linux/arch/arm/mach-bcm/platsmp.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014-2015 Broadcom Corporation
   3 * Copyright 2014 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/delay.h>
  17#include <linux/errno.h>
  18#include <linux/init.h>
  19#include <linux/io.h>
  20#include <linux/jiffies.h>
  21#include <linux/of.h>
  22#include <linux/sched.h>
  23#include <linux/smp.h>
  24
  25#include <asm/cacheflush.h>
  26#include <asm/smp.h>
  27#include <asm/smp_plat.h>
  28#include <asm/smp_scu.h>
  29
  30/* Size of mapped Cortex A9 SCU address space */
  31#define CORTEX_A9_SCU_SIZE      0x58
  32
  33#define SECONDARY_TIMEOUT_NS    NSEC_PER_MSEC   /* 1 msec (in nanoseconds) */
  34#define BOOT_ADDR_CPUID_MASK    0x3
  35
  36/* Name of device node property defining secondary boot register location */
  37#define OF_SECONDARY_BOOT       "secondary-boot-reg"
  38#define MPIDR_CPUID_BITMASK     0x3
  39
  40/* I/O address of register used to coordinate secondary core startup */
  41static u32      secondary_boot_addr;
  42
  43/*
  44 * Enable the Cortex A9 Snoop Control Unit
  45 *
  46 * By the time this is called we already know there are multiple
  47 * cores present.  We assume we're running on a Cortex A9 processor,
  48 * so any trouble getting the base address register or getting the
  49 * SCU base is a problem.
  50 *
  51 * Return 0 if successful or an error code otherwise.
  52 */
  53static int __init scu_a9_enable(void)
  54{
  55        unsigned long config_base;
  56        void __iomem *scu_base;
  57
  58        if (!scu_a9_has_base()) {
  59                pr_err("no configuration base address register!\n");
  60                return -ENXIO;
  61        }
  62
  63        /* Config base address register value is zero for uniprocessor */
  64        config_base = scu_a9_get_base();
  65        if (!config_base) {
  66                pr_err("hardware reports only one core\n");
  67                return -ENOENT;
  68        }
  69
  70        scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
  71        if (!scu_base) {
  72                pr_err("failed to remap config base (%lu/%u) for SCU\n",
  73                        config_base, CORTEX_A9_SCU_SIZE);
  74                return -ENOMEM;
  75        }
  76
  77        scu_enable(scu_base);
  78
  79        iounmap(scu_base);      /* That's the last we'll need of this */
  80
  81        return 0;
  82}
  83
  84static int nsp_write_lut(void)
  85{
  86        void __iomem *sku_rom_lut;
  87        phys_addr_t secondary_startup_phy;
  88
  89        if (!secondary_boot_addr) {
  90                pr_warn("required secondary boot register not specified\n");
  91                return -EINVAL;
  92        }
  93
  94        sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
  95                                                sizeof(secondary_boot_addr));
  96        if (!sku_rom_lut) {
  97                pr_warn("unable to ioremap SKU-ROM LUT register\n");
  98                return -ENOMEM;
  99        }
 100
 101        secondary_startup_phy = virt_to_phys(secondary_startup);
 102        BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
 103
 104        writel_relaxed(secondary_startup_phy, sku_rom_lut);
 105
 106        /* Ensure the write is visible to the secondary core */
 107        smp_wmb();
 108
 109        iounmap(sku_rom_lut);
 110
 111        return 0;
 112}
 113
 114static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
 115{
 116        static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
 117        struct device_node *cpus_node = NULL;
 118        struct device_node *cpu_node = NULL;
 119        int ret;
 120
 121        /*
 122         * This function is only called via smp_ops->smp_prepare_cpu().
 123         * That only happens if a "/cpus" device tree node exists
 124         * and has an "enable-method" property that selects the SMP
 125         * operations defined herein.
 126         */
 127        cpus_node = of_find_node_by_path("/cpus");
 128        if (!cpus_node)
 129                return;
 130
 131        for_each_child_of_node(cpus_node, cpu_node) {
 132                u32 cpuid;
 133
 134                if (of_node_cmp(cpu_node->type, "cpu"))
 135                        continue;
 136
 137                if (of_property_read_u32(cpu_node, "reg", &cpuid)) {
 138                        pr_debug("%s: missing reg property\n",
 139                                     cpu_node->full_name);
 140                        ret = -ENOENT;
 141                        goto out;
 142                }
 143
 144                /*
 145                 * "secondary-boot-reg" property should be defined only
 146                 * for secondary cpu
 147                 */
 148                if ((cpuid & MPIDR_CPUID_BITMASK) == 1) {
 149                        /*
 150                         * Our secondary enable method requires a
 151                         * "secondary-boot-reg" property to specify a register
 152                         * address used to request the ROM code boot a secondary
 153                         * core. If we have any trouble getting this we fall
 154                         * back to uniprocessor mode.
 155                         */
 156                        if (of_property_read_u32(cpu_node,
 157                                                OF_SECONDARY_BOOT,
 158                                                &secondary_boot_addr)) {
 159                                pr_warn("%s: no" OF_SECONDARY_BOOT "property\n",
 160                                        cpu_node->name);
 161                                ret = -ENOENT;
 162                                goto out;
 163                        }
 164                }
 165        }
 166
 167        /*
 168         * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
 169         * returned, the SoC reported a uniprocessor configuration.
 170         * We bail on any other error.
 171         */
 172        ret = scu_a9_enable();
 173out:
 174        of_node_put(cpu_node);
 175        of_node_put(cpus_node);
 176
 177        if (ret) {
 178                /* Update the CPU present map to reflect uniprocessor mode */
 179                pr_warn("disabling SMP\n");
 180                init_cpu_present(&only_cpu_0);
 181        }
 182}
 183
 184/*
 185 * The ROM code has the secondary cores looping, waiting for an event.
 186 * When an event occurs each core examines the bottom two bits of the
 187 * secondary boot register.  When a core finds those bits contain its
 188 * own core id, it performs initialization, including computing its boot
 189 * address by clearing the boot register value's bottom two bits.  The
 190 * core signals that it is beginning its execution by writing its boot
 191 * address back to the secondary boot register, and finally jumps to
 192 * that address.
 193 *
 194 * So to start a core executing we need to:
 195 * - Encode the (hardware) CPU id with the bottom bits of the secondary
 196 *   start address.
 197 * - Write that value into the secondary boot register.
 198 * - Generate an event to wake up the secondary CPU(s).
 199 * - Wait for the secondary boot register to be re-written, which
 200 *   indicates the secondary core has started.
 201 */
 202static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
 203{
 204        void __iomem *boot_reg;
 205        phys_addr_t boot_func;
 206        u64 start_clock;
 207        u32 cpu_id;
 208        u32 boot_val;
 209        bool timeout = false;
 210
 211        cpu_id = cpu_logical_map(cpu);
 212        if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
 213                pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
 214                return -EINVAL;
 215        }
 216
 217        if (!secondary_boot_addr) {
 218                pr_err("required secondary boot register not specified\n");
 219                return -EINVAL;
 220        }
 221
 222        boot_reg = ioremap_nocache(
 223                        (phys_addr_t)secondary_boot_addr, sizeof(u32));
 224        if (!boot_reg) {
 225                pr_err("unable to map boot register for cpu %u\n", cpu_id);
 226                return -ENOMEM;
 227        }
 228
 229        /*
 230         * Secondary cores will start in secondary_startup(),
 231         * defined in "arch/arm/kernel/head.S"
 232         */
 233        boot_func = virt_to_phys(secondary_startup);
 234        BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
 235        BUG_ON(boot_func > (phys_addr_t)U32_MAX);
 236
 237        /* The core to start is encoded in the low bits */
 238        boot_val = (u32)boot_func | cpu_id;
 239        writel_relaxed(boot_val, boot_reg);
 240
 241        sev();
 242
 243        /* The low bits will be cleared once the core has started */
 244        start_clock = local_clock();
 245        while (!timeout && readl_relaxed(boot_reg) == boot_val)
 246                timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
 247
 248        iounmap(boot_reg);
 249
 250        if (!timeout)
 251                return 0;
 252
 253        pr_err("timeout waiting for cpu %u to start\n", cpu_id);
 254
 255        return -ENXIO;
 256}
 257
 258static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
 259{
 260        int ret;
 261
 262        /*
 263         * After wake up, secondary core branches to the startup
 264         * address programmed at SKU ROM LUT location.
 265         */
 266        ret = nsp_write_lut();
 267        if (ret) {
 268                pr_err("unable to write startup addr to SKU ROM LUT\n");
 269                goto out;
 270        }
 271
 272        /* Send a CPU wakeup interrupt to the secondary core */
 273        arch_send_wakeup_ipi_mask(cpumask_of(cpu));
 274
 275out:
 276        return ret;
 277}
 278
 279static const struct smp_operations bcm_smp_ops __initconst = {
 280        .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 281        .smp_boot_secondary     = kona_boot_secondary,
 282};
 283CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
 284                        &bcm_smp_ops);
 285
 286static const struct smp_operations nsp_smp_ops __initconst = {
 287        .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 288        .smp_boot_secondary     = nsp_boot_secondary,
 289};
 290CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
 291