linux/arch/arm/include/asm/cacheflush.h
<<
>>
Prefs
   1/*
   2 *  arch/arm/include/asm/cacheflush.h
   3 *
   4 *  Copyright (C) 1999-2002 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#ifndef _ASMARM_CACHEFLUSH_H
  11#define _ASMARM_CACHEFLUSH_H
  12
  13#include <linux/mm.h>
  14
  15#include <asm/glue-cache.h>
  16#include <asm/shmparam.h>
  17#include <asm/cachetype.h>
  18#include <asm/outercache.h>
  19
  20#define CACHE_COLOUR(vaddr)     ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
  21
  22/*
  23 * This flag is used to indicate that the page pointed to by a pte is clean
  24 * and does not require cleaning before returning it to the user.
  25 */
  26#define PG_dcache_clean PG_arch_1
  27
  28/*
  29 *      MM Cache Management
  30 *      ===================
  31 *
  32 *      The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
  33 *      implement these methods.
  34 *
  35 *      Start addresses are inclusive and end addresses are exclusive;
  36 *      start addresses should be rounded down, end addresses up.
  37 *
  38 *      See Documentation/cachetlb.txt for more information.
  39 *      Please note that the implementation of these, and the required
  40 *      effects are cache-type (VIVT/VIPT/PIPT) specific.
  41 *
  42 *      flush_icache_all()
  43 *
  44 *              Unconditionally clean and invalidate the entire icache.
  45 *              Currently only needed for cache-v6.S and cache-v7.S, see
  46 *              __flush_icache_all for the generic implementation.
  47 *
  48 *      flush_kern_all()
  49 *
  50 *              Unconditionally clean and invalidate the entire cache.
  51 *
  52 *     flush_kern_louis()
  53 *
  54 *             Flush data cache levels up to the level of unification
  55 *             inner shareable and invalidate the I-cache.
  56 *             Only needed from v7 onwards, falls back to flush_cache_all()
  57 *             for all other processor versions.
  58 *
  59 *      flush_user_all()
  60 *
  61 *              Clean and invalidate all user space cache entries
  62 *              before a change of page tables.
  63 *
  64 *      flush_user_range(start, end, flags)
  65 *
  66 *              Clean and invalidate a range of cache entries in the
  67 *              specified address space before a change of page tables.
  68 *              - start - user start address (inclusive, page aligned)
  69 *              - end   - user end address   (exclusive, page aligned)
  70 *              - flags - vma->vm_flags field
  71 *
  72 *      coherent_kern_range(start, end)
  73 *
  74 *              Ensure coherency between the Icache and the Dcache in the
  75 *              region described by start, end.  If you have non-snooping
  76 *              Harvard caches, you need to implement this function.
  77 *              - start  - virtual start address
  78 *              - end    - virtual end address
  79 *
  80 *      coherent_user_range(start, end)
  81 *
  82 *              Ensure coherency between the Icache and the Dcache in the
  83 *              region described by start, end.  If you have non-snooping
  84 *              Harvard caches, you need to implement this function.
  85 *              - start  - virtual start address
  86 *              - end    - virtual end address
  87 *
  88 *      flush_kern_dcache_area(kaddr, size)
  89 *
  90 *              Ensure that the data held in page is written back.
  91 *              - kaddr  - page address
  92 *              - size   - region size
  93 *
  94 *      DMA Cache Coherency
  95 *      ===================
  96 *
  97 *      dma_flush_range(start, end)
  98 *
  99 *              Clean and invalidate the specified virtual address range.
 100 *              - start  - virtual start address
 101 *              - end    - virtual end address
 102 */
 103
 104struct cpu_cache_fns {
 105        void (*flush_icache_all)(void);
 106        void (*flush_kern_all)(void);
 107        void (*flush_kern_louis)(void);
 108        void (*flush_user_all)(void);
 109        void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
 110
 111        void (*coherent_kern_range)(unsigned long, unsigned long);
 112        int  (*coherent_user_range)(unsigned long, unsigned long);
 113        void (*flush_kern_dcache_area)(void *, size_t);
 114
 115        void (*dma_map_area)(const void *, size_t, int);
 116        void (*dma_unmap_area)(const void *, size_t, int);
 117
 118        void (*dma_flush_range)(const void *, const void *);
 119};
 120
 121/*
 122 * Select the calling method
 123 */
 124#ifdef MULTI_CACHE
 125
 126extern struct cpu_cache_fns cpu_cache;
 127
 128#define __cpuc_flush_icache_all         cpu_cache.flush_icache_all
 129#define __cpuc_flush_kern_all           cpu_cache.flush_kern_all
 130#define __cpuc_flush_kern_louis         cpu_cache.flush_kern_louis
 131#define __cpuc_flush_user_all           cpu_cache.flush_user_all
 132#define __cpuc_flush_user_range         cpu_cache.flush_user_range
 133#define __cpuc_coherent_kern_range      cpu_cache.coherent_kern_range
 134#define __cpuc_coherent_user_range      cpu_cache.coherent_user_range
 135#define __cpuc_flush_dcache_area        cpu_cache.flush_kern_dcache_area
 136
 137/*
 138 * These are private to the dma-mapping API.  Do not use directly.
 139 * Their sole purpose is to ensure that data held in the cache
 140 * is visible to DMA, or data written by DMA to system memory is
 141 * visible to the CPU.
 142 */
 143#define dmac_flush_range                cpu_cache.dma_flush_range
 144
 145#else
 146
 147extern void __cpuc_flush_icache_all(void);
 148extern void __cpuc_flush_kern_all(void);
 149extern void __cpuc_flush_kern_louis(void);
 150extern void __cpuc_flush_user_all(void);
 151extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
 152extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
 153extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
 154extern void __cpuc_flush_dcache_area(void *, size_t);
 155
 156/*
 157 * These are private to the dma-mapping API.  Do not use directly.
 158 * Their sole purpose is to ensure that data held in the cache
 159 * is visible to DMA, or data written by DMA to system memory is
 160 * visible to the CPU.
 161 */
 162extern void dmac_flush_range(const void *, const void *);
 163
 164#endif
 165
 166/*
 167 * Copy user data from/to a page which is mapped into a different
 168 * processes address space.  Really, we want to allow our "user
 169 * space" model to handle this.
 170 */
 171extern void copy_to_user_page(struct vm_area_struct *, struct page *,
 172        unsigned long, void *, const void *, unsigned long);
 173#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
 174        do {                                                    \
 175                memcpy(dst, src, len);                          \
 176        } while (0)
 177
 178/*
 179 * Convert calls to our calling convention.
 180 */
 181
 182/* Invalidate I-cache */
 183#define __flush_icache_all_generic()                                    \
 184        asm("mcr        p15, 0, %0, c7, c5, 0"                          \
 185            : : "r" (0));
 186
 187/* Invalidate I-cache inner shareable */
 188#define __flush_icache_all_v7_smp()                                     \
 189        asm("mcr        p15, 0, %0, c7, c1, 0"                          \
 190            : : "r" (0));
 191
 192/*
 193 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
 194 * will fall through to use __flush_icache_all_generic.
 195 */
 196#if (defined(CONFIG_CPU_V7) && \
 197     (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
 198        defined(CONFIG_SMP_ON_UP)
 199#define __flush_icache_preferred        __cpuc_flush_icache_all
 200#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
 201#define __flush_icache_preferred        __flush_icache_all_v7_smp
 202#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
 203#define __flush_icache_preferred        __cpuc_flush_icache_all
 204#else
 205#define __flush_icache_preferred        __flush_icache_all_generic
 206#endif
 207
 208static inline void __flush_icache_all(void)
 209{
 210        __flush_icache_preferred();
 211        dsb(ishst);
 212}
 213
 214/*
 215 * Flush caches up to Level of Unification Inner Shareable
 216 */
 217#define flush_cache_louis()             __cpuc_flush_kern_louis()
 218
 219#define flush_cache_all()               __cpuc_flush_kern_all()
 220
 221static inline void vivt_flush_cache_mm(struct mm_struct *mm)
 222{
 223        if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
 224                __cpuc_flush_user_all();
 225}
 226
 227static inline void
 228vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 229{
 230        struct mm_struct *mm = vma->vm_mm;
 231
 232        if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
 233                __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
 234                                        vma->vm_flags);
 235}
 236
 237static inline void
 238vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
 239{
 240        struct mm_struct *mm = vma->vm_mm;
 241
 242        if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
 243                unsigned long addr = user_addr & PAGE_MASK;
 244                __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
 245        }
 246}
 247
 248#ifndef CONFIG_CPU_CACHE_VIPT
 249#define flush_cache_mm(mm) \
 250                vivt_flush_cache_mm(mm)
 251#define flush_cache_range(vma,start,end) \
 252                vivt_flush_cache_range(vma,start,end)
 253#define flush_cache_page(vma,addr,pfn) \
 254                vivt_flush_cache_page(vma,addr,pfn)
 255#else
 256extern void flush_cache_mm(struct mm_struct *mm);
 257extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 258extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
 259#endif
 260
 261#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
 262
 263/*
 264 * flush_cache_user_range is used when we want to ensure that the
 265 * Harvard caches are synchronised for the user space address range.
 266 * This is used for the ARM private sys_cacheflush system call.
 267 */
 268#define flush_cache_user_range(s,e)     __cpuc_coherent_user_range(s,e)
 269
 270/*
 271 * Perform necessary cache operations to ensure that data previously
 272 * stored within this range of addresses can be executed by the CPU.
 273 */
 274#define flush_icache_range(s,e)         __cpuc_coherent_kern_range(s,e)
 275
 276/*
 277 * Perform necessary cache operations to ensure that the TLB will
 278 * see data written in the specified area.
 279 */
 280#define clean_dcache_area(start,size)   cpu_dcache_clean_area(start, size)
 281
 282/*
 283 * flush_dcache_page is used when the kernel has written to the page
 284 * cache page at virtual address page->virtual.
 285 *
 286 * If this page isn't mapped (ie, page_mapping == NULL), or it might
 287 * have userspace mappings, then we _must_ always clean + invalidate
 288 * the dcache entries associated with the kernel mapping.
 289 *
 290 * Otherwise we can defer the operation, and clean the cache when we are
 291 * about to change to user space.  This is the same method as used on SPARC64.
 292 * See update_mmu_cache for the user space part.
 293 */
 294#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
 295extern void flush_dcache_page(struct page *);
 296
 297static inline void flush_kernel_vmap_range(void *addr, int size)
 298{
 299        if ((cache_is_vivt() || cache_is_vipt_aliasing()))
 300          __cpuc_flush_dcache_area(addr, (size_t)size);
 301}
 302static inline void invalidate_kernel_vmap_range(void *addr, int size)
 303{
 304        if ((cache_is_vivt() || cache_is_vipt_aliasing()))
 305          __cpuc_flush_dcache_area(addr, (size_t)size);
 306}
 307
 308#define ARCH_HAS_FLUSH_ANON_PAGE
 309static inline void flush_anon_page(struct vm_area_struct *vma,
 310                         struct page *page, unsigned long vmaddr)
 311{
 312        extern void __flush_anon_page(struct vm_area_struct *vma,
 313                                struct page *, unsigned long);
 314        if (PageAnon(page))
 315                __flush_anon_page(vma, page, vmaddr);
 316}
 317
 318#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
 319extern void flush_kernel_dcache_page(struct page *);
 320
 321#define flush_dcache_mmap_lock(mapping) \
 322        spin_lock_irq(&(mapping)->tree_lock)
 323#define flush_dcache_mmap_unlock(mapping) \
 324        spin_unlock_irq(&(mapping)->tree_lock)
 325
 326#define flush_icache_user_range(vma,page,addr,len) \
 327        flush_dcache_page(page)
 328
 329/*
 330 * We don't appear to need to do anything here.  In fact, if we did, we'd
 331 * duplicate cache flushing elsewhere performed by flush_dcache_page().
 332 */
 333#define flush_icache_page(vma,page)     do { } while (0)
 334
 335/*
 336 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
 337 * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
 338 * caches, since the direct-mappings of these pages may contain cached
 339 * data, we need to do a full cache flush to ensure that writebacks
 340 * don't corrupt data placed into these pages via the new mappings.
 341 */
 342static inline void flush_cache_vmap(unsigned long start, unsigned long end)
 343{
 344        if (!cache_is_vipt_nonaliasing())
 345                flush_cache_all();
 346        else
 347                /*
 348                 * set_pte_at() called from vmap_pte_range() does not
 349                 * have a DSB after cleaning the cache line.
 350                 */
 351                dsb(ishst);
 352}
 353
 354static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
 355{
 356        if (!cache_is_vipt_nonaliasing())
 357                flush_cache_all();
 358}
 359
 360/*
 361 * Memory synchronization helpers for mixed cached vs non cached accesses.
 362 *
 363 * Some synchronization algorithms have to set states in memory with the
 364 * cache enabled or disabled depending on the code path.  It is crucial
 365 * to always ensure proper cache maintenance to update main memory right
 366 * away in that case.
 367 *
 368 * Any cached write must be followed by a cache clean operation.
 369 * Any cached read must be preceded by a cache invalidate operation.
 370 * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
 371 * operation is needed to avoid discarding possible concurrent writes to the
 372 * accessed memory.
 373 *
 374 * Also, in order to prevent a cached writer from interfering with an
 375 * adjacent non-cached writer, each state variable must be located to
 376 * a separate cache line.
 377 */
 378
 379/*
 380 * This needs to be >= the max cache writeback size of all
 381 * supported platforms included in the current kernel configuration.
 382 * This is used to align state variables to their own cache lines.
 383 */
 384#define __CACHE_WRITEBACK_ORDER 6  /* guessed from existing platforms */
 385#define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
 386
 387/*
 388 * There is no __cpuc_clean_dcache_area but we use it anyway for
 389 * code intent clarity, and alias it to __cpuc_flush_dcache_area.
 390 */
 391#define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
 392
 393/*
 394 * Ensure preceding writes to *p by this CPU are visible to
 395 * subsequent reads by other CPUs:
 396 */
 397static inline void __sync_cache_range_w(volatile void *p, size_t size)
 398{
 399        char *_p = (char *)p;
 400
 401        __cpuc_clean_dcache_area(_p, size);
 402        outer_clean_range(__pa(_p), __pa(_p + size));
 403}
 404
 405/*
 406 * Ensure preceding writes to *p by other CPUs are visible to
 407 * subsequent reads by this CPU.  We must be careful not to
 408 * discard data simultaneously written by another CPU, hence the
 409 * usage of flush rather than invalidate operations.
 410 */
 411static inline void __sync_cache_range_r(volatile void *p, size_t size)
 412{
 413        char *_p = (char *)p;
 414
 415#ifdef CONFIG_OUTER_CACHE
 416        if (outer_cache.flush_range) {
 417                /*
 418                 * Ensure dirty data migrated from other CPUs into our cache
 419                 * are cleaned out safely before the outer cache is cleaned:
 420                 */
 421                __cpuc_clean_dcache_area(_p, size);
 422
 423                /* Clean and invalidate stale data for *p from outer ... */
 424                outer_flush_range(__pa(_p), __pa(_p + size));
 425        }
 426#endif
 427
 428        /* ... and inner cache: */
 429        __cpuc_flush_dcache_area(_p, size);
 430}
 431
 432#define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
 433#define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
 434
 435/*
 436 * Disabling cache access for one CPU in an ARMv7 SMP system is tricky.
 437 * To do so we must:
 438 *
 439 * - Clear the SCTLR.C bit to prevent further cache allocations
 440 * - Flush the desired level of cache
 441 * - Clear the ACTLR "SMP" bit to disable local coherency
 442 *
 443 * ... and so without any intervening memory access in between those steps,
 444 * not even to the stack.
 445 *
 446 * WARNING -- After this has been called:
 447 *
 448 * - No ldrex/strex (and similar) instructions must be used.
 449 * - The CPU is obviously no longer coherent with the other CPUs.
 450 * - This is unlikely to work as expected if Linux is running non-secure.
 451 *
 452 * Note:
 453 *
 454 * - This is known to apply to several ARMv7 processor implementations,
 455 *   however some exceptions may exist.  Caveat emptor.
 456 *
 457 * - The clobber list is dictated by the call to v7_flush_dcache_*.
 458 *   fp is preserved to the stack explicitly prior disabling the cache
 459 *   since adding it to the clobber list is incompatible with having
 460 *   CONFIG_FRAME_POINTER=y.  ip is saved as well if ever r12-clobbering
 461 *   trampoline are inserted by the linker and to keep sp 64-bit aligned.
 462 */
 463#define v7_exit_coherency_flush(level) \
 464        asm volatile( \
 465        ".arch  armv7-a \n\t" \
 466        "stmfd  sp!, {fp, ip} \n\t" \
 467        "mrc    p15, 0, r0, c1, c0, 0   @ get SCTLR \n\t" \
 468        "bic    r0, r0, #"__stringify(CR_C)" \n\t" \
 469        "mcr    p15, 0, r0, c1, c0, 0   @ set SCTLR \n\t" \
 470        "isb    \n\t" \
 471        "bl     v7_flush_dcache_"__stringify(level)" \n\t" \
 472        "mrc    p15, 0, r0, c1, c0, 1   @ get ACTLR \n\t" \
 473        "bic    r0, r0, #(1 << 6)       @ disable local coherency \n\t" \
 474        "mcr    p15, 0, r0, c1, c0, 1   @ set ACTLR \n\t" \
 475        "isb    \n\t" \
 476        "dsb    \n\t" \
 477        "ldmfd  sp!, {fp, ip}" \
 478        : : : "r0","r1","r2","r3","r4","r5","r6","r7", \
 479              "r9","r10","lr","memory" )
 480
 481#ifdef CONFIG_MMU
 482int set_memory_ro(unsigned long addr, int numpages);
 483int set_memory_rw(unsigned long addr, int numpages);
 484int set_memory_x(unsigned long addr, int numpages);
 485int set_memory_nx(unsigned long addr, int numpages);
 486#else
 487static inline int set_memory_ro(unsigned long addr, int numpages) { return 0; }
 488static inline int set_memory_rw(unsigned long addr, int numpages) { return 0; }
 489static inline int set_memory_x(unsigned long addr, int numpages) { return 0; }
 490static inline int set_memory_nx(unsigned long addr, int numpages) { return 0; }
 491#endif
 492
 493#ifdef CONFIG_DEBUG_RODATA
 494void set_kernel_text_rw(void);
 495void set_kernel_text_ro(void);
 496#else
 497static inline void set_kernel_text_rw(void) { }
 498static inline void set_kernel_text_ro(void) { }
 499#endif
 500
 501void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
 502                             void *kaddr, unsigned long len);
 503
 504/**
 505 * secure_flush_area - ensure coherency across the secure boundary
 506 * @addr: virtual address
 507 * @size: size of region
 508 *
 509 * Ensure that the specified area of memory is coherent across the secure
 510 * boundary from the non-secure side.  This is used when calling secure
 511 * firmware where the secure firmware does not ensure coherency.
 512 */
 513static inline void secure_flush_area(const void *addr, size_t size)
 514{
 515        phys_addr_t phys = __pa(addr);
 516
 517        __cpuc_flush_dcache_area((void *)addr, size);
 518        outer_flush_range(phys, phys + size);
 519}
 520
 521#endif
 522