linux/lib/radix-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2, or (at
  11 * your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/errno.h>
  24#include <linux/init.h>
  25#include <linux/kernel.h>
  26#include <linux/export.h>
  27#include <linux/radix-tree.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/kmemleak.h>
  31#include <linux/notifier.h>
  32#include <linux/cpu.h>
  33#include <linux/string.h>
  34#include <linux/bitops.h>
  35#include <linux/rcupdate.h>
  36#include <linux/preempt.h>              /* in_interrupt() */
  37
  38
  39/*
  40 * The height_to_maxindex array needs to be one deeper than the maximum
  41 * path as height 0 holds only 1 entry.
  42 */
  43static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  44
  45/*
  46 * Radix tree node cache.
  47 */
  48static struct kmem_cache *radix_tree_node_cachep;
  49
  50/*
  51 * The radix tree is variable-height, so an insert operation not only has
  52 * to build the branch to its corresponding item, it also has to build the
  53 * branch to existing items if the size has to be increased (by
  54 * radix_tree_extend).
  55 *
  56 * The worst case is a zero height tree with just a single item at index 0,
  57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  59 * Hence:
  60 */
  61#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  62
  63/*
  64 * Per-cpu pool of preloaded nodes
  65 */
  66struct radix_tree_preload {
  67        int nr;
  68        /* nodes->private_data points to next preallocated node */
  69        struct radix_tree_node *nodes;
  70};
  71static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  72
  73static inline void *ptr_to_indirect(void *ptr)
  74{
  75        return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
  76}
  77
  78static inline void *indirect_to_ptr(void *ptr)
  79{
  80        return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
  81}
  82
  83static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
  84{
  85        return root->gfp_mask & __GFP_BITS_MASK;
  86}
  87
  88static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  89                int offset)
  90{
  91        __set_bit(offset, node->tags[tag]);
  92}
  93
  94static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  95                int offset)
  96{
  97        __clear_bit(offset, node->tags[tag]);
  98}
  99
 100static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 101                int offset)
 102{
 103        return test_bit(offset, node->tags[tag]);
 104}
 105
 106static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 107{
 108        root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 109}
 110
 111static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
 112{
 113        root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 114}
 115
 116static inline void root_tag_clear_all(struct radix_tree_root *root)
 117{
 118        root->gfp_mask &= __GFP_BITS_MASK;
 119}
 120
 121static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 122{
 123        return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 124}
 125
 126/*
 127 * Returns 1 if any slot in the node has this tag set.
 128 * Otherwise returns 0.
 129 */
 130static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 131{
 132        int idx;
 133        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 134                if (node->tags[tag][idx])
 135                        return 1;
 136        }
 137        return 0;
 138}
 139
 140/**
 141 * radix_tree_find_next_bit - find the next set bit in a memory region
 142 *
 143 * @addr: The address to base the search on
 144 * @size: The bitmap size in bits
 145 * @offset: The bitnumber to start searching at
 146 *
 147 * Unrollable variant of find_next_bit() for constant size arrays.
 148 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 149 * Returns next bit offset, or size if nothing found.
 150 */
 151static __always_inline unsigned long
 152radix_tree_find_next_bit(const unsigned long *addr,
 153                         unsigned long size, unsigned long offset)
 154{
 155        if (!__builtin_constant_p(size))
 156                return find_next_bit(addr, size, offset);
 157
 158        if (offset < size) {
 159                unsigned long tmp;
 160
 161                addr += offset / BITS_PER_LONG;
 162                tmp = *addr >> (offset % BITS_PER_LONG);
 163                if (tmp)
 164                        return __ffs(tmp) + offset;
 165                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 166                while (offset < size) {
 167                        tmp = *++addr;
 168                        if (tmp)
 169                                return __ffs(tmp) + offset;
 170                        offset += BITS_PER_LONG;
 171                }
 172        }
 173        return size;
 174}
 175
 176#if 0
 177static void dump_node(void *slot, int height, int offset)
 178{
 179        struct radix_tree_node *node;
 180        int i;
 181
 182        if (!slot)
 183                return;
 184
 185        if (height == 0) {
 186                pr_debug("radix entry %p offset %d\n", slot, offset);
 187                return;
 188        }
 189
 190        node = indirect_to_ptr(slot);
 191        pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
 192                slot, offset, node->tags[0][0], node->tags[1][0],
 193                node->tags[2][0], node->path, node->count, node->parent);
 194
 195        for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
 196                dump_node(node->slots[i], height - 1, i);
 197}
 198
 199/* For debug */
 200static void radix_tree_dump(struct radix_tree_root *root)
 201{
 202        pr_debug("radix root: %p height %d rnode %p tags %x\n",
 203                        root, root->height, root->rnode,
 204                        root->gfp_mask >> __GFP_BITS_SHIFT);
 205        if (!radix_tree_is_indirect_ptr(root->rnode))
 206                return;
 207        dump_node(root->rnode, root->height, 0);
 208}
 209#endif
 210
 211/*
 212 * This assumes that the caller has performed appropriate preallocation, and
 213 * that the caller has pinned this thread of control to the current CPU.
 214 */
 215static struct radix_tree_node *
 216radix_tree_node_alloc(struct radix_tree_root *root)
 217{
 218        struct radix_tree_node *ret = NULL;
 219        gfp_t gfp_mask = root_gfp_mask(root);
 220
 221        /*
 222         * Preload code isn't irq safe and it doesn't make sence to use
 223         * preloading in the interrupt anyway as all the allocations have to
 224         * be atomic. So just do normal allocation when in interrupt.
 225         */
 226        if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 227                struct radix_tree_preload *rtp;
 228
 229                /*
 230                 * Even if the caller has preloaded, try to allocate from the
 231                 * cache first for the new node to get accounted.
 232                 */
 233                ret = kmem_cache_alloc(radix_tree_node_cachep,
 234                                       gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
 235                if (ret)
 236                        goto out;
 237
 238                /*
 239                 * Provided the caller has preloaded here, we will always
 240                 * succeed in getting a node here (and never reach
 241                 * kmem_cache_alloc)
 242                 */
 243                rtp = this_cpu_ptr(&radix_tree_preloads);
 244                if (rtp->nr) {
 245                        ret = rtp->nodes;
 246                        rtp->nodes = ret->private_data;
 247                        ret->private_data = NULL;
 248                        rtp->nr--;
 249                }
 250                /*
 251                 * Update the allocation stack trace as this is more useful
 252                 * for debugging.
 253                 */
 254                kmemleak_update_trace(ret);
 255                goto out;
 256        }
 257        ret = kmem_cache_alloc(radix_tree_node_cachep,
 258                               gfp_mask | __GFP_ACCOUNT);
 259out:
 260        BUG_ON(radix_tree_is_indirect_ptr(ret));
 261        return ret;
 262}
 263
 264static void radix_tree_node_rcu_free(struct rcu_head *head)
 265{
 266        struct radix_tree_node *node =
 267                        container_of(head, struct radix_tree_node, rcu_head);
 268        int i;
 269
 270        /*
 271         * must only free zeroed nodes into the slab. radix_tree_shrink
 272         * can leave us with a non-NULL entry in the first slot, so clear
 273         * that here to make sure.
 274         */
 275        for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 276                tag_clear(node, i, 0);
 277
 278        node->slots[0] = NULL;
 279        node->count = 0;
 280
 281        kmem_cache_free(radix_tree_node_cachep, node);
 282}
 283
 284static inline void
 285radix_tree_node_free(struct radix_tree_node *node)
 286{
 287        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 288}
 289
 290/*
 291 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 292 * ensure that the addition of a single element in the tree cannot fail.  On
 293 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 294 * with preemption not disabled.
 295 *
 296 * To make use of this facility, the radix tree must be initialised without
 297 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 298 */
 299static int __radix_tree_preload(gfp_t gfp_mask)
 300{
 301        struct radix_tree_preload *rtp;
 302        struct radix_tree_node *node;
 303        int ret = -ENOMEM;
 304
 305        preempt_disable();
 306        rtp = this_cpu_ptr(&radix_tree_preloads);
 307        while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
 308                preempt_enable();
 309                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 310                if (node == NULL)
 311                        goto out;
 312                preempt_disable();
 313                rtp = this_cpu_ptr(&radix_tree_preloads);
 314                if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
 315                        node->private_data = rtp->nodes;
 316                        rtp->nodes = node;
 317                        rtp->nr++;
 318                } else {
 319                        kmem_cache_free(radix_tree_node_cachep, node);
 320                }
 321        }
 322        ret = 0;
 323out:
 324        return ret;
 325}
 326
 327/*
 328 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 329 * ensure that the addition of a single element in the tree cannot fail.  On
 330 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 331 * with preemption not disabled.
 332 *
 333 * To make use of this facility, the radix tree must be initialised without
 334 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 335 */
 336int radix_tree_preload(gfp_t gfp_mask)
 337{
 338        /* Warn on non-sensical use... */
 339        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 340        return __radix_tree_preload(gfp_mask);
 341}
 342EXPORT_SYMBOL(radix_tree_preload);
 343
 344/*
 345 * The same as above function, except we don't guarantee preloading happens.
 346 * We do it, if we decide it helps. On success, return zero with preemption
 347 * disabled. On error, return -ENOMEM with preemption not disabled.
 348 */
 349int radix_tree_maybe_preload(gfp_t gfp_mask)
 350{
 351        if (gfpflags_allow_blocking(gfp_mask))
 352                return __radix_tree_preload(gfp_mask);
 353        /* Preloading doesn't help anything with this gfp mask, skip it */
 354        preempt_disable();
 355        return 0;
 356}
 357EXPORT_SYMBOL(radix_tree_maybe_preload);
 358
 359/*
 360 *      Return the maximum key which can be store into a
 361 *      radix tree with height HEIGHT.
 362 */
 363static inline unsigned long radix_tree_maxindex(unsigned int height)
 364{
 365        return height_to_maxindex[height];
 366}
 367
 368/*
 369 *      Extend a radix tree so it can store key @index.
 370 */
 371static int radix_tree_extend(struct radix_tree_root *root,
 372                                unsigned long index, unsigned order)
 373{
 374        struct radix_tree_node *node;
 375        struct radix_tree_node *slot;
 376        unsigned int height;
 377        int tag;
 378
 379        /* Figure out what the height should be.  */
 380        height = root->height + 1;
 381        while (index > radix_tree_maxindex(height))
 382                height++;
 383
 384        if ((root->rnode == NULL) && (order == 0)) {
 385                root->height = height;
 386                goto out;
 387        }
 388
 389        do {
 390                unsigned int newheight;
 391                if (!(node = radix_tree_node_alloc(root)))
 392                        return -ENOMEM;
 393
 394                /* Propagate the aggregated tag info into the new root */
 395                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 396                        if (root_tag_get(root, tag))
 397                                tag_set(node, tag, 0);
 398                }
 399
 400                /* Increase the height.  */
 401                newheight = root->height+1;
 402                BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
 403                node->path = newheight;
 404                node->count = 1;
 405                node->parent = NULL;
 406                slot = root->rnode;
 407                if (radix_tree_is_indirect_ptr(slot) && newheight > 1) {
 408                        slot = indirect_to_ptr(slot);
 409                        slot->parent = node;
 410                        slot = ptr_to_indirect(slot);
 411                }
 412                node->slots[0] = slot;
 413                node = ptr_to_indirect(node);
 414                rcu_assign_pointer(root->rnode, node);
 415                root->height = newheight;
 416        } while (height > root->height);
 417out:
 418        return 0;
 419}
 420
 421/**
 422 *      __radix_tree_create     -       create a slot in a radix tree
 423 *      @root:          radix tree root
 424 *      @index:         index key
 425 *      @order:         index occupies 2^order aligned slots
 426 *      @nodep:         returns node
 427 *      @slotp:         returns slot
 428 *
 429 *      Create, if necessary, and return the node and slot for an item
 430 *      at position @index in the radix tree @root.
 431 *
 432 *      Until there is more than one item in the tree, no nodes are
 433 *      allocated and @root->rnode is used as a direct slot instead of
 434 *      pointing to a node, in which case *@nodep will be NULL.
 435 *
 436 *      Returns -ENOMEM, or 0 for success.
 437 */
 438int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 439                        unsigned order, struct radix_tree_node **nodep,
 440                        void ***slotp)
 441{
 442        struct radix_tree_node *node = NULL, *slot;
 443        unsigned int height, shift, offset;
 444        int error;
 445
 446        BUG_ON((0 < order) && (order < RADIX_TREE_MAP_SHIFT));
 447
 448        /* Make sure the tree is high enough.  */
 449        if (index > radix_tree_maxindex(root->height)) {
 450                error = radix_tree_extend(root, index, order);
 451                if (error)
 452                        return error;
 453        }
 454
 455        slot = root->rnode;
 456
 457        height = root->height;
 458        shift = height * RADIX_TREE_MAP_SHIFT;
 459
 460        offset = 0;                     /* uninitialised var warning */
 461        while (shift > order) {
 462                if (slot == NULL) {
 463                        /* Have to add a child node.  */
 464                        if (!(slot = radix_tree_node_alloc(root)))
 465                                return -ENOMEM;
 466                        slot->path = height;
 467                        slot->parent = node;
 468                        if (node) {
 469                                rcu_assign_pointer(node->slots[offset],
 470                                                        ptr_to_indirect(slot));
 471                                node->count++;
 472                                slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
 473                        } else
 474                                rcu_assign_pointer(root->rnode,
 475                                                        ptr_to_indirect(slot));
 476                } else if (!radix_tree_is_indirect_ptr(slot))
 477                        break;
 478
 479                /* Go a level down */
 480                height--;
 481                shift -= RADIX_TREE_MAP_SHIFT;
 482                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 483                node = indirect_to_ptr(slot);
 484                slot = node->slots[offset];
 485        }
 486
 487        /* Insert pointers to the canonical entry */
 488        if ((shift - order) > 0) {
 489                int i, n = 1 << (shift - order);
 490                offset = offset & ~(n - 1);
 491                slot = ptr_to_indirect(&node->slots[offset]);
 492                for (i = 0; i < n; i++) {
 493                        if (node->slots[offset + i])
 494                                return -EEXIST;
 495                }
 496
 497                for (i = 1; i < n; i++) {
 498                        rcu_assign_pointer(node->slots[offset + i], slot);
 499                        node->count++;
 500                }
 501        }
 502
 503        if (nodep)
 504                *nodep = node;
 505        if (slotp)
 506                *slotp = node ? node->slots + offset : (void **)&root->rnode;
 507        return 0;
 508}
 509
 510/**
 511 *      __radix_tree_insert    -    insert into a radix tree
 512 *      @root:          radix tree root
 513 *      @index:         index key
 514 *      @order:         key covers the 2^order indices around index
 515 *      @item:          item to insert
 516 *
 517 *      Insert an item into the radix tree at position @index.
 518 */
 519int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 520                        unsigned order, void *item)
 521{
 522        struct radix_tree_node *node;
 523        void **slot;
 524        int error;
 525
 526        BUG_ON(radix_tree_is_indirect_ptr(item));
 527
 528        error = __radix_tree_create(root, index, order, &node, &slot);
 529        if (error)
 530                return error;
 531        if (*slot != NULL)
 532                return -EEXIST;
 533        rcu_assign_pointer(*slot, item);
 534
 535        if (node) {
 536                node->count++;
 537                BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
 538                BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
 539        } else {
 540                BUG_ON(root_tag_get(root, 0));
 541                BUG_ON(root_tag_get(root, 1));
 542        }
 543
 544        return 0;
 545}
 546EXPORT_SYMBOL(__radix_tree_insert);
 547
 548/**
 549 *      __radix_tree_lookup     -       lookup an item in a radix tree
 550 *      @root:          radix tree root
 551 *      @index:         index key
 552 *      @nodep:         returns node
 553 *      @slotp:         returns slot
 554 *
 555 *      Lookup and return the item at position @index in the radix
 556 *      tree @root.
 557 *
 558 *      Until there is more than one item in the tree, no nodes are
 559 *      allocated and @root->rnode is used as a direct slot instead of
 560 *      pointing to a node, in which case *@nodep will be NULL.
 561 */
 562void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 563                          struct radix_tree_node **nodep, void ***slotp)
 564{
 565        struct radix_tree_node *node, *parent;
 566        unsigned int height, shift;
 567        void **slot;
 568
 569        node = rcu_dereference_raw(root->rnode);
 570        if (node == NULL)
 571                return NULL;
 572
 573        if (!radix_tree_is_indirect_ptr(node)) {
 574                if (index > 0)
 575                        return NULL;
 576
 577                if (nodep)
 578                        *nodep = NULL;
 579                if (slotp)
 580                        *slotp = (void **)&root->rnode;
 581                return node;
 582        }
 583        node = indirect_to_ptr(node);
 584
 585        height = node->path & RADIX_TREE_HEIGHT_MASK;
 586        if (index > radix_tree_maxindex(height))
 587                return NULL;
 588
 589        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 590
 591        do {
 592                parent = node;
 593                slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
 594                node = rcu_dereference_raw(*slot);
 595                if (node == NULL)
 596                        return NULL;
 597                if (!radix_tree_is_indirect_ptr(node))
 598                        break;
 599                node = indirect_to_ptr(node);
 600
 601                shift -= RADIX_TREE_MAP_SHIFT;
 602                height--;
 603        } while (height > 0);
 604
 605        if (nodep)
 606                *nodep = parent;
 607        if (slotp)
 608                *slotp = slot;
 609        return node;
 610}
 611
 612/**
 613 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
 614 *      @root:          radix tree root
 615 *      @index:         index key
 616 *
 617 *      Returns:  the slot corresponding to the position @index in the
 618 *      radix tree @root. This is useful for update-if-exists operations.
 619 *
 620 *      This function can be called under rcu_read_lock iff the slot is not
 621 *      modified by radix_tree_replace_slot, otherwise it must be called
 622 *      exclusive from other writers. Any dereference of the slot must be done
 623 *      using radix_tree_deref_slot.
 624 */
 625void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 626{
 627        void **slot;
 628
 629        if (!__radix_tree_lookup(root, index, NULL, &slot))
 630                return NULL;
 631        return slot;
 632}
 633EXPORT_SYMBOL(radix_tree_lookup_slot);
 634
 635/**
 636 *      radix_tree_lookup    -    perform lookup operation on a radix tree
 637 *      @root:          radix tree root
 638 *      @index:         index key
 639 *
 640 *      Lookup the item at the position @index in the radix tree @root.
 641 *
 642 *      This function can be called under rcu_read_lock, however the caller
 643 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 644 *      them safely). No RCU barriers are required to access or modify the
 645 *      returned item, however.
 646 */
 647void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 648{
 649        return __radix_tree_lookup(root, index, NULL, NULL);
 650}
 651EXPORT_SYMBOL(radix_tree_lookup);
 652
 653/**
 654 *      radix_tree_tag_set - set a tag on a radix tree node
 655 *      @root:          radix tree root
 656 *      @index:         index key
 657 *      @tag:           tag index
 658 *
 659 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 660 *      corresponding to @index in the radix tree.  From
 661 *      the root all the way down to the leaf node.
 662 *
 663 *      Returns the address of the tagged item.   Setting a tag on a not-present
 664 *      item is a bug.
 665 */
 666void *radix_tree_tag_set(struct radix_tree_root *root,
 667                        unsigned long index, unsigned int tag)
 668{
 669        unsigned int height, shift;
 670        struct radix_tree_node *slot;
 671
 672        height = root->height;
 673        BUG_ON(index > radix_tree_maxindex(height));
 674
 675        slot = indirect_to_ptr(root->rnode);
 676        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 677
 678        while (height > 0) {
 679                int offset;
 680
 681                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 682                if (!tag_get(slot, tag, offset))
 683                        tag_set(slot, tag, offset);
 684                slot = slot->slots[offset];
 685                BUG_ON(slot == NULL);
 686                if (!radix_tree_is_indirect_ptr(slot))
 687                        break;
 688                slot = indirect_to_ptr(slot);
 689                shift -= RADIX_TREE_MAP_SHIFT;
 690                height--;
 691        }
 692
 693        /* set the root's tag bit */
 694        if (slot && !root_tag_get(root, tag))
 695                root_tag_set(root, tag);
 696
 697        return slot;
 698}
 699EXPORT_SYMBOL(radix_tree_tag_set);
 700
 701/**
 702 *      radix_tree_tag_clear - clear a tag on a radix tree node
 703 *      @root:          radix tree root
 704 *      @index:         index key
 705 *      @tag:           tag index
 706 *
 707 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 708 *      corresponding to @index in the radix tree.  If
 709 *      this causes the leaf node to have no tags set then clear the tag in the
 710 *      next-to-leaf node, etc.
 711 *
 712 *      Returns the address of the tagged item on success, else NULL.  ie:
 713 *      has the same return value and semantics as radix_tree_lookup().
 714 */
 715void *radix_tree_tag_clear(struct radix_tree_root *root,
 716                        unsigned long index, unsigned int tag)
 717{
 718        struct radix_tree_node *node = NULL;
 719        struct radix_tree_node *slot = NULL;
 720        unsigned int height, shift;
 721        int uninitialized_var(offset);
 722
 723        height = root->height;
 724        if (index > radix_tree_maxindex(height))
 725                goto out;
 726
 727        shift = height * RADIX_TREE_MAP_SHIFT;
 728        slot = root->rnode;
 729
 730        while (shift) {
 731                if (slot == NULL)
 732                        goto out;
 733                if (!radix_tree_is_indirect_ptr(slot))
 734                        break;
 735                slot = indirect_to_ptr(slot);
 736
 737                shift -= RADIX_TREE_MAP_SHIFT;
 738                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 739                node = slot;
 740                slot = slot->slots[offset];
 741        }
 742
 743        if (slot == NULL)
 744                goto out;
 745
 746        while (node) {
 747                if (!tag_get(node, tag, offset))
 748                        goto out;
 749                tag_clear(node, tag, offset);
 750                if (any_tag_set(node, tag))
 751                        goto out;
 752
 753                index >>= RADIX_TREE_MAP_SHIFT;
 754                offset = index & RADIX_TREE_MAP_MASK;
 755                node = node->parent;
 756        }
 757
 758        /* clear the root's tag bit */
 759        if (root_tag_get(root, tag))
 760                root_tag_clear(root, tag);
 761
 762out:
 763        return slot;
 764}
 765EXPORT_SYMBOL(radix_tree_tag_clear);
 766
 767/**
 768 * radix_tree_tag_get - get a tag on a radix tree node
 769 * @root:               radix tree root
 770 * @index:              index key
 771 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
 772 *
 773 * Return values:
 774 *
 775 *  0: tag not present or not set
 776 *  1: tag set
 777 *
 778 * Note that the return value of this function may not be relied on, even if
 779 * the RCU lock is held, unless tag modification and node deletion are excluded
 780 * from concurrency.
 781 */
 782int radix_tree_tag_get(struct radix_tree_root *root,
 783                        unsigned long index, unsigned int tag)
 784{
 785        unsigned int height, shift;
 786        struct radix_tree_node *node;
 787
 788        /* check the root's tag bit */
 789        if (!root_tag_get(root, tag))
 790                return 0;
 791
 792        node = rcu_dereference_raw(root->rnode);
 793        if (node == NULL)
 794                return 0;
 795
 796        if (!radix_tree_is_indirect_ptr(node))
 797                return (index == 0);
 798        node = indirect_to_ptr(node);
 799
 800        height = node->path & RADIX_TREE_HEIGHT_MASK;
 801        if (index > radix_tree_maxindex(height))
 802                return 0;
 803
 804        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 805
 806        for ( ; ; ) {
 807                int offset;
 808
 809                if (node == NULL)
 810                        return 0;
 811                node = indirect_to_ptr(node);
 812
 813                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 814                if (!tag_get(node, tag, offset))
 815                        return 0;
 816                if (height == 1)
 817                        return 1;
 818                node = rcu_dereference_raw(node->slots[offset]);
 819                if (!radix_tree_is_indirect_ptr(node))
 820                        return 1;
 821                shift -= RADIX_TREE_MAP_SHIFT;
 822                height--;
 823        }
 824}
 825EXPORT_SYMBOL(radix_tree_tag_get);
 826
 827/**
 828 * radix_tree_next_chunk - find next chunk of slots for iteration
 829 *
 830 * @root:       radix tree root
 831 * @iter:       iterator state
 832 * @flags:      RADIX_TREE_ITER_* flags and tag index
 833 * Returns:     pointer to chunk first slot, or NULL if iteration is over
 834 */
 835void **radix_tree_next_chunk(struct radix_tree_root *root,
 836                             struct radix_tree_iter *iter, unsigned flags)
 837{
 838        unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
 839        struct radix_tree_node *rnode, *node;
 840        unsigned long index, offset, height;
 841
 842        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
 843                return NULL;
 844
 845        /*
 846         * Catch next_index overflow after ~0UL. iter->index never overflows
 847         * during iterating; it can be zero only at the beginning.
 848         * And we cannot overflow iter->next_index in a single step,
 849         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
 850         *
 851         * This condition also used by radix_tree_next_slot() to stop
 852         * contiguous iterating, and forbid swithing to the next chunk.
 853         */
 854        index = iter->next_index;
 855        if (!index && iter->index)
 856                return NULL;
 857
 858        rnode = rcu_dereference_raw(root->rnode);
 859        if (radix_tree_is_indirect_ptr(rnode)) {
 860                rnode = indirect_to_ptr(rnode);
 861        } else if (rnode && !index) {
 862                /* Single-slot tree */
 863                iter->index = 0;
 864                iter->next_index = 1;
 865                iter->tags = 1;
 866                return (void **)&root->rnode;
 867        } else
 868                return NULL;
 869
 870restart:
 871        height = rnode->path & RADIX_TREE_HEIGHT_MASK;
 872        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 873        offset = index >> shift;
 874
 875        /* Index outside of the tree */
 876        if (offset >= RADIX_TREE_MAP_SIZE)
 877                return NULL;
 878
 879        node = rnode;
 880        while (1) {
 881                struct radix_tree_node *slot;
 882                if ((flags & RADIX_TREE_ITER_TAGGED) ?
 883                                !test_bit(offset, node->tags[tag]) :
 884                                !node->slots[offset]) {
 885                        /* Hole detected */
 886                        if (flags & RADIX_TREE_ITER_CONTIG)
 887                                return NULL;
 888
 889                        if (flags & RADIX_TREE_ITER_TAGGED)
 890                                offset = radix_tree_find_next_bit(
 891                                                node->tags[tag],
 892                                                RADIX_TREE_MAP_SIZE,
 893                                                offset + 1);
 894                        else
 895                                while (++offset < RADIX_TREE_MAP_SIZE) {
 896                                        if (node->slots[offset])
 897                                                break;
 898                                }
 899                        index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
 900                        index += offset << shift;
 901                        /* Overflow after ~0UL */
 902                        if (!index)
 903                                return NULL;
 904                        if (offset == RADIX_TREE_MAP_SIZE)
 905                                goto restart;
 906                }
 907
 908                /* This is leaf-node */
 909                if (!shift)
 910                        break;
 911
 912                slot = rcu_dereference_raw(node->slots[offset]);
 913                if (slot == NULL)
 914                        goto restart;
 915                if (!radix_tree_is_indirect_ptr(slot))
 916                        break;
 917                node = indirect_to_ptr(slot);
 918                shift -= RADIX_TREE_MAP_SHIFT;
 919                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 920        }
 921
 922        /* Update the iterator state */
 923        iter->index = index;
 924        iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
 925
 926        /* Construct iter->tags bit-mask from node->tags[tag] array */
 927        if (flags & RADIX_TREE_ITER_TAGGED) {
 928                unsigned tag_long, tag_bit;
 929
 930                tag_long = offset / BITS_PER_LONG;
 931                tag_bit  = offset % BITS_PER_LONG;
 932                iter->tags = node->tags[tag][tag_long] >> tag_bit;
 933                /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
 934                if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
 935                        /* Pick tags from next element */
 936                        if (tag_bit)
 937                                iter->tags |= node->tags[tag][tag_long + 1] <<
 938                                                (BITS_PER_LONG - tag_bit);
 939                        /* Clip chunk size, here only BITS_PER_LONG tags */
 940                        iter->next_index = index + BITS_PER_LONG;
 941                }
 942        }
 943
 944        return node->slots + offset;
 945}
 946EXPORT_SYMBOL(radix_tree_next_chunk);
 947
 948/**
 949 * radix_tree_range_tag_if_tagged - for each item in given range set given
 950 *                                 tag if item has another tag set
 951 * @root:               radix tree root
 952 * @first_indexp:       pointer to a starting index of a range to scan
 953 * @last_index:         last index of a range to scan
 954 * @nr_to_tag:          maximum number items to tag
 955 * @iftag:              tag index to test
 956 * @settag:             tag index to set if tested tag is set
 957 *
 958 * This function scans range of radix tree from first_index to last_index
 959 * (inclusive).  For each item in the range if iftag is set, the function sets
 960 * also settag. The function stops either after tagging nr_to_tag items or
 961 * after reaching last_index.
 962 *
 963 * The tags must be set from the leaf level only and propagated back up the
 964 * path to the root. We must do this so that we resolve the full path before
 965 * setting any tags on intermediate nodes. If we set tags as we descend, then
 966 * we can get to the leaf node and find that the index that has the iftag
 967 * set is outside the range we are scanning. This reults in dangling tags and
 968 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 969 *
 970 * The function returns number of leaves where the tag was set and sets
 971 * *first_indexp to the first unscanned index.
 972 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 973 * be prepared to handle that.
 974 */
 975unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 976                unsigned long *first_indexp, unsigned long last_index,
 977                unsigned long nr_to_tag,
 978                unsigned int iftag, unsigned int settag)
 979{
 980        unsigned int height = root->height;
 981        struct radix_tree_node *node = NULL;
 982        struct radix_tree_node *slot;
 983        unsigned int shift;
 984        unsigned long tagged = 0;
 985        unsigned long index = *first_indexp;
 986
 987        last_index = min(last_index, radix_tree_maxindex(height));
 988        if (index > last_index)
 989                return 0;
 990        if (!nr_to_tag)
 991                return 0;
 992        if (!root_tag_get(root, iftag)) {
 993                *first_indexp = last_index + 1;
 994                return 0;
 995        }
 996        if (height == 0) {
 997                *first_indexp = last_index + 1;
 998                root_tag_set(root, settag);
 999                return 1;
1000        }
1001
1002        shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1003        slot = indirect_to_ptr(root->rnode);
1004
1005        for (;;) {
1006                unsigned long upindex;
1007                int offset;
1008
1009                offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1010                if (!slot->slots[offset])
1011                        goto next;
1012                if (!tag_get(slot, iftag, offset))
1013                        goto next;
1014                if (shift) {
1015                        node = slot;
1016                        slot = slot->slots[offset];
1017                        if (radix_tree_is_indirect_ptr(slot)) {
1018                                slot = indirect_to_ptr(slot);
1019                                shift -= RADIX_TREE_MAP_SHIFT;
1020                                continue;
1021                        } else {
1022                                slot = node;
1023                                node = node->parent;
1024                        }
1025                }
1026
1027                /* tag the leaf */
1028                tagged += 1 << shift;
1029                tag_set(slot, settag, offset);
1030
1031                /* walk back up the path tagging interior nodes */
1032                upindex = index;
1033                while (node) {
1034                        upindex >>= RADIX_TREE_MAP_SHIFT;
1035                        offset = upindex & RADIX_TREE_MAP_MASK;
1036
1037                        /* stop if we find a node with the tag already set */
1038                        if (tag_get(node, settag, offset))
1039                                break;
1040                        tag_set(node, settag, offset);
1041                        node = node->parent;
1042                }
1043
1044                /*
1045                 * Small optimization: now clear that node pointer.
1046                 * Since all of this slot's ancestors now have the tag set
1047                 * from setting it above, we have no further need to walk
1048                 * back up the tree setting tags, until we update slot to
1049                 * point to another radix_tree_node.
1050                 */
1051                node = NULL;
1052
1053next:
1054                /* Go to next item at level determined by 'shift' */
1055                index = ((index >> shift) + 1) << shift;
1056                /* Overflow can happen when last_index is ~0UL... */
1057                if (index > last_index || !index)
1058                        break;
1059                if (tagged >= nr_to_tag)
1060                        break;
1061                while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
1062                        /*
1063                         * We've fully scanned this node. Go up. Because
1064                         * last_index is guaranteed to be in the tree, what
1065                         * we do below cannot wander astray.
1066                         */
1067                        slot = slot->parent;
1068                        shift += RADIX_TREE_MAP_SHIFT;
1069                }
1070        }
1071        /*
1072         * We need not to tag the root tag if there is no tag which is set with
1073         * settag within the range from *first_indexp to last_index.
1074         */
1075        if (tagged > 0)
1076                root_tag_set(root, settag);
1077        *first_indexp = index;
1078
1079        return tagged;
1080}
1081EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1082
1083/**
1084 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1085 *      @root:          radix tree root
1086 *      @results:       where the results of the lookup are placed
1087 *      @first_index:   start the lookup from this key
1088 *      @max_items:     place up to this many items at *results
1089 *
1090 *      Performs an index-ascending scan of the tree for present items.  Places
1091 *      them at *@results and returns the number of items which were placed at
1092 *      *@results.
1093 *
1094 *      The implementation is naive.
1095 *
1096 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1097 *      rcu_read_lock. In this case, rather than the returned results being
1098 *      an atomic snapshot of the tree at a single point in time, the semantics
1099 *      of an RCU protected gang lookup are as though multiple radix_tree_lookups
1100 *      have been issued in individual locks, and results stored in 'results'.
1101 */
1102unsigned int
1103radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1104                        unsigned long first_index, unsigned int max_items)
1105{
1106        struct radix_tree_iter iter;
1107        void **slot;
1108        unsigned int ret = 0;
1109
1110        if (unlikely(!max_items))
1111                return 0;
1112
1113        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1114                results[ret] = rcu_dereference_raw(*slot);
1115                if (!results[ret])
1116                        continue;
1117                if (radix_tree_is_indirect_ptr(results[ret])) {
1118                        slot = radix_tree_iter_retry(&iter);
1119                        continue;
1120                }
1121                if (++ret == max_items)
1122                        break;
1123        }
1124
1125        return ret;
1126}
1127EXPORT_SYMBOL(radix_tree_gang_lookup);
1128
1129/**
1130 *      radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1131 *      @root:          radix tree root
1132 *      @results:       where the results of the lookup are placed
1133 *      @indices:       where their indices should be placed (but usually NULL)
1134 *      @first_index:   start the lookup from this key
1135 *      @max_items:     place up to this many items at *results
1136 *
1137 *      Performs an index-ascending scan of the tree for present items.  Places
1138 *      their slots at *@results and returns the number of items which were
1139 *      placed at *@results.
1140 *
1141 *      The implementation is naive.
1142 *
1143 *      Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1144 *      be dereferenced with radix_tree_deref_slot, and if using only RCU
1145 *      protection, radix_tree_deref_slot may fail requiring a retry.
1146 */
1147unsigned int
1148radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1149                        void ***results, unsigned long *indices,
1150                        unsigned long first_index, unsigned int max_items)
1151{
1152        struct radix_tree_iter iter;
1153        void **slot;
1154        unsigned int ret = 0;
1155
1156        if (unlikely(!max_items))
1157                return 0;
1158
1159        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1160                results[ret] = slot;
1161                if (indices)
1162                        indices[ret] = iter.index;
1163                if (++ret == max_items)
1164                        break;
1165        }
1166
1167        return ret;
1168}
1169EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1170
1171/**
1172 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1173 *                                   based on a tag
1174 *      @root:          radix tree root
1175 *      @results:       where the results of the lookup are placed
1176 *      @first_index:   start the lookup from this key
1177 *      @max_items:     place up to this many items at *results
1178 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1179 *
1180 *      Performs an index-ascending scan of the tree for present items which
1181 *      have the tag indexed by @tag set.  Places the items at *@results and
1182 *      returns the number of items which were placed at *@results.
1183 */
1184unsigned int
1185radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1186                unsigned long first_index, unsigned int max_items,
1187                unsigned int tag)
1188{
1189        struct radix_tree_iter iter;
1190        void **slot;
1191        unsigned int ret = 0;
1192
1193        if (unlikely(!max_items))
1194                return 0;
1195
1196        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1197                results[ret] = rcu_dereference_raw(*slot);
1198                if (!results[ret])
1199                        continue;
1200                if (radix_tree_is_indirect_ptr(results[ret])) {
1201                        slot = radix_tree_iter_retry(&iter);
1202                        continue;
1203                }
1204                if (++ret == max_items)
1205                        break;
1206        }
1207
1208        return ret;
1209}
1210EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1211
1212/**
1213 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1214 *                                        radix tree based on a tag
1215 *      @root:          radix tree root
1216 *      @results:       where the results of the lookup are placed
1217 *      @first_index:   start the lookup from this key
1218 *      @max_items:     place up to this many items at *results
1219 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1220 *
1221 *      Performs an index-ascending scan of the tree for present items which
1222 *      have the tag indexed by @tag set.  Places the slots at *@results and
1223 *      returns the number of slots which were placed at *@results.
1224 */
1225unsigned int
1226radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1227                unsigned long first_index, unsigned int max_items,
1228                unsigned int tag)
1229{
1230        struct radix_tree_iter iter;
1231        void **slot;
1232        unsigned int ret = 0;
1233
1234        if (unlikely(!max_items))
1235                return 0;
1236
1237        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1238                results[ret] = slot;
1239                if (++ret == max_items)
1240                        break;
1241        }
1242
1243        return ret;
1244}
1245EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1246
1247#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1248#include <linux/sched.h> /* for cond_resched() */
1249
1250/*
1251 * This linear search is at present only useful to shmem_unuse_inode().
1252 */
1253static unsigned long __locate(struct radix_tree_node *slot, void *item,
1254                              unsigned long index, unsigned long *found_index)
1255{
1256        unsigned int shift, height;
1257        unsigned long i;
1258
1259        height = slot->path & RADIX_TREE_HEIGHT_MASK;
1260        shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1261
1262        for ( ; height > 1; height--) {
1263                i = (index >> shift) & RADIX_TREE_MAP_MASK;
1264                for (;;) {
1265                        if (slot->slots[i] != NULL)
1266                                break;
1267                        index &= ~((1UL << shift) - 1);
1268                        index += 1UL << shift;
1269                        if (index == 0)
1270                                goto out;       /* 32-bit wraparound */
1271                        i++;
1272                        if (i == RADIX_TREE_MAP_SIZE)
1273                                goto out;
1274                }
1275
1276                slot = rcu_dereference_raw(slot->slots[i]);
1277                if (slot == NULL)
1278                        goto out;
1279                if (!radix_tree_is_indirect_ptr(slot)) {
1280                        if (slot == item) {
1281                                *found_index = index + i;
1282                                index = 0;
1283                        } else {
1284                                index += shift;
1285                        }
1286                        goto out;
1287                }
1288                slot = indirect_to_ptr(slot);
1289                shift -= RADIX_TREE_MAP_SHIFT;
1290        }
1291
1292        /* Bottom level: check items */
1293        for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1294                if (slot->slots[i] == item) {
1295                        *found_index = index + i;
1296                        index = 0;
1297                        goto out;
1298                }
1299        }
1300        index += RADIX_TREE_MAP_SIZE;
1301out:
1302        return index;
1303}
1304
1305/**
1306 *      radix_tree_locate_item - search through radix tree for item
1307 *      @root:          radix tree root
1308 *      @item:          item to be found
1309 *
1310 *      Returns index where item was found, or -1 if not found.
1311 *      Caller must hold no lock (since this time-consuming function needs
1312 *      to be preemptible), and must check afterwards if item is still there.
1313 */
1314unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1315{
1316        struct radix_tree_node *node;
1317        unsigned long max_index;
1318        unsigned long cur_index = 0;
1319        unsigned long found_index = -1;
1320
1321        do {
1322                rcu_read_lock();
1323                node = rcu_dereference_raw(root->rnode);
1324                if (!radix_tree_is_indirect_ptr(node)) {
1325                        rcu_read_unlock();
1326                        if (node == item)
1327                                found_index = 0;
1328                        break;
1329                }
1330
1331                node = indirect_to_ptr(node);
1332                max_index = radix_tree_maxindex(node->path &
1333                                                RADIX_TREE_HEIGHT_MASK);
1334                if (cur_index > max_index) {
1335                        rcu_read_unlock();
1336                        break;
1337                }
1338
1339                cur_index = __locate(node, item, cur_index, &found_index);
1340                rcu_read_unlock();
1341                cond_resched();
1342        } while (cur_index != 0 && cur_index <= max_index);
1343
1344        return found_index;
1345}
1346#else
1347unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1348{
1349        return -1;
1350}
1351#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1352
1353/**
1354 *      radix_tree_shrink    -    shrink height of a radix tree to minimal
1355 *      @root           radix tree root
1356 */
1357static inline void radix_tree_shrink(struct radix_tree_root *root)
1358{
1359        /* try to shrink tree height */
1360        while (root->height > 0) {
1361                struct radix_tree_node *to_free = root->rnode;
1362                struct radix_tree_node *slot;
1363
1364                BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1365                to_free = indirect_to_ptr(to_free);
1366
1367                /*
1368                 * The candidate node has more than one child, or its child
1369                 * is not at the leftmost slot, or it is a multiorder entry,
1370                 * we cannot shrink.
1371                 */
1372                if (to_free->count != 1)
1373                        break;
1374                slot = to_free->slots[0];
1375                if (!slot)
1376                        break;
1377
1378                /*
1379                 * We don't need rcu_assign_pointer(), since we are simply
1380                 * moving the node from one part of the tree to another: if it
1381                 * was safe to dereference the old pointer to it
1382                 * (to_free->slots[0]), it will be safe to dereference the new
1383                 * one (root->rnode) as far as dependent read barriers go.
1384                 */
1385                if (root->height > 1) {
1386                        if (!radix_tree_is_indirect_ptr(slot))
1387                                break;
1388
1389                        slot = indirect_to_ptr(slot);
1390                        slot->parent = NULL;
1391                        slot = ptr_to_indirect(slot);
1392                }
1393                root->rnode = slot;
1394                root->height--;
1395
1396                /*
1397                 * We have a dilemma here. The node's slot[0] must not be
1398                 * NULLed in case there are concurrent lookups expecting to
1399                 * find the item. However if this was a bottom-level node,
1400                 * then it may be subject to the slot pointer being visible
1401                 * to callers dereferencing it. If item corresponding to
1402                 * slot[0] is subsequently deleted, these callers would expect
1403                 * their slot to become empty sooner or later.
1404                 *
1405                 * For example, lockless pagecache will look up a slot, deref
1406                 * the page pointer, and if the page is 0 refcount it means it
1407                 * was concurrently deleted from pagecache so try the deref
1408                 * again. Fortunately there is already a requirement for logic
1409                 * to retry the entire slot lookup -- the indirect pointer
1410                 * problem (replacing direct root node with an indirect pointer
1411                 * also results in a stale slot). So tag the slot as indirect
1412                 * to force callers to retry.
1413                 */
1414                if (root->height == 0)
1415                        *((unsigned long *)&to_free->slots[0]) |=
1416                                                RADIX_TREE_INDIRECT_PTR;
1417
1418                radix_tree_node_free(to_free);
1419        }
1420}
1421
1422/**
1423 *      __radix_tree_delete_node    -    try to free node after clearing a slot
1424 *      @root:          radix tree root
1425 *      @node:          node containing @index
1426 *
1427 *      After clearing the slot at @index in @node from radix tree
1428 *      rooted at @root, call this function to attempt freeing the
1429 *      node and shrinking the tree.
1430 *
1431 *      Returns %true if @node was freed, %false otherwise.
1432 */
1433bool __radix_tree_delete_node(struct radix_tree_root *root,
1434                              struct radix_tree_node *node)
1435{
1436        bool deleted = false;
1437
1438        do {
1439                struct radix_tree_node *parent;
1440
1441                if (node->count) {
1442                        if (node == indirect_to_ptr(root->rnode)) {
1443                                radix_tree_shrink(root);
1444                                if (root->height == 0)
1445                                        deleted = true;
1446                        }
1447                        return deleted;
1448                }
1449
1450                parent = node->parent;
1451                if (parent) {
1452                        unsigned int offset;
1453
1454                        offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1455                        parent->slots[offset] = NULL;
1456                        parent->count--;
1457                } else {
1458                        root_tag_clear_all(root);
1459                        root->height = 0;
1460                        root->rnode = NULL;
1461                }
1462
1463                radix_tree_node_free(node);
1464                deleted = true;
1465
1466                node = parent;
1467        } while (node);
1468
1469        return deleted;
1470}
1471
1472/**
1473 *      radix_tree_delete_item    -    delete an item from a radix tree
1474 *      @root:          radix tree root
1475 *      @index:         index key
1476 *      @item:          expected item
1477 *
1478 *      Remove @item at @index from the radix tree rooted at @root.
1479 *
1480 *      Returns the address of the deleted item, or NULL if it was not present
1481 *      or the entry at the given @index was not @item.
1482 */
1483void *radix_tree_delete_item(struct radix_tree_root *root,
1484                             unsigned long index, void *item)
1485{
1486        struct radix_tree_node *node;
1487        unsigned int offset, i;
1488        void **slot;
1489        void *entry;
1490        int tag;
1491
1492        entry = __radix_tree_lookup(root, index, &node, &slot);
1493        if (!entry)
1494                return NULL;
1495
1496        if (item && entry != item)
1497                return NULL;
1498
1499        if (!node) {
1500                root_tag_clear_all(root);
1501                root->rnode = NULL;
1502                return entry;
1503        }
1504
1505        offset = index & RADIX_TREE_MAP_MASK;
1506
1507        /*
1508         * Clear all tags associated with the item to be deleted.
1509         * This way of doing it would be inefficient, but seldom is any set.
1510         */
1511        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1512                if (tag_get(node, tag, offset))
1513                        radix_tree_tag_clear(root, index, tag);
1514        }
1515
1516        /* Delete any sibling slots pointing to this slot */
1517        for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1518                if (node->slots[offset + i] != ptr_to_indirect(slot))
1519                        break;
1520                node->slots[offset + i] = NULL;
1521                node->count--;
1522        }
1523        node->slots[offset] = NULL;
1524        node->count--;
1525
1526        __radix_tree_delete_node(root, node);
1527
1528        return entry;
1529}
1530EXPORT_SYMBOL(radix_tree_delete_item);
1531
1532/**
1533 *      radix_tree_delete    -    delete an item from a radix tree
1534 *      @root:          radix tree root
1535 *      @index:         index key
1536 *
1537 *      Remove the item at @index from the radix tree rooted at @root.
1538 *
1539 *      Returns the address of the deleted item, or NULL if it was not present.
1540 */
1541void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1542{
1543        return radix_tree_delete_item(root, index, NULL);
1544}
1545EXPORT_SYMBOL(radix_tree_delete);
1546
1547/**
1548 *      radix_tree_tagged - test whether any items in the tree are tagged
1549 *      @root:          radix tree root
1550 *      @tag:           tag to test
1551 */
1552int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1553{
1554        return root_tag_get(root, tag);
1555}
1556EXPORT_SYMBOL(radix_tree_tagged);
1557
1558static void
1559radix_tree_node_ctor(void *arg)
1560{
1561        struct radix_tree_node *node = arg;
1562
1563        memset(node, 0, sizeof(*node));
1564        INIT_LIST_HEAD(&node->private_list);
1565}
1566
1567static __init unsigned long __maxindex(unsigned int height)
1568{
1569        unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1570        int shift = RADIX_TREE_INDEX_BITS - width;
1571
1572        if (shift < 0)
1573                return ~0UL;
1574        if (shift >= BITS_PER_LONG)
1575                return 0UL;
1576        return ~0UL >> shift;
1577}
1578
1579static __init void radix_tree_init_maxindex(void)
1580{
1581        unsigned int i;
1582
1583        for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1584                height_to_maxindex[i] = __maxindex(i);
1585}
1586
1587static int radix_tree_callback(struct notifier_block *nfb,
1588                            unsigned long action,
1589                            void *hcpu)
1590{
1591       int cpu = (long)hcpu;
1592       struct radix_tree_preload *rtp;
1593       struct radix_tree_node *node;
1594
1595       /* Free per-cpu pool of perloaded nodes */
1596       if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1597               rtp = &per_cpu(radix_tree_preloads, cpu);
1598               while (rtp->nr) {
1599                        node = rtp->nodes;
1600                        rtp->nodes = node->private_data;
1601                        kmem_cache_free(radix_tree_node_cachep, node);
1602                        rtp->nr--;
1603               }
1604       }
1605       return NOTIFY_OK;
1606}
1607
1608void __init radix_tree_init(void)
1609{
1610        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1611                        sizeof(struct radix_tree_node), 0,
1612                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1613                        radix_tree_node_ctor);
1614        radix_tree_init_maxindex();
1615        hotcpu_notifier(radix_tree_callback, 0);
1616}
1617