linux/mm/mlock.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/mlock.c
   3 *
   4 *  (C) Copyright 1995 Linus Torvalds
   5 *  (C) Copyright 2002 Christoph Hellwig
   6 */
   7
   8#include <linux/capability.h>
   9#include <linux/mman.h>
  10#include <linux/mm.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/pagemap.h>
  14#include <linux/pagevec.h>
  15#include <linux/mempolicy.h>
  16#include <linux/syscalls.h>
  17#include <linux/sched.h>
  18#include <linux/export.h>
  19#include <linux/rmap.h>
  20#include <linux/mmzone.h>
  21#include <linux/hugetlb.h>
  22#include <linux/memcontrol.h>
  23#include <linux/mm_inline.h>
  24
  25#include "internal.h"
  26
  27bool can_do_mlock(void)
  28{
  29        if (rlimit(RLIMIT_MEMLOCK) != 0)
  30                return true;
  31        if (capable(CAP_IPC_LOCK))
  32                return true;
  33        return false;
  34}
  35EXPORT_SYMBOL(can_do_mlock);
  36
  37/*
  38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  39 * in vmscan and, possibly, the fault path; and to support semi-accurate
  40 * statistics.
  41 *
  42 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  44 * The unevictable list is an LRU sibling list to the [in]active lists.
  45 * PageUnevictable is set to indicate the unevictable state.
  46 *
  47 * When lazy mlocking via vmscan, it is important to ensure that the
  48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  49 * may have mlocked a page that is being munlocked. So lazy mlock must take
  50 * the mmap_sem for read, and verify that the vma really is locked
  51 * (see mm/rmap.c).
  52 */
  53
  54/*
  55 *  LRU accounting for clear_page_mlock()
  56 */
  57void clear_page_mlock(struct page *page)
  58{
  59        if (!TestClearPageMlocked(page))
  60                return;
  61
  62        mod_zone_page_state(page_zone(page), NR_MLOCK,
  63                            -hpage_nr_pages(page));
  64        count_vm_event(UNEVICTABLE_PGCLEARED);
  65        if (!isolate_lru_page(page)) {
  66                putback_lru_page(page);
  67        } else {
  68                /*
  69                 * We lost the race. the page already moved to evictable list.
  70                 */
  71                if (PageUnevictable(page))
  72                        count_vm_event(UNEVICTABLE_PGSTRANDED);
  73        }
  74}
  75
  76/*
  77 * Mark page as mlocked if not already.
  78 * If page on LRU, isolate and putback to move to unevictable list.
  79 */
  80void mlock_vma_page(struct page *page)
  81{
  82        /* Serialize with page migration */
  83        BUG_ON(!PageLocked(page));
  84
  85        VM_BUG_ON_PAGE(PageTail(page), page);
  86        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
  87
  88        if (!TestSetPageMlocked(page)) {
  89                mod_zone_page_state(page_zone(page), NR_MLOCK,
  90                                    hpage_nr_pages(page));
  91                count_vm_event(UNEVICTABLE_PGMLOCKED);
  92                if (!isolate_lru_page(page))
  93                        putback_lru_page(page);
  94        }
  95}
  96
  97/*
  98 * Isolate a page from LRU with optional get_page() pin.
  99 * Assumes lru_lock already held and page already pinned.
 100 */
 101static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
 102{
 103        if (PageLRU(page)) {
 104                struct lruvec *lruvec;
 105
 106                lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
 107                if (getpage)
 108                        get_page(page);
 109                ClearPageLRU(page);
 110                del_page_from_lru_list(page, lruvec, page_lru(page));
 111                return true;
 112        }
 113
 114        return false;
 115}
 116
 117/*
 118 * Finish munlock after successful page isolation
 119 *
 120 * Page must be locked. This is a wrapper for try_to_munlock()
 121 * and putback_lru_page() with munlock accounting.
 122 */
 123static void __munlock_isolated_page(struct page *page)
 124{
 125        int ret = SWAP_AGAIN;
 126
 127        /*
 128         * Optimization: if the page was mapped just once, that's our mapping
 129         * and we don't need to check all the other vmas.
 130         */
 131        if (page_mapcount(page) > 1)
 132                ret = try_to_munlock(page);
 133
 134        /* Did try_to_unlock() succeed or punt? */
 135        if (ret != SWAP_MLOCK)
 136                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 137
 138        putback_lru_page(page);
 139}
 140
 141/*
 142 * Accounting for page isolation fail during munlock
 143 *
 144 * Performs accounting when page isolation fails in munlock. There is nothing
 145 * else to do because it means some other task has already removed the page
 146 * from the LRU. putback_lru_page() will take care of removing the page from
 147 * the unevictable list, if necessary. vmscan [page_referenced()] will move
 148 * the page back to the unevictable list if some other vma has it mlocked.
 149 */
 150static void __munlock_isolation_failed(struct page *page)
 151{
 152        if (PageUnevictable(page))
 153                __count_vm_event(UNEVICTABLE_PGSTRANDED);
 154        else
 155                __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 156}
 157
 158/**
 159 * munlock_vma_page - munlock a vma page
 160 * @page - page to be unlocked, either a normal page or THP page head
 161 *
 162 * returns the size of the page as a page mask (0 for normal page,
 163 *         HPAGE_PMD_NR - 1 for THP head page)
 164 *
 165 * called from munlock()/munmap() path with page supposedly on the LRU.
 166 * When we munlock a page, because the vma where we found the page is being
 167 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 168 * page locked so that we can leave it on the unevictable lru list and not
 169 * bother vmscan with it.  However, to walk the page's rmap list in
 170 * try_to_munlock() we must isolate the page from the LRU.  If some other
 171 * task has removed the page from the LRU, we won't be able to do that.
 172 * So we clear the PageMlocked as we might not get another chance.  If we
 173 * can't isolate the page, we leave it for putback_lru_page() and vmscan
 174 * [page_referenced()/try_to_unmap()] to deal with.
 175 */
 176unsigned int munlock_vma_page(struct page *page)
 177{
 178        int nr_pages;
 179        struct zone *zone = page_zone(page);
 180
 181        /* For try_to_munlock() and to serialize with page migration */
 182        BUG_ON(!PageLocked(page));
 183
 184        VM_BUG_ON_PAGE(PageTail(page), page);
 185
 186        /*
 187         * Serialize with any parallel __split_huge_page_refcount() which
 188         * might otherwise copy PageMlocked to part of the tail pages before
 189         * we clear it in the head page. It also stabilizes hpage_nr_pages().
 190         */
 191        spin_lock_irq(&zone->lru_lock);
 192
 193        nr_pages = hpage_nr_pages(page);
 194        if (!TestClearPageMlocked(page))
 195                goto unlock_out;
 196
 197        __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
 198
 199        if (__munlock_isolate_lru_page(page, true)) {
 200                spin_unlock_irq(&zone->lru_lock);
 201                __munlock_isolated_page(page);
 202                goto out;
 203        }
 204        __munlock_isolation_failed(page);
 205
 206unlock_out:
 207        spin_unlock_irq(&zone->lru_lock);
 208
 209out:
 210        return nr_pages - 1;
 211}
 212
 213/*
 214 * convert get_user_pages() return value to posix mlock() error
 215 */
 216static int __mlock_posix_error_return(long retval)
 217{
 218        if (retval == -EFAULT)
 219                retval = -ENOMEM;
 220        else if (retval == -ENOMEM)
 221                retval = -EAGAIN;
 222        return retval;
 223}
 224
 225/*
 226 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 227 *
 228 * The fast path is available only for evictable pages with single mapping.
 229 * Then we can bypass the per-cpu pvec and get better performance.
 230 * when mapcount > 1 we need try_to_munlock() which can fail.
 231 * when !page_evictable(), we need the full redo logic of putback_lru_page to
 232 * avoid leaving evictable page in unevictable list.
 233 *
 234 * In case of success, @page is added to @pvec and @pgrescued is incremented
 235 * in case that the page was previously unevictable. @page is also unlocked.
 236 */
 237static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
 238                int *pgrescued)
 239{
 240        VM_BUG_ON_PAGE(PageLRU(page), page);
 241        VM_BUG_ON_PAGE(!PageLocked(page), page);
 242
 243        if (page_mapcount(page) <= 1 && page_evictable(page)) {
 244                pagevec_add(pvec, page);
 245                if (TestClearPageUnevictable(page))
 246                        (*pgrescued)++;
 247                unlock_page(page);
 248                return true;
 249        }
 250
 251        return false;
 252}
 253
 254/*
 255 * Putback multiple evictable pages to the LRU
 256 *
 257 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
 258 * the pages might have meanwhile become unevictable but that is OK.
 259 */
 260static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
 261{
 262        count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 263        /*
 264         *__pagevec_lru_add() calls release_pages() so we don't call
 265         * put_page() explicitly
 266         */
 267        __pagevec_lru_add(pvec);
 268        count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 269}
 270
 271/*
 272 * Munlock a batch of pages from the same zone
 273 *
 274 * The work is split to two main phases. First phase clears the Mlocked flag
 275 * and attempts to isolate the pages, all under a single zone lru lock.
 276 * The second phase finishes the munlock only for pages where isolation
 277 * succeeded.
 278 *
 279 * Note that the pagevec may be modified during the process.
 280 */
 281static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
 282{
 283        int i;
 284        int nr = pagevec_count(pvec);
 285        int delta_munlocked;
 286        struct pagevec pvec_putback;
 287        int pgrescued = 0;
 288
 289        pagevec_init(&pvec_putback, 0);
 290
 291        /* Phase 1: page isolation */
 292        spin_lock_irq(&zone->lru_lock);
 293        for (i = 0; i < nr; i++) {
 294                struct page *page = pvec->pages[i];
 295
 296                if (TestClearPageMlocked(page)) {
 297                        /*
 298                         * We already have pin from follow_page_mask()
 299                         * so we can spare the get_page() here.
 300                         */
 301                        if (__munlock_isolate_lru_page(page, false))
 302                                continue;
 303                        else
 304                                __munlock_isolation_failed(page);
 305                }
 306
 307                /*
 308                 * We won't be munlocking this page in the next phase
 309                 * but we still need to release the follow_page_mask()
 310                 * pin. We cannot do it under lru_lock however. If it's
 311                 * the last pin, __page_cache_release() would deadlock.
 312                 */
 313                pagevec_add(&pvec_putback, pvec->pages[i]);
 314                pvec->pages[i] = NULL;
 315        }
 316        delta_munlocked = -nr + pagevec_count(&pvec_putback);
 317        __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 318        spin_unlock_irq(&zone->lru_lock);
 319
 320        /* Now we can release pins of pages that we are not munlocking */
 321        pagevec_release(&pvec_putback);
 322
 323        /* Phase 2: page munlock */
 324        for (i = 0; i < nr; i++) {
 325                struct page *page = pvec->pages[i];
 326
 327                if (page) {
 328                        lock_page(page);
 329                        if (!__putback_lru_fast_prepare(page, &pvec_putback,
 330                                        &pgrescued)) {
 331                                /*
 332                                 * Slow path. We don't want to lose the last
 333                                 * pin before unlock_page()
 334                                 */
 335                                get_page(page); /* for putback_lru_page() */
 336                                __munlock_isolated_page(page);
 337                                unlock_page(page);
 338                                put_page(page); /* from follow_page_mask() */
 339                        }
 340                }
 341        }
 342
 343        /*
 344         * Phase 3: page putback for pages that qualified for the fast path
 345         * This will also call put_page() to return pin from follow_page_mask()
 346         */
 347        if (pagevec_count(&pvec_putback))
 348                __putback_lru_fast(&pvec_putback, pgrescued);
 349}
 350
 351/*
 352 * Fill up pagevec for __munlock_pagevec using pte walk
 353 *
 354 * The function expects that the struct page corresponding to @start address is
 355 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
 356 *
 357 * The rest of @pvec is filled by subsequent pages within the same pmd and same
 358 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
 359 * pages also get pinned.
 360 *
 361 * Returns the address of the next page that should be scanned. This equals
 362 * @start + PAGE_SIZE when no page could be added by the pte walk.
 363 */
 364static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
 365                struct vm_area_struct *vma, int zoneid, unsigned long start,
 366                unsigned long end)
 367{
 368        pte_t *pte;
 369        spinlock_t *ptl;
 370
 371        /*
 372         * Initialize pte walk starting at the already pinned page where we
 373         * are sure that there is a pte, as it was pinned under the same
 374         * mmap_sem write op.
 375         */
 376        pte = get_locked_pte(vma->vm_mm, start, &ptl);
 377        /* Make sure we do not cross the page table boundary */
 378        end = pgd_addr_end(start, end);
 379        end = pud_addr_end(start, end);
 380        end = pmd_addr_end(start, end);
 381
 382        /* The page next to the pinned page is the first we will try to get */
 383        start += PAGE_SIZE;
 384        while (start < end) {
 385                struct page *page = NULL;
 386                pte++;
 387                if (pte_present(*pte))
 388                        page = vm_normal_page(vma, start, *pte);
 389                /*
 390                 * Break if page could not be obtained or the page's node+zone does not
 391                 * match
 392                 */
 393                if (!page || page_zone_id(page) != zoneid)
 394                        break;
 395
 396                /*
 397                 * Do not use pagevec for PTE-mapped THP,
 398                 * munlock_vma_pages_range() will handle them.
 399                 */
 400                if (PageTransCompound(page))
 401                        break;
 402
 403                get_page(page);
 404                /*
 405                 * Increase the address that will be returned *before* the
 406                 * eventual break due to pvec becoming full by adding the page
 407                 */
 408                start += PAGE_SIZE;
 409                if (pagevec_add(pvec, page) == 0)
 410                        break;
 411        }
 412        pte_unmap_unlock(pte, ptl);
 413        return start;
 414}
 415
 416/*
 417 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 418 * @vma - vma containing range to be munlock()ed.
 419 * @start - start address in @vma of the range
 420 * @end - end of range in @vma.
 421 *
 422 *  For mremap(), munmap() and exit().
 423 *
 424 * Called with @vma VM_LOCKED.
 425 *
 426 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 427 * deal with this.
 428 *
 429 * We don't save and restore VM_LOCKED here because pages are
 430 * still on lru.  In unmap path, pages might be scanned by reclaim
 431 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 432 * free them.  This will result in freeing mlocked pages.
 433 */
 434void munlock_vma_pages_range(struct vm_area_struct *vma,
 435                             unsigned long start, unsigned long end)
 436{
 437        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 438
 439        while (start < end) {
 440                struct page *page;
 441                unsigned int page_mask;
 442                unsigned long page_increm;
 443                struct pagevec pvec;
 444                struct zone *zone;
 445                int zoneid;
 446
 447                pagevec_init(&pvec, 0);
 448                /*
 449                 * Although FOLL_DUMP is intended for get_dump_page(),
 450                 * it just so happens that its special treatment of the
 451                 * ZERO_PAGE (returning an error instead of doing get_page)
 452                 * suits munlock very well (and if somehow an abnormal page
 453                 * has sneaked into the range, we won't oops here: great).
 454                 */
 455                page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
 456                                &page_mask);
 457
 458                if (page && !IS_ERR(page)) {
 459                        if (PageTransTail(page)) {
 460                                VM_BUG_ON_PAGE(PageMlocked(page), page);
 461                                put_page(page); /* follow_page_mask() */
 462                        } else if (PageTransHuge(page)) {
 463                                lock_page(page);
 464                                /*
 465                                 * Any THP page found by follow_page_mask() may
 466                                 * have gotten split before reaching
 467                                 * munlock_vma_page(), so we need to recompute
 468                                 * the page_mask here.
 469                                 */
 470                                page_mask = munlock_vma_page(page);
 471                                unlock_page(page);
 472                                put_page(page); /* follow_page_mask() */
 473                        } else {
 474                                /*
 475                                 * Non-huge pages are handled in batches via
 476                                 * pagevec. The pin from follow_page_mask()
 477                                 * prevents them from collapsing by THP.
 478                                 */
 479                                pagevec_add(&pvec, page);
 480                                zone = page_zone(page);
 481                                zoneid = page_zone_id(page);
 482
 483                                /*
 484                                 * Try to fill the rest of pagevec using fast
 485                                 * pte walk. This will also update start to
 486                                 * the next page to process. Then munlock the
 487                                 * pagevec.
 488                                 */
 489                                start = __munlock_pagevec_fill(&pvec, vma,
 490                                                zoneid, start, end);
 491                                __munlock_pagevec(&pvec, zone);
 492                                goto next;
 493                        }
 494                }
 495                page_increm = 1 + page_mask;
 496                start += page_increm * PAGE_SIZE;
 497next:
 498                cond_resched();
 499        }
 500}
 501
 502/*
 503 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 504 *
 505 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 506 * munlock is a no-op.  However, for some special vmas, we go ahead and
 507 * populate the ptes.
 508 *
 509 * For vmas that pass the filters, merge/split as appropriate.
 510 */
 511static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 512        unsigned long start, unsigned long end, vm_flags_t newflags)
 513{
 514        struct mm_struct *mm = vma->vm_mm;
 515        pgoff_t pgoff;
 516        int nr_pages;
 517        int ret = 0;
 518        int lock = !!(newflags & VM_LOCKED);
 519
 520        if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
 521            is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
 522                /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
 523                goto out;
 524
 525        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 526        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 527                          vma->vm_file, pgoff, vma_policy(vma),
 528                          vma->vm_userfaultfd_ctx);
 529        if (*prev) {
 530                vma = *prev;
 531                goto success;
 532        }
 533
 534        if (start != vma->vm_start) {
 535                ret = split_vma(mm, vma, start, 1);
 536                if (ret)
 537                        goto out;
 538        }
 539
 540        if (end != vma->vm_end) {
 541                ret = split_vma(mm, vma, end, 0);
 542                if (ret)
 543                        goto out;
 544        }
 545
 546success:
 547        /*
 548         * Keep track of amount of locked VM.
 549         */
 550        nr_pages = (end - start) >> PAGE_SHIFT;
 551        if (!lock)
 552                nr_pages = -nr_pages;
 553        mm->locked_vm += nr_pages;
 554
 555        /*
 556         * vm_flags is protected by the mmap_sem held in write mode.
 557         * It's okay if try_to_unmap_one unmaps a page just after we
 558         * set VM_LOCKED, populate_vma_page_range will bring it back.
 559         */
 560
 561        if (lock)
 562                vma->vm_flags = newflags;
 563        else
 564                munlock_vma_pages_range(vma, start, end);
 565
 566out:
 567        *prev = vma;
 568        return ret;
 569}
 570
 571static int apply_vma_lock_flags(unsigned long start, size_t len,
 572                                vm_flags_t flags)
 573{
 574        unsigned long nstart, end, tmp;
 575        struct vm_area_struct * vma, * prev;
 576        int error;
 577
 578        VM_BUG_ON(offset_in_page(start));
 579        VM_BUG_ON(len != PAGE_ALIGN(len));
 580        end = start + len;
 581        if (end < start)
 582                return -EINVAL;
 583        if (end == start)
 584                return 0;
 585        vma = find_vma(current->mm, start);
 586        if (!vma || vma->vm_start > start)
 587                return -ENOMEM;
 588
 589        prev = vma->vm_prev;
 590        if (start > vma->vm_start)
 591                prev = vma;
 592
 593        for (nstart = start ; ; ) {
 594                vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 595
 596                newflags |= flags;
 597
 598                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 599                tmp = vma->vm_end;
 600                if (tmp > end)
 601                        tmp = end;
 602                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 603                if (error)
 604                        break;
 605                nstart = tmp;
 606                if (nstart < prev->vm_end)
 607                        nstart = prev->vm_end;
 608                if (nstart >= end)
 609                        break;
 610
 611                vma = prev->vm_next;
 612                if (!vma || vma->vm_start != nstart) {
 613                        error = -ENOMEM;
 614                        break;
 615                }
 616        }
 617        return error;
 618}
 619
 620static int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 621{
 622        unsigned long locked;
 623        unsigned long lock_limit;
 624        int error = -ENOMEM;
 625
 626        if (!can_do_mlock())
 627                return -EPERM;
 628
 629        lru_add_drain_all();    /* flush pagevec */
 630
 631        len = PAGE_ALIGN(len + (offset_in_page(start)));
 632        start &= PAGE_MASK;
 633
 634        lock_limit = rlimit(RLIMIT_MEMLOCK);
 635        lock_limit >>= PAGE_SHIFT;
 636        locked = len >> PAGE_SHIFT;
 637
 638        down_write(&current->mm->mmap_sem);
 639
 640        locked += current->mm->locked_vm;
 641
 642        /* check against resource limits */
 643        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 644                error = apply_vma_lock_flags(start, len, flags);
 645
 646        up_write(&current->mm->mmap_sem);
 647        if (error)
 648                return error;
 649
 650        error = __mm_populate(start, len, 0);
 651        if (error)
 652                return __mlock_posix_error_return(error);
 653        return 0;
 654}
 655
 656SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 657{
 658        return do_mlock(start, len, VM_LOCKED);
 659}
 660
 661SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
 662{
 663        vm_flags_t vm_flags = VM_LOCKED;
 664
 665        if (flags & ~MLOCK_ONFAULT)
 666                return -EINVAL;
 667
 668        if (flags & MLOCK_ONFAULT)
 669                vm_flags |= VM_LOCKONFAULT;
 670
 671        return do_mlock(start, len, vm_flags);
 672}
 673
 674SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 675{
 676        int ret;
 677
 678        len = PAGE_ALIGN(len + (offset_in_page(start)));
 679        start &= PAGE_MASK;
 680
 681        down_write(&current->mm->mmap_sem);
 682        ret = apply_vma_lock_flags(start, len, 0);
 683        up_write(&current->mm->mmap_sem);
 684
 685        return ret;
 686}
 687
 688/*
 689 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
 690 * and translate into the appropriate modifications to mm->def_flags and/or the
 691 * flags for all current VMAs.
 692 *
 693 * There are a couple of subtleties with this.  If mlockall() is called multiple
 694 * times with different flags, the values do not necessarily stack.  If mlockall
 695 * is called once including the MCL_FUTURE flag and then a second time without
 696 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
 697 */
 698static int apply_mlockall_flags(int flags)
 699{
 700        struct vm_area_struct * vma, * prev = NULL;
 701        vm_flags_t to_add = 0;
 702
 703        current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
 704        if (flags & MCL_FUTURE) {
 705                current->mm->def_flags |= VM_LOCKED;
 706
 707                if (flags & MCL_ONFAULT)
 708                        current->mm->def_flags |= VM_LOCKONFAULT;
 709
 710                if (!(flags & MCL_CURRENT))
 711                        goto out;
 712        }
 713
 714        if (flags & MCL_CURRENT) {
 715                to_add |= VM_LOCKED;
 716                if (flags & MCL_ONFAULT)
 717                        to_add |= VM_LOCKONFAULT;
 718        }
 719
 720        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 721                vm_flags_t newflags;
 722
 723                newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 724                newflags |= to_add;
 725
 726                /* Ignore errors */
 727                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 728                cond_resched_rcu_qs();
 729        }
 730out:
 731        return 0;
 732}
 733
 734SYSCALL_DEFINE1(mlockall, int, flags)
 735{
 736        unsigned long lock_limit;
 737        int ret;
 738
 739        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
 740                return -EINVAL;
 741
 742        if (!can_do_mlock())
 743                return -EPERM;
 744
 745        if (flags & MCL_CURRENT)
 746                lru_add_drain_all();    /* flush pagevec */
 747
 748        lock_limit = rlimit(RLIMIT_MEMLOCK);
 749        lock_limit >>= PAGE_SHIFT;
 750
 751        ret = -ENOMEM;
 752        down_write(&current->mm->mmap_sem);
 753
 754        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 755            capable(CAP_IPC_LOCK))
 756                ret = apply_mlockall_flags(flags);
 757        up_write(&current->mm->mmap_sem);
 758        if (!ret && (flags & MCL_CURRENT))
 759                mm_populate(0, TASK_SIZE);
 760
 761        return ret;
 762}
 763
 764SYSCALL_DEFINE0(munlockall)
 765{
 766        int ret;
 767
 768        down_write(&current->mm->mmap_sem);
 769        ret = apply_mlockall_flags(0);
 770        up_write(&current->mm->mmap_sem);
 771        return ret;
 772}
 773
 774/*
 775 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 776 * shm segments) get accounted against the user_struct instead.
 777 */
 778static DEFINE_SPINLOCK(shmlock_user_lock);
 779
 780int user_shm_lock(size_t size, struct user_struct *user)
 781{
 782        unsigned long lock_limit, locked;
 783        int allowed = 0;
 784
 785        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 786        lock_limit = rlimit(RLIMIT_MEMLOCK);
 787        if (lock_limit == RLIM_INFINITY)
 788                allowed = 1;
 789        lock_limit >>= PAGE_SHIFT;
 790        spin_lock(&shmlock_user_lock);
 791        if (!allowed &&
 792            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 793                goto out;
 794        get_uid(user);
 795        user->locked_shm += locked;
 796        allowed = 1;
 797out:
 798        spin_unlock(&shmlock_user_lock);
 799        return allowed;
 800}
 801
 802void user_shm_unlock(size_t size, struct user_struct *user)
 803{
 804        spin_lock(&shmlock_user_lock);
 805        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 806        spin_unlock(&shmlock_user_lock);
 807        free_uid(user);
 808}
 809