linux/kernel/power/snapshot.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
  31#include <linux/ktime.h>
  32
  33#include <asm/uaccess.h>
  34#include <asm/mmu_context.h>
  35#include <asm/pgtable.h>
  36#include <asm/tlbflush.h>
  37#include <asm/io.h>
  38
  39#include "power.h"
  40
  41static int swsusp_page_is_free(struct page *);
  42static void swsusp_set_page_forbidden(struct page *);
  43static void swsusp_unset_page_forbidden(struct page *);
  44
  45/*
  46 * Number of bytes to reserve for memory allocations made by device drivers
  47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  48 * cause image creation to fail (tunable via /sys/power/reserved_size).
  49 */
  50unsigned long reserved_size;
  51
  52void __init hibernate_reserved_size_init(void)
  53{
  54        reserved_size = SPARE_PAGES * PAGE_SIZE;
  55}
  56
  57/*
  58 * Preferred image size in bytes (tunable via /sys/power/image_size).
  59 * When it is set to N, swsusp will do its best to ensure the image
  60 * size will not exceed N bytes, but if that is impossible, it will
  61 * try to create the smallest image possible.
  62 */
  63unsigned long image_size;
  64
  65void __init hibernate_image_size_init(void)
  66{
  67        image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  68}
  69
  70/* List of PBEs needed for restoring the pages that were allocated before
  71 * the suspend and included in the suspend image, but have also been
  72 * allocated by the "resume" kernel, so their contents cannot be written
  73 * directly to their "original" page frames.
  74 */
  75struct pbe *restore_pblist;
  76
  77/* Pointer to an auxiliary buffer (1 page) */
  78static void *buffer;
  79
  80/**
  81 *      @safe_needed - on resume, for storing the PBE list and the image,
  82 *      we can only use memory pages that do not conflict with the pages
  83 *      used before suspend.  The unsafe pages have PageNosaveFree set
  84 *      and we count them using unsafe_pages.
  85 *
  86 *      Each allocated image page is marked as PageNosave and PageNosaveFree
  87 *      so that swsusp_free() can release it.
  88 */
  89
  90#define PG_ANY          0
  91#define PG_SAFE         1
  92#define PG_UNSAFE_CLEAR 1
  93#define PG_UNSAFE_KEEP  0
  94
  95static unsigned int allocated_unsafe_pages;
  96
  97static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  98{
  99        void *res;
 100
 101        res = (void *)get_zeroed_page(gfp_mask);
 102        if (safe_needed)
 103                while (res && swsusp_page_is_free(virt_to_page(res))) {
 104                        /* The page is unsafe, mark it for swsusp_free() */
 105                        swsusp_set_page_forbidden(virt_to_page(res));
 106                        allocated_unsafe_pages++;
 107                        res = (void *)get_zeroed_page(gfp_mask);
 108                }
 109        if (res) {
 110                swsusp_set_page_forbidden(virt_to_page(res));
 111                swsusp_set_page_free(virt_to_page(res));
 112        }
 113        return res;
 114}
 115
 116unsigned long get_safe_page(gfp_t gfp_mask)
 117{
 118        return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 119}
 120
 121static struct page *alloc_image_page(gfp_t gfp_mask)
 122{
 123        struct page *page;
 124
 125        page = alloc_page(gfp_mask);
 126        if (page) {
 127                swsusp_set_page_forbidden(page);
 128                swsusp_set_page_free(page);
 129        }
 130        return page;
 131}
 132
 133/**
 134 *      free_image_page - free page represented by @addr, allocated with
 135 *      get_image_page (page flags set by it must be cleared)
 136 */
 137
 138static inline void free_image_page(void *addr, int clear_nosave_free)
 139{
 140        struct page *page;
 141
 142        BUG_ON(!virt_addr_valid(addr));
 143
 144        page = virt_to_page(addr);
 145
 146        swsusp_unset_page_forbidden(page);
 147        if (clear_nosave_free)
 148                swsusp_unset_page_free(page);
 149
 150        __free_page(page);
 151}
 152
 153/* struct linked_page is used to build chains of pages */
 154
 155#define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
 156
 157struct linked_page {
 158        struct linked_page *next;
 159        char data[LINKED_PAGE_DATA_SIZE];
 160} __packed;
 161
 162static inline void
 163free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 164{
 165        while (list) {
 166                struct linked_page *lp = list->next;
 167
 168                free_image_page(list, clear_page_nosave);
 169                list = lp;
 170        }
 171}
 172
 173/**
 174  *     struct chain_allocator is used for allocating small objects out of
 175  *     a linked list of pages called 'the chain'.
 176  *
 177  *     The chain grows each time when there is no room for a new object in
 178  *     the current page.  The allocated objects cannot be freed individually.
 179  *     It is only possible to free them all at once, by freeing the entire
 180  *     chain.
 181  *
 182  *     NOTE: The chain allocator may be inefficient if the allocated objects
 183  *     are not much smaller than PAGE_SIZE.
 184  */
 185
 186struct chain_allocator {
 187        struct linked_page *chain;      /* the chain */
 188        unsigned int used_space;        /* total size of objects allocated out
 189                                         * of the current page
 190                                         */
 191        gfp_t gfp_mask;         /* mask for allocating pages */
 192        int safe_needed;        /* if set, only "safe" pages are allocated */
 193};
 194
 195static void
 196chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 197{
 198        ca->chain = NULL;
 199        ca->used_space = LINKED_PAGE_DATA_SIZE;
 200        ca->gfp_mask = gfp_mask;
 201        ca->safe_needed = safe_needed;
 202}
 203
 204static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 205{
 206        void *ret;
 207
 208        if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 209                struct linked_page *lp;
 210
 211                lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 212                if (!lp)
 213                        return NULL;
 214
 215                lp->next = ca->chain;
 216                ca->chain = lp;
 217                ca->used_space = 0;
 218        }
 219        ret = ca->chain->data + ca->used_space;
 220        ca->used_space += size;
 221        return ret;
 222}
 223
 224/**
 225 *      Data types related to memory bitmaps.
 226 *
 227 *      Memory bitmap is a structure consiting of many linked lists of
 228 *      objects.  The main list's elements are of type struct zone_bitmap
 229 *      and each of them corresonds to one zone.  For each zone bitmap
 230 *      object there is a list of objects of type struct bm_block that
 231 *      represent each blocks of bitmap in which information is stored.
 232 *
 233 *      struct memory_bitmap contains a pointer to the main list of zone
 234 *      bitmap objects, a struct bm_position used for browsing the bitmap,
 235 *      and a pointer to the list of pages used for allocating all of the
 236 *      zone bitmap objects and bitmap block objects.
 237 *
 238 *      NOTE: It has to be possible to lay out the bitmap in memory
 239 *      using only allocations of order 0.  Additionally, the bitmap is
 240 *      designed to work with arbitrary number of zones (this is over the
 241 *      top for now, but let's avoid making unnecessary assumptions ;-).
 242 *
 243 *      struct zone_bitmap contains a pointer to a list of bitmap block
 244 *      objects and a pointer to the bitmap block object that has been
 245 *      most recently used for setting bits.  Additionally, it contains the
 246 *      pfns that correspond to the start and end of the represented zone.
 247 *
 248 *      struct bm_block contains a pointer to the memory page in which
 249 *      information is stored (in the form of a block of bitmap)
 250 *      It also contains the pfns that correspond to the start and end of
 251 *      the represented memory area.
 252 *
 253 *      The memory bitmap is organized as a radix tree to guarantee fast random
 254 *      access to the bits. There is one radix tree for each zone (as returned
 255 *      from create_mem_extents).
 256 *
 257 *      One radix tree is represented by one struct mem_zone_bm_rtree. There are
 258 *      two linked lists for the nodes of the tree, one for the inner nodes and
 259 *      one for the leave nodes. The linked leave nodes are used for fast linear
 260 *      access of the memory bitmap.
 261 *
 262 *      The struct rtree_node represents one node of the radix tree.
 263 */
 264
 265#define BM_END_OF_MAP   (~0UL)
 266
 267#define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
 268#define BM_BLOCK_SHIFT          (PAGE_SHIFT + 3)
 269#define BM_BLOCK_MASK           ((1UL << BM_BLOCK_SHIFT) - 1)
 270
 271/*
 272 * struct rtree_node is a wrapper struct to link the nodes
 273 * of the rtree together for easy linear iteration over
 274 * bits and easy freeing
 275 */
 276struct rtree_node {
 277        struct list_head list;
 278        unsigned long *data;
 279};
 280
 281/*
 282 * struct mem_zone_bm_rtree represents a bitmap used for one
 283 * populated memory zone.
 284 */
 285struct mem_zone_bm_rtree {
 286        struct list_head list;          /* Link Zones together         */
 287        struct list_head nodes;         /* Radix Tree inner nodes      */
 288        struct list_head leaves;        /* Radix Tree leaves           */
 289        unsigned long start_pfn;        /* Zone start page frame       */
 290        unsigned long end_pfn;          /* Zone end page frame + 1     */
 291        struct rtree_node *rtree;       /* Radix Tree Root             */
 292        int levels;                     /* Number of Radix Tree Levels */
 293        unsigned int blocks;            /* Number of Bitmap Blocks     */
 294};
 295
 296/* strcut bm_position is used for browsing memory bitmaps */
 297
 298struct bm_position {
 299        struct mem_zone_bm_rtree *zone;
 300        struct rtree_node *node;
 301        unsigned long node_pfn;
 302        int node_bit;
 303};
 304
 305struct memory_bitmap {
 306        struct list_head zones;
 307        struct linked_page *p_list;     /* list of pages used to store zone
 308                                         * bitmap objects and bitmap block
 309                                         * objects
 310                                         */
 311        struct bm_position cur; /* most recently used bit position */
 312};
 313
 314/* Functions that operate on memory bitmaps */
 315
 316#define BM_ENTRIES_PER_LEVEL    (PAGE_SIZE / sizeof(unsigned long))
 317#if BITS_PER_LONG == 32
 318#define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 2)
 319#else
 320#define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 3)
 321#endif
 322#define BM_RTREE_LEVEL_MASK     ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 323
 324/*
 325 *      alloc_rtree_node - Allocate a new node and add it to the radix tree.
 326 *
 327 *      This function is used to allocate inner nodes as well as the
 328 *      leave nodes of the radix tree. It also adds the node to the
 329 *      corresponding linked list passed in by the *list parameter.
 330 */
 331static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 332                                           struct chain_allocator *ca,
 333                                           struct list_head *list)
 334{
 335        struct rtree_node *node;
 336
 337        node = chain_alloc(ca, sizeof(struct rtree_node));
 338        if (!node)
 339                return NULL;
 340
 341        node->data = get_image_page(gfp_mask, safe_needed);
 342        if (!node->data)
 343                return NULL;
 344
 345        list_add_tail(&node->list, list);
 346
 347        return node;
 348}
 349
 350/*
 351 *      add_rtree_block - Add a new leave node to the radix tree
 352 *
 353 *      The leave nodes need to be allocated in order to keep the leaves
 354 *      linked list in order. This is guaranteed by the zone->blocks
 355 *      counter.
 356 */
 357static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 358                           int safe_needed, struct chain_allocator *ca)
 359{
 360        struct rtree_node *node, *block, **dst;
 361        unsigned int levels_needed, block_nr;
 362        int i;
 363
 364        block_nr = zone->blocks;
 365        levels_needed = 0;
 366
 367        /* How many levels do we need for this block nr? */
 368        while (block_nr) {
 369                levels_needed += 1;
 370                block_nr >>= BM_RTREE_LEVEL_SHIFT;
 371        }
 372
 373        /* Make sure the rtree has enough levels */
 374        for (i = zone->levels; i < levels_needed; i++) {
 375                node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 376                                        &zone->nodes);
 377                if (!node)
 378                        return -ENOMEM;
 379
 380                node->data[0] = (unsigned long)zone->rtree;
 381                zone->rtree = node;
 382                zone->levels += 1;
 383        }
 384
 385        /* Allocate new block */
 386        block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 387        if (!block)
 388                return -ENOMEM;
 389
 390        /* Now walk the rtree to insert the block */
 391        node = zone->rtree;
 392        dst = &zone->rtree;
 393        block_nr = zone->blocks;
 394        for (i = zone->levels; i > 0; i--) {
 395                int index;
 396
 397                if (!node) {
 398                        node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 399                                                &zone->nodes);
 400                        if (!node)
 401                                return -ENOMEM;
 402                        *dst = node;
 403                }
 404
 405                index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 406                index &= BM_RTREE_LEVEL_MASK;
 407                dst = (struct rtree_node **)&((*dst)->data[index]);
 408                node = *dst;
 409        }
 410
 411        zone->blocks += 1;
 412        *dst = block;
 413
 414        return 0;
 415}
 416
 417static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 418                               int clear_nosave_free);
 419
 420/*
 421 *      create_zone_bm_rtree - create a radix tree for one zone
 422 *
 423 *      Allocated the mem_zone_bm_rtree structure and initializes it.
 424 *      This function also allocated and builds the radix tree for the
 425 *      zone.
 426 */
 427static struct mem_zone_bm_rtree *
 428create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
 429                     struct chain_allocator *ca,
 430                     unsigned long start, unsigned long end)
 431{
 432        struct mem_zone_bm_rtree *zone;
 433        unsigned int i, nr_blocks;
 434        unsigned long pages;
 435
 436        pages = end - start;
 437        zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 438        if (!zone)
 439                return NULL;
 440
 441        INIT_LIST_HEAD(&zone->nodes);
 442        INIT_LIST_HEAD(&zone->leaves);
 443        zone->start_pfn = start;
 444        zone->end_pfn = end;
 445        nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 446
 447        for (i = 0; i < nr_blocks; i++) {
 448                if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 449                        free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 450                        return NULL;
 451                }
 452        }
 453
 454        return zone;
 455}
 456
 457/*
 458 *      free_zone_bm_rtree - Free the memory of the radix tree
 459 *
 460 *      Free all node pages of the radix tree. The mem_zone_bm_rtree
 461 *      structure itself is not freed here nor are the rtree_node
 462 *      structs.
 463 */
 464static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 465                               int clear_nosave_free)
 466{
 467        struct rtree_node *node;
 468
 469        list_for_each_entry(node, &zone->nodes, list)
 470                free_image_page(node->data, clear_nosave_free);
 471
 472        list_for_each_entry(node, &zone->leaves, list)
 473                free_image_page(node->data, clear_nosave_free);
 474}
 475
 476static void memory_bm_position_reset(struct memory_bitmap *bm)
 477{
 478        bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 479                                  list);
 480        bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 481                                  struct rtree_node, list);
 482        bm->cur.node_pfn = 0;
 483        bm->cur.node_bit = 0;
 484}
 485
 486static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 487
 488struct mem_extent {
 489        struct list_head hook;
 490        unsigned long start;
 491        unsigned long end;
 492};
 493
 494/**
 495 *      free_mem_extents - free a list of memory extents
 496 *      @list - list of extents to empty
 497 */
 498static void free_mem_extents(struct list_head *list)
 499{
 500        struct mem_extent *ext, *aux;
 501
 502        list_for_each_entry_safe(ext, aux, list, hook) {
 503                list_del(&ext->hook);
 504                kfree(ext);
 505        }
 506}
 507
 508/**
 509 *      create_mem_extents - create a list of memory extents representing
 510 *                           contiguous ranges of PFNs
 511 *      @list - list to put the extents into
 512 *      @gfp_mask - mask to use for memory allocations
 513 */
 514static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 515{
 516        struct zone *zone;
 517
 518        INIT_LIST_HEAD(list);
 519
 520        for_each_populated_zone(zone) {
 521                unsigned long zone_start, zone_end;
 522                struct mem_extent *ext, *cur, *aux;
 523
 524                zone_start = zone->zone_start_pfn;
 525                zone_end = zone_end_pfn(zone);
 526
 527                list_for_each_entry(ext, list, hook)
 528                        if (zone_start <= ext->end)
 529                                break;
 530
 531                if (&ext->hook == list || zone_end < ext->start) {
 532                        /* New extent is necessary */
 533                        struct mem_extent *new_ext;
 534
 535                        new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 536                        if (!new_ext) {
 537                                free_mem_extents(list);
 538                                return -ENOMEM;
 539                        }
 540                        new_ext->start = zone_start;
 541                        new_ext->end = zone_end;
 542                        list_add_tail(&new_ext->hook, &ext->hook);
 543                        continue;
 544                }
 545
 546                /* Merge this zone's range of PFNs with the existing one */
 547                if (zone_start < ext->start)
 548                        ext->start = zone_start;
 549                if (zone_end > ext->end)
 550                        ext->end = zone_end;
 551
 552                /* More merging may be possible */
 553                cur = ext;
 554                list_for_each_entry_safe_continue(cur, aux, list, hook) {
 555                        if (zone_end < cur->start)
 556                                break;
 557                        if (zone_end < cur->end)
 558                                ext->end = cur->end;
 559                        list_del(&cur->hook);
 560                        kfree(cur);
 561                }
 562        }
 563
 564        return 0;
 565}
 566
 567/**
 568  *     memory_bm_create - allocate memory for a memory bitmap
 569  */
 570static int
 571memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 572{
 573        struct chain_allocator ca;
 574        struct list_head mem_extents;
 575        struct mem_extent *ext;
 576        int error;
 577
 578        chain_init(&ca, gfp_mask, safe_needed);
 579        INIT_LIST_HEAD(&bm->zones);
 580
 581        error = create_mem_extents(&mem_extents, gfp_mask);
 582        if (error)
 583                return error;
 584
 585        list_for_each_entry(ext, &mem_extents, hook) {
 586                struct mem_zone_bm_rtree *zone;
 587
 588                zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 589                                            ext->start, ext->end);
 590                if (!zone) {
 591                        error = -ENOMEM;
 592                        goto Error;
 593                }
 594                list_add_tail(&zone->list, &bm->zones);
 595        }
 596
 597        bm->p_list = ca.chain;
 598        memory_bm_position_reset(bm);
 599 Exit:
 600        free_mem_extents(&mem_extents);
 601        return error;
 602
 603 Error:
 604        bm->p_list = ca.chain;
 605        memory_bm_free(bm, PG_UNSAFE_CLEAR);
 606        goto Exit;
 607}
 608
 609/**
 610  *     memory_bm_free - free memory occupied by the memory bitmap @bm
 611  */
 612static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 613{
 614        struct mem_zone_bm_rtree *zone;
 615
 616        list_for_each_entry(zone, &bm->zones, list)
 617                free_zone_bm_rtree(zone, clear_nosave_free);
 618
 619        free_list_of_pages(bm->p_list, clear_nosave_free);
 620
 621        INIT_LIST_HEAD(&bm->zones);
 622}
 623
 624/**
 625 *      memory_bm_find_bit - Find the bit for pfn in the memory
 626 *                           bitmap
 627 *
 628 *      Find the bit in the bitmap @bm that corresponds to given pfn.
 629 *      The cur.zone, cur.block and cur.node_pfn member of @bm are
 630 *      updated.
 631 *      It walks the radix tree to find the page which contains the bit for
 632 *      pfn and returns the bit position in **addr and *bit_nr.
 633 */
 634static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 635                              void **addr, unsigned int *bit_nr)
 636{
 637        struct mem_zone_bm_rtree *curr, *zone;
 638        struct rtree_node *node;
 639        int i, block_nr;
 640
 641        zone = bm->cur.zone;
 642
 643        if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 644                goto zone_found;
 645
 646        zone = NULL;
 647
 648        /* Find the right zone */
 649        list_for_each_entry(curr, &bm->zones, list) {
 650                if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 651                        zone = curr;
 652                        break;
 653                }
 654        }
 655
 656        if (!zone)
 657                return -EFAULT;
 658
 659zone_found:
 660        /*
 661         * We have a zone. Now walk the radix tree to find the leave
 662         * node for our pfn.
 663         */
 664
 665        node = bm->cur.node;
 666        if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 667                goto node_found;
 668
 669        node      = zone->rtree;
 670        block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 671
 672        for (i = zone->levels; i > 0; i--) {
 673                int index;
 674
 675                index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 676                index &= BM_RTREE_LEVEL_MASK;
 677                BUG_ON(node->data[index] == 0);
 678                node = (struct rtree_node *)node->data[index];
 679        }
 680
 681node_found:
 682        /* Update last position */
 683        bm->cur.zone = zone;
 684        bm->cur.node = node;
 685        bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 686
 687        /* Set return values */
 688        *addr = node->data;
 689        *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 690
 691        return 0;
 692}
 693
 694static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 695{
 696        void *addr;
 697        unsigned int bit;
 698        int error;
 699
 700        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 701        BUG_ON(error);
 702        set_bit(bit, addr);
 703}
 704
 705static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 706{
 707        void *addr;
 708        unsigned int bit;
 709        int error;
 710
 711        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 712        if (!error)
 713                set_bit(bit, addr);
 714
 715        return error;
 716}
 717
 718static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 719{
 720        void *addr;
 721        unsigned int bit;
 722        int error;
 723
 724        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 725        BUG_ON(error);
 726        clear_bit(bit, addr);
 727}
 728
 729static void memory_bm_clear_current(struct memory_bitmap *bm)
 730{
 731        int bit;
 732
 733        bit = max(bm->cur.node_bit - 1, 0);
 734        clear_bit(bit, bm->cur.node->data);
 735}
 736
 737static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 738{
 739        void *addr;
 740        unsigned int bit;
 741        int error;
 742
 743        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 744        BUG_ON(error);
 745        return test_bit(bit, addr);
 746}
 747
 748static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 749{
 750        void *addr;
 751        unsigned int bit;
 752
 753        return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 754}
 755
 756/*
 757 *      rtree_next_node - Jumps to the next leave node
 758 *
 759 *      Sets the position to the beginning of the next node in the
 760 *      memory bitmap. This is either the next node in the current
 761 *      zone's radix tree or the first node in the radix tree of the
 762 *      next zone.
 763 *
 764 *      Returns true if there is a next node, false otherwise.
 765 */
 766static bool rtree_next_node(struct memory_bitmap *bm)
 767{
 768        bm->cur.node = list_entry(bm->cur.node->list.next,
 769                                  struct rtree_node, list);
 770        if (&bm->cur.node->list != &bm->cur.zone->leaves) {
 771                bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 772                bm->cur.node_bit  = 0;
 773                touch_softlockup_watchdog();
 774                return true;
 775        }
 776
 777        /* No more nodes, goto next zone */
 778        bm->cur.zone = list_entry(bm->cur.zone->list.next,
 779                                  struct mem_zone_bm_rtree, list);
 780        if (&bm->cur.zone->list != &bm->zones) {
 781                bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 782                                          struct rtree_node, list);
 783                bm->cur.node_pfn = 0;
 784                bm->cur.node_bit = 0;
 785                return true;
 786        }
 787
 788        /* No more zones */
 789        return false;
 790}
 791
 792/**
 793 *      memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
 794 *
 795 *      Starting from the last returned position this function searches
 796 *      for the next set bit in the memory bitmap and returns its
 797 *      number. If no more bit is set BM_END_OF_MAP is returned.
 798 *
 799 *      It is required to run memory_bm_position_reset() before the
 800 *      first call to this function.
 801 */
 802static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 803{
 804        unsigned long bits, pfn, pages;
 805        int bit;
 806
 807        do {
 808                pages     = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 809                bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 810                bit       = find_next_bit(bm->cur.node->data, bits,
 811                                          bm->cur.node_bit);
 812                if (bit < bits) {
 813                        pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 814                        bm->cur.node_bit = bit + 1;
 815                        return pfn;
 816                }
 817        } while (rtree_next_node(bm));
 818
 819        return BM_END_OF_MAP;
 820}
 821
 822/**
 823 *      This structure represents a range of page frames the contents of which
 824 *      should not be saved during the suspend.
 825 */
 826
 827struct nosave_region {
 828        struct list_head list;
 829        unsigned long start_pfn;
 830        unsigned long end_pfn;
 831};
 832
 833static LIST_HEAD(nosave_regions);
 834
 835/**
 836 *      register_nosave_region - register a range of page frames the contents
 837 *      of which should not be saved during the suspend (to be used in the early
 838 *      initialization code)
 839 */
 840
 841void __init
 842__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 843                         int use_kmalloc)
 844{
 845        struct nosave_region *region;
 846
 847        if (start_pfn >= end_pfn)
 848                return;
 849
 850        if (!list_empty(&nosave_regions)) {
 851                /* Try to extend the previous region (they should be sorted) */
 852                region = list_entry(nosave_regions.prev,
 853                                        struct nosave_region, list);
 854                if (region->end_pfn == start_pfn) {
 855                        region->end_pfn = end_pfn;
 856                        goto Report;
 857                }
 858        }
 859        if (use_kmalloc) {
 860                /* during init, this shouldn't fail */
 861                region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 862                BUG_ON(!region);
 863        } else
 864                /* This allocation cannot fail */
 865                region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 866        region->start_pfn = start_pfn;
 867        region->end_pfn = end_pfn;
 868        list_add_tail(&region->list, &nosave_regions);
 869 Report:
 870        printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 871                (unsigned long long) start_pfn << PAGE_SHIFT,
 872                ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 873}
 874
 875/*
 876 * Set bits in this map correspond to the page frames the contents of which
 877 * should not be saved during the suspend.
 878 */
 879static struct memory_bitmap *forbidden_pages_map;
 880
 881/* Set bits in this map correspond to free page frames. */
 882static struct memory_bitmap *free_pages_map;
 883
 884/*
 885 * Each page frame allocated for creating the image is marked by setting the
 886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 887 */
 888
 889void swsusp_set_page_free(struct page *page)
 890{
 891        if (free_pages_map)
 892                memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 893}
 894
 895static int swsusp_page_is_free(struct page *page)
 896{
 897        return free_pages_map ?
 898                memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 899}
 900
 901void swsusp_unset_page_free(struct page *page)
 902{
 903        if (free_pages_map)
 904                memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 905}
 906
 907static void swsusp_set_page_forbidden(struct page *page)
 908{
 909        if (forbidden_pages_map)
 910                memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 911}
 912
 913int swsusp_page_is_forbidden(struct page *page)
 914{
 915        return forbidden_pages_map ?
 916                memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 917}
 918
 919static void swsusp_unset_page_forbidden(struct page *page)
 920{
 921        if (forbidden_pages_map)
 922                memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 923}
 924
 925/**
 926 *      mark_nosave_pages - set bits corresponding to the page frames the
 927 *      contents of which should not be saved in a given bitmap.
 928 */
 929
 930static void mark_nosave_pages(struct memory_bitmap *bm)
 931{
 932        struct nosave_region *region;
 933
 934        if (list_empty(&nosave_regions))
 935                return;
 936
 937        list_for_each_entry(region, &nosave_regions, list) {
 938                unsigned long pfn;
 939
 940                pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 941                         (unsigned long long) region->start_pfn << PAGE_SHIFT,
 942                         ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 943                                - 1);
 944
 945                for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 946                        if (pfn_valid(pfn)) {
 947                                /*
 948                                 * It is safe to ignore the result of
 949                                 * mem_bm_set_bit_check() here, since we won't
 950                                 * touch the PFNs for which the error is
 951                                 * returned anyway.
 952                                 */
 953                                mem_bm_set_bit_check(bm, pfn);
 954                        }
 955        }
 956}
 957
 958/**
 959 *      create_basic_memory_bitmaps - create bitmaps needed for marking page
 960 *      frames that should not be saved and free page frames.  The pointers
 961 *      forbidden_pages_map and free_pages_map are only modified if everything
 962 *      goes well, because we don't want the bits to be used before both bitmaps
 963 *      are set up.
 964 */
 965
 966int create_basic_memory_bitmaps(void)
 967{
 968        struct memory_bitmap *bm1, *bm2;
 969        int error = 0;
 970
 971        if (forbidden_pages_map && free_pages_map)
 972                return 0;
 973        else
 974                BUG_ON(forbidden_pages_map || free_pages_map);
 975
 976        bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 977        if (!bm1)
 978                return -ENOMEM;
 979
 980        error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 981        if (error)
 982                goto Free_first_object;
 983
 984        bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 985        if (!bm2)
 986                goto Free_first_bitmap;
 987
 988        error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 989        if (error)
 990                goto Free_second_object;
 991
 992        forbidden_pages_map = bm1;
 993        free_pages_map = bm2;
 994        mark_nosave_pages(forbidden_pages_map);
 995
 996        pr_debug("PM: Basic memory bitmaps created\n");
 997
 998        return 0;
 999
1000 Free_second_object:
1001        kfree(bm2);
1002 Free_first_bitmap:
1003        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1004 Free_first_object:
1005        kfree(bm1);
1006        return -ENOMEM;
1007}
1008
1009/**
1010 *      free_basic_memory_bitmaps - free memory bitmaps allocated by
1011 *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
1012 *      so that the bitmaps themselves are not referred to while they are being
1013 *      freed.
1014 */
1015
1016void free_basic_memory_bitmaps(void)
1017{
1018        struct memory_bitmap *bm1, *bm2;
1019
1020        if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1021                return;
1022
1023        bm1 = forbidden_pages_map;
1024        bm2 = free_pages_map;
1025        forbidden_pages_map = NULL;
1026        free_pages_map = NULL;
1027        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1028        kfree(bm1);
1029        memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1030        kfree(bm2);
1031
1032        pr_debug("PM: Basic memory bitmaps freed\n");
1033}
1034
1035/**
1036 *      snapshot_additional_pages - estimate the number of additional pages
1037 *      be needed for setting up the suspend image data structures for given
1038 *      zone (usually the returned value is greater than the exact number)
1039 */
1040
1041unsigned int snapshot_additional_pages(struct zone *zone)
1042{
1043        unsigned int rtree, nodes;
1044
1045        rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1046        rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1047                              LINKED_PAGE_DATA_SIZE);
1048        while (nodes > 1) {
1049                nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1050                rtree += nodes;
1051        }
1052
1053        return 2 * rtree;
1054}
1055
1056#ifdef CONFIG_HIGHMEM
1057/**
1058 *      count_free_highmem_pages - compute the total number of free highmem
1059 *      pages, system-wide.
1060 */
1061
1062static unsigned int count_free_highmem_pages(void)
1063{
1064        struct zone *zone;
1065        unsigned int cnt = 0;
1066
1067        for_each_populated_zone(zone)
1068                if (is_highmem(zone))
1069                        cnt += zone_page_state(zone, NR_FREE_PAGES);
1070
1071        return cnt;
1072}
1073
1074/**
1075 *      saveable_highmem_page - Determine whether a highmem page should be
1076 *      included in the suspend image.
1077 *
1078 *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1079 *      and it isn't a part of a free chunk of pages.
1080 */
1081static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1082{
1083        struct page *page;
1084
1085        if (!pfn_valid(pfn))
1086                return NULL;
1087
1088        page = pfn_to_page(pfn);
1089        if (page_zone(page) != zone)
1090                return NULL;
1091
1092        BUG_ON(!PageHighMem(page));
1093
1094        if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1095            PageReserved(page))
1096                return NULL;
1097
1098        if (page_is_guard(page))
1099                return NULL;
1100
1101        return page;
1102}
1103
1104/**
1105 *      count_highmem_pages - compute the total number of saveable highmem
1106 *      pages.
1107 */
1108
1109static unsigned int count_highmem_pages(void)
1110{
1111        struct zone *zone;
1112        unsigned int n = 0;
1113
1114        for_each_populated_zone(zone) {
1115                unsigned long pfn, max_zone_pfn;
1116
1117                if (!is_highmem(zone))
1118                        continue;
1119
1120                mark_free_pages(zone);
1121                max_zone_pfn = zone_end_pfn(zone);
1122                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1123                        if (saveable_highmem_page(zone, pfn))
1124                                n++;
1125        }
1126        return n;
1127}
1128#else
1129static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1130{
1131        return NULL;
1132}
1133#endif /* CONFIG_HIGHMEM */
1134
1135/**
1136 *      saveable_page - Determine whether a non-highmem page should be included
1137 *      in the suspend image.
1138 *
1139 *      We should save the page if it isn't Nosave, and is not in the range
1140 *      of pages statically defined as 'unsaveable', and it isn't a part of
1141 *      a free chunk of pages.
1142 */
1143static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1144{
1145        struct page *page;
1146
1147        if (!pfn_valid(pfn))
1148                return NULL;
1149
1150        page = pfn_to_page(pfn);
1151        if (page_zone(page) != zone)
1152                return NULL;
1153
1154        BUG_ON(PageHighMem(page));
1155
1156        if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1157                return NULL;
1158
1159        if (PageReserved(page)
1160            && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1161                return NULL;
1162
1163        if (page_is_guard(page))
1164                return NULL;
1165
1166        return page;
1167}
1168
1169/**
1170 *      count_data_pages - compute the total number of saveable non-highmem
1171 *      pages.
1172 */
1173
1174static unsigned int count_data_pages(void)
1175{
1176        struct zone *zone;
1177        unsigned long pfn, max_zone_pfn;
1178        unsigned int n = 0;
1179
1180        for_each_populated_zone(zone) {
1181                if (is_highmem(zone))
1182                        continue;
1183
1184                mark_free_pages(zone);
1185                max_zone_pfn = zone_end_pfn(zone);
1186                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187                        if (saveable_page(zone, pfn))
1188                                n++;
1189        }
1190        return n;
1191}
1192
1193/* This is needed, because copy_page and memcpy are not usable for copying
1194 * task structs.
1195 */
1196static inline void do_copy_page(long *dst, long *src)
1197{
1198        int n;
1199
1200        for (n = PAGE_SIZE / sizeof(long); n; n--)
1201                *dst++ = *src++;
1202}
1203
1204
1205/**
1206 *      safe_copy_page - check if the page we are going to copy is marked as
1207 *              present in the kernel page tables (this always is the case if
1208 *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
1209 *              kernel_page_present() always returns 'true').
1210 */
1211static void safe_copy_page(void *dst, struct page *s_page)
1212{
1213        if (kernel_page_present(s_page)) {
1214                do_copy_page(dst, page_address(s_page));
1215        } else {
1216                kernel_map_pages(s_page, 1, 1);
1217                do_copy_page(dst, page_address(s_page));
1218                kernel_map_pages(s_page, 1, 0);
1219        }
1220}
1221
1222
1223#ifdef CONFIG_HIGHMEM
1224static inline struct page *
1225page_is_saveable(struct zone *zone, unsigned long pfn)
1226{
1227        return is_highmem(zone) ?
1228                saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1229}
1230
1231static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1232{
1233        struct page *s_page, *d_page;
1234        void *src, *dst;
1235
1236        s_page = pfn_to_page(src_pfn);
1237        d_page = pfn_to_page(dst_pfn);
1238        if (PageHighMem(s_page)) {
1239                src = kmap_atomic(s_page);
1240                dst = kmap_atomic(d_page);
1241                do_copy_page(dst, src);
1242                kunmap_atomic(dst);
1243                kunmap_atomic(src);
1244        } else {
1245                if (PageHighMem(d_page)) {
1246                        /* Page pointed to by src may contain some kernel
1247                         * data modified by kmap_atomic()
1248                         */
1249                        safe_copy_page(buffer, s_page);
1250                        dst = kmap_atomic(d_page);
1251                        copy_page(dst, buffer);
1252                        kunmap_atomic(dst);
1253                } else {
1254                        safe_copy_page(page_address(d_page), s_page);
1255                }
1256        }
1257}
1258#else
1259#define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1260
1261static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1262{
1263        safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1264                                pfn_to_page(src_pfn));
1265}
1266#endif /* CONFIG_HIGHMEM */
1267
1268static void
1269copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1270{
1271        struct zone *zone;
1272        unsigned long pfn;
1273
1274        for_each_populated_zone(zone) {
1275                unsigned long max_zone_pfn;
1276
1277                mark_free_pages(zone);
1278                max_zone_pfn = zone_end_pfn(zone);
1279                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1280                        if (page_is_saveable(zone, pfn))
1281                                memory_bm_set_bit(orig_bm, pfn);
1282        }
1283        memory_bm_position_reset(orig_bm);
1284        memory_bm_position_reset(copy_bm);
1285        for(;;) {
1286                pfn = memory_bm_next_pfn(orig_bm);
1287                if (unlikely(pfn == BM_END_OF_MAP))
1288                        break;
1289                copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1290        }
1291}
1292
1293/* Total number of image pages */
1294static unsigned int nr_copy_pages;
1295/* Number of pages needed for saving the original pfns of the image pages */
1296static unsigned int nr_meta_pages;
1297/*
1298 * Numbers of normal and highmem page frames allocated for hibernation image
1299 * before suspending devices.
1300 */
1301unsigned int alloc_normal, alloc_highmem;
1302/*
1303 * Memory bitmap used for marking saveable pages (during hibernation) or
1304 * hibernation image pages (during restore)
1305 */
1306static struct memory_bitmap orig_bm;
1307/*
1308 * Memory bitmap used during hibernation for marking allocated page frames that
1309 * will contain copies of saveable pages.  During restore it is initially used
1310 * for marking hibernation image pages, but then the set bits from it are
1311 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1312 * used for marking "safe" highmem pages, but it has to be reinitialized for
1313 * this purpose.
1314 */
1315static struct memory_bitmap copy_bm;
1316
1317/**
1318 *      swsusp_free - free pages allocated for the suspend.
1319 *
1320 *      Suspend pages are alocated before the atomic copy is made, so we
1321 *      need to release them after the resume.
1322 */
1323
1324void swsusp_free(void)
1325{
1326        unsigned long fb_pfn, fr_pfn;
1327
1328        if (!forbidden_pages_map || !free_pages_map)
1329                goto out;
1330
1331        memory_bm_position_reset(forbidden_pages_map);
1332        memory_bm_position_reset(free_pages_map);
1333
1334loop:
1335        fr_pfn = memory_bm_next_pfn(free_pages_map);
1336        fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1337
1338        /*
1339         * Find the next bit set in both bitmaps. This is guaranteed to
1340         * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1341         */
1342        do {
1343                if (fb_pfn < fr_pfn)
1344                        fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1345                if (fr_pfn < fb_pfn)
1346                        fr_pfn = memory_bm_next_pfn(free_pages_map);
1347        } while (fb_pfn != fr_pfn);
1348
1349        if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1350                struct page *page = pfn_to_page(fr_pfn);
1351
1352                memory_bm_clear_current(forbidden_pages_map);
1353                memory_bm_clear_current(free_pages_map);
1354                __free_page(page);
1355                goto loop;
1356        }
1357
1358out:
1359        nr_copy_pages = 0;
1360        nr_meta_pages = 0;
1361        restore_pblist = NULL;
1362        buffer = NULL;
1363        alloc_normal = 0;
1364        alloc_highmem = 0;
1365}
1366
1367/* Helper functions used for the shrinking of memory. */
1368
1369#define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1370
1371/**
1372 * preallocate_image_pages - Allocate a number of pages for hibernation image
1373 * @nr_pages: Number of page frames to allocate.
1374 * @mask: GFP flags to use for the allocation.
1375 *
1376 * Return value: Number of page frames actually allocated
1377 */
1378static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1379{
1380        unsigned long nr_alloc = 0;
1381
1382        while (nr_pages > 0) {
1383                struct page *page;
1384
1385                page = alloc_image_page(mask);
1386                if (!page)
1387                        break;
1388                memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1389                if (PageHighMem(page))
1390                        alloc_highmem++;
1391                else
1392                        alloc_normal++;
1393                nr_pages--;
1394                nr_alloc++;
1395        }
1396
1397        return nr_alloc;
1398}
1399
1400static unsigned long preallocate_image_memory(unsigned long nr_pages,
1401                                              unsigned long avail_normal)
1402{
1403        unsigned long alloc;
1404
1405        if (avail_normal <= alloc_normal)
1406                return 0;
1407
1408        alloc = avail_normal - alloc_normal;
1409        if (nr_pages < alloc)
1410                alloc = nr_pages;
1411
1412        return preallocate_image_pages(alloc, GFP_IMAGE);
1413}
1414
1415#ifdef CONFIG_HIGHMEM
1416static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1417{
1418        return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1419}
1420
1421/**
1422 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1423 */
1424static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1425{
1426        x *= multiplier;
1427        do_div(x, base);
1428        return (unsigned long)x;
1429}
1430
1431static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1432                                                unsigned long highmem,
1433                                                unsigned long total)
1434{
1435        unsigned long alloc = __fraction(nr_pages, highmem, total);
1436
1437        return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1438}
1439#else /* CONFIG_HIGHMEM */
1440static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1441{
1442        return 0;
1443}
1444
1445static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1446                                                unsigned long highmem,
1447                                                unsigned long total)
1448{
1449        return 0;
1450}
1451#endif /* CONFIG_HIGHMEM */
1452
1453/**
1454 * free_unnecessary_pages - Release preallocated pages not needed for the image
1455 */
1456static unsigned long free_unnecessary_pages(void)
1457{
1458        unsigned long save, to_free_normal, to_free_highmem, free;
1459
1460        save = count_data_pages();
1461        if (alloc_normal >= save) {
1462                to_free_normal = alloc_normal - save;
1463                save = 0;
1464        } else {
1465                to_free_normal = 0;
1466                save -= alloc_normal;
1467        }
1468        save += count_highmem_pages();
1469        if (alloc_highmem >= save) {
1470                to_free_highmem = alloc_highmem - save;
1471        } else {
1472                to_free_highmem = 0;
1473                save -= alloc_highmem;
1474                if (to_free_normal > save)
1475                        to_free_normal -= save;
1476                else
1477                        to_free_normal = 0;
1478        }
1479        free = to_free_normal + to_free_highmem;
1480
1481        memory_bm_position_reset(&copy_bm);
1482
1483        while (to_free_normal > 0 || to_free_highmem > 0) {
1484                unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1485                struct page *page = pfn_to_page(pfn);
1486
1487                if (PageHighMem(page)) {
1488                        if (!to_free_highmem)
1489                                continue;
1490                        to_free_highmem--;
1491                        alloc_highmem--;
1492                } else {
1493                        if (!to_free_normal)
1494                                continue;
1495                        to_free_normal--;
1496                        alloc_normal--;
1497                }
1498                memory_bm_clear_bit(&copy_bm, pfn);
1499                swsusp_unset_page_forbidden(page);
1500                swsusp_unset_page_free(page);
1501                __free_page(page);
1502        }
1503
1504        return free;
1505}
1506
1507/**
1508 * minimum_image_size - Estimate the minimum acceptable size of an image
1509 * @saveable: Number of saveable pages in the system.
1510 *
1511 * We want to avoid attempting to free too much memory too hard, so estimate the
1512 * minimum acceptable size of a hibernation image to use as the lower limit for
1513 * preallocating memory.
1514 *
1515 * We assume that the minimum image size should be proportional to
1516 *
1517 * [number of saveable pages] - [number of pages that can be freed in theory]
1518 *
1519 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1520 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1521 * minus mapped file pages.
1522 */
1523static unsigned long minimum_image_size(unsigned long saveable)
1524{
1525        unsigned long size;
1526
1527        size = global_page_state(NR_SLAB_RECLAIMABLE)
1528                + global_page_state(NR_ACTIVE_ANON)
1529                + global_page_state(NR_INACTIVE_ANON)
1530                + global_page_state(NR_ACTIVE_FILE)
1531                + global_page_state(NR_INACTIVE_FILE)
1532                - global_page_state(NR_FILE_MAPPED);
1533
1534        return saveable <= size ? 0 : saveable - size;
1535}
1536
1537/**
1538 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1539 *
1540 * To create a hibernation image it is necessary to make a copy of every page
1541 * frame in use.  We also need a number of page frames to be free during
1542 * hibernation for allocations made while saving the image and for device
1543 * drivers, in case they need to allocate memory from their hibernation
1544 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1545 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1546 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1547 * total number of available page frames and allocate at least
1548 *
1549 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1550 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1551 *
1552 * of them, which corresponds to the maximum size of a hibernation image.
1553 *
1554 * If image_size is set below the number following from the above formula,
1555 * the preallocation of memory is continued until the total number of saveable
1556 * pages in the system is below the requested image size or the minimum
1557 * acceptable image size returned by minimum_image_size(), whichever is greater.
1558 */
1559int hibernate_preallocate_memory(void)
1560{
1561        struct zone *zone;
1562        unsigned long saveable, size, max_size, count, highmem, pages = 0;
1563        unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1564        ktime_t start, stop;
1565        int error;
1566
1567        printk(KERN_INFO "PM: Preallocating image memory... ");
1568        start = ktime_get();
1569
1570        error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1571        if (error)
1572                goto err_out;
1573
1574        error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1575        if (error)
1576                goto err_out;
1577
1578        alloc_normal = 0;
1579        alloc_highmem = 0;
1580
1581        /* Count the number of saveable data pages. */
1582        save_highmem = count_highmem_pages();
1583        saveable = count_data_pages();
1584
1585        /*
1586         * Compute the total number of page frames we can use (count) and the
1587         * number of pages needed for image metadata (size).
1588         */
1589        count = saveable;
1590        saveable += save_highmem;
1591        highmem = save_highmem;
1592        size = 0;
1593        for_each_populated_zone(zone) {
1594                size += snapshot_additional_pages(zone);
1595                if (is_highmem(zone))
1596                        highmem += zone_page_state(zone, NR_FREE_PAGES);
1597                else
1598                        count += zone_page_state(zone, NR_FREE_PAGES);
1599        }
1600        avail_normal = count;
1601        count += highmem;
1602        count -= totalreserve_pages;
1603
1604        /* Add number of pages required for page keys (s390 only). */
1605        size += page_key_additional_pages(saveable);
1606
1607        /* Compute the maximum number of saveable pages to leave in memory. */
1608        max_size = (count - (size + PAGES_FOR_IO)) / 2
1609                        - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1610        /* Compute the desired number of image pages specified by image_size. */
1611        size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1612        if (size > max_size)
1613                size = max_size;
1614        /*
1615         * If the desired number of image pages is at least as large as the
1616         * current number of saveable pages in memory, allocate page frames for
1617         * the image and we're done.
1618         */
1619        if (size >= saveable) {
1620                pages = preallocate_image_highmem(save_highmem);
1621                pages += preallocate_image_memory(saveable - pages, avail_normal);
1622                goto out;
1623        }
1624
1625        /* Estimate the minimum size of the image. */
1626        pages = minimum_image_size(saveable);
1627        /*
1628         * To avoid excessive pressure on the normal zone, leave room in it to
1629         * accommodate an image of the minimum size (unless it's already too
1630         * small, in which case don't preallocate pages from it at all).
1631         */
1632        if (avail_normal > pages)
1633                avail_normal -= pages;
1634        else
1635                avail_normal = 0;
1636        if (size < pages)
1637                size = min_t(unsigned long, pages, max_size);
1638
1639        /*
1640         * Let the memory management subsystem know that we're going to need a
1641         * large number of page frames to allocate and make it free some memory.
1642         * NOTE: If this is not done, performance will be hurt badly in some
1643         * test cases.
1644         */
1645        shrink_all_memory(saveable - size);
1646
1647        /*
1648         * The number of saveable pages in memory was too high, so apply some
1649         * pressure to decrease it.  First, make room for the largest possible
1650         * image and fail if that doesn't work.  Next, try to decrease the size
1651         * of the image as much as indicated by 'size' using allocations from
1652         * highmem and non-highmem zones separately.
1653         */
1654        pages_highmem = preallocate_image_highmem(highmem / 2);
1655        alloc = count - max_size;
1656        if (alloc > pages_highmem)
1657                alloc -= pages_highmem;
1658        else
1659                alloc = 0;
1660        pages = preallocate_image_memory(alloc, avail_normal);
1661        if (pages < alloc) {
1662                /* We have exhausted non-highmem pages, try highmem. */
1663                alloc -= pages;
1664                pages += pages_highmem;
1665                pages_highmem = preallocate_image_highmem(alloc);
1666                if (pages_highmem < alloc)
1667                        goto err_out;
1668                pages += pages_highmem;
1669                /*
1670                 * size is the desired number of saveable pages to leave in
1671                 * memory, so try to preallocate (all memory - size) pages.
1672                 */
1673                alloc = (count - pages) - size;
1674                pages += preallocate_image_highmem(alloc);
1675        } else {
1676                /*
1677                 * There are approximately max_size saveable pages at this point
1678                 * and we want to reduce this number down to size.
1679                 */
1680                alloc = max_size - size;
1681                size = preallocate_highmem_fraction(alloc, highmem, count);
1682                pages_highmem += size;
1683                alloc -= size;
1684                size = preallocate_image_memory(alloc, avail_normal);
1685                pages_highmem += preallocate_image_highmem(alloc - size);
1686                pages += pages_highmem + size;
1687        }
1688
1689        /*
1690         * We only need as many page frames for the image as there are saveable
1691         * pages in memory, but we have allocated more.  Release the excessive
1692         * ones now.
1693         */
1694        pages -= free_unnecessary_pages();
1695
1696 out:
1697        stop = ktime_get();
1698        printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1699        swsusp_show_speed(start, stop, pages, "Allocated");
1700
1701        return 0;
1702
1703 err_out:
1704        printk(KERN_CONT "\n");
1705        swsusp_free();
1706        return -ENOMEM;
1707}
1708
1709#ifdef CONFIG_HIGHMEM
1710/**
1711  *     count_pages_for_highmem - compute the number of non-highmem pages
1712  *     that will be necessary for creating copies of highmem pages.
1713  */
1714
1715static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1716{
1717        unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1718
1719        if (free_highmem >= nr_highmem)
1720                nr_highmem = 0;
1721        else
1722                nr_highmem -= free_highmem;
1723
1724        return nr_highmem;
1725}
1726#else
1727static unsigned int
1728count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1729#endif /* CONFIG_HIGHMEM */
1730
1731/**
1732 *      enough_free_mem - Make sure we have enough free memory for the
1733 *      snapshot image.
1734 */
1735
1736static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1737{
1738        struct zone *zone;
1739        unsigned int free = alloc_normal;
1740
1741        for_each_populated_zone(zone)
1742                if (!is_highmem(zone))
1743                        free += zone_page_state(zone, NR_FREE_PAGES);
1744
1745        nr_pages += count_pages_for_highmem(nr_highmem);
1746        pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1747                nr_pages, PAGES_FOR_IO, free);
1748
1749        return free > nr_pages + PAGES_FOR_IO;
1750}
1751
1752#ifdef CONFIG_HIGHMEM
1753/**
1754 *      get_highmem_buffer - if there are some highmem pages in the suspend
1755 *      image, we may need the buffer to copy them and/or load their data.
1756 */
1757
1758static inline int get_highmem_buffer(int safe_needed)
1759{
1760        buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1761        return buffer ? 0 : -ENOMEM;
1762}
1763
1764/**
1765 *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1766 *      Try to allocate as many pages as needed, but if the number of free
1767 *      highmem pages is lesser than that, allocate them all.
1768 */
1769
1770static inline unsigned int
1771alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1772{
1773        unsigned int to_alloc = count_free_highmem_pages();
1774
1775        if (to_alloc > nr_highmem)
1776                to_alloc = nr_highmem;
1777
1778        nr_highmem -= to_alloc;
1779        while (to_alloc-- > 0) {
1780                struct page *page;
1781
1782                page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1783                memory_bm_set_bit(bm, page_to_pfn(page));
1784        }
1785        return nr_highmem;
1786}
1787#else
1788static inline int get_highmem_buffer(int safe_needed) { return 0; }
1789
1790static inline unsigned int
1791alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1792#endif /* CONFIG_HIGHMEM */
1793
1794/**
1795 *      swsusp_alloc - allocate memory for the suspend image
1796 *
1797 *      We first try to allocate as many highmem pages as there are
1798 *      saveable highmem pages in the system.  If that fails, we allocate
1799 *      non-highmem pages for the copies of the remaining highmem ones.
1800 *
1801 *      In this approach it is likely that the copies of highmem pages will
1802 *      also be located in the high memory, because of the way in which
1803 *      copy_data_pages() works.
1804 */
1805
1806static int
1807swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1808                unsigned int nr_pages, unsigned int nr_highmem)
1809{
1810        if (nr_highmem > 0) {
1811                if (get_highmem_buffer(PG_ANY))
1812                        goto err_out;
1813                if (nr_highmem > alloc_highmem) {
1814                        nr_highmem -= alloc_highmem;
1815                        nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1816                }
1817        }
1818        if (nr_pages > alloc_normal) {
1819                nr_pages -= alloc_normal;
1820                while (nr_pages-- > 0) {
1821                        struct page *page;
1822
1823                        page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1824                        if (!page)
1825                                goto err_out;
1826                        memory_bm_set_bit(copy_bm, page_to_pfn(page));
1827                }
1828        }
1829
1830        return 0;
1831
1832 err_out:
1833        swsusp_free();
1834        return -ENOMEM;
1835}
1836
1837asmlinkage __visible int swsusp_save(void)
1838{
1839        unsigned int nr_pages, nr_highmem;
1840
1841        printk(KERN_INFO "PM: Creating hibernation image:\n");
1842
1843        drain_local_pages(NULL);
1844        nr_pages = count_data_pages();
1845        nr_highmem = count_highmem_pages();
1846        printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1847
1848        if (!enough_free_mem(nr_pages, nr_highmem)) {
1849                printk(KERN_ERR "PM: Not enough free memory\n");
1850                return -ENOMEM;
1851        }
1852
1853        if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1854                printk(KERN_ERR "PM: Memory allocation failed\n");
1855                return -ENOMEM;
1856        }
1857
1858        /* During allocating of suspend pagedir, new cold pages may appear.
1859         * Kill them.
1860         */
1861        drain_local_pages(NULL);
1862        copy_data_pages(&copy_bm, &orig_bm);
1863
1864        /*
1865         * End of critical section. From now on, we can write to memory,
1866         * but we should not touch disk. This specially means we must _not_
1867         * touch swap space! Except we must write out our image of course.
1868         */
1869
1870        nr_pages += nr_highmem;
1871        nr_copy_pages = nr_pages;
1872        nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1873
1874        printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1875                nr_pages);
1876
1877        return 0;
1878}
1879
1880#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1881static int init_header_complete(struct swsusp_info *info)
1882{
1883        memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1884        info->version_code = LINUX_VERSION_CODE;
1885        return 0;
1886}
1887
1888static char *check_image_kernel(struct swsusp_info *info)
1889{
1890        if (info->version_code != LINUX_VERSION_CODE)
1891                return "kernel version";
1892        if (strcmp(info->uts.sysname,init_utsname()->sysname))
1893                return "system type";
1894        if (strcmp(info->uts.release,init_utsname()->release))
1895                return "kernel release";
1896        if (strcmp(info->uts.version,init_utsname()->version))
1897                return "version";
1898        if (strcmp(info->uts.machine,init_utsname()->machine))
1899                return "machine";
1900        return NULL;
1901}
1902#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1903
1904unsigned long snapshot_get_image_size(void)
1905{
1906        return nr_copy_pages + nr_meta_pages + 1;
1907}
1908
1909static int init_header(struct swsusp_info *info)
1910{
1911        memset(info, 0, sizeof(struct swsusp_info));
1912        info->num_physpages = get_num_physpages();
1913        info->image_pages = nr_copy_pages;
1914        info->pages = snapshot_get_image_size();
1915        info->size = info->pages;
1916        info->size <<= PAGE_SHIFT;
1917        return init_header_complete(info);
1918}
1919
1920/**
1921 *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1922 *      are stored in the array @buf[] (1 page at a time)
1923 */
1924
1925static inline void
1926pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1927{
1928        int j;
1929
1930        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1931                buf[j] = memory_bm_next_pfn(bm);
1932                if (unlikely(buf[j] == BM_END_OF_MAP))
1933                        break;
1934                /* Save page key for data page (s390 only). */
1935                page_key_read(buf + j);
1936        }
1937}
1938
1939/**
1940 *      snapshot_read_next - used for reading the system memory snapshot.
1941 *
1942 *      On the first call to it @handle should point to a zeroed
1943 *      snapshot_handle structure.  The structure gets updated and a pointer
1944 *      to it should be passed to this function every next time.
1945 *
1946 *      On success the function returns a positive number.  Then, the caller
1947 *      is allowed to read up to the returned number of bytes from the memory
1948 *      location computed by the data_of() macro.
1949 *
1950 *      The function returns 0 to indicate the end of data stream condition,
1951 *      and a negative number is returned on error.  In such cases the
1952 *      structure pointed to by @handle is not updated and should not be used
1953 *      any more.
1954 */
1955
1956int snapshot_read_next(struct snapshot_handle *handle)
1957{
1958        if (handle->cur > nr_meta_pages + nr_copy_pages)
1959                return 0;
1960
1961        if (!buffer) {
1962                /* This makes the buffer be freed by swsusp_free() */
1963                buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1964                if (!buffer)
1965                        return -ENOMEM;
1966        }
1967        if (!handle->cur) {
1968                int error;
1969
1970                error = init_header((struct swsusp_info *)buffer);
1971                if (error)
1972                        return error;
1973                handle->buffer = buffer;
1974                memory_bm_position_reset(&orig_bm);
1975                memory_bm_position_reset(&copy_bm);
1976        } else if (handle->cur <= nr_meta_pages) {
1977                clear_page(buffer);
1978                pack_pfns(buffer, &orig_bm);
1979        } else {
1980                struct page *page;
1981
1982                page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1983                if (PageHighMem(page)) {
1984                        /* Highmem pages are copied to the buffer,
1985                         * because we can't return with a kmapped
1986                         * highmem page (we may not be called again).
1987                         */
1988                        void *kaddr;
1989
1990                        kaddr = kmap_atomic(page);
1991                        copy_page(buffer, kaddr);
1992                        kunmap_atomic(kaddr);
1993                        handle->buffer = buffer;
1994                } else {
1995                        handle->buffer = page_address(page);
1996                }
1997        }
1998        handle->cur++;
1999        return PAGE_SIZE;
2000}
2001
2002/**
2003 *      mark_unsafe_pages - mark the pages that cannot be used for storing
2004 *      the image during resume, because they conflict with the pages that
2005 *      had been used before suspend
2006 */
2007
2008static int mark_unsafe_pages(struct memory_bitmap *bm)
2009{
2010        struct zone *zone;
2011        unsigned long pfn, max_zone_pfn;
2012
2013        /* Clear page flags */
2014        for_each_populated_zone(zone) {
2015                max_zone_pfn = zone_end_pfn(zone);
2016                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2017                        if (pfn_valid(pfn))
2018                                swsusp_unset_page_free(pfn_to_page(pfn));
2019        }
2020
2021        /* Mark pages that correspond to the "original" pfns as "unsafe" */
2022        memory_bm_position_reset(bm);
2023        do {
2024                pfn = memory_bm_next_pfn(bm);
2025                if (likely(pfn != BM_END_OF_MAP)) {
2026                        if (likely(pfn_valid(pfn)))
2027                                swsusp_set_page_free(pfn_to_page(pfn));
2028                        else
2029                                return -EFAULT;
2030                }
2031        } while (pfn != BM_END_OF_MAP);
2032
2033        allocated_unsafe_pages = 0;
2034
2035        return 0;
2036}
2037
2038static void
2039duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2040{
2041        unsigned long pfn;
2042
2043        memory_bm_position_reset(src);
2044        pfn = memory_bm_next_pfn(src);
2045        while (pfn != BM_END_OF_MAP) {
2046                memory_bm_set_bit(dst, pfn);
2047                pfn = memory_bm_next_pfn(src);
2048        }
2049}
2050
2051static int check_header(struct swsusp_info *info)
2052{
2053        char *reason;
2054
2055        reason = check_image_kernel(info);
2056        if (!reason && info->num_physpages != get_num_physpages())
2057                reason = "memory size";
2058        if (reason) {
2059                printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2060                return -EPERM;
2061        }
2062        return 0;
2063}
2064
2065/**
2066 *      load header - check the image header and copy data from it
2067 */
2068
2069static int
2070load_header(struct swsusp_info *info)
2071{
2072        int error;
2073
2074        restore_pblist = NULL;
2075        error = check_header(info);
2076        if (!error) {
2077                nr_copy_pages = info->image_pages;
2078                nr_meta_pages = info->pages - info->image_pages - 1;
2079        }
2080        return error;
2081}
2082
2083/**
2084 *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2085 *      the corresponding bit in the memory bitmap @bm
2086 */
2087static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2088{
2089        int j;
2090
2091        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2092                if (unlikely(buf[j] == BM_END_OF_MAP))
2093                        break;
2094
2095                /* Extract and buffer page key for data page (s390 only). */
2096                page_key_memorize(buf + j);
2097
2098                if (memory_bm_pfn_present(bm, buf[j]))
2099                        memory_bm_set_bit(bm, buf[j]);
2100                else
2101                        return -EFAULT;
2102        }
2103
2104        return 0;
2105}
2106
2107/* List of "safe" pages that may be used to store data loaded from the suspend
2108 * image
2109 */
2110static struct linked_page *safe_pages_list;
2111
2112#ifdef CONFIG_HIGHMEM
2113/* struct highmem_pbe is used for creating the list of highmem pages that
2114 * should be restored atomically during the resume from disk, because the page
2115 * frames they have occupied before the suspend are in use.
2116 */
2117struct highmem_pbe {
2118        struct page *copy_page; /* data is here now */
2119        struct page *orig_page; /* data was here before the suspend */
2120        struct highmem_pbe *next;
2121};
2122
2123/* List of highmem PBEs needed for restoring the highmem pages that were
2124 * allocated before the suspend and included in the suspend image, but have
2125 * also been allocated by the "resume" kernel, so their contents cannot be
2126 * written directly to their "original" page frames.
2127 */
2128static struct highmem_pbe *highmem_pblist;
2129
2130/**
2131 *      count_highmem_image_pages - compute the number of highmem pages in the
2132 *      suspend image.  The bits in the memory bitmap @bm that correspond to the
2133 *      image pages are assumed to be set.
2134 */
2135
2136static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2137{
2138        unsigned long pfn;
2139        unsigned int cnt = 0;
2140
2141        memory_bm_position_reset(bm);
2142        pfn = memory_bm_next_pfn(bm);
2143        while (pfn != BM_END_OF_MAP) {
2144                if (PageHighMem(pfn_to_page(pfn)))
2145                        cnt++;
2146
2147                pfn = memory_bm_next_pfn(bm);
2148        }
2149        return cnt;
2150}
2151
2152/**
2153 *      prepare_highmem_image - try to allocate as many highmem pages as
2154 *      there are highmem image pages (@nr_highmem_p points to the variable
2155 *      containing the number of highmem image pages).  The pages that are
2156 *      "safe" (ie. will not be overwritten when the suspend image is
2157 *      restored) have the corresponding bits set in @bm (it must be
2158 *      unitialized).
2159 *
2160 *      NOTE: This function should not be called if there are no highmem
2161 *      image pages.
2162 */
2163
2164static unsigned int safe_highmem_pages;
2165
2166static struct memory_bitmap *safe_highmem_bm;
2167
2168static int
2169prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2170{
2171        unsigned int to_alloc;
2172
2173        if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2174                return -ENOMEM;
2175
2176        if (get_highmem_buffer(PG_SAFE))
2177                return -ENOMEM;
2178
2179        to_alloc = count_free_highmem_pages();
2180        if (to_alloc > *nr_highmem_p)
2181                to_alloc = *nr_highmem_p;
2182        else
2183                *nr_highmem_p = to_alloc;
2184
2185        safe_highmem_pages = 0;
2186        while (to_alloc-- > 0) {
2187                struct page *page;
2188
2189                page = alloc_page(__GFP_HIGHMEM);
2190                if (!swsusp_page_is_free(page)) {
2191                        /* The page is "safe", set its bit the bitmap */
2192                        memory_bm_set_bit(bm, page_to_pfn(page));
2193                        safe_highmem_pages++;
2194                }
2195                /* Mark the page as allocated */
2196                swsusp_set_page_forbidden(page);
2197                swsusp_set_page_free(page);
2198        }
2199        memory_bm_position_reset(bm);
2200        safe_highmem_bm = bm;
2201        return 0;
2202}
2203
2204/**
2205 *      get_highmem_page_buffer - for given highmem image page find the buffer
2206 *      that suspend_write_next() should set for its caller to write to.
2207 *
2208 *      If the page is to be saved to its "original" page frame or a copy of
2209 *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
2210 *      the copy of the page is to be made in normal memory, so the address of
2211 *      the copy is returned.
2212 *
2213 *      If @buffer is returned, the caller of suspend_write_next() will write
2214 *      the page's contents to @buffer, so they will have to be copied to the
2215 *      right location on the next call to suspend_write_next() and it is done
2216 *      with the help of copy_last_highmem_page().  For this purpose, if
2217 *      @buffer is returned, @last_highmem page is set to the page to which
2218 *      the data will have to be copied from @buffer.
2219 */
2220
2221static struct page *last_highmem_page;
2222
2223static void *
2224get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2225{
2226        struct highmem_pbe *pbe;
2227        void *kaddr;
2228
2229        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2230                /* We have allocated the "original" page frame and we can
2231                 * use it directly to store the loaded page.
2232                 */
2233                last_highmem_page = page;
2234                return buffer;
2235        }
2236        /* The "original" page frame has not been allocated and we have to
2237         * use a "safe" page frame to store the loaded page.
2238         */
2239        pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2240        if (!pbe) {
2241                swsusp_free();
2242                return ERR_PTR(-ENOMEM);
2243        }
2244        pbe->orig_page = page;
2245        if (safe_highmem_pages > 0) {
2246                struct page *tmp;
2247
2248                /* Copy of the page will be stored in high memory */
2249                kaddr = buffer;
2250                tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2251                safe_highmem_pages--;
2252                last_highmem_page = tmp;
2253                pbe->copy_page = tmp;
2254        } else {
2255                /* Copy of the page will be stored in normal memory */
2256                kaddr = safe_pages_list;
2257                safe_pages_list = safe_pages_list->next;
2258                pbe->copy_page = virt_to_page(kaddr);
2259        }
2260        pbe->next = highmem_pblist;
2261        highmem_pblist = pbe;
2262        return kaddr;
2263}
2264
2265/**
2266 *      copy_last_highmem_page - copy the contents of a highmem image from
2267 *      @buffer, where the caller of snapshot_write_next() has place them,
2268 *      to the right location represented by @last_highmem_page .
2269 */
2270
2271static void copy_last_highmem_page(void)
2272{
2273        if (last_highmem_page) {
2274                void *dst;
2275
2276                dst = kmap_atomic(last_highmem_page);
2277                copy_page(dst, buffer);
2278                kunmap_atomic(dst);
2279                last_highmem_page = NULL;
2280        }
2281}
2282
2283static inline int last_highmem_page_copied(void)
2284{
2285        return !last_highmem_page;
2286}
2287
2288static inline void free_highmem_data(void)
2289{
2290        if (safe_highmem_bm)
2291                memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2292
2293        if (buffer)
2294                free_image_page(buffer, PG_UNSAFE_CLEAR);
2295}
2296#else
2297static unsigned int
2298count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2299
2300static inline int
2301prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2302{
2303        return 0;
2304}
2305
2306static inline void *
2307get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2308{
2309        return ERR_PTR(-EINVAL);
2310}
2311
2312static inline void copy_last_highmem_page(void) {}
2313static inline int last_highmem_page_copied(void) { return 1; }
2314static inline void free_highmem_data(void) {}
2315#endif /* CONFIG_HIGHMEM */
2316
2317/**
2318 *      prepare_image - use the memory bitmap @bm to mark the pages that will
2319 *      be overwritten in the process of restoring the system memory state
2320 *      from the suspend image ("unsafe" pages) and allocate memory for the
2321 *      image.
2322 *
2323 *      The idea is to allocate a new memory bitmap first and then allocate
2324 *      as many pages as needed for the image data, but not to assign these
2325 *      pages to specific tasks initially.  Instead, we just mark them as
2326 *      allocated and create a lists of "safe" pages that will be used
2327 *      later.  On systems with high memory a list of "safe" highmem pages is
2328 *      also created.
2329 */
2330
2331#define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2332
2333static int
2334prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2335{
2336        unsigned int nr_pages, nr_highmem;
2337        struct linked_page *sp_list, *lp;
2338        int error;
2339
2340        /* If there is no highmem, the buffer will not be necessary */
2341        free_image_page(buffer, PG_UNSAFE_CLEAR);
2342        buffer = NULL;
2343
2344        nr_highmem = count_highmem_image_pages(bm);
2345        error = mark_unsafe_pages(bm);
2346        if (error)
2347                goto Free;
2348
2349        error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2350        if (error)
2351                goto Free;
2352
2353        duplicate_memory_bitmap(new_bm, bm);
2354        memory_bm_free(bm, PG_UNSAFE_KEEP);
2355        if (nr_highmem > 0) {
2356                error = prepare_highmem_image(bm, &nr_highmem);
2357                if (error)
2358                        goto Free;
2359        }
2360        /* Reserve some safe pages for potential later use.
2361         *
2362         * NOTE: This way we make sure there will be enough safe pages for the
2363         * chain_alloc() in get_buffer().  It is a bit wasteful, but
2364         * nr_copy_pages cannot be greater than 50% of the memory anyway.
2365         */
2366        sp_list = NULL;
2367        /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2368        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2369        nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2370        while (nr_pages > 0) {
2371                lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2372                if (!lp) {
2373                        error = -ENOMEM;
2374                        goto Free;
2375                }
2376                lp->next = sp_list;
2377                sp_list = lp;
2378                nr_pages--;
2379        }
2380        /* Preallocate memory for the image */
2381        safe_pages_list = NULL;
2382        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2383        while (nr_pages > 0) {
2384                lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2385                if (!lp) {
2386                        error = -ENOMEM;
2387                        goto Free;
2388                }
2389                if (!swsusp_page_is_free(virt_to_page(lp))) {
2390                        /* The page is "safe", add it to the list */
2391                        lp->next = safe_pages_list;
2392                        safe_pages_list = lp;
2393                }
2394                /* Mark the page as allocated */
2395                swsusp_set_page_forbidden(virt_to_page(lp));
2396                swsusp_set_page_free(virt_to_page(lp));
2397                nr_pages--;
2398        }
2399        /* Free the reserved safe pages so that chain_alloc() can use them */
2400        while (sp_list) {
2401                lp = sp_list->next;
2402                free_image_page(sp_list, PG_UNSAFE_CLEAR);
2403                sp_list = lp;
2404        }
2405        return 0;
2406
2407 Free:
2408        swsusp_free();
2409        return error;
2410}
2411
2412/**
2413 *      get_buffer - compute the address that snapshot_write_next() should
2414 *      set for its caller to write to.
2415 */
2416
2417static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2418{
2419        struct pbe *pbe;
2420        struct page *page;
2421        unsigned long pfn = memory_bm_next_pfn(bm);
2422
2423        if (pfn == BM_END_OF_MAP)
2424                return ERR_PTR(-EFAULT);
2425
2426        page = pfn_to_page(pfn);
2427        if (PageHighMem(page))
2428                return get_highmem_page_buffer(page, ca);
2429
2430        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2431                /* We have allocated the "original" page frame and we can
2432                 * use it directly to store the loaded page.
2433                 */
2434                return page_address(page);
2435
2436        /* The "original" page frame has not been allocated and we have to
2437         * use a "safe" page frame to store the loaded page.
2438         */
2439        pbe = chain_alloc(ca, sizeof(struct pbe));
2440        if (!pbe) {
2441                swsusp_free();
2442                return ERR_PTR(-ENOMEM);
2443        }
2444        pbe->orig_address = page_address(page);
2445        pbe->address = safe_pages_list;
2446        safe_pages_list = safe_pages_list->next;
2447        pbe->next = restore_pblist;
2448        restore_pblist = pbe;
2449        return pbe->address;
2450}
2451
2452/**
2453 *      snapshot_write_next - used for writing the system memory snapshot.
2454 *
2455 *      On the first call to it @handle should point to a zeroed
2456 *      snapshot_handle structure.  The structure gets updated and a pointer
2457 *      to it should be passed to this function every next time.
2458 *
2459 *      On success the function returns a positive number.  Then, the caller
2460 *      is allowed to write up to the returned number of bytes to the memory
2461 *      location computed by the data_of() macro.
2462 *
2463 *      The function returns 0 to indicate the "end of file" condition,
2464 *      and a negative number is returned on error.  In such cases the
2465 *      structure pointed to by @handle is not updated and should not be used
2466 *      any more.
2467 */
2468
2469int snapshot_write_next(struct snapshot_handle *handle)
2470{
2471        static struct chain_allocator ca;
2472        int error = 0;
2473
2474        /* Check if we have already loaded the entire image */
2475        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2476                return 0;
2477
2478        handle->sync_read = 1;
2479
2480        if (!handle->cur) {
2481                if (!buffer)
2482                        /* This makes the buffer be freed by swsusp_free() */
2483                        buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2484
2485                if (!buffer)
2486                        return -ENOMEM;
2487
2488                handle->buffer = buffer;
2489        } else if (handle->cur == 1) {
2490                error = load_header(buffer);
2491                if (error)
2492                        return error;
2493
2494                error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2495                if (error)
2496                        return error;
2497
2498                /* Allocate buffer for page keys. */
2499                error = page_key_alloc(nr_copy_pages);
2500                if (error)
2501                        return error;
2502
2503        } else if (handle->cur <= nr_meta_pages + 1) {
2504                error = unpack_orig_pfns(buffer, &copy_bm);
2505                if (error)
2506                        return error;
2507
2508                if (handle->cur == nr_meta_pages + 1) {
2509                        error = prepare_image(&orig_bm, &copy_bm);
2510                        if (error)
2511                                return error;
2512
2513                        chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2514                        memory_bm_position_reset(&orig_bm);
2515                        restore_pblist = NULL;
2516                        handle->buffer = get_buffer(&orig_bm, &ca);
2517                        handle->sync_read = 0;
2518                        if (IS_ERR(handle->buffer))
2519                                return PTR_ERR(handle->buffer);
2520                }
2521        } else {
2522                copy_last_highmem_page();
2523                /* Restore page key for data page (s390 only). */
2524                page_key_write(handle->buffer);
2525                handle->buffer = get_buffer(&orig_bm, &ca);
2526                if (IS_ERR(handle->buffer))
2527                        return PTR_ERR(handle->buffer);
2528                if (handle->buffer != buffer)
2529                        handle->sync_read = 0;
2530        }
2531        handle->cur++;
2532        return PAGE_SIZE;
2533}
2534
2535/**
2536 *      snapshot_write_finalize - must be called after the last call to
2537 *      snapshot_write_next() in case the last page in the image happens
2538 *      to be a highmem page and its contents should be stored in the
2539 *      highmem.  Additionally, it releases the memory that will not be
2540 *      used any more.
2541 */
2542
2543void snapshot_write_finalize(struct snapshot_handle *handle)
2544{
2545        copy_last_highmem_page();
2546        /* Restore page key for data page (s390 only). */
2547        page_key_write(handle->buffer);
2548        page_key_free();
2549        /* Free only if we have loaded the image entirely */
2550        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2551                memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2552                free_highmem_data();
2553        }
2554}
2555
2556int snapshot_image_loaded(struct snapshot_handle *handle)
2557{
2558        return !(!nr_copy_pages || !last_highmem_page_copied() ||
2559                        handle->cur <= nr_meta_pages + nr_copy_pages);
2560}
2561
2562#ifdef CONFIG_HIGHMEM
2563/* Assumes that @buf is ready and points to a "safe" page */
2564static inline void
2565swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2566{
2567        void *kaddr1, *kaddr2;
2568
2569        kaddr1 = kmap_atomic(p1);
2570        kaddr2 = kmap_atomic(p2);
2571        copy_page(buf, kaddr1);
2572        copy_page(kaddr1, kaddr2);
2573        copy_page(kaddr2, buf);
2574        kunmap_atomic(kaddr2);
2575        kunmap_atomic(kaddr1);
2576}
2577
2578/**
2579 *      restore_highmem - for each highmem page that was allocated before
2580 *      the suspend and included in the suspend image, and also has been
2581 *      allocated by the "resume" kernel swap its current (ie. "before
2582 *      resume") contents with the previous (ie. "before suspend") one.
2583 *
2584 *      If the resume eventually fails, we can call this function once
2585 *      again and restore the "before resume" highmem state.
2586 */
2587
2588int restore_highmem(void)
2589{
2590        struct highmem_pbe *pbe = highmem_pblist;
2591        void *buf;
2592
2593        if (!pbe)
2594                return 0;
2595
2596        buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2597        if (!buf)
2598                return -ENOMEM;
2599
2600        while (pbe) {
2601                swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2602                pbe = pbe->next;
2603        }
2604        free_image_page(buf, PG_UNSAFE_CLEAR);
2605        return 0;
2606}
2607#endif /* CONFIG_HIGHMEM */
2608