linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
  67#include <linux/fault-inject.h>
  68
  69#include <asm/futex.h>
  70
  71#include "locking/rtmutex_common.h"
  72
  73/*
  74 * READ this before attempting to hack on futexes!
  75 *
  76 * Basic futex operation and ordering guarantees
  77 * =============================================
  78 *
  79 * The waiter reads the futex value in user space and calls
  80 * futex_wait(). This function computes the hash bucket and acquires
  81 * the hash bucket lock. After that it reads the futex user space value
  82 * again and verifies that the data has not changed. If it has not changed
  83 * it enqueues itself into the hash bucket, releases the hash bucket lock
  84 * and schedules.
  85 *
  86 * The waker side modifies the user space value of the futex and calls
  87 * futex_wake(). This function computes the hash bucket and acquires the
  88 * hash bucket lock. Then it looks for waiters on that futex in the hash
  89 * bucket and wakes them.
  90 *
  91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  92 * the hb spinlock can be avoided and simply return. In order for this
  93 * optimization to work, ordering guarantees must exist so that the waiter
  94 * being added to the list is acknowledged when the list is concurrently being
  95 * checked by the waker, avoiding scenarios like the following:
  96 *
  97 * CPU 0                               CPU 1
  98 * val = *futex;
  99 * sys_futex(WAIT, futex, val);
 100 *   futex_wait(futex, val);
 101 *   uval = *futex;
 102 *                                     *futex = newval;
 103 *                                     sys_futex(WAKE, futex);
 104 *                                       futex_wake(futex);
 105 *                                       if (queue_empty())
 106 *                                         return;
 107 *   if (uval == val)
 108 *      lock(hash_bucket(futex));
 109 *      queue();
 110 *     unlock(hash_bucket(futex));
 111 *     schedule();
 112 *
 113 * This would cause the waiter on CPU 0 to wait forever because it
 114 * missed the transition of the user space value from val to newval
 115 * and the waker did not find the waiter in the hash bucket queue.
 116 *
 117 * The correct serialization ensures that a waiter either observes
 118 * the changed user space value before blocking or is woken by a
 119 * concurrent waker:
 120 *
 121 * CPU 0                                 CPU 1
 122 * val = *futex;
 123 * sys_futex(WAIT, futex, val);
 124 *   futex_wait(futex, val);
 125 *
 126 *   waiters++; (a)
 127 *   smp_mb(); (A) <-- paired with -.
 128 *                                  |
 129 *   lock(hash_bucket(futex));      |
 130 *                                  |
 131 *   uval = *futex;                 |
 132 *                                  |        *futex = newval;
 133 *                                  |        sys_futex(WAKE, futex);
 134 *                                  |          futex_wake(futex);
 135 *                                  |
 136 *                                  `--------> smp_mb(); (B)
 137 *   if (uval == val)
 138 *     queue();
 139 *     unlock(hash_bucket(futex));
 140 *     schedule();                         if (waiters)
 141 *                                           lock(hash_bucket(futex));
 142 *   else                                    wake_waiters(futex);
 143 *     waiters--; (b)                        unlock(hash_bucket(futex));
 144 *
 145 * Where (A) orders the waiters increment and the futex value read through
 146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 147 * to futex and the waiters read -- this is done by the barriers for both
 148 * shared and private futexes in get_futex_key_refs().
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *      X = Y = 0
 153 *
 154 *      w[X]=1          w[Y]=1
 155 *      MB              MB
 156 *      r[Y]=y          r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 176#endif
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#define FLAGS_SHARED            0x01
 183#define FLAGS_CLOCKRT           0x02
 184#define FLAGS_HAS_TIMEOUT       0x04
 185
 186/*
 187 * Priority Inheritance state:
 188 */
 189struct futex_pi_state {
 190        /*
 191         * list of 'owned' pi_state instances - these have to be
 192         * cleaned up in do_exit() if the task exits prematurely:
 193         */
 194        struct list_head list;
 195
 196        /*
 197         * The PI object:
 198         */
 199        struct rt_mutex pi_mutex;
 200
 201        struct task_struct *owner;
 202        atomic_t refcount;
 203
 204        union futex_key key;
 205};
 206
 207/**
 208 * struct futex_q - The hashed futex queue entry, one per waiting task
 209 * @list:               priority-sorted list of tasks waiting on this futex
 210 * @task:               the task waiting on the futex
 211 * @lock_ptr:           the hash bucket lock
 212 * @key:                the key the futex is hashed on
 213 * @pi_state:           optional priority inheritance state
 214 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 215 * @requeue_pi_key:     the requeue_pi target futex key
 216 * @bitset:             bitset for the optional bitmasked wakeup
 217 *
 218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 219 * we can wake only the relevant ones (hashed queues may be shared).
 220 *
 221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 223 * The order of wakeup is always to make the first condition true, then
 224 * the second.
 225 *
 226 * PI futexes are typically woken before they are removed from the hash list via
 227 * the rt_mutex code. See unqueue_me_pi().
 228 */
 229struct futex_q {
 230        struct plist_node list;
 231
 232        struct task_struct *task;
 233        spinlock_t *lock_ptr;
 234        union futex_key key;
 235        struct futex_pi_state *pi_state;
 236        struct rt_mutex_waiter *rt_waiter;
 237        union futex_key *requeue_pi_key;
 238        u32 bitset;
 239};
 240
 241static const struct futex_q futex_q_init = {
 242        /* list gets initialized in queue_me()*/
 243        .key = FUTEX_KEY_INIT,
 244        .bitset = FUTEX_BITSET_MATCH_ANY
 245};
 246
 247/*
 248 * Hash buckets are shared by all the futex_keys that hash to the same
 249 * location.  Each key may have multiple futex_q structures, one for each task
 250 * waiting on a futex.
 251 */
 252struct futex_hash_bucket {
 253        atomic_t waiters;
 254        spinlock_t lock;
 255        struct plist_head chain;
 256} ____cacheline_aligned_in_smp;
 257
 258/*
 259 * The base of the bucket array and its size are always used together
 260 * (after initialization only in hash_futex()), so ensure that they
 261 * reside in the same cacheline.
 262 */
 263static struct {
 264        struct futex_hash_bucket *queues;
 265        unsigned long            hashsize;
 266} __futex_data __read_mostly __aligned(2*sizeof(long));
 267#define futex_queues   (__futex_data.queues)
 268#define futex_hashsize (__futex_data.hashsize)
 269
 270
 271/*
 272 * Fault injections for futexes.
 273 */
 274#ifdef CONFIG_FAIL_FUTEX
 275
 276static struct {
 277        struct fault_attr attr;
 278
 279        bool ignore_private;
 280} fail_futex = {
 281        .attr = FAULT_ATTR_INITIALIZER,
 282        .ignore_private = false,
 283};
 284
 285static int __init setup_fail_futex(char *str)
 286{
 287        return setup_fault_attr(&fail_futex.attr, str);
 288}
 289__setup("fail_futex=", setup_fail_futex);
 290
 291static bool should_fail_futex(bool fshared)
 292{
 293        if (fail_futex.ignore_private && !fshared)
 294                return false;
 295
 296        return should_fail(&fail_futex.attr, 1);
 297}
 298
 299#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 300
 301static int __init fail_futex_debugfs(void)
 302{
 303        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 304        struct dentry *dir;
 305
 306        dir = fault_create_debugfs_attr("fail_futex", NULL,
 307                                        &fail_futex.attr);
 308        if (IS_ERR(dir))
 309                return PTR_ERR(dir);
 310
 311        if (!debugfs_create_bool("ignore-private", mode, dir,
 312                                 &fail_futex.ignore_private)) {
 313                debugfs_remove_recursive(dir);
 314                return -ENOMEM;
 315        }
 316
 317        return 0;
 318}
 319
 320late_initcall(fail_futex_debugfs);
 321
 322#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 323
 324#else
 325static inline bool should_fail_futex(bool fshared)
 326{
 327        return false;
 328}
 329#endif /* CONFIG_FAIL_FUTEX */
 330
 331static inline void futex_get_mm(union futex_key *key)
 332{
 333        atomic_inc(&key->private.mm->mm_count);
 334        /*
 335         * Ensure futex_get_mm() implies a full barrier such that
 336         * get_futex_key() implies a full barrier. This is relied upon
 337         * as smp_mb(); (B), see the ordering comment above.
 338         */
 339        smp_mb__after_atomic();
 340}
 341
 342/*
 343 * Reflects a new waiter being added to the waitqueue.
 344 */
 345static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 346{
 347#ifdef CONFIG_SMP
 348        atomic_inc(&hb->waiters);
 349        /*
 350         * Full barrier (A), see the ordering comment above.
 351         */
 352        smp_mb__after_atomic();
 353#endif
 354}
 355
 356/*
 357 * Reflects a waiter being removed from the waitqueue by wakeup
 358 * paths.
 359 */
 360static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 361{
 362#ifdef CONFIG_SMP
 363        atomic_dec(&hb->waiters);
 364#endif
 365}
 366
 367static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 368{
 369#ifdef CONFIG_SMP
 370        return atomic_read(&hb->waiters);
 371#else
 372        return 1;
 373#endif
 374}
 375
 376/*
 377 * We hash on the keys returned from get_futex_key (see below).
 378 */
 379static struct futex_hash_bucket *hash_futex(union futex_key *key)
 380{
 381        u32 hash = jhash2((u32*)&key->both.word,
 382                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 383                          key->both.offset);
 384        return &futex_queues[hash & (futex_hashsize - 1)];
 385}
 386
 387/*
 388 * Return 1 if two futex_keys are equal, 0 otherwise.
 389 */
 390static inline int match_futex(union futex_key *key1, union futex_key *key2)
 391{
 392        return (key1 && key2
 393                && key1->both.word == key2->both.word
 394                && key1->both.ptr == key2->both.ptr
 395                && key1->both.offset == key2->both.offset);
 396}
 397
 398/*
 399 * Take a reference to the resource addressed by a key.
 400 * Can be called while holding spinlocks.
 401 *
 402 */
 403static void get_futex_key_refs(union futex_key *key)
 404{
 405        if (!key->both.ptr)
 406                return;
 407
 408        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 409        case FUT_OFF_INODE:
 410                ihold(key->shared.inode); /* implies smp_mb(); (B) */
 411                break;
 412        case FUT_OFF_MMSHARED:
 413                futex_get_mm(key); /* implies smp_mb(); (B) */
 414                break;
 415        default:
 416                /*
 417                 * Private futexes do not hold reference on an inode or
 418                 * mm, therefore the only purpose of calling get_futex_key_refs
 419                 * is because we need the barrier for the lockless waiter check.
 420                 */
 421                smp_mb(); /* explicit smp_mb(); (B) */
 422        }
 423}
 424
 425/*
 426 * Drop a reference to the resource addressed by a key.
 427 * The hash bucket spinlock must not be held. This is
 428 * a no-op for private futexes, see comment in the get
 429 * counterpart.
 430 */
 431static void drop_futex_key_refs(union futex_key *key)
 432{
 433        if (!key->both.ptr) {
 434                /* If we're here then we tried to put a key we failed to get */
 435                WARN_ON_ONCE(1);
 436                return;
 437        }
 438
 439        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 440        case FUT_OFF_INODE:
 441                iput(key->shared.inode);
 442                break;
 443        case FUT_OFF_MMSHARED:
 444                mmdrop(key->private.mm);
 445                break;
 446        }
 447}
 448
 449/**
 450 * get_futex_key() - Get parameters which are the keys for a futex
 451 * @uaddr:      virtual address of the futex
 452 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 453 * @key:        address where result is stored.
 454 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 455 *              VERIFY_WRITE)
 456 *
 457 * Return: a negative error code or 0
 458 *
 459 * The key words are stored in *key on success.
 460 *
 461 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 462 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 463 * We can usually work out the index without swapping in the page.
 464 *
 465 * lock_page() might sleep, the caller should not hold a spinlock.
 466 */
 467static int
 468get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 469{
 470        unsigned long address = (unsigned long)uaddr;
 471        struct mm_struct *mm = current->mm;
 472        struct page *page;
 473        struct address_space *mapping;
 474        int err, ro = 0;
 475
 476        /*
 477         * The futex address must be "naturally" aligned.
 478         */
 479        key->both.offset = address % PAGE_SIZE;
 480        if (unlikely((address % sizeof(u32)) != 0))
 481                return -EINVAL;
 482        address -= key->both.offset;
 483
 484        if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 485                return -EFAULT;
 486
 487        if (unlikely(should_fail_futex(fshared)))
 488                return -EFAULT;
 489
 490        /*
 491         * PROCESS_PRIVATE futexes are fast.
 492         * As the mm cannot disappear under us and the 'key' only needs
 493         * virtual address, we dont even have to find the underlying vma.
 494         * Note : We do have to check 'uaddr' is a valid user address,
 495         *        but access_ok() should be faster than find_vma()
 496         */
 497        if (!fshared) {
 498                key->private.mm = mm;
 499                key->private.address = address;
 500                get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 501                return 0;
 502        }
 503
 504again:
 505        /* Ignore any VERIFY_READ mapping (futex common case) */
 506        if (unlikely(should_fail_futex(fshared)))
 507                return -EFAULT;
 508
 509        err = get_user_pages_fast(address, 1, 1, &page);
 510        /*
 511         * If write access is not required (eg. FUTEX_WAIT), try
 512         * and get read-only access.
 513         */
 514        if (err == -EFAULT && rw == VERIFY_READ) {
 515                err = get_user_pages_fast(address, 1, 0, &page);
 516                ro = 1;
 517        }
 518        if (err < 0)
 519                return err;
 520        else
 521                err = 0;
 522
 523        /*
 524         * The treatment of mapping from this point on is critical. The page
 525         * lock protects many things but in this context the page lock
 526         * stabilizes mapping, prevents inode freeing in the shared
 527         * file-backed region case and guards against movement to swap cache.
 528         *
 529         * Strictly speaking the page lock is not needed in all cases being
 530         * considered here and page lock forces unnecessarily serialization
 531         * From this point on, mapping will be re-verified if necessary and
 532         * page lock will be acquired only if it is unavoidable
 533         */
 534        page = compound_head(page);
 535        mapping = READ_ONCE(page->mapping);
 536
 537        /*
 538         * If page->mapping is NULL, then it cannot be a PageAnon
 539         * page; but it might be the ZERO_PAGE or in the gate area or
 540         * in a special mapping (all cases which we are happy to fail);
 541         * or it may have been a good file page when get_user_pages_fast
 542         * found it, but truncated or holepunched or subjected to
 543         * invalidate_complete_page2 before we got the page lock (also
 544         * cases which we are happy to fail).  And we hold a reference,
 545         * so refcount care in invalidate_complete_page's remove_mapping
 546         * prevents drop_caches from setting mapping to NULL beneath us.
 547         *
 548         * The case we do have to guard against is when memory pressure made
 549         * shmem_writepage move it from filecache to swapcache beneath us:
 550         * an unlikely race, but we do need to retry for page->mapping.
 551         */
 552        if (unlikely(!mapping)) {
 553                int shmem_swizzled;
 554
 555                /*
 556                 * Page lock is required to identify which special case above
 557                 * applies. If this is really a shmem page then the page lock
 558                 * will prevent unexpected transitions.
 559                 */
 560                lock_page(page);
 561                shmem_swizzled = PageSwapCache(page) || page->mapping;
 562                unlock_page(page);
 563                put_page(page);
 564
 565                if (shmem_swizzled)
 566                        goto again;
 567
 568                return -EFAULT;
 569        }
 570
 571        /*
 572         * Private mappings are handled in a simple way.
 573         *
 574         * If the futex key is stored on an anonymous page, then the associated
 575         * object is the mm which is implicitly pinned by the calling process.
 576         *
 577         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 578         * it's a read-only handle, it's expected that futexes attach to
 579         * the object not the particular process.
 580         */
 581        if (PageAnon(page)) {
 582                /*
 583                 * A RO anonymous page will never change and thus doesn't make
 584                 * sense for futex operations.
 585                 */
 586                if (unlikely(should_fail_futex(fshared)) || ro) {
 587                        err = -EFAULT;
 588                        goto out;
 589                }
 590
 591                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 592                key->private.mm = mm;
 593                key->private.address = address;
 594
 595                get_futex_key_refs(key); /* implies smp_mb(); (B) */
 596
 597        } else {
 598                struct inode *inode;
 599
 600                /*
 601                 * The associated futex object in this case is the inode and
 602                 * the page->mapping must be traversed. Ordinarily this should
 603                 * be stabilised under page lock but it's not strictly
 604                 * necessary in this case as we just want to pin the inode, not
 605                 * update the radix tree or anything like that.
 606                 *
 607                 * The RCU read lock is taken as the inode is finally freed
 608                 * under RCU. If the mapping still matches expectations then the
 609                 * mapping->host can be safely accessed as being a valid inode.
 610                 */
 611                rcu_read_lock();
 612
 613                if (READ_ONCE(page->mapping) != mapping) {
 614                        rcu_read_unlock();
 615                        put_page(page);
 616
 617                        goto again;
 618                }
 619
 620                inode = READ_ONCE(mapping->host);
 621                if (!inode) {
 622                        rcu_read_unlock();
 623                        put_page(page);
 624
 625                        goto again;
 626                }
 627
 628                /*
 629                 * Take a reference unless it is about to be freed. Previously
 630                 * this reference was taken by ihold under the page lock
 631                 * pinning the inode in place so i_lock was unnecessary. The
 632                 * only way for this check to fail is if the inode was
 633                 * truncated in parallel so warn for now if this happens.
 634                 *
 635                 * We are not calling into get_futex_key_refs() in file-backed
 636                 * cases, therefore a successful atomic_inc return below will
 637                 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 638                 */
 639                if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
 640                        rcu_read_unlock();
 641                        put_page(page);
 642
 643                        goto again;
 644                }
 645
 646                /* Should be impossible but lets be paranoid for now */
 647                if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 648                        err = -EFAULT;
 649                        rcu_read_unlock();
 650                        iput(inode);
 651
 652                        goto out;
 653                }
 654
 655                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 656                key->shared.inode = inode;
 657                key->shared.pgoff = basepage_index(page);
 658                rcu_read_unlock();
 659        }
 660
 661out:
 662        put_page(page);
 663        return err;
 664}
 665
 666static inline void put_futex_key(union futex_key *key)
 667{
 668        drop_futex_key_refs(key);
 669}
 670
 671/**
 672 * fault_in_user_writeable() - Fault in user address and verify RW access
 673 * @uaddr:      pointer to faulting user space address
 674 *
 675 * Slow path to fixup the fault we just took in the atomic write
 676 * access to @uaddr.
 677 *
 678 * We have no generic implementation of a non-destructive write to the
 679 * user address. We know that we faulted in the atomic pagefault
 680 * disabled section so we can as well avoid the #PF overhead by
 681 * calling get_user_pages() right away.
 682 */
 683static int fault_in_user_writeable(u32 __user *uaddr)
 684{
 685        struct mm_struct *mm = current->mm;
 686        int ret;
 687
 688        down_read(&mm->mmap_sem);
 689        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 690                               FAULT_FLAG_WRITE, NULL);
 691        up_read(&mm->mmap_sem);
 692
 693        return ret < 0 ? ret : 0;
 694}
 695
 696/**
 697 * futex_top_waiter() - Return the highest priority waiter on a futex
 698 * @hb:         the hash bucket the futex_q's reside in
 699 * @key:        the futex key (to distinguish it from other futex futex_q's)
 700 *
 701 * Must be called with the hb lock held.
 702 */
 703static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 704                                        union futex_key *key)
 705{
 706        struct futex_q *this;
 707
 708        plist_for_each_entry(this, &hb->chain, list) {
 709                if (match_futex(&this->key, key))
 710                        return this;
 711        }
 712        return NULL;
 713}
 714
 715static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 716                                      u32 uval, u32 newval)
 717{
 718        int ret;
 719
 720        pagefault_disable();
 721        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 722        pagefault_enable();
 723
 724        return ret;
 725}
 726
 727static int get_futex_value_locked(u32 *dest, u32 __user *from)
 728{
 729        int ret;
 730
 731        pagefault_disable();
 732        ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 733        pagefault_enable();
 734
 735        return ret ? -EFAULT : 0;
 736}
 737
 738
 739/*
 740 * PI code:
 741 */
 742static int refill_pi_state_cache(void)
 743{
 744        struct futex_pi_state *pi_state;
 745
 746        if (likely(current->pi_state_cache))
 747                return 0;
 748
 749        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 750
 751        if (!pi_state)
 752                return -ENOMEM;
 753
 754        INIT_LIST_HEAD(&pi_state->list);
 755        /* pi_mutex gets initialized later */
 756        pi_state->owner = NULL;
 757        atomic_set(&pi_state->refcount, 1);
 758        pi_state->key = FUTEX_KEY_INIT;
 759
 760        current->pi_state_cache = pi_state;
 761
 762        return 0;
 763}
 764
 765static struct futex_pi_state * alloc_pi_state(void)
 766{
 767        struct futex_pi_state *pi_state = current->pi_state_cache;
 768
 769        WARN_ON(!pi_state);
 770        current->pi_state_cache = NULL;
 771
 772        return pi_state;
 773}
 774
 775/*
 776 * Drops a reference to the pi_state object and frees or caches it
 777 * when the last reference is gone.
 778 *
 779 * Must be called with the hb lock held.
 780 */
 781static void put_pi_state(struct futex_pi_state *pi_state)
 782{
 783        if (!pi_state)
 784                return;
 785
 786        if (!atomic_dec_and_test(&pi_state->refcount))
 787                return;
 788
 789        /*
 790         * If pi_state->owner is NULL, the owner is most probably dying
 791         * and has cleaned up the pi_state already
 792         */
 793        if (pi_state->owner) {
 794                raw_spin_lock_irq(&pi_state->owner->pi_lock);
 795                list_del_init(&pi_state->list);
 796                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 797
 798                rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 799        }
 800
 801        if (current->pi_state_cache)
 802                kfree(pi_state);
 803        else {
 804                /*
 805                 * pi_state->list is already empty.
 806                 * clear pi_state->owner.
 807                 * refcount is at 0 - put it back to 1.
 808                 */
 809                pi_state->owner = NULL;
 810                atomic_set(&pi_state->refcount, 1);
 811                current->pi_state_cache = pi_state;
 812        }
 813}
 814
 815/*
 816 * Look up the task based on what TID userspace gave us.
 817 * We dont trust it.
 818 */
 819static struct task_struct * futex_find_get_task(pid_t pid)
 820{
 821        struct task_struct *p;
 822
 823        rcu_read_lock();
 824        p = find_task_by_vpid(pid);
 825        if (p)
 826                get_task_struct(p);
 827
 828        rcu_read_unlock();
 829
 830        return p;
 831}
 832
 833/*
 834 * This task is holding PI mutexes at exit time => bad.
 835 * Kernel cleans up PI-state, but userspace is likely hosed.
 836 * (Robust-futex cleanup is separate and might save the day for userspace.)
 837 */
 838void exit_pi_state_list(struct task_struct *curr)
 839{
 840        struct list_head *next, *head = &curr->pi_state_list;
 841        struct futex_pi_state *pi_state;
 842        struct futex_hash_bucket *hb;
 843        union futex_key key = FUTEX_KEY_INIT;
 844
 845        if (!futex_cmpxchg_enabled)
 846                return;
 847        /*
 848         * We are a ZOMBIE and nobody can enqueue itself on
 849         * pi_state_list anymore, but we have to be careful
 850         * versus waiters unqueueing themselves:
 851         */
 852        raw_spin_lock_irq(&curr->pi_lock);
 853        while (!list_empty(head)) {
 854
 855                next = head->next;
 856                pi_state = list_entry(next, struct futex_pi_state, list);
 857                key = pi_state->key;
 858                hb = hash_futex(&key);
 859                raw_spin_unlock_irq(&curr->pi_lock);
 860
 861                spin_lock(&hb->lock);
 862
 863                raw_spin_lock_irq(&curr->pi_lock);
 864                /*
 865                 * We dropped the pi-lock, so re-check whether this
 866                 * task still owns the PI-state:
 867                 */
 868                if (head->next != next) {
 869                        spin_unlock(&hb->lock);
 870                        continue;
 871                }
 872
 873                WARN_ON(pi_state->owner != curr);
 874                WARN_ON(list_empty(&pi_state->list));
 875                list_del_init(&pi_state->list);
 876                pi_state->owner = NULL;
 877                raw_spin_unlock_irq(&curr->pi_lock);
 878
 879                rt_mutex_unlock(&pi_state->pi_mutex);
 880
 881                spin_unlock(&hb->lock);
 882
 883                raw_spin_lock_irq(&curr->pi_lock);
 884        }
 885        raw_spin_unlock_irq(&curr->pi_lock);
 886}
 887
 888/*
 889 * We need to check the following states:
 890 *
 891 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 892 *
 893 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 894 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 895 *
 896 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 897 *
 898 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 899 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 900 *
 901 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 902 *
 903 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 904 *
 905 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 906 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 907 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 908 *
 909 * [1]  Indicates that the kernel can acquire the futex atomically. We
 910 *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 911 *
 912 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 913 *      thread is found then it indicates that the owner TID has died.
 914 *
 915 * [3]  Invalid. The waiter is queued on a non PI futex
 916 *
 917 * [4]  Valid state after exit_robust_list(), which sets the user space
 918 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 919 *
 920 * [5]  The user space value got manipulated between exit_robust_list()
 921 *      and exit_pi_state_list()
 922 *
 923 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
 924 *      the pi_state but cannot access the user space value.
 925 *
 926 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 927 *
 928 * [8]  Owner and user space value match
 929 *
 930 * [9]  There is no transient state which sets the user space TID to 0
 931 *      except exit_robust_list(), but this is indicated by the
 932 *      FUTEX_OWNER_DIED bit. See [4]
 933 *
 934 * [10] There is no transient state which leaves owner and user space
 935 *      TID out of sync.
 936 */
 937
 938/*
 939 * Validate that the existing waiter has a pi_state and sanity check
 940 * the pi_state against the user space value. If correct, attach to
 941 * it.
 942 */
 943static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
 944                              struct futex_pi_state **ps)
 945{
 946        pid_t pid = uval & FUTEX_TID_MASK;
 947
 948        /*
 949         * Userspace might have messed up non-PI and PI futexes [3]
 950         */
 951        if (unlikely(!pi_state))
 952                return -EINVAL;
 953
 954        WARN_ON(!atomic_read(&pi_state->refcount));
 955
 956        /*
 957         * Handle the owner died case:
 958         */
 959        if (uval & FUTEX_OWNER_DIED) {
 960                /*
 961                 * exit_pi_state_list sets owner to NULL and wakes the
 962                 * topmost waiter. The task which acquires the
 963                 * pi_state->rt_mutex will fixup owner.
 964                 */
 965                if (!pi_state->owner) {
 966                        /*
 967                         * No pi state owner, but the user space TID
 968                         * is not 0. Inconsistent state. [5]
 969                         */
 970                        if (pid)
 971                                return -EINVAL;
 972                        /*
 973                         * Take a ref on the state and return success. [4]
 974                         */
 975                        goto out_state;
 976                }
 977
 978                /*
 979                 * If TID is 0, then either the dying owner has not
 980                 * yet executed exit_pi_state_list() or some waiter
 981                 * acquired the rtmutex in the pi state, but did not
 982                 * yet fixup the TID in user space.
 983                 *
 984                 * Take a ref on the state and return success. [6]
 985                 */
 986                if (!pid)
 987                        goto out_state;
 988        } else {
 989                /*
 990                 * If the owner died bit is not set, then the pi_state
 991                 * must have an owner. [7]
 992                 */
 993                if (!pi_state->owner)
 994                        return -EINVAL;
 995        }
 996
 997        /*
 998         * Bail out if user space manipulated the futex value. If pi
 999         * state exists then the owner TID must be the same as the
1000         * user space TID. [9/10]
1001         */
1002        if (pid != task_pid_vnr(pi_state->owner))
1003                return -EINVAL;
1004out_state:
1005        atomic_inc(&pi_state->refcount);
1006        *ps = pi_state;
1007        return 0;
1008}
1009
1010/*
1011 * Lookup the task for the TID provided from user space and attach to
1012 * it after doing proper sanity checks.
1013 */
1014static int attach_to_pi_owner(u32 uval, union futex_key *key,
1015                              struct futex_pi_state **ps)
1016{
1017        pid_t pid = uval & FUTEX_TID_MASK;
1018        struct futex_pi_state *pi_state;
1019        struct task_struct *p;
1020
1021        /*
1022         * We are the first waiter - try to look up the real owner and attach
1023         * the new pi_state to it, but bail out when TID = 0 [1]
1024         */
1025        if (!pid)
1026                return -ESRCH;
1027        p = futex_find_get_task(pid);
1028        if (!p)
1029                return -ESRCH;
1030
1031        if (unlikely(p->flags & PF_KTHREAD)) {
1032                put_task_struct(p);
1033                return -EPERM;
1034        }
1035
1036        /*
1037         * We need to look at the task state flags to figure out,
1038         * whether the task is exiting. To protect against the do_exit
1039         * change of the task flags, we do this protected by
1040         * p->pi_lock:
1041         */
1042        raw_spin_lock_irq(&p->pi_lock);
1043        if (unlikely(p->flags & PF_EXITING)) {
1044                /*
1045                 * The task is on the way out. When PF_EXITPIDONE is
1046                 * set, we know that the task has finished the
1047                 * cleanup:
1048                 */
1049                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1050
1051                raw_spin_unlock_irq(&p->pi_lock);
1052                put_task_struct(p);
1053                return ret;
1054        }
1055
1056        /*
1057         * No existing pi state. First waiter. [2]
1058         */
1059        pi_state = alloc_pi_state();
1060
1061        /*
1062         * Initialize the pi_mutex in locked state and make @p
1063         * the owner of it:
1064         */
1065        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1066
1067        /* Store the key for possible exit cleanups: */
1068        pi_state->key = *key;
1069
1070        WARN_ON(!list_empty(&pi_state->list));
1071        list_add(&pi_state->list, &p->pi_state_list);
1072        pi_state->owner = p;
1073        raw_spin_unlock_irq(&p->pi_lock);
1074
1075        put_task_struct(p);
1076
1077        *ps = pi_state;
1078
1079        return 0;
1080}
1081
1082static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1083                           union futex_key *key, struct futex_pi_state **ps)
1084{
1085        struct futex_q *match = futex_top_waiter(hb, key);
1086
1087        /*
1088         * If there is a waiter on that futex, validate it and
1089         * attach to the pi_state when the validation succeeds.
1090         */
1091        if (match)
1092                return attach_to_pi_state(uval, match->pi_state, ps);
1093
1094        /*
1095         * We are the first waiter - try to look up the owner based on
1096         * @uval and attach to it.
1097         */
1098        return attach_to_pi_owner(uval, key, ps);
1099}
1100
1101static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1102{
1103        u32 uninitialized_var(curval);
1104
1105        if (unlikely(should_fail_futex(true)))
1106                return -EFAULT;
1107
1108        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1109                return -EFAULT;
1110
1111        /*If user space value changed, let the caller retry */
1112        return curval != uval ? -EAGAIN : 0;
1113}
1114
1115/**
1116 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1117 * @uaddr:              the pi futex user address
1118 * @hb:                 the pi futex hash bucket
1119 * @key:                the futex key associated with uaddr and hb
1120 * @ps:                 the pi_state pointer where we store the result of the
1121 *                      lookup
1122 * @task:               the task to perform the atomic lock work for.  This will
1123 *                      be "current" except in the case of requeue pi.
1124 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1125 *
1126 * Return:
1127 *  0 - ready to wait;
1128 *  1 - acquired the lock;
1129 * <0 - error
1130 *
1131 * The hb->lock and futex_key refs shall be held by the caller.
1132 */
1133static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1134                                union futex_key *key,
1135                                struct futex_pi_state **ps,
1136                                struct task_struct *task, int set_waiters)
1137{
1138        u32 uval, newval, vpid = task_pid_vnr(task);
1139        struct futex_q *match;
1140        int ret;
1141
1142        /*
1143         * Read the user space value first so we can validate a few
1144         * things before proceeding further.
1145         */
1146        if (get_futex_value_locked(&uval, uaddr))
1147                return -EFAULT;
1148
1149        if (unlikely(should_fail_futex(true)))
1150                return -EFAULT;
1151
1152        /*
1153         * Detect deadlocks.
1154         */
1155        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1156                return -EDEADLK;
1157
1158        if ((unlikely(should_fail_futex(true))))
1159                return -EDEADLK;
1160
1161        /*
1162         * Lookup existing state first. If it exists, try to attach to
1163         * its pi_state.
1164         */
1165        match = futex_top_waiter(hb, key);
1166        if (match)
1167                return attach_to_pi_state(uval, match->pi_state, ps);
1168
1169        /*
1170         * No waiter and user TID is 0. We are here because the
1171         * waiters or the owner died bit is set or called from
1172         * requeue_cmp_pi or for whatever reason something took the
1173         * syscall.
1174         */
1175        if (!(uval & FUTEX_TID_MASK)) {
1176                /*
1177                 * We take over the futex. No other waiters and the user space
1178                 * TID is 0. We preserve the owner died bit.
1179                 */
1180                newval = uval & FUTEX_OWNER_DIED;
1181                newval |= vpid;
1182
1183                /* The futex requeue_pi code can enforce the waiters bit */
1184                if (set_waiters)
1185                        newval |= FUTEX_WAITERS;
1186
1187                ret = lock_pi_update_atomic(uaddr, uval, newval);
1188                /* If the take over worked, return 1 */
1189                return ret < 0 ? ret : 1;
1190        }
1191
1192        /*
1193         * First waiter. Set the waiters bit before attaching ourself to
1194         * the owner. If owner tries to unlock, it will be forced into
1195         * the kernel and blocked on hb->lock.
1196         */
1197        newval = uval | FUTEX_WAITERS;
1198        ret = lock_pi_update_atomic(uaddr, uval, newval);
1199        if (ret)
1200                return ret;
1201        /*
1202         * If the update of the user space value succeeded, we try to
1203         * attach to the owner. If that fails, no harm done, we only
1204         * set the FUTEX_WAITERS bit in the user space variable.
1205         */
1206        return attach_to_pi_owner(uval, key, ps);
1207}
1208
1209/**
1210 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1211 * @q:  The futex_q to unqueue
1212 *
1213 * The q->lock_ptr must not be NULL and must be held by the caller.
1214 */
1215static void __unqueue_futex(struct futex_q *q)
1216{
1217        struct futex_hash_bucket *hb;
1218
1219        if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1220            || WARN_ON(plist_node_empty(&q->list)))
1221                return;
1222
1223        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1224        plist_del(&q->list, &hb->chain);
1225        hb_waiters_dec(hb);
1226}
1227
1228/*
1229 * The hash bucket lock must be held when this is called.
1230 * Afterwards, the futex_q must not be accessed. Callers
1231 * must ensure to later call wake_up_q() for the actual
1232 * wakeups to occur.
1233 */
1234static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1235{
1236        struct task_struct *p = q->task;
1237
1238        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1239                return;
1240
1241        /*
1242         * Queue the task for later wakeup for after we've released
1243         * the hb->lock. wake_q_add() grabs reference to p.
1244         */
1245        wake_q_add(wake_q, p);
1246        __unqueue_futex(q);
1247        /*
1248         * The waiting task can free the futex_q as soon as
1249         * q->lock_ptr = NULL is written, without taking any locks. A
1250         * memory barrier is required here to prevent the following
1251         * store to lock_ptr from getting ahead of the plist_del.
1252         */
1253        smp_wmb();
1254        q->lock_ptr = NULL;
1255}
1256
1257static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1258                         struct futex_hash_bucket *hb)
1259{
1260        struct task_struct *new_owner;
1261        struct futex_pi_state *pi_state = this->pi_state;
1262        u32 uninitialized_var(curval), newval;
1263        WAKE_Q(wake_q);
1264        bool deboost;
1265        int ret = 0;
1266
1267        if (!pi_state)
1268                return -EINVAL;
1269
1270        /*
1271         * If current does not own the pi_state then the futex is
1272         * inconsistent and user space fiddled with the futex value.
1273         */
1274        if (pi_state->owner != current)
1275                return -EINVAL;
1276
1277        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1278        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1279
1280        /*
1281         * It is possible that the next waiter (the one that brought
1282         * this owner to the kernel) timed out and is no longer
1283         * waiting on the lock.
1284         */
1285        if (!new_owner)
1286                new_owner = this->task;
1287
1288        /*
1289         * We pass it to the next owner. The WAITERS bit is always
1290         * kept enabled while there is PI state around. We cleanup the
1291         * owner died bit, because we are the owner.
1292         */
1293        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1294
1295        if (unlikely(should_fail_futex(true)))
1296                ret = -EFAULT;
1297
1298        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1299                ret = -EFAULT;
1300        } else if (curval != uval) {
1301                /*
1302                 * If a unconditional UNLOCK_PI operation (user space did not
1303                 * try the TID->0 transition) raced with a waiter setting the
1304                 * FUTEX_WAITERS flag between get_user() and locking the hash
1305                 * bucket lock, retry the operation.
1306                 */
1307                if ((FUTEX_TID_MASK & curval) == uval)
1308                        ret = -EAGAIN;
1309                else
1310                        ret = -EINVAL;
1311        }
1312        if (ret) {
1313                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1314                return ret;
1315        }
1316
1317        raw_spin_lock(&pi_state->owner->pi_lock);
1318        WARN_ON(list_empty(&pi_state->list));
1319        list_del_init(&pi_state->list);
1320        raw_spin_unlock(&pi_state->owner->pi_lock);
1321
1322        raw_spin_lock(&new_owner->pi_lock);
1323        WARN_ON(!list_empty(&pi_state->list));
1324        list_add(&pi_state->list, &new_owner->pi_state_list);
1325        pi_state->owner = new_owner;
1326        raw_spin_unlock(&new_owner->pi_lock);
1327
1328        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1329
1330        deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1331
1332        /*
1333         * First unlock HB so the waiter does not spin on it once he got woken
1334         * up. Second wake up the waiter before the priority is adjusted. If we
1335         * deboost first (and lose our higher priority), then the task might get
1336         * scheduled away before the wake up can take place.
1337         */
1338        spin_unlock(&hb->lock);
1339        wake_up_q(&wake_q);
1340        if (deboost)
1341                rt_mutex_adjust_prio(current);
1342
1343        return 0;
1344}
1345
1346/*
1347 * Express the locking dependencies for lockdep:
1348 */
1349static inline void
1350double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1351{
1352        if (hb1 <= hb2) {
1353                spin_lock(&hb1->lock);
1354                if (hb1 < hb2)
1355                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1356        } else { /* hb1 > hb2 */
1357                spin_lock(&hb2->lock);
1358                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1359        }
1360}
1361
1362static inline void
1363double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1364{
1365        spin_unlock(&hb1->lock);
1366        if (hb1 != hb2)
1367                spin_unlock(&hb2->lock);
1368}
1369
1370/*
1371 * Wake up waiters matching bitset queued on this futex (uaddr).
1372 */
1373static int
1374futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1375{
1376        struct futex_hash_bucket *hb;
1377        struct futex_q *this, *next;
1378        union futex_key key = FUTEX_KEY_INIT;
1379        int ret;
1380        WAKE_Q(wake_q);
1381
1382        if (!bitset)
1383                return -EINVAL;
1384
1385        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1386        if (unlikely(ret != 0))
1387                goto out;
1388
1389        hb = hash_futex(&key);
1390
1391        /* Make sure we really have tasks to wakeup */
1392        if (!hb_waiters_pending(hb))
1393                goto out_put_key;
1394
1395        spin_lock(&hb->lock);
1396
1397        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1398                if (match_futex (&this->key, &key)) {
1399                        if (this->pi_state || this->rt_waiter) {
1400                                ret = -EINVAL;
1401                                break;
1402                        }
1403
1404                        /* Check if one of the bits is set in both bitsets */
1405                        if (!(this->bitset & bitset))
1406                                continue;
1407
1408                        mark_wake_futex(&wake_q, this);
1409                        if (++ret >= nr_wake)
1410                                break;
1411                }
1412        }
1413
1414        spin_unlock(&hb->lock);
1415        wake_up_q(&wake_q);
1416out_put_key:
1417        put_futex_key(&key);
1418out:
1419        return ret;
1420}
1421
1422/*
1423 * Wake up all waiters hashed on the physical page that is mapped
1424 * to this virtual address:
1425 */
1426static int
1427futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1428              int nr_wake, int nr_wake2, int op)
1429{
1430        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1431        struct futex_hash_bucket *hb1, *hb2;
1432        struct futex_q *this, *next;
1433        int ret, op_ret;
1434        WAKE_Q(wake_q);
1435
1436retry:
1437        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1438        if (unlikely(ret != 0))
1439                goto out;
1440        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1441        if (unlikely(ret != 0))
1442                goto out_put_key1;
1443
1444        hb1 = hash_futex(&key1);
1445        hb2 = hash_futex(&key2);
1446
1447retry_private:
1448        double_lock_hb(hb1, hb2);
1449        op_ret = futex_atomic_op_inuser(op, uaddr2);
1450        if (unlikely(op_ret < 0)) {
1451
1452                double_unlock_hb(hb1, hb2);
1453
1454#ifndef CONFIG_MMU
1455                /*
1456                 * we don't get EFAULT from MMU faults if we don't have an MMU,
1457                 * but we might get them from range checking
1458                 */
1459                ret = op_ret;
1460                goto out_put_keys;
1461#endif
1462
1463                if (unlikely(op_ret != -EFAULT)) {
1464                        ret = op_ret;
1465                        goto out_put_keys;
1466                }
1467
1468                ret = fault_in_user_writeable(uaddr2);
1469                if (ret)
1470                        goto out_put_keys;
1471
1472                if (!(flags & FLAGS_SHARED))
1473                        goto retry_private;
1474
1475                put_futex_key(&key2);
1476                put_futex_key(&key1);
1477                goto retry;
1478        }
1479
1480        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1481                if (match_futex (&this->key, &key1)) {
1482                        if (this->pi_state || this->rt_waiter) {
1483                                ret = -EINVAL;
1484                                goto out_unlock;
1485                        }
1486                        mark_wake_futex(&wake_q, this);
1487                        if (++ret >= nr_wake)
1488                                break;
1489                }
1490        }
1491
1492        if (op_ret > 0) {
1493                op_ret = 0;
1494                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1495                        if (match_futex (&this->key, &key2)) {
1496                                if (this->pi_state || this->rt_waiter) {
1497                                        ret = -EINVAL;
1498                                        goto out_unlock;
1499                                }
1500                                mark_wake_futex(&wake_q, this);
1501                                if (++op_ret >= nr_wake2)
1502                                        break;
1503                        }
1504                }
1505                ret += op_ret;
1506        }
1507
1508out_unlock:
1509        double_unlock_hb(hb1, hb2);
1510        wake_up_q(&wake_q);
1511out_put_keys:
1512        put_futex_key(&key2);
1513out_put_key1:
1514        put_futex_key(&key1);
1515out:
1516        return ret;
1517}
1518
1519/**
1520 * requeue_futex() - Requeue a futex_q from one hb to another
1521 * @q:          the futex_q to requeue
1522 * @hb1:        the source hash_bucket
1523 * @hb2:        the target hash_bucket
1524 * @key2:       the new key for the requeued futex_q
1525 */
1526static inline
1527void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1528                   struct futex_hash_bucket *hb2, union futex_key *key2)
1529{
1530
1531        /*
1532         * If key1 and key2 hash to the same bucket, no need to
1533         * requeue.
1534         */
1535        if (likely(&hb1->chain != &hb2->chain)) {
1536                plist_del(&q->list, &hb1->chain);
1537                hb_waiters_dec(hb1);
1538                hb_waiters_inc(hb2);
1539                plist_add(&q->list, &hb2->chain);
1540                q->lock_ptr = &hb2->lock;
1541        }
1542        get_futex_key_refs(key2);
1543        q->key = *key2;
1544}
1545
1546/**
1547 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1548 * @q:          the futex_q
1549 * @key:        the key of the requeue target futex
1550 * @hb:         the hash_bucket of the requeue target futex
1551 *
1552 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1553 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1554 * to the requeue target futex so the waiter can detect the wakeup on the right
1555 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1556 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1557 * to protect access to the pi_state to fixup the owner later.  Must be called
1558 * with both q->lock_ptr and hb->lock held.
1559 */
1560static inline
1561void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1562                           struct futex_hash_bucket *hb)
1563{
1564        get_futex_key_refs(key);
1565        q->key = *key;
1566
1567        __unqueue_futex(q);
1568
1569        WARN_ON(!q->rt_waiter);
1570        q->rt_waiter = NULL;
1571
1572        q->lock_ptr = &hb->lock;
1573
1574        wake_up_state(q->task, TASK_NORMAL);
1575}
1576
1577/**
1578 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1579 * @pifutex:            the user address of the to futex
1580 * @hb1:                the from futex hash bucket, must be locked by the caller
1581 * @hb2:                the to futex hash bucket, must be locked by the caller
1582 * @key1:               the from futex key
1583 * @key2:               the to futex key
1584 * @ps:                 address to store the pi_state pointer
1585 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1586 *
1587 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1588 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1589 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1590 * hb1 and hb2 must be held by the caller.
1591 *
1592 * Return:
1593 *  0 - failed to acquire the lock atomically;
1594 * >0 - acquired the lock, return value is vpid of the top_waiter
1595 * <0 - error
1596 */
1597static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1598                                 struct futex_hash_bucket *hb1,
1599                                 struct futex_hash_bucket *hb2,
1600                                 union futex_key *key1, union futex_key *key2,
1601                                 struct futex_pi_state **ps, int set_waiters)
1602{
1603        struct futex_q *top_waiter = NULL;
1604        u32 curval;
1605        int ret, vpid;
1606
1607        if (get_futex_value_locked(&curval, pifutex))
1608                return -EFAULT;
1609
1610        if (unlikely(should_fail_futex(true)))
1611                return -EFAULT;
1612
1613        /*
1614         * Find the top_waiter and determine if there are additional waiters.
1615         * If the caller intends to requeue more than 1 waiter to pifutex,
1616         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1617         * as we have means to handle the possible fault.  If not, don't set
1618         * the bit unecessarily as it will force the subsequent unlock to enter
1619         * the kernel.
1620         */
1621        top_waiter = futex_top_waiter(hb1, key1);
1622
1623        /* There are no waiters, nothing for us to do. */
1624        if (!top_waiter)
1625                return 0;
1626
1627        /* Ensure we requeue to the expected futex. */
1628        if (!match_futex(top_waiter->requeue_pi_key, key2))
1629                return -EINVAL;
1630
1631        /*
1632         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1633         * the contended case or if set_waiters is 1.  The pi_state is returned
1634         * in ps in contended cases.
1635         */
1636        vpid = task_pid_vnr(top_waiter->task);
1637        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1638                                   set_waiters);
1639        if (ret == 1) {
1640                requeue_pi_wake_futex(top_waiter, key2, hb2);
1641                return vpid;
1642        }
1643        return ret;
1644}
1645
1646/**
1647 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1648 * @uaddr1:     source futex user address
1649 * @flags:      futex flags (FLAGS_SHARED, etc.)
1650 * @uaddr2:     target futex user address
1651 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1652 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1653 * @cmpval:     @uaddr1 expected value (or %NULL)
1654 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1655 *              pi futex (pi to pi requeue is not supported)
1656 *
1657 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1658 * uaddr2 atomically on behalf of the top waiter.
1659 *
1660 * Return:
1661 * >=0 - on success, the number of tasks requeued or woken;
1662 *  <0 - on error
1663 */
1664static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1665                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1666                         u32 *cmpval, int requeue_pi)
1667{
1668        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1669        int drop_count = 0, task_count = 0, ret;
1670        struct futex_pi_state *pi_state = NULL;
1671        struct futex_hash_bucket *hb1, *hb2;
1672        struct futex_q *this, *next;
1673        WAKE_Q(wake_q);
1674
1675        if (requeue_pi) {
1676                /*
1677                 * Requeue PI only works on two distinct uaddrs. This
1678                 * check is only valid for private futexes. See below.
1679                 */
1680                if (uaddr1 == uaddr2)
1681                        return -EINVAL;
1682
1683                /*
1684                 * requeue_pi requires a pi_state, try to allocate it now
1685                 * without any locks in case it fails.
1686                 */
1687                if (refill_pi_state_cache())
1688                        return -ENOMEM;
1689                /*
1690                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1691                 * + nr_requeue, since it acquires the rt_mutex prior to
1692                 * returning to userspace, so as to not leave the rt_mutex with
1693                 * waiters and no owner.  However, second and third wake-ups
1694                 * cannot be predicted as they involve race conditions with the
1695                 * first wake and a fault while looking up the pi_state.  Both
1696                 * pthread_cond_signal() and pthread_cond_broadcast() should
1697                 * use nr_wake=1.
1698                 */
1699                if (nr_wake != 1)
1700                        return -EINVAL;
1701        }
1702
1703retry:
1704        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1705        if (unlikely(ret != 0))
1706                goto out;
1707        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1708                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1709        if (unlikely(ret != 0))
1710                goto out_put_key1;
1711
1712        /*
1713         * The check above which compares uaddrs is not sufficient for
1714         * shared futexes. We need to compare the keys:
1715         */
1716        if (requeue_pi && match_futex(&key1, &key2)) {
1717                ret = -EINVAL;
1718                goto out_put_keys;
1719        }
1720
1721        hb1 = hash_futex(&key1);
1722        hb2 = hash_futex(&key2);
1723
1724retry_private:
1725        hb_waiters_inc(hb2);
1726        double_lock_hb(hb1, hb2);
1727
1728        if (likely(cmpval != NULL)) {
1729                u32 curval;
1730
1731                ret = get_futex_value_locked(&curval, uaddr1);
1732
1733                if (unlikely(ret)) {
1734                        double_unlock_hb(hb1, hb2);
1735                        hb_waiters_dec(hb2);
1736
1737                        ret = get_user(curval, uaddr1);
1738                        if (ret)
1739                                goto out_put_keys;
1740
1741                        if (!(flags & FLAGS_SHARED))
1742                                goto retry_private;
1743
1744                        put_futex_key(&key2);
1745                        put_futex_key(&key1);
1746                        goto retry;
1747                }
1748                if (curval != *cmpval) {
1749                        ret = -EAGAIN;
1750                        goto out_unlock;
1751                }
1752        }
1753
1754        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1755                /*
1756                 * Attempt to acquire uaddr2 and wake the top waiter. If we
1757                 * intend to requeue waiters, force setting the FUTEX_WAITERS
1758                 * bit.  We force this here where we are able to easily handle
1759                 * faults rather in the requeue loop below.
1760                 */
1761                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1762                                                 &key2, &pi_state, nr_requeue);
1763
1764                /*
1765                 * At this point the top_waiter has either taken uaddr2 or is
1766                 * waiting on it.  If the former, then the pi_state will not
1767                 * exist yet, look it up one more time to ensure we have a
1768                 * reference to it. If the lock was taken, ret contains the
1769                 * vpid of the top waiter task.
1770                 * If the lock was not taken, we have pi_state and an initial
1771                 * refcount on it. In case of an error we have nothing.
1772                 */
1773                if (ret > 0) {
1774                        WARN_ON(pi_state);
1775                        drop_count++;
1776                        task_count++;
1777                        /*
1778                         * If we acquired the lock, then the user space value
1779                         * of uaddr2 should be vpid. It cannot be changed by
1780                         * the top waiter as it is blocked on hb2 lock if it
1781                         * tries to do so. If something fiddled with it behind
1782                         * our back the pi state lookup might unearth it. So
1783                         * we rather use the known value than rereading and
1784                         * handing potential crap to lookup_pi_state.
1785                         *
1786                         * If that call succeeds then we have pi_state and an
1787                         * initial refcount on it.
1788                         */
1789                        ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1790                }
1791
1792                switch (ret) {
1793                case 0:
1794                        /* We hold a reference on the pi state. */
1795                        break;
1796
1797                        /* If the above failed, then pi_state is NULL */
1798                case -EFAULT:
1799                        double_unlock_hb(hb1, hb2);
1800                        hb_waiters_dec(hb2);
1801                        put_futex_key(&key2);
1802                        put_futex_key(&key1);
1803                        ret = fault_in_user_writeable(uaddr2);
1804                        if (!ret)
1805                                goto retry;
1806                        goto out;
1807                case -EAGAIN:
1808                        /*
1809                         * Two reasons for this:
1810                         * - Owner is exiting and we just wait for the
1811                         *   exit to complete.
1812                         * - The user space value changed.
1813                         */
1814                        double_unlock_hb(hb1, hb2);
1815                        hb_waiters_dec(hb2);
1816                        put_futex_key(&key2);
1817                        put_futex_key(&key1);
1818                        cond_resched();
1819                        goto retry;
1820                default:
1821                        goto out_unlock;
1822                }
1823        }
1824
1825        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1826                if (task_count - nr_wake >= nr_requeue)
1827                        break;
1828
1829                if (!match_futex(&this->key, &key1))
1830                        continue;
1831
1832                /*
1833                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1834                 * be paired with each other and no other futex ops.
1835                 *
1836                 * We should never be requeueing a futex_q with a pi_state,
1837                 * which is awaiting a futex_unlock_pi().
1838                 */
1839                if ((requeue_pi && !this->rt_waiter) ||
1840                    (!requeue_pi && this->rt_waiter) ||
1841                    this->pi_state) {
1842                        ret = -EINVAL;
1843                        break;
1844                }
1845
1846                /*
1847                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1848                 * lock, we already woke the top_waiter.  If not, it will be
1849                 * woken by futex_unlock_pi().
1850                 */
1851                if (++task_count <= nr_wake && !requeue_pi) {
1852                        mark_wake_futex(&wake_q, this);
1853                        continue;
1854                }
1855
1856                /* Ensure we requeue to the expected futex for requeue_pi. */
1857                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1858                        ret = -EINVAL;
1859                        break;
1860                }
1861
1862                /*
1863                 * Requeue nr_requeue waiters and possibly one more in the case
1864                 * of requeue_pi if we couldn't acquire the lock atomically.
1865                 */
1866                if (requeue_pi) {
1867                        /*
1868                         * Prepare the waiter to take the rt_mutex. Take a
1869                         * refcount on the pi_state and store the pointer in
1870                         * the futex_q object of the waiter.
1871                         */
1872                        atomic_inc(&pi_state->refcount);
1873                        this->pi_state = pi_state;
1874                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1875                                                        this->rt_waiter,
1876                                                        this->task);
1877                        if (ret == 1) {
1878                                /*
1879                                 * We got the lock. We do neither drop the
1880                                 * refcount on pi_state nor clear
1881                                 * this->pi_state because the waiter needs the
1882                                 * pi_state for cleaning up the user space
1883                                 * value. It will drop the refcount after
1884                                 * doing so.
1885                                 */
1886                                requeue_pi_wake_futex(this, &key2, hb2);
1887                                drop_count++;
1888                                continue;
1889                        } else if (ret) {
1890                                /*
1891                                 * rt_mutex_start_proxy_lock() detected a
1892                                 * potential deadlock when we tried to queue
1893                                 * that waiter. Drop the pi_state reference
1894                                 * which we took above and remove the pointer
1895                                 * to the state from the waiters futex_q
1896                                 * object.
1897                                 */
1898                                this->pi_state = NULL;
1899                                put_pi_state(pi_state);
1900                                /*
1901                                 * We stop queueing more waiters and let user
1902                                 * space deal with the mess.
1903                                 */
1904                                break;
1905                        }
1906                }
1907                requeue_futex(this, hb1, hb2, &key2);
1908                drop_count++;
1909        }
1910
1911        /*
1912         * We took an extra initial reference to the pi_state either
1913         * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1914         * need to drop it here again.
1915         */
1916        put_pi_state(pi_state);
1917
1918out_unlock:
1919        double_unlock_hb(hb1, hb2);
1920        wake_up_q(&wake_q);
1921        hb_waiters_dec(hb2);
1922
1923        /*
1924         * drop_futex_key_refs() must be called outside the spinlocks. During
1925         * the requeue we moved futex_q's from the hash bucket at key1 to the
1926         * one at key2 and updated their key pointer.  We no longer need to
1927         * hold the references to key1.
1928         */
1929        while (--drop_count >= 0)
1930                drop_futex_key_refs(&key1);
1931
1932out_put_keys:
1933        put_futex_key(&key2);
1934out_put_key1:
1935        put_futex_key(&key1);
1936out:
1937        return ret ? ret : task_count;
1938}
1939
1940/* The key must be already stored in q->key. */
1941static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1942        __acquires(&hb->lock)
1943{
1944        struct futex_hash_bucket *hb;
1945
1946        hb = hash_futex(&q->key);
1947
1948        /*
1949         * Increment the counter before taking the lock so that
1950         * a potential waker won't miss a to-be-slept task that is
1951         * waiting for the spinlock. This is safe as all queue_lock()
1952         * users end up calling queue_me(). Similarly, for housekeeping,
1953         * decrement the counter at queue_unlock() when some error has
1954         * occurred and we don't end up adding the task to the list.
1955         */
1956        hb_waiters_inc(hb);
1957
1958        q->lock_ptr = &hb->lock;
1959
1960        spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1961        return hb;
1962}
1963
1964static inline void
1965queue_unlock(struct futex_hash_bucket *hb)
1966        __releases(&hb->lock)
1967{
1968        spin_unlock(&hb->lock);
1969        hb_waiters_dec(hb);
1970}
1971
1972/**
1973 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1974 * @q:  The futex_q to enqueue
1975 * @hb: The destination hash bucket
1976 *
1977 * The hb->lock must be held by the caller, and is released here. A call to
1978 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1979 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1980 * or nothing if the unqueue is done as part of the wake process and the unqueue
1981 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1982 * an example).
1983 */
1984static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1985        __releases(&hb->lock)
1986{
1987        int prio;
1988
1989        /*
1990         * The priority used to register this element is
1991         * - either the real thread-priority for the real-time threads
1992         * (i.e. threads with a priority lower than MAX_RT_PRIO)
1993         * - or MAX_RT_PRIO for non-RT threads.
1994         * Thus, all RT-threads are woken first in priority order, and
1995         * the others are woken last, in FIFO order.
1996         */
1997        prio = min(current->normal_prio, MAX_RT_PRIO);
1998
1999        plist_node_init(&q->list, prio);
2000        plist_add(&q->list, &hb->chain);
2001        q->task = current;
2002        spin_unlock(&hb->lock);
2003}
2004
2005/**
2006 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2007 * @q:  The futex_q to unqueue
2008 *
2009 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2010 * be paired with exactly one earlier call to queue_me().
2011 *
2012 * Return:
2013 *   1 - if the futex_q was still queued (and we removed unqueued it);
2014 *   0 - if the futex_q was already removed by the waking thread
2015 */
2016static int unqueue_me(struct futex_q *q)
2017{
2018        spinlock_t *lock_ptr;
2019        int ret = 0;
2020
2021        /* In the common case we don't take the spinlock, which is nice. */
2022retry:
2023        /*
2024         * q->lock_ptr can change between this read and the following spin_lock.
2025         * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2026         * optimizing lock_ptr out of the logic below.
2027         */
2028        lock_ptr = READ_ONCE(q->lock_ptr);
2029        if (lock_ptr != NULL) {
2030                spin_lock(lock_ptr);
2031                /*
2032                 * q->lock_ptr can change between reading it and
2033                 * spin_lock(), causing us to take the wrong lock.  This
2034                 * corrects the race condition.
2035                 *
2036                 * Reasoning goes like this: if we have the wrong lock,
2037                 * q->lock_ptr must have changed (maybe several times)
2038                 * between reading it and the spin_lock().  It can
2039                 * change again after the spin_lock() but only if it was
2040                 * already changed before the spin_lock().  It cannot,
2041                 * however, change back to the original value.  Therefore
2042                 * we can detect whether we acquired the correct lock.
2043                 */
2044                if (unlikely(lock_ptr != q->lock_ptr)) {
2045                        spin_unlock(lock_ptr);
2046                        goto retry;
2047                }
2048                __unqueue_futex(q);
2049
2050                BUG_ON(q->pi_state);
2051
2052                spin_unlock(lock_ptr);
2053                ret = 1;
2054        }
2055
2056        drop_futex_key_refs(&q->key);
2057        return ret;
2058}
2059
2060/*
2061 * PI futexes can not be requeued and must remove themself from the
2062 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2063 * and dropped here.
2064 */
2065static void unqueue_me_pi(struct futex_q *q)
2066        __releases(q->lock_ptr)
2067{
2068        __unqueue_futex(q);
2069
2070        BUG_ON(!q->pi_state);
2071        put_pi_state(q->pi_state);
2072        q->pi_state = NULL;
2073
2074        spin_unlock(q->lock_ptr);
2075}
2076
2077/*
2078 * Fixup the pi_state owner with the new owner.
2079 *
2080 * Must be called with hash bucket lock held and mm->sem held for non
2081 * private futexes.
2082 */
2083static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2084                                struct task_struct *newowner)
2085{
2086        u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2087        struct futex_pi_state *pi_state = q->pi_state;
2088        struct task_struct *oldowner = pi_state->owner;
2089        u32 uval, uninitialized_var(curval), newval;
2090        int ret;
2091
2092        /* Owner died? */
2093        if (!pi_state->owner)
2094                newtid |= FUTEX_OWNER_DIED;
2095
2096        /*
2097         * We are here either because we stole the rtmutex from the
2098         * previous highest priority waiter or we are the highest priority
2099         * waiter but failed to get the rtmutex the first time.
2100         * We have to replace the newowner TID in the user space variable.
2101         * This must be atomic as we have to preserve the owner died bit here.
2102         *
2103         * Note: We write the user space value _before_ changing the pi_state
2104         * because we can fault here. Imagine swapped out pages or a fork
2105         * that marked all the anonymous memory readonly for cow.
2106         *
2107         * Modifying pi_state _before_ the user space value would
2108         * leave the pi_state in an inconsistent state when we fault
2109         * here, because we need to drop the hash bucket lock to
2110         * handle the fault. This might be observed in the PID check
2111         * in lookup_pi_state.
2112         */
2113retry:
2114        if (get_futex_value_locked(&uval, uaddr))
2115                goto handle_fault;
2116
2117        while (1) {
2118                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2119
2120                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2121                        goto handle_fault;
2122                if (curval == uval)
2123                        break;
2124                uval = curval;
2125        }
2126
2127        /*
2128         * We fixed up user space. Now we need to fix the pi_state
2129         * itself.
2130         */
2131        if (pi_state->owner != NULL) {
2132                raw_spin_lock_irq(&pi_state->owner->pi_lock);
2133                WARN_ON(list_empty(&pi_state->list));
2134                list_del_init(&pi_state->list);
2135                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2136        }
2137
2138        pi_state->owner = newowner;
2139
2140        raw_spin_lock_irq(&newowner->pi_lock);
2141        WARN_ON(!list_empty(&pi_state->list));
2142        list_add(&pi_state->list, &newowner->pi_state_list);
2143        raw_spin_unlock_irq(&newowner->pi_lock);
2144        return 0;
2145
2146        /*
2147         * To handle the page fault we need to drop the hash bucket
2148         * lock here. That gives the other task (either the highest priority
2149         * waiter itself or the task which stole the rtmutex) the
2150         * chance to try the fixup of the pi_state. So once we are
2151         * back from handling the fault we need to check the pi_state
2152         * after reacquiring the hash bucket lock and before trying to
2153         * do another fixup. When the fixup has been done already we
2154         * simply return.
2155         */
2156handle_fault:
2157        spin_unlock(q->lock_ptr);
2158
2159        ret = fault_in_user_writeable(uaddr);
2160
2161        spin_lock(q->lock_ptr);
2162
2163        /*
2164         * Check if someone else fixed it for us:
2165         */
2166        if (pi_state->owner != oldowner)
2167                return 0;
2168
2169        if (ret)
2170                return ret;
2171
2172        goto retry;
2173}
2174
2175static long futex_wait_restart(struct restart_block *restart);
2176
2177/**
2178 * fixup_owner() - Post lock pi_state and corner case management
2179 * @uaddr:      user address of the futex
2180 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2181 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2182 *
2183 * After attempting to lock an rt_mutex, this function is called to cleanup
2184 * the pi_state owner as well as handle race conditions that may allow us to
2185 * acquire the lock. Must be called with the hb lock held.
2186 *
2187 * Return:
2188 *  1 - success, lock taken;
2189 *  0 - success, lock not taken;
2190 * <0 - on error (-EFAULT)
2191 */
2192static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2193{
2194        struct task_struct *owner;
2195        int ret = 0;
2196
2197        if (locked) {
2198                /*
2199                 * Got the lock. We might not be the anticipated owner if we
2200                 * did a lock-steal - fix up the PI-state in that case:
2201                 */
2202                if (q->pi_state->owner != current)
2203                        ret = fixup_pi_state_owner(uaddr, q, current);
2204                goto out;
2205        }
2206
2207        /*
2208         * Catch the rare case, where the lock was released when we were on the
2209         * way back before we locked the hash bucket.
2210         */
2211        if (q->pi_state->owner == current) {
2212                /*
2213                 * Try to get the rt_mutex now. This might fail as some other
2214                 * task acquired the rt_mutex after we removed ourself from the
2215                 * rt_mutex waiters list.
2216                 */
2217                if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2218                        locked = 1;
2219                        goto out;
2220                }
2221
2222                /*
2223                 * pi_state is incorrect, some other task did a lock steal and
2224                 * we returned due to timeout or signal without taking the
2225                 * rt_mutex. Too late.
2226                 */
2227                raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2228                owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2229                if (!owner)
2230                        owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2231                raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2232                ret = fixup_pi_state_owner(uaddr, q, owner);
2233                goto out;
2234        }
2235
2236        /*
2237         * Paranoia check. If we did not take the lock, then we should not be
2238         * the owner of the rt_mutex.
2239         */
2240        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2241                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2242                                "pi-state %p\n", ret,
2243                                q->pi_state->pi_mutex.owner,
2244                                q->pi_state->owner);
2245
2246out:
2247        return ret ? ret : locked;
2248}
2249
2250/**
2251 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2252 * @hb:         the futex hash bucket, must be locked by the caller
2253 * @q:          the futex_q to queue up on
2254 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2255 */
2256static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2257                                struct hrtimer_sleeper *timeout)
2258{
2259        /*
2260         * The task state is guaranteed to be set before another task can
2261         * wake it. set_current_state() is implemented using smp_store_mb() and
2262         * queue_me() calls spin_unlock() upon completion, both serializing
2263         * access to the hash list and forcing another memory barrier.
2264         */
2265        set_current_state(TASK_INTERRUPTIBLE);
2266        queue_me(q, hb);
2267
2268        /* Arm the timer */
2269        if (timeout)
2270                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2271
2272        /*
2273         * If we have been removed from the hash list, then another task
2274         * has tried to wake us, and we can skip the call to schedule().
2275         */
2276        if (likely(!plist_node_empty(&q->list))) {
2277                /*
2278                 * If the timer has already expired, current will already be
2279                 * flagged for rescheduling. Only call schedule if there
2280                 * is no timeout, or if it has yet to expire.
2281                 */
2282                if (!timeout || timeout->task)
2283                        freezable_schedule();
2284        }
2285        __set_current_state(TASK_RUNNING);
2286}
2287
2288/**
2289 * futex_wait_setup() - Prepare to wait on a futex
2290 * @uaddr:      the futex userspace address
2291 * @val:        the expected value
2292 * @flags:      futex flags (FLAGS_SHARED, etc.)
2293 * @q:          the associated futex_q
2294 * @hb:         storage for hash_bucket pointer to be returned to caller
2295 *
2296 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2297 * compare it with the expected value.  Handle atomic faults internally.
2298 * Return with the hb lock held and a q.key reference on success, and unlocked
2299 * with no q.key reference on failure.
2300 *
2301 * Return:
2302 *  0 - uaddr contains val and hb has been locked;
2303 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2304 */
2305static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2306                           struct futex_q *q, struct futex_hash_bucket **hb)
2307{
2308        u32 uval;
2309        int ret;
2310
2311        /*
2312         * Access the page AFTER the hash-bucket is locked.
2313         * Order is important:
2314         *
2315         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2316         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2317         *
2318         * The basic logical guarantee of a futex is that it blocks ONLY
2319         * if cond(var) is known to be true at the time of blocking, for
2320         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2321         * would open a race condition where we could block indefinitely with
2322         * cond(var) false, which would violate the guarantee.
2323         *
2324         * On the other hand, we insert q and release the hash-bucket only
2325         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2326         * absorb a wakeup if *uaddr does not match the desired values
2327         * while the syscall executes.
2328         */
2329retry:
2330        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2331        if (unlikely(ret != 0))
2332                return ret;
2333
2334retry_private:
2335        *hb = queue_lock(q);
2336
2337        ret = get_futex_value_locked(&uval, uaddr);
2338
2339        if (ret) {
2340                queue_unlock(*hb);
2341
2342                ret = get_user(uval, uaddr);
2343                if (ret)
2344                        goto out;
2345
2346                if (!(flags & FLAGS_SHARED))
2347                        goto retry_private;
2348
2349                put_futex_key(&q->key);
2350                goto retry;
2351        }
2352
2353        if (uval != val) {
2354                queue_unlock(*hb);
2355                ret = -EWOULDBLOCK;
2356        }
2357
2358out:
2359        if (ret)
2360                put_futex_key(&q->key);
2361        return ret;
2362}
2363
2364static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2365                      ktime_t *abs_time, u32 bitset)
2366{
2367        struct hrtimer_sleeper timeout, *to = NULL;
2368        struct restart_block *restart;
2369        struct futex_hash_bucket *hb;
2370        struct futex_q q = futex_q_init;
2371        int ret;
2372
2373        if (!bitset)
2374                return -EINVAL;
2375        q.bitset = bitset;
2376
2377        if (abs_time) {
2378                to = &timeout;
2379
2380                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2381                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2382                                      HRTIMER_MODE_ABS);
2383                hrtimer_init_sleeper(to, current);
2384                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2385                                             current->timer_slack_ns);
2386        }
2387
2388retry:
2389        /*
2390         * Prepare to wait on uaddr. On success, holds hb lock and increments
2391         * q.key refs.
2392         */
2393        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2394        if (ret)
2395                goto out;
2396
2397        /* queue_me and wait for wakeup, timeout, or a signal. */
2398        futex_wait_queue_me(hb, &q, to);
2399
2400        /* If we were woken (and unqueued), we succeeded, whatever. */
2401        ret = 0;
2402        /* unqueue_me() drops q.key ref */
2403        if (!unqueue_me(&q))
2404                goto out;
2405        ret = -ETIMEDOUT;
2406        if (to && !to->task)
2407                goto out;
2408
2409        /*
2410         * We expect signal_pending(current), but we might be the
2411         * victim of a spurious wakeup as well.
2412         */
2413        if (!signal_pending(current))
2414                goto retry;
2415
2416        ret = -ERESTARTSYS;
2417        if (!abs_time)
2418                goto out;
2419
2420        restart = &current->restart_block;
2421        restart->fn = futex_wait_restart;
2422        restart->futex.uaddr = uaddr;
2423        restart->futex.val = val;
2424        restart->futex.time = abs_time->tv64;
2425        restart->futex.bitset = bitset;
2426        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2427
2428        ret = -ERESTART_RESTARTBLOCK;
2429
2430out:
2431        if (to) {
2432                hrtimer_cancel(&to->timer);
2433                destroy_hrtimer_on_stack(&to->timer);
2434        }
2435        return ret;
2436}
2437
2438
2439static long futex_wait_restart(struct restart_block *restart)
2440{
2441        u32 __user *uaddr = restart->futex.uaddr;
2442        ktime_t t, *tp = NULL;
2443
2444        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2445                t.tv64 = restart->futex.time;
2446                tp = &t;
2447        }
2448        restart->fn = do_no_restart_syscall;
2449
2450        return (long)futex_wait(uaddr, restart->futex.flags,
2451                                restart->futex.val, tp, restart->futex.bitset);
2452}
2453
2454
2455/*
2456 * Userspace tried a 0 -> TID atomic transition of the futex value
2457 * and failed. The kernel side here does the whole locking operation:
2458 * if there are waiters then it will block as a consequence of relying
2459 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2460 * a 0 value of the futex too.).
2461 *
2462 * Also serves as futex trylock_pi()'ing, and due semantics.
2463 */
2464static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2465                         ktime_t *time, int trylock)
2466{
2467        struct hrtimer_sleeper timeout, *to = NULL;
2468        struct futex_hash_bucket *hb;
2469        struct futex_q q = futex_q_init;
2470        int res, ret;
2471
2472        if (refill_pi_state_cache())
2473                return -ENOMEM;
2474
2475        if (time) {
2476                to = &timeout;
2477                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2478                                      HRTIMER_MODE_ABS);
2479                hrtimer_init_sleeper(to, current);
2480                hrtimer_set_expires(&to->timer, *time);
2481        }
2482
2483retry:
2484        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2485        if (unlikely(ret != 0))
2486                goto out;
2487
2488retry_private:
2489        hb = queue_lock(&q);
2490
2491        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2492        if (unlikely(ret)) {
2493                /*
2494                 * Atomic work succeeded and we got the lock,
2495                 * or failed. Either way, we do _not_ block.
2496                 */
2497                switch (ret) {
2498                case 1:
2499                        /* We got the lock. */
2500                        ret = 0;
2501                        goto out_unlock_put_key;
2502                case -EFAULT:
2503                        goto uaddr_faulted;
2504                case -EAGAIN:
2505                        /*
2506                         * Two reasons for this:
2507                         * - Task is exiting and we just wait for the
2508                         *   exit to complete.
2509                         * - The user space value changed.
2510                         */
2511                        queue_unlock(hb);
2512                        put_futex_key(&q.key);
2513                        cond_resched();
2514                        goto retry;
2515                default:
2516                        goto out_unlock_put_key;
2517                }
2518        }
2519
2520        /*
2521         * Only actually queue now that the atomic ops are done:
2522         */
2523        queue_me(&q, hb);
2524
2525        WARN_ON(!q.pi_state);
2526        /*
2527         * Block on the PI mutex:
2528         */
2529        if (!trylock) {
2530                ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2531        } else {
2532                ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2533                /* Fixup the trylock return value: */
2534                ret = ret ? 0 : -EWOULDBLOCK;
2535        }
2536
2537        spin_lock(q.lock_ptr);
2538        /*
2539         * Fixup the pi_state owner and possibly acquire the lock if we
2540         * haven't already.
2541         */
2542        res = fixup_owner(uaddr, &q, !ret);
2543        /*
2544         * If fixup_owner() returned an error, proprogate that.  If it acquired
2545         * the lock, clear our -ETIMEDOUT or -EINTR.
2546         */
2547        if (res)
2548                ret = (res < 0) ? res : 0;
2549
2550        /*
2551         * If fixup_owner() faulted and was unable to handle the fault, unlock
2552         * it and return the fault to userspace.
2553         */
2554        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2555                rt_mutex_unlock(&q.pi_state->pi_mutex);
2556
2557        /* Unqueue and drop the lock */
2558        unqueue_me_pi(&q);
2559
2560        goto out_put_key;
2561
2562out_unlock_put_key:
2563        queue_unlock(hb);
2564
2565out_put_key:
2566        put_futex_key(&q.key);
2567out:
2568        if (to)
2569                destroy_hrtimer_on_stack(&to->timer);
2570        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2571
2572uaddr_faulted:
2573        queue_unlock(hb);
2574
2575        ret = fault_in_user_writeable(uaddr);
2576        if (ret)
2577                goto out_put_key;
2578
2579        if (!(flags & FLAGS_SHARED))
2580                goto retry_private;
2581
2582        put_futex_key(&q.key);
2583        goto retry;
2584}
2585
2586/*
2587 * Userspace attempted a TID -> 0 atomic transition, and failed.
2588 * This is the in-kernel slowpath: we look up the PI state (if any),
2589 * and do the rt-mutex unlock.
2590 */
2591static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2592{
2593        u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2594        union futex_key key = FUTEX_KEY_INIT;
2595        struct futex_hash_bucket *hb;
2596        struct futex_q *match;
2597        int ret;
2598
2599retry:
2600        if (get_user(uval, uaddr))
2601                return -EFAULT;
2602        /*
2603         * We release only a lock we actually own:
2604         */
2605        if ((uval & FUTEX_TID_MASK) != vpid)
2606                return -EPERM;
2607
2608        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2609        if (ret)
2610                return ret;
2611
2612        hb = hash_futex(&key);
2613        spin_lock(&hb->lock);
2614
2615        /*
2616         * Check waiters first. We do not trust user space values at
2617         * all and we at least want to know if user space fiddled
2618         * with the futex value instead of blindly unlocking.
2619         */
2620        match = futex_top_waiter(hb, &key);
2621        if (match) {
2622                ret = wake_futex_pi(uaddr, uval, match, hb);
2623                /*
2624                 * In case of success wake_futex_pi dropped the hash
2625                 * bucket lock.
2626                 */
2627                if (!ret)
2628                        goto out_putkey;
2629                /*
2630                 * The atomic access to the futex value generated a
2631                 * pagefault, so retry the user-access and the wakeup:
2632                 */
2633                if (ret == -EFAULT)
2634                        goto pi_faulted;
2635                /*
2636                 * A unconditional UNLOCK_PI op raced against a waiter
2637                 * setting the FUTEX_WAITERS bit. Try again.
2638                 */
2639                if (ret == -EAGAIN) {
2640                        spin_unlock(&hb->lock);
2641                        put_futex_key(&key);
2642                        goto retry;
2643                }
2644                /*
2645                 * wake_futex_pi has detected invalid state. Tell user
2646                 * space.
2647                 */
2648                goto out_unlock;
2649        }
2650
2651        /*
2652         * We have no kernel internal state, i.e. no waiters in the
2653         * kernel. Waiters which are about to queue themselves are stuck
2654         * on hb->lock. So we can safely ignore them. We do neither
2655         * preserve the WAITERS bit not the OWNER_DIED one. We are the
2656         * owner.
2657         */
2658        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2659                goto pi_faulted;
2660
2661        /*
2662         * If uval has changed, let user space handle it.
2663         */
2664        ret = (curval == uval) ? 0 : -EAGAIN;
2665
2666out_unlock:
2667        spin_unlock(&hb->lock);
2668out_putkey:
2669        put_futex_key(&key);
2670        return ret;
2671
2672pi_faulted:
2673        spin_unlock(&hb->lock);
2674        put_futex_key(&key);
2675
2676        ret = fault_in_user_writeable(uaddr);
2677        if (!ret)
2678                goto retry;
2679
2680        return ret;
2681}
2682
2683/**
2684 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2685 * @hb:         the hash_bucket futex_q was original enqueued on
2686 * @q:          the futex_q woken while waiting to be requeued
2687 * @key2:       the futex_key of the requeue target futex
2688 * @timeout:    the timeout associated with the wait (NULL if none)
2689 *
2690 * Detect if the task was woken on the initial futex as opposed to the requeue
2691 * target futex.  If so, determine if it was a timeout or a signal that caused
2692 * the wakeup and return the appropriate error code to the caller.  Must be
2693 * called with the hb lock held.
2694 *
2695 * Return:
2696 *  0 = no early wakeup detected;
2697 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2698 */
2699static inline
2700int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2701                                   struct futex_q *q, union futex_key *key2,
2702                                   struct hrtimer_sleeper *timeout)
2703{
2704        int ret = 0;
2705
2706        /*
2707         * With the hb lock held, we avoid races while we process the wakeup.
2708         * We only need to hold hb (and not hb2) to ensure atomicity as the
2709         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2710         * It can't be requeued from uaddr2 to something else since we don't
2711         * support a PI aware source futex for requeue.
2712         */
2713        if (!match_futex(&q->key, key2)) {
2714                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2715                /*
2716                 * We were woken prior to requeue by a timeout or a signal.
2717                 * Unqueue the futex_q and determine which it was.
2718                 */
2719                plist_del(&q->list, &hb->chain);
2720                hb_waiters_dec(hb);
2721
2722                /* Handle spurious wakeups gracefully */
2723                ret = -EWOULDBLOCK;
2724                if (timeout && !timeout->task)
2725                        ret = -ETIMEDOUT;
2726                else if (signal_pending(current))
2727                        ret = -ERESTARTNOINTR;
2728        }
2729        return ret;
2730}
2731
2732/**
2733 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2734 * @uaddr:      the futex we initially wait on (non-pi)
2735 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2736 *              the same type, no requeueing from private to shared, etc.
2737 * @val:        the expected value of uaddr
2738 * @abs_time:   absolute timeout
2739 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2740 * @uaddr2:     the pi futex we will take prior to returning to user-space
2741 *
2742 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2743 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2744 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2745 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2746 * without one, the pi logic would not know which task to boost/deboost, if
2747 * there was a need to.
2748 *
2749 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2750 * via the following--
2751 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2752 * 2) wakeup on uaddr2 after a requeue
2753 * 3) signal
2754 * 4) timeout
2755 *
2756 * If 3, cleanup and return -ERESTARTNOINTR.
2757 *
2758 * If 2, we may then block on trying to take the rt_mutex and return via:
2759 * 5) successful lock
2760 * 6) signal
2761 * 7) timeout
2762 * 8) other lock acquisition failure
2763 *
2764 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2765 *
2766 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2767 *
2768 * Return:
2769 *  0 - On success;
2770 * <0 - On error
2771 */
2772static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2773                                 u32 val, ktime_t *abs_time, u32 bitset,
2774                                 u32 __user *uaddr2)
2775{
2776        struct hrtimer_sleeper timeout, *to = NULL;
2777        struct rt_mutex_waiter rt_waiter;
2778        struct rt_mutex *pi_mutex = NULL;
2779        struct futex_hash_bucket *hb;
2780        union futex_key key2 = FUTEX_KEY_INIT;
2781        struct futex_q q = futex_q_init;
2782        int res, ret;
2783
2784        if (uaddr == uaddr2)
2785                return -EINVAL;
2786
2787        if (!bitset)
2788                return -EINVAL;
2789
2790        if (abs_time) {
2791                to = &timeout;
2792                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2793                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2794                                      HRTIMER_MODE_ABS);
2795                hrtimer_init_sleeper(to, current);
2796                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2797                                             current->timer_slack_ns);
2798        }
2799
2800        /*
2801         * The waiter is allocated on our stack, manipulated by the requeue
2802         * code while we sleep on uaddr.
2803         */
2804        debug_rt_mutex_init_waiter(&rt_waiter);
2805        RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2806        RB_CLEAR_NODE(&rt_waiter.tree_entry);
2807        rt_waiter.task = NULL;
2808
2809        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2810        if (unlikely(ret != 0))
2811                goto out;
2812
2813        q.bitset = bitset;
2814        q.rt_waiter = &rt_waiter;
2815        q.requeue_pi_key = &key2;
2816
2817        /*
2818         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2819         * count.
2820         */
2821        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2822        if (ret)
2823                goto out_key2;
2824
2825        /*
2826         * The check above which compares uaddrs is not sufficient for
2827         * shared futexes. We need to compare the keys:
2828         */
2829        if (match_futex(&q.key, &key2)) {
2830                queue_unlock(hb);
2831                ret = -EINVAL;
2832                goto out_put_keys;
2833        }
2834
2835        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2836        futex_wait_queue_me(hb, &q, to);
2837
2838        spin_lock(&hb->lock);
2839        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2840        spin_unlock(&hb->lock);
2841        if (ret)
2842                goto out_put_keys;
2843
2844        /*
2845         * In order for us to be here, we know our q.key == key2, and since
2846         * we took the hb->lock above, we also know that futex_requeue() has
2847         * completed and we no longer have to concern ourselves with a wakeup
2848         * race with the atomic proxy lock acquisition by the requeue code. The
2849         * futex_requeue dropped our key1 reference and incremented our key2
2850         * reference count.
2851         */
2852
2853        /* Check if the requeue code acquired the second futex for us. */
2854        if (!q.rt_waiter) {
2855                /*
2856                 * Got the lock. We might not be the anticipated owner if we
2857                 * did a lock-steal - fix up the PI-state in that case.
2858                 */
2859                if (q.pi_state && (q.pi_state->owner != current)) {
2860                        spin_lock(q.lock_ptr);
2861                        ret = fixup_pi_state_owner(uaddr2, &q, current);
2862                        /*
2863                         * Drop the reference to the pi state which
2864                         * the requeue_pi() code acquired for us.
2865                         */
2866                        put_pi_state(q.pi_state);
2867                        spin_unlock(q.lock_ptr);
2868                }
2869        } else {
2870                /*
2871                 * We have been woken up by futex_unlock_pi(), a timeout, or a
2872                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2873                 * the pi_state.
2874                 */
2875                WARN_ON(!q.pi_state);
2876                pi_mutex = &q.pi_state->pi_mutex;
2877                ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2878                debug_rt_mutex_free_waiter(&rt_waiter);
2879
2880                spin_lock(q.lock_ptr);
2881                /*
2882                 * Fixup the pi_state owner and possibly acquire the lock if we
2883                 * haven't already.
2884                 */
2885                res = fixup_owner(uaddr2, &q, !ret);
2886                /*
2887                 * If fixup_owner() returned an error, proprogate that.  If it
2888                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2889                 */
2890                if (res)
2891                        ret = (res < 0) ? res : 0;
2892
2893                /* Unqueue and drop the lock. */
2894                unqueue_me_pi(&q);
2895        }
2896
2897        /*
2898         * If fixup_pi_state_owner() faulted and was unable to handle the
2899         * fault, unlock the rt_mutex and return the fault to userspace.
2900         */
2901        if (ret == -EFAULT) {
2902                if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2903                        rt_mutex_unlock(pi_mutex);
2904        } else if (ret == -EINTR) {
2905                /*
2906                 * We've already been requeued, but cannot restart by calling
2907                 * futex_lock_pi() directly. We could restart this syscall, but
2908                 * it would detect that the user space "val" changed and return
2909                 * -EWOULDBLOCK.  Save the overhead of the restart and return
2910                 * -EWOULDBLOCK directly.
2911                 */
2912                ret = -EWOULDBLOCK;
2913        }
2914
2915out_put_keys:
2916        put_futex_key(&q.key);
2917out_key2:
2918        put_futex_key(&key2);
2919
2920out:
2921        if (to) {
2922                hrtimer_cancel(&to->timer);
2923                destroy_hrtimer_on_stack(&to->timer);
2924        }
2925        return ret;
2926}
2927
2928/*
2929 * Support for robust futexes: the kernel cleans up held futexes at
2930 * thread exit time.
2931 *
2932 * Implementation: user-space maintains a per-thread list of locks it
2933 * is holding. Upon do_exit(), the kernel carefully walks this list,
2934 * and marks all locks that are owned by this thread with the
2935 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2936 * always manipulated with the lock held, so the list is private and
2937 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2938 * field, to allow the kernel to clean up if the thread dies after
2939 * acquiring the lock, but just before it could have added itself to
2940 * the list. There can only be one such pending lock.
2941 */
2942
2943/**
2944 * sys_set_robust_list() - Set the robust-futex list head of a task
2945 * @head:       pointer to the list-head
2946 * @len:        length of the list-head, as userspace expects
2947 */
2948SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2949                size_t, len)
2950{
2951        if (!futex_cmpxchg_enabled)
2952                return -ENOSYS;
2953        /*
2954         * The kernel knows only one size for now:
2955         */
2956        if (unlikely(len != sizeof(*head)))
2957                return -EINVAL;
2958
2959        current->robust_list = head;
2960
2961        return 0;
2962}
2963
2964/**
2965 * sys_get_robust_list() - Get the robust-futex list head of a task
2966 * @pid:        pid of the process [zero for current task]
2967 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2968 * @len_ptr:    pointer to a length field, the kernel fills in the header size
2969 */
2970SYSCALL_DEFINE3(get_robust_list, int, pid,
2971                struct robust_list_head __user * __user *, head_ptr,
2972                size_t __user *, len_ptr)
2973{
2974        struct robust_list_head __user *head;
2975        unsigned long ret;
2976        struct task_struct *p;
2977
2978        if (!futex_cmpxchg_enabled)
2979                return -ENOSYS;
2980
2981        rcu_read_lock();
2982
2983        ret = -ESRCH;
2984        if (!pid)
2985                p = current;
2986        else {
2987                p = find_task_by_vpid(pid);
2988                if (!p)
2989                        goto err_unlock;
2990        }
2991
2992        ret = -EPERM;
2993        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2994                goto err_unlock;
2995
2996        head = p->robust_list;
2997        rcu_read_unlock();
2998
2999        if (put_user(sizeof(*head), len_ptr))
3000                return -EFAULT;
3001        return put_user(head, head_ptr);
3002
3003err_unlock:
3004        rcu_read_unlock();
3005
3006        return ret;
3007}
3008
3009/*
3010 * Process a futex-list entry, check whether it's owned by the
3011 * dying task, and do notification if so:
3012 */
3013int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3014{
3015        u32 uval, uninitialized_var(nval), mval;
3016
3017retry:
3018        if (get_user(uval, uaddr))
3019                return -1;
3020
3021        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3022                /*
3023                 * Ok, this dying thread is truly holding a futex
3024                 * of interest. Set the OWNER_DIED bit atomically
3025                 * via cmpxchg, and if the value had FUTEX_WAITERS
3026                 * set, wake up a waiter (if any). (We have to do a
3027                 * futex_wake() even if OWNER_DIED is already set -
3028                 * to handle the rare but possible case of recursive
3029                 * thread-death.) The rest of the cleanup is done in
3030                 * userspace.
3031                 */
3032                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3033                /*
3034                 * We are not holding a lock here, but we want to have
3035                 * the pagefault_disable/enable() protection because
3036                 * we want to handle the fault gracefully. If the
3037                 * access fails we try to fault in the futex with R/W
3038                 * verification via get_user_pages. get_user() above
3039                 * does not guarantee R/W access. If that fails we
3040                 * give up and leave the futex locked.
3041                 */
3042                if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3043                        if (fault_in_user_writeable(uaddr))
3044                                return -1;
3045                        goto retry;
3046                }
3047                if (nval != uval)
3048                        goto retry;
3049
3050                /*
3051                 * Wake robust non-PI futexes here. The wakeup of
3052                 * PI futexes happens in exit_pi_state():
3053                 */
3054                if (!pi && (uval & FUTEX_WAITERS))
3055                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3056        }
3057        return 0;
3058}
3059
3060/*
3061 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3062 */
3063static inline int fetch_robust_entry(struct robust_list __user **entry,
3064                                     struct robust_list __user * __user *head,
3065                                     unsigned int *pi)
3066{
3067        unsigned long uentry;
3068
3069        if (get_user(uentry, (unsigned long __user *)head))
3070                return -EFAULT;
3071
3072        *entry = (void __user *)(uentry & ~1UL);
3073        *pi = uentry & 1;
3074
3075        return 0;
3076}
3077
3078/*
3079 * Walk curr->robust_list (very carefully, it's a userspace list!)
3080 * and mark any locks found there dead, and notify any waiters.
3081 *
3082 * We silently return on any sign of list-walking problem.
3083 */
3084void exit_robust_list(struct task_struct *curr)
3085{
3086        struct robust_list_head __user *head = curr->robust_list;
3087        struct robust_list __user *entry, *next_entry, *pending;
3088        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3089        unsigned int uninitialized_var(next_pi);
3090        unsigned long futex_offset;
3091        int rc;
3092
3093        if (!futex_cmpxchg_enabled)
3094                return;
3095
3096        /*
3097         * Fetch the list head (which was registered earlier, via
3098         * sys_set_robust_list()):
3099         */
3100        if (fetch_robust_entry(&entry, &head->list.next, &pi))
3101                return;
3102        /*
3103         * Fetch the relative futex offset:
3104         */
3105        if (get_user(futex_offset, &head->futex_offset))
3106                return;
3107        /*
3108         * Fetch any possibly pending lock-add first, and handle it
3109         * if it exists:
3110         */
3111        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3112                return;
3113
3114        next_entry = NULL;      /* avoid warning with gcc */
3115        while (entry != &head->list) {
3116                /*
3117                 * Fetch the next entry in the list before calling
3118                 * handle_futex_death:
3119                 */
3120                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3121                /*
3122                 * A pending lock might already be on the list, so
3123                 * don't process it twice:
3124                 */
3125                if (entry != pending)
3126                        if (handle_futex_death((void __user *)entry + futex_offset,
3127                                                curr, pi))
3128                                return;
3129                if (rc)
3130                        return;
3131                entry = next_entry;
3132                pi = next_pi;
3133                /*
3134                 * Avoid excessively long or circular lists:
3135                 */
3136                if (!--limit)
3137                        break;
3138
3139                cond_resched();
3140        }
3141
3142        if (pending)
3143                handle_futex_death((void __user *)pending + futex_offset,
3144                                   curr, pip);
3145}
3146
3147long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3148                u32 __user *uaddr2, u32 val2, u32 val3)
3149{
3150        int cmd = op & FUTEX_CMD_MASK;
3151        unsigned int flags = 0;
3152
3153        if (!(op & FUTEX_PRIVATE_FLAG))
3154                flags |= FLAGS_SHARED;
3155
3156        if (op & FUTEX_CLOCK_REALTIME) {
3157                flags |= FLAGS_CLOCKRT;
3158                if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3159                    cmd != FUTEX_WAIT_REQUEUE_PI)
3160                        return -ENOSYS;
3161        }
3162
3163        switch (cmd) {
3164        case FUTEX_LOCK_PI:
3165        case FUTEX_UNLOCK_PI:
3166        case FUTEX_TRYLOCK_PI:
3167        case FUTEX_WAIT_REQUEUE_PI:
3168        case FUTEX_CMP_REQUEUE_PI:
3169                if (!futex_cmpxchg_enabled)
3170                        return -ENOSYS;
3171        }
3172
3173        switch (cmd) {
3174        case FUTEX_WAIT:
3175                val3 = FUTEX_BITSET_MATCH_ANY;
3176        case FUTEX_WAIT_BITSET:
3177                return futex_wait(uaddr, flags, val, timeout, val3);
3178        case FUTEX_WAKE:
3179                val3 = FUTEX_BITSET_MATCH_ANY;
3180        case FUTEX_WAKE_BITSET:
3181                return futex_wake(uaddr, flags, val, val3);
3182        case FUTEX_REQUEUE:
3183                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3184        case FUTEX_CMP_REQUEUE:
3185                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3186        case FUTEX_WAKE_OP:
3187                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3188        case FUTEX_LOCK_PI:
3189                return futex_lock_pi(uaddr, flags, timeout, 0);
3190        case FUTEX_UNLOCK_PI:
3191                return futex_unlock_pi(uaddr, flags);
3192        case FUTEX_TRYLOCK_PI:
3193                return futex_lock_pi(uaddr, flags, NULL, 1);
3194        case FUTEX_WAIT_REQUEUE_PI:
3195                val3 = FUTEX_BITSET_MATCH_ANY;
3196                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3197                                             uaddr2);
3198        case FUTEX_CMP_REQUEUE_PI:
3199                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3200        }
3201        return -ENOSYS;
3202}
3203
3204
3205SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3206                struct timespec __user *, utime, u32 __user *, uaddr2,
3207                u32, val3)
3208{
3209        struct timespec ts;
3210        ktime_t t, *tp = NULL;
3211        u32 val2 = 0;
3212        int cmd = op & FUTEX_CMD_MASK;
3213
3214        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3215                      cmd == FUTEX_WAIT_BITSET ||
3216                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3217                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3218                        return -EFAULT;
3219                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3220                        return -EFAULT;
3221                if (!timespec_valid(&ts))
3222                        return -EINVAL;
3223
3224                t = timespec_to_ktime(ts);
3225                if (cmd == FUTEX_WAIT)
3226                        t = ktime_add_safe(ktime_get(), t);
3227                tp = &t;
3228        }
3229        /*
3230         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3231         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3232         */
3233        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3234            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3235                val2 = (u32) (unsigned long) utime;
3236
3237        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3238}
3239
3240static void __init futex_detect_cmpxchg(void)
3241{
3242#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3243        u32 curval;
3244
3245        /*
3246         * This will fail and we want it. Some arch implementations do
3247         * runtime detection of the futex_atomic_cmpxchg_inatomic()
3248         * functionality. We want to know that before we call in any
3249         * of the complex code paths. Also we want to prevent
3250         * registration of robust lists in that case. NULL is
3251         * guaranteed to fault and we get -EFAULT on functional
3252         * implementation, the non-functional ones will return
3253         * -ENOSYS.
3254         */
3255        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3256                futex_cmpxchg_enabled = 1;
3257#endif
3258}
3259
3260static int __init futex_init(void)
3261{
3262        unsigned int futex_shift;
3263        unsigned long i;
3264
3265#if CONFIG_BASE_SMALL
3266        futex_hashsize = 16;
3267#else
3268        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3269#endif
3270
3271        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3272                                               futex_hashsize, 0,
3273                                               futex_hashsize < 256 ? HASH_SMALL : 0,
3274                                               &futex_shift, NULL,
3275                                               futex_hashsize, futex_hashsize);
3276        futex_hashsize = 1UL << futex_shift;
3277
3278        futex_detect_cmpxchg();
3279
3280        for (i = 0; i < futex_hashsize; i++) {
3281                atomic_set(&futex_queues[i].waiters, 0);
3282                plist_head_init(&futex_queues[i].chain);
3283                spin_lock_init(&futex_queues[i].lock);
3284        }
3285
3286        return 0;
3287}
3288__initcall(futex_init);
3289