matter here, zero is zero in
4067                 * any language.
4068                 */
4069                if (iclog->ic_header.h_num_logops)
4070                        return 0;
4071                iclog = iclog->ic_next;
4072        } while (iclog != log->l_iclog);
4073        return 1;
4074}
4075
4076/*
4077 * Verify that an LSN stamped into a piece of metadata is valid. This is
4078 * intended for use in read verifiers on v5 superblocks.
4079 */
4080bool
4081xfs_log_check_lsn(
4082        struct xfs_mount        *mp,
4083        xfs_lsn_t               lsn)
4084{
4085        struct xlog             *log = mp->m_log;
4086        bool                    valid;
4087
4088        /*
4089         * norecovery mode skips mount-time log processing and unconditionally
4090         * resets the in-core LSN. We can't validate in this mode, but
4091         * modifications are not allowed anyways so just return true.
4092         */
4093        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4094                return true;
4095
4096        /*
4097         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4098         * handled by recovery and thus safe to ignore here.
4099         */
4100        if (lsn == NULLCOMMITLSN)
4101                return true;
4102
4103        valid = xlog_valid_lsn(mp->m_log, lsn);
4104
4105        /* warn the user about what's gone wrong before verifier failure */
4106        if (!valid) {
4107                spin_lock(&log->l_icloglock);
4108                xfs_warn(mp,
4109"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4110"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4111                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4112                         log->l_curr_cycle, log->l_curr_block);
4113                spin_unlock(&log->l_icloglock);
4114        }
4115
4116        return valid;
4117}
4118