linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
  15#include <linux/genalloc.h>
  16#include <linux/gfp.h>
  17#include <linux/errno.h>
  18#include <linux/list.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-contiguous.h>
  23#include <linux/highmem.h>
  24#include <linux/memblock.h>
  25#include <linux/slab.h>
  26#include <linux/iommu.h>
  27#include <linux/io.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sizes.h>
  30#include <linux/cma.h>
  31
  32#include <asm/memory.h>
  33#include <asm/highmem.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mach/arch.h>
  37#include <asm/dma-iommu.h>
  38#include <asm/mach/map.h>
  39#include <asm/system_info.h>
  40#include <asm/dma-contiguous.h>
  41
  42#include "dma.h"
  43#include "mm.h"
  44
  45struct arm_dma_alloc_args {
  46        struct device *dev;
  47        size_t size;
  48        gfp_t gfp;
  49        pgprot_t prot;
  50        const void *caller;
  51        bool want_vaddr;
  52};
  53
  54struct arm_dma_free_args {
  55        struct device *dev;
  56        size_t size;
  57        void *cpu_addr;
  58        struct page *page;
  59        bool want_vaddr;
  60};
  61
  62struct arm_dma_allocator {
  63        void *(*alloc)(struct arm_dma_alloc_args *args,
  64                       struct page **ret_page);
  65        void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69        struct list_head list;
  70        void *virt;
  71        struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79        struct arm_dma_buffer *buf, *found = NULL;
  80        unsigned long flags;
  81
  82        spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83        list_for_each_entry(buf, &arm_dma_bufs, list) {
  84                if (buf->virt == virt) {
  85                        list_del(&buf->list);
  86                        found = buf;
  87                        break;
  88                }
  89        }
  90        spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91        return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 107                size_t, enum dma_data_direction);
 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 109                size_t, enum dma_data_direction);
 110
 111/**
 112 * arm_dma_map_page - map a portion of a page for streaming DMA
 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 114 * @page: page that buffer resides in
 115 * @offset: offset into page for start of buffer
 116 * @size: size of buffer to map
 117 * @dir: DMA transfer direction
 118 *
 119 * Ensure that any data held in the cache is appropriately discarded
 120 * or written back.
 121 *
 122 * The device owns this memory once this call has completed.  The CPU
 123 * can regain ownership by calling dma_unmap_page().
 124 */
 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 126             unsigned long offset, size_t size, enum dma_data_direction dir,
 127             struct dma_attrs *attrs)
 128{
 129        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 130                __dma_page_cpu_to_dev(page, offset, size, dir);
 131        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 132}
 133
 134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 135             unsigned long offset, size_t size, enum dma_data_direction dir,
 136             struct dma_attrs *attrs)
 137{
 138        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 139}
 140
 141/**
 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 144 * @handle: DMA address of buffer
 145 * @size: size of buffer (same as passed to dma_map_page)
 146 * @dir: DMA transfer direction (same as passed to dma_map_page)
 147 *
 148 * Unmap a page streaming mode DMA translation.  The handle and size
 149 * must match what was provided in the previous dma_map_page() call.
 150 * All other usages are undefined.
 151 *
 152 * After this call, reads by the CPU to the buffer are guaranteed to see
 153 * whatever the device wrote there.
 154 */
 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 156                size_t size, enum dma_data_direction dir,
 157                struct dma_attrs *attrs)
 158{
 159        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 160                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 161                                      handle & ~PAGE_MASK, size, dir);
 162}
 163
 164static void arm_dma_sync_single_for_cpu(struct device *dev,
 165                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 166{
 167        unsigned int offset = handle & (PAGE_SIZE - 1);
 168        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 169        __dma_page_dev_to_cpu(page, offset, size, dir);
 170}
 171
 172static void arm_dma_sync_single_for_device(struct device *dev,
 173                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 174{
 175        unsigned int offset = handle & (PAGE_SIZE - 1);
 176        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 177        __dma_page_cpu_to_dev(page, offset, size, dir);
 178}
 179
 180struct dma_map_ops arm_dma_ops = {
 181        .alloc                  = arm_dma_alloc,
 182        .free                   = arm_dma_free,
 183        .mmap                   = arm_dma_mmap,
 184        .get_sgtable            = arm_dma_get_sgtable,
 185        .map_page               = arm_dma_map_page,
 186        .unmap_page             = arm_dma_unmap_page,
 187        .map_sg                 = arm_dma_map_sg,
 188        .unmap_sg               = arm_dma_unmap_sg,
 189        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 190        .sync_single_for_device = arm_dma_sync_single_for_device,
 191        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 192        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 193};
 194EXPORT_SYMBOL(arm_dma_ops);
 195
 196static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 197        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 198static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 199                                  dma_addr_t handle, struct dma_attrs *attrs);
 200static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 201                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 202                 struct dma_attrs *attrs);
 203
 204struct dma_map_ops arm_coherent_dma_ops = {
 205        .alloc                  = arm_coherent_dma_alloc,
 206        .free                   = arm_coherent_dma_free,
 207        .mmap                   = arm_coherent_dma_mmap,
 208        .get_sgtable            = arm_dma_get_sgtable,
 209        .map_page               = arm_coherent_dma_map_page,
 210        .map_sg                 = arm_dma_map_sg,
 211};
 212EXPORT_SYMBOL(arm_coherent_dma_ops);
 213
 214static int __dma_supported(struct device *dev, u64 mask, bool warn)
 215{
 216        unsigned long max_dma_pfn;
 217
 218        /*
 219         * If the mask allows for more memory than we can address,
 220         * and we actually have that much memory, then we must
 221         * indicate that DMA to this device is not supported.
 222         */
 223        if (sizeof(mask) != sizeof(dma_addr_t) &&
 224            mask > (dma_addr_t)~0 &&
 225            dma_to_pfn(dev, ~0) < max_pfn - 1) {
 226                if (warn) {
 227                        dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 228                                 mask);
 229                        dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 230                }
 231                return 0;
 232        }
 233
 234        max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 235
 236        /*
 237         * Translate the device's DMA mask to a PFN limit.  This
 238         * PFN number includes the page which we can DMA to.
 239         */
 240        if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 241                if (warn)
 242                        dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 243                                 mask,
 244                                 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 245                                 max_dma_pfn + 1);
 246                return 0;
 247        }
 248
 249        return 1;
 250}
 251
 252static u64 get_coherent_dma_mask(struct device *dev)
 253{
 254        u64 mask = (u64)DMA_BIT_MASK(32);
 255
 256        if (dev) {
 257                mask = dev->coherent_dma_mask;
 258
 259                /*
 260                 * Sanity check the DMA mask - it must be non-zero, and
 261                 * must be able to be satisfied by a DMA allocation.
 262                 */
 263                if (mask == 0) {
 264                        dev_warn(dev, "coherent DMA mask is unset\n");
 265                        return 0;
 266                }
 267
 268                if (!__dma_supported(dev, mask, true))
 269                        return 0;
 270        }
 271
 272        return mask;
 273}
 274
 275static void __dma_clear_buffer(struct page *page, size_t size)
 276{
 277        /*
 278         * Ensure that the allocated pages are zeroed, and that any data
 279         * lurking in the kernel direct-mapped region is invalidated.
 280         */
 281        if (PageHighMem(page)) {
 282                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 283                phys_addr_t end = base + size;
 284                while (size > 0) {
 285                        void *ptr = kmap_atomic(page);
 286                        memset(ptr, 0, PAGE_SIZE);
 287                        dmac_flush_range(ptr, ptr + PAGE_SIZE);
 288                        kunmap_atomic(ptr);
 289                        page++;
 290                        size -= PAGE_SIZE;
 291                }
 292                outer_flush_range(base, end);
 293        } else {
 294                void *ptr = page_address(page);
 295                memset(ptr, 0, size);
 296                dmac_flush_range(ptr, ptr + size);
 297                outer_flush_range(__pa(ptr), __pa(ptr) + size);
 298        }
 299}
 300
 301/*
 302 * Allocate a DMA buffer for 'dev' of size 'size' using the
 303 * specified gfp mask.  Note that 'size' must be page aligned.
 304 */
 305static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 306{
 307        unsigned long order = get_order(size);
 308        struct page *page, *p, *e;
 309
 310        page = alloc_pages(gfp, order);
 311        if (!page)
 312                return NULL;
 313
 314        /*
 315         * Now split the huge page and free the excess pages
 316         */
 317        split_page(page, order);
 318        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 319                __free_page(p);
 320
 321        __dma_clear_buffer(page, size);
 322
 323        return page;
 324}
 325
 326/*
 327 * Free a DMA buffer.  'size' must be page aligned.
 328 */
 329static void __dma_free_buffer(struct page *page, size_t size)
 330{
 331        struct page *e = page + (size >> PAGE_SHIFT);
 332
 333        while (page < e) {
 334                __free_page(page);
 335                page++;
 336        }
 337}
 338
 339#ifdef CONFIG_MMU
 340
 341static void *__alloc_from_contiguous(struct device *dev, size_t size,
 342                                     pgprot_t prot, struct page **ret_page,
 343                                     const void *caller, bool want_vaddr);
 344
 345static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 346                                 pgprot_t prot, struct page **ret_page,
 347                                 const void *caller, bool want_vaddr);
 348
 349static void *
 350__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 351        const void *caller)
 352{
 353        /*
 354         * DMA allocation can be mapped to user space, so lets
 355         * set VM_USERMAP flags too.
 356         */
 357        return dma_common_contiguous_remap(page, size,
 358                        VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 359                        prot, caller);
 360}
 361
 362static void __dma_free_remap(void *cpu_addr, size_t size)
 363{
 364        dma_common_free_remap(cpu_addr, size,
 365                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
 366}
 367
 368#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 369static struct gen_pool *atomic_pool;
 370
 371static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
 372
 373static int __init early_coherent_pool(char *p)
 374{
 375        atomic_pool_size = memparse(p, &p);
 376        return 0;
 377}
 378early_param("coherent_pool", early_coherent_pool);
 379
 380void __init init_dma_coherent_pool_size(unsigned long size)
 381{
 382        /*
 383         * Catch any attempt to set the pool size too late.
 384         */
 385        BUG_ON(atomic_pool);
 386
 387        /*
 388         * Set architecture specific coherent pool size only if
 389         * it has not been changed by kernel command line parameter.
 390         */
 391        if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 392                atomic_pool_size = size;
 393}
 394
 395/*
 396 * Initialise the coherent pool for atomic allocations.
 397 */
 398static int __init atomic_pool_init(void)
 399{
 400        pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 401        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 402        struct page *page;
 403        void *ptr;
 404
 405        atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 406        if (!atomic_pool)
 407                goto out;
 408
 409        if (dev_get_cma_area(NULL))
 410                ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 411                                              &page, atomic_pool_init, true);
 412        else
 413                ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 414                                           &page, atomic_pool_init, true);
 415        if (ptr) {
 416                int ret;
 417
 418                ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 419                                        page_to_phys(page),
 420                                        atomic_pool_size, -1);
 421                if (ret)
 422                        goto destroy_genpool;
 423
 424                gen_pool_set_algo(atomic_pool,
 425                                gen_pool_first_fit_order_align,
 426                                (void *)PAGE_SHIFT);
 427                pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
 428                       atomic_pool_size / 1024);
 429                return 0;
 430        }
 431
 432destroy_genpool:
 433        gen_pool_destroy(atomic_pool);
 434        atomic_pool = NULL;
 435out:
 436        pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
 437               atomic_pool_size / 1024);
 438        return -ENOMEM;
 439}
 440/*
 441 * CMA is activated by core_initcall, so we must be called after it.
 442 */
 443postcore_initcall(atomic_pool_init);
 444
 445struct dma_contig_early_reserve {
 446        phys_addr_t base;
 447        unsigned long size;
 448};
 449
 450static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 451
 452static int dma_mmu_remap_num __initdata;
 453
 454void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 455{
 456        dma_mmu_remap[dma_mmu_remap_num].base = base;
 457        dma_mmu_remap[dma_mmu_remap_num].size = size;
 458        dma_mmu_remap_num++;
 459}
 460
 461void __init dma_contiguous_remap(void)
 462{
 463        int i;
 464        for (i = 0; i < dma_mmu_remap_num; i++) {
 465                phys_addr_t start = dma_mmu_remap[i].base;
 466                phys_addr_t end = start + dma_mmu_remap[i].size;
 467                struct map_desc map;
 468                unsigned long addr;
 469
 470                if (end > arm_lowmem_limit)
 471                        end = arm_lowmem_limit;
 472                if (start >= end)
 473                        continue;
 474
 475                map.pfn = __phys_to_pfn(start);
 476                map.virtual = __phys_to_virt(start);
 477                map.length = end - start;
 478                map.type = MT_MEMORY_DMA_READY;
 479
 480                /*
 481                 * Clear previous low-memory mapping to ensure that the
 482                 * TLB does not see any conflicting entries, then flush
 483                 * the TLB of the old entries before creating new mappings.
 484                 *
 485                 * This ensures that any speculatively loaded TLB entries
 486                 * (even though they may be rare) can not cause any problems,
 487                 * and ensures that this code is architecturally compliant.
 488                 */
 489                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 490                     addr += PMD_SIZE)
 491                        pmd_clear(pmd_off_k(addr));
 492
 493                flush_tlb_kernel_range(__phys_to_virt(start),
 494                                       __phys_to_virt(end));
 495
 496                iotable_init(&map, 1);
 497        }
 498}
 499
 500static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 501                            void *data)
 502{
 503        struct page *page = virt_to_page(addr);
 504        pgprot_t prot = *(pgprot_t *)data;
 505
 506        set_pte_ext(pte, mk_pte(page, prot), 0);
 507        return 0;
 508}
 509
 510static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 511{
 512        unsigned long start = (unsigned long) page_address(page);
 513        unsigned end = start + size;
 514
 515        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 516        flush_tlb_kernel_range(start, end);
 517}
 518
 519static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 520                                 pgprot_t prot, struct page **ret_page,
 521                                 const void *caller, bool want_vaddr)
 522{
 523        struct page *page;
 524        void *ptr = NULL;
 525        page = __dma_alloc_buffer(dev, size, gfp);
 526        if (!page)
 527                return NULL;
 528        if (!want_vaddr)
 529                goto out;
 530
 531        ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 532        if (!ptr) {
 533                __dma_free_buffer(page, size);
 534                return NULL;
 535        }
 536
 537 out:
 538        *ret_page = page;
 539        return ptr;
 540}
 541
 542static void *__alloc_from_pool(size_t size, struct page **ret_page)
 543{
 544        unsigned long val;
 545        void *ptr = NULL;
 546
 547        if (!atomic_pool) {
 548                WARN(1, "coherent pool not initialised!\n");
 549                return NULL;
 550        }
 551
 552        val = gen_pool_alloc(atomic_pool, size);
 553        if (val) {
 554                phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 555
 556                *ret_page = phys_to_page(phys);
 557                ptr = (void *)val;
 558        }
 559
 560        return ptr;
 561}
 562
 563static bool __in_atomic_pool(void *start, size_t size)
 564{
 565        return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 566}
 567
 568static int __free_from_pool(void *start, size_t size)
 569{
 570        if (!__in_atomic_pool(start, size))
 571                return 0;
 572
 573        gen_pool_free(atomic_pool, (unsigned long)start, size);
 574
 575        return 1;
 576}
 577
 578static void *__alloc_from_contiguous(struct device *dev, size_t size,
 579                                     pgprot_t prot, struct page **ret_page,
 580                                     const void *caller, bool want_vaddr)
 581{
 582        unsigned long order = get_order(size);
 583        size_t count = size >> PAGE_SHIFT;
 584        struct page *page;
 585        void *ptr = NULL;
 586
 587        page = dma_alloc_from_contiguous(dev, count, order);
 588        if (!page)
 589                return NULL;
 590
 591        __dma_clear_buffer(page, size);
 592
 593        if (!want_vaddr)
 594                goto out;
 595
 596        if (PageHighMem(page)) {
 597                ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 598                if (!ptr) {
 599                        dma_release_from_contiguous(dev, page, count);
 600                        return NULL;
 601                }
 602        } else {
 603                __dma_remap(page, size, prot);
 604                ptr = page_address(page);
 605        }
 606
 607 out:
 608        *ret_page = page;
 609        return ptr;
 610}
 611
 612static void __free_from_contiguous(struct device *dev, struct page *page,
 613                                   void *cpu_addr, size_t size, bool want_vaddr)
 614{
 615        if (want_vaddr) {
 616                if (PageHighMem(page))
 617                        __dma_free_remap(cpu_addr, size);
 618                else
 619                        __dma_remap(page, size, PAGE_KERNEL);
 620        }
 621        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 622}
 623
 624static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 625{
 626        prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 627                            pgprot_writecombine(prot) :
 628                            pgprot_dmacoherent(prot);
 629        return prot;
 630}
 631
 632#define nommu() 0
 633
 634#else   /* !CONFIG_MMU */
 635
 636#define nommu() 1
 637
 638#define __get_dma_pgprot(attrs, prot)                           __pgprot(0)
 639#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)  NULL
 640#define __alloc_from_pool(size, ret_page)                       NULL
 641#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)    NULL
 642#define __free_from_pool(cpu_addr, size)                        do { } while (0)
 643#define __free_from_contiguous(dev, page, cpu_addr, size, wv)   do { } while (0)
 644#define __dma_free_remap(cpu_addr, size)                        do { } while (0)
 645
 646#endif  /* CONFIG_MMU */
 647
 648static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 649                                   struct page **ret_page)
 650{
 651        struct page *page;
 652        page = __dma_alloc_buffer(dev, size, gfp);
 653        if (!page)
 654                return NULL;
 655
 656        *ret_page = page;
 657        return page_address(page);
 658}
 659
 660static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 661                                    struct page **ret_page)
 662{
 663        return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 664                                     ret_page);
 665}
 666
 667static void simple_allocator_free(struct arm_dma_free_args *args)
 668{
 669        __dma_free_buffer(args->page, args->size);
 670}
 671
 672static struct arm_dma_allocator simple_allocator = {
 673        .alloc = simple_allocator_alloc,
 674        .free = simple_allocator_free,
 675};
 676
 677static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 678                                 struct page **ret_page)
 679{
 680        return __alloc_from_contiguous(args->dev, args->size, args->prot,
 681                                       ret_page, args->caller,
 682                                       args->want_vaddr);
 683}
 684
 685static void cma_allocator_free(struct arm_dma_free_args *args)
 686{
 687        __free_from_contiguous(args->dev, args->page, args->cpu_addr,
 688                               args->size, args->want_vaddr);
 689}
 690
 691static struct arm_dma_allocator cma_allocator = {
 692        .alloc = cma_allocator_alloc,
 693        .free = cma_allocator_free,
 694};
 695
 696static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 697                                  struct page **ret_page)
 698{
 699        return __alloc_from_pool(args->size, ret_page);
 700}
 701
 702static void pool_allocator_free(struct arm_dma_free_args *args)
 703{
 704        __free_from_pool(args->cpu_addr, args->size);
 705}
 706
 707static struct arm_dma_allocator pool_allocator = {
 708        .alloc = pool_allocator_alloc,
 709        .free = pool_allocator_free,
 710};
 711
 712static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 713                                   struct page **ret_page)
 714{
 715        return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 716                                    args->prot, ret_page, args->caller,
 717                                    args->want_vaddr);
 718}
 719
 720static void remap_allocator_free(struct arm_dma_free_args *args)
 721{
 722        if (args->want_vaddr)
 723                __dma_free_remap(args->cpu_addr, args->size);
 724
 725        __dma_free_buffer(args->page, args->size);
 726}
 727
 728static struct arm_dma_allocator remap_allocator = {
 729        .alloc = remap_allocator_alloc,
 730        .free = remap_allocator_free,
 731};
 732
 733static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 734                         gfp_t gfp, pgprot_t prot, bool is_coherent,
 735                         struct dma_attrs *attrs, const void *caller)
 736{
 737        u64 mask = get_coherent_dma_mask(dev);
 738        struct page *page = NULL;
 739        void *addr;
 740        bool allowblock, cma;
 741        struct arm_dma_buffer *buf;
 742        struct arm_dma_alloc_args args = {
 743                .dev = dev,
 744                .size = PAGE_ALIGN(size),
 745                .gfp = gfp,
 746                .prot = prot,
 747                .caller = caller,
 748                .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 749        };
 750
 751#ifdef CONFIG_DMA_API_DEBUG
 752        u64 limit = (mask + 1) & ~mask;
 753        if (limit && size >= limit) {
 754                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 755                        size, mask);
 756                return NULL;
 757        }
 758#endif
 759
 760        if (!mask)
 761                return NULL;
 762
 763        buf = kzalloc(sizeof(*buf),
 764                      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 765        if (!buf)
 766                return NULL;
 767
 768        if (mask < 0xffffffffULL)
 769                gfp |= GFP_DMA;
 770
 771        /*
 772         * Following is a work-around (a.k.a. hack) to prevent pages
 773         * with __GFP_COMP being passed to split_page() which cannot
 774         * handle them.  The real problem is that this flag probably
 775         * should be 0 on ARM as it is not supported on this
 776         * platform; see CONFIG_HUGETLBFS.
 777         */
 778        gfp &= ~(__GFP_COMP);
 779        args.gfp = gfp;
 780
 781        *handle = DMA_ERROR_CODE;
 782        allowblock = gfpflags_allow_blocking(gfp);
 783        cma = allowblock ? dev_get_cma_area(dev) : false;
 784
 785        if (cma)
 786                buf->allocator = &cma_allocator;
 787        else if (nommu() || is_coherent)
 788                buf->allocator = &simple_allocator;
 789        else if (allowblock)
 790                buf->allocator = &remap_allocator;
 791        else
 792                buf->allocator = &pool_allocator;
 793
 794        addr = buf->allocator->alloc(&args, &page);
 795
 796        if (page) {
 797                unsigned long flags;
 798
 799                *handle = pfn_to_dma(dev, page_to_pfn(page));
 800                buf->virt = args.want_vaddr ? addr : page;
 801
 802                spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 803                list_add(&buf->list, &arm_dma_bufs);
 804                spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 805        } else {
 806                kfree(buf);
 807        }
 808
 809        return args.want_vaddr ? addr : page;
 810}
 811
 812/*
 813 * Allocate DMA-coherent memory space and return both the kernel remapped
 814 * virtual and bus address for that space.
 815 */
 816void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 817                    gfp_t gfp, struct dma_attrs *attrs)
 818{
 819        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 820
 821        return __dma_alloc(dev, size, handle, gfp, prot, false,
 822                           attrs, __builtin_return_address(0));
 823}
 824
 825static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 826        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 827{
 828        return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 829                           attrs, __builtin_return_address(0));
 830}
 831
 832static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 833                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 834                 struct dma_attrs *attrs)
 835{
 836        int ret = -ENXIO;
 837#ifdef CONFIG_MMU
 838        unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 839        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 840        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 841        unsigned long off = vma->vm_pgoff;
 842
 843        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 844                return ret;
 845
 846        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 847                ret = remap_pfn_range(vma, vma->vm_start,
 848                                      pfn + off,
 849                                      vma->vm_end - vma->vm_start,
 850                                      vma->vm_page_prot);
 851        }
 852#endif  /* CONFIG_MMU */
 853
 854        return ret;
 855}
 856
 857/*
 858 * Create userspace mapping for the DMA-coherent memory.
 859 */
 860static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 861                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 862                 struct dma_attrs *attrs)
 863{
 864        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 865}
 866
 867int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 868                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 869                 struct dma_attrs *attrs)
 870{
 871#ifdef CONFIG_MMU
 872        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 873#endif  /* CONFIG_MMU */
 874        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 875}
 876
 877/*
 878 * Free a buffer as defined by the above mapping.
 879 */
 880static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 881                           dma_addr_t handle, struct dma_attrs *attrs,
 882                           bool is_coherent)
 883{
 884        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 885        struct arm_dma_buffer *buf;
 886        struct arm_dma_free_args args = {
 887                .dev = dev,
 888                .size = PAGE_ALIGN(size),
 889                .cpu_addr = cpu_addr,
 890                .page = page,
 891                .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 892        };
 893
 894        buf = arm_dma_buffer_find(cpu_addr);
 895        if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 896                return;
 897
 898        buf->allocator->free(&args);
 899        kfree(buf);
 900}
 901
 902void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 903                  dma_addr_t handle, struct dma_attrs *attrs)
 904{
 905        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 906}
 907
 908static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 909                                  dma_addr_t handle, struct dma_attrs *attrs)
 910{
 911        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 912}
 913
 914int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 915                 void *cpu_addr, dma_addr_t handle, size_t size,
 916                 struct dma_attrs *attrs)
 917{
 918        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 919        int ret;
 920
 921        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 922        if (unlikely(ret))
 923                return ret;
 924
 925        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 926        return 0;
 927}
 928
 929static void dma_cache_maint_page(struct page *page, unsigned long offset,
 930        size_t size, enum dma_data_direction dir,
 931        void (*op)(const void *, size_t, int))
 932{
 933        unsigned long pfn;
 934        size_t left = size;
 935
 936        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 937        offset %= PAGE_SIZE;
 938
 939        /*
 940         * A single sg entry may refer to multiple physically contiguous
 941         * pages.  But we still need to process highmem pages individually.
 942         * If highmem is not configured then the bulk of this loop gets
 943         * optimized out.
 944         */
 945        do {
 946                size_t len = left;
 947                void *vaddr;
 948
 949                page = pfn_to_page(pfn);
 950
 951                if (PageHighMem(page)) {
 952                        if (len + offset > PAGE_SIZE)
 953                                len = PAGE_SIZE - offset;
 954
 955                        if (cache_is_vipt_nonaliasing()) {
 956                                vaddr = kmap_atomic(page);
 957                                op(vaddr + offset, len, dir);
 958                                kunmap_atomic(vaddr);
 959                        } else {
 960                                vaddr = kmap_high_get(page);
 961                                if (vaddr) {
 962                                        op(vaddr + offset, len, dir);
 963                                        kunmap_high(page);
 964                                }
 965                        }
 966                } else {
 967                        vaddr = page_address(page) + offset;
 968                        op(vaddr, len, dir);
 969                }
 970                offset = 0;
 971                pfn++;
 972                left -= len;
 973        } while (left);
 974}
 975
 976/*
 977 * Make an area consistent for devices.
 978 * Note: Drivers should NOT use this function directly, as it will break
 979 * platforms with CONFIG_DMABOUNCE.
 980 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 981 */
 982static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 983        size_t size, enum dma_data_direction dir)
 984{
 985        phys_addr_t paddr;
 986
 987        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 988
 989        paddr = page_to_phys(page) + off;
 990        if (dir == DMA_FROM_DEVICE) {
 991                outer_inv_range(paddr, paddr + size);
 992        } else {
 993                outer_clean_range(paddr, paddr + size);
 994        }
 995        /* FIXME: non-speculating: flush on bidirectional mappings? */
 996}
 997
 998static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 999        size_t size, enum dma_data_direction dir)
1000{
1001        phys_addr_t paddr = page_to_phys(page) + off;
1002
1003        /* FIXME: non-speculating: not required */
1004        /* in any case, don't bother invalidating if DMA to device */
1005        if (dir != DMA_TO_DEVICE) {
1006                outer_inv_range(paddr, paddr + size);
1007
1008                dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1009        }
1010
1011        /*
1012         * Mark the D-cache clean for these pages to avoid extra flushing.
1013         */
1014        if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1015                unsigned long pfn;
1016                size_t left = size;
1017
1018                pfn = page_to_pfn(page) + off / PAGE_SIZE;
1019                off %= PAGE_SIZE;
1020                if (off) {
1021                        pfn++;
1022                        left -= PAGE_SIZE - off;
1023                }
1024                while (left >= PAGE_SIZE) {
1025                        page = pfn_to_page(pfn++);
1026                        set_bit(PG_dcache_clean, &page->flags);
1027                        left -= PAGE_SIZE;
1028                }
1029        }
1030}
1031
1032/**
1033 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1034 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1035 * @sg: list of buffers
1036 * @nents: number of buffers to map
1037 * @dir: DMA transfer direction
1038 *
1039 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1040 * This is the scatter-gather version of the dma_map_single interface.
1041 * Here the scatter gather list elements are each tagged with the
1042 * appropriate dma address and length.  They are obtained via
1043 * sg_dma_{address,length}.
1044 *
1045 * Device ownership issues as mentioned for dma_map_single are the same
1046 * here.
1047 */
1048int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1049                enum dma_data_direction dir, struct dma_attrs *attrs)
1050{
1051        struct dma_map_ops *ops = get_dma_ops(dev);
1052        struct scatterlist *s;
1053        int i, j;
1054
1055        for_each_sg(sg, s, nents, i) {
1056#ifdef CONFIG_NEED_SG_DMA_LENGTH
1057                s->dma_length = s->length;
1058#endif
1059                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1060                                                s->length, dir, attrs);
1061                if (dma_mapping_error(dev, s->dma_address))
1062                        goto bad_mapping;
1063        }
1064        return nents;
1065
1066 bad_mapping:
1067        for_each_sg(sg, s, i, j)
1068                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1069        return 0;
1070}
1071
1072/**
1073 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1074 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1075 * @sg: list of buffers
1076 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1077 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1078 *
1079 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1080 * rules concerning calls here are the same as for dma_unmap_single().
1081 */
1082void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1083                enum dma_data_direction dir, struct dma_attrs *attrs)
1084{
1085        struct dma_map_ops *ops = get_dma_ops(dev);
1086        struct scatterlist *s;
1087
1088        int i;
1089
1090        for_each_sg(sg, s, nents, i)
1091                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1092}
1093
1094/**
1095 * arm_dma_sync_sg_for_cpu
1096 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1097 * @sg: list of buffers
1098 * @nents: number of buffers to map (returned from dma_map_sg)
1099 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1100 */
1101void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1102                        int nents, enum dma_data_direction dir)
1103{
1104        struct dma_map_ops *ops = get_dma_ops(dev);
1105        struct scatterlist *s;
1106        int i;
1107
1108        for_each_sg(sg, s, nents, i)
1109                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1110                                         dir);
1111}
1112
1113/**
1114 * arm_dma_sync_sg_for_device
1115 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116 * @sg: list of buffers
1117 * @nents: number of buffers to map (returned from dma_map_sg)
1118 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119 */
1120void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1121                        int nents, enum dma_data_direction dir)
1122{
1123        struct dma_map_ops *ops = get_dma_ops(dev);
1124        struct scatterlist *s;
1125        int i;
1126
1127        for_each_sg(sg, s, nents, i)
1128                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1129                                            dir);
1130}
1131
1132/*
1133 * Return whether the given device DMA address mask can be supported
1134 * properly.  For example, if your device can only drive the low 24-bits
1135 * during bus mastering, then you would pass 0x00ffffff as the mask
1136 * to this function.
1137 */
1138int dma_supported(struct device *dev, u64 mask)
1139{
1140        return __dma_supported(dev, mask, false);
1141}
1142EXPORT_SYMBOL(dma_supported);
1143
1144#define PREALLOC_DMA_DEBUG_ENTRIES      4096
1145
1146static int __init dma_debug_do_init(void)
1147{
1148        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1149        return 0;
1150}
1151fs_initcall(dma_debug_do_init);
1152
1153#ifdef CONFIG_ARM_DMA_USE_IOMMU
1154
1155/* IOMMU */
1156
1157static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1158
1159static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1160                                      size_t size)
1161{
1162        unsigned int order = get_order(size);
1163        unsigned int align = 0;
1164        unsigned int count, start;
1165        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1166        unsigned long flags;
1167        dma_addr_t iova;
1168        int i;
1169
1170        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1171                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1172
1173        count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1174        align = (1 << order) - 1;
1175
1176        spin_lock_irqsave(&mapping->lock, flags);
1177        for (i = 0; i < mapping->nr_bitmaps; i++) {
1178                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1179                                mapping->bits, 0, count, align);
1180
1181                if (start > mapping->bits)
1182                        continue;
1183
1184                bitmap_set(mapping->bitmaps[i], start, count);
1185                break;
1186        }
1187
1188        /*
1189         * No unused range found. Try to extend the existing mapping
1190         * and perform a second attempt to reserve an IO virtual
1191         * address range of size bytes.
1192         */
1193        if (i == mapping->nr_bitmaps) {
1194                if (extend_iommu_mapping(mapping)) {
1195                        spin_unlock_irqrestore(&mapping->lock, flags);
1196                        return DMA_ERROR_CODE;
1197                }
1198
1199                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1200                                mapping->bits, 0, count, align);
1201
1202                if (start > mapping->bits) {
1203                        spin_unlock_irqrestore(&mapping->lock, flags);
1204                        return DMA_ERROR_CODE;
1205                }
1206
1207                bitmap_set(mapping->bitmaps[i], start, count);
1208        }
1209        spin_unlock_irqrestore(&mapping->lock, flags);
1210
1211        iova = mapping->base + (mapping_size * i);
1212        iova += start << PAGE_SHIFT;
1213
1214        return iova;
1215}
1216
1217static inline void __free_iova(struct dma_iommu_mapping *mapping,
1218                               dma_addr_t addr, size_t size)
1219{
1220        unsigned int start, count;
1221        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1222        unsigned long flags;
1223        dma_addr_t bitmap_base;
1224        u32 bitmap_index;
1225
1226        if (!size)
1227                return;
1228
1229        bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1230        BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1231
1232        bitmap_base = mapping->base + mapping_size * bitmap_index;
1233
1234        start = (addr - bitmap_base) >> PAGE_SHIFT;
1235
1236        if (addr + size > bitmap_base + mapping_size) {
1237                /*
1238                 * The address range to be freed reaches into the iova
1239                 * range of the next bitmap. This should not happen as
1240                 * we don't allow this in __alloc_iova (at the
1241                 * moment).
1242                 */
1243                BUG();
1244        } else
1245                count = size >> PAGE_SHIFT;
1246
1247        spin_lock_irqsave(&mapping->lock, flags);
1248        bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1249        spin_unlock_irqrestore(&mapping->lock, flags);
1250}
1251
1252/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1253static const int iommu_order_array[] = { 9, 8, 4, 0 };
1254
1255static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1256                                          gfp_t gfp, struct dma_attrs *attrs)
1257{
1258        struct page **pages;
1259        int count = size >> PAGE_SHIFT;
1260        int array_size = count * sizeof(struct page *);
1261        int i = 0;
1262        int order_idx = 0;
1263
1264        if (array_size <= PAGE_SIZE)
1265                pages = kzalloc(array_size, GFP_KERNEL);
1266        else
1267                pages = vzalloc(array_size);
1268        if (!pages)
1269                return NULL;
1270
1271        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1272        {
1273                unsigned long order = get_order(size);
1274                struct page *page;
1275
1276                page = dma_alloc_from_contiguous(dev, count, order);
1277                if (!page)
1278                        goto error;
1279
1280                __dma_clear_buffer(page, size);
1281
1282                for (i = 0; i < count; i++)
1283                        pages[i] = page + i;
1284
1285                return pages;
1286        }
1287
1288        /* Go straight to 4K chunks if caller says it's OK. */
1289        if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1290                order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1291
1292        /*
1293         * IOMMU can map any pages, so himem can also be used here
1294         */
1295        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1296
1297        while (count) {
1298                int j, order;
1299
1300                order = iommu_order_array[order_idx];
1301
1302                /* Drop down when we get small */
1303                if (__fls(count) < order) {
1304                        order_idx++;
1305                        continue;
1306                }
1307
1308                if (order) {
1309                        /* See if it's easy to allocate a high-order chunk */
1310                        pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1311
1312                        /* Go down a notch at first sign of pressure */
1313                        if (!pages[i]) {
1314                                order_idx++;
1315                                continue;
1316                        }
1317                } else {
1318                        pages[i] = alloc_pages(gfp, 0);
1319                        if (!pages[i])
1320                                goto error;
1321                }
1322
1323                if (order) {
1324                        split_page(pages[i], order);
1325                        j = 1 << order;
1326                        while (--j)
1327                                pages[i + j] = pages[i] + j;
1328                }
1329
1330                __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1331                i += 1 << order;
1332                count -= 1 << order;
1333        }
1334
1335        return pages;
1336error:
1337        while (i--)
1338                if (pages[i])
1339                        __free_pages(pages[i], 0);
1340        kvfree(pages);
1341        return NULL;
1342}
1343
1344static int __iommu_free_buffer(struct device *dev, struct page **pages,
1345                               size_t size, struct dma_attrs *attrs)
1346{
1347        int count = size >> PAGE_SHIFT;
1348        int i;
1349
1350        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1351                dma_release_from_contiguous(dev, pages[0], count);
1352        } else {
1353                for (i = 0; i < count; i++)
1354                        if (pages[i])
1355                                __free_pages(pages[i], 0);
1356        }
1357
1358        kvfree(pages);
1359        return 0;
1360}
1361
1362/*
1363 * Create a CPU mapping for a specified pages
1364 */
1365static void *
1366__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1367                    const void *caller)
1368{
1369        return dma_common_pages_remap(pages, size,
1370                        VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1371}
1372
1373/*
1374 * Create a mapping in device IO address space for specified pages
1375 */
1376static dma_addr_t
1377__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1378{
1379        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1380        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1381        dma_addr_t dma_addr, iova;
1382        int i;
1383
1384        dma_addr = __alloc_iova(mapping, size);
1385        if (dma_addr == DMA_ERROR_CODE)
1386                return dma_addr;
1387
1388        iova = dma_addr;
1389        for (i = 0; i < count; ) {
1390                int ret;
1391
1392                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1393                phys_addr_t phys = page_to_phys(pages[i]);
1394                unsigned int len, j;
1395
1396                for (j = i + 1; j < count; j++, next_pfn++)
1397                        if (page_to_pfn(pages[j]) != next_pfn)
1398                                break;
1399
1400                len = (j - i) << PAGE_SHIFT;
1401                ret = iommu_map(mapping->domain, iova, phys, len,
1402                                IOMMU_READ|IOMMU_WRITE);
1403                if (ret < 0)
1404                        goto fail;
1405                iova += len;
1406                i = j;
1407        }
1408        return dma_addr;
1409fail:
1410        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1411        __free_iova(mapping, dma_addr, size);
1412        return DMA_ERROR_CODE;
1413}
1414
1415static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1416{
1417        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1418
1419        /*
1420         * add optional in-page offset from iova to size and align
1421         * result to page size
1422         */
1423        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1424        iova &= PAGE_MASK;
1425
1426        iommu_unmap(mapping->domain, iova, size);
1427        __free_iova(mapping, iova, size);
1428        return 0;
1429}
1430
1431static struct page **__atomic_get_pages(void *addr)
1432{
1433        struct page *page;
1434        phys_addr_t phys;
1435
1436        phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1437        page = phys_to_page(phys);
1438
1439        return (struct page **)page;
1440}
1441
1442static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1443{
1444        struct vm_struct *area;
1445
1446        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1447                return __atomic_get_pages(cpu_addr);
1448
1449        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1450                return cpu_addr;
1451
1452        area = find_vm_area(cpu_addr);
1453        if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1454                return area->pages;
1455        return NULL;
1456}
1457
1458static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1459                                  dma_addr_t *handle)
1460{
1461        struct page *page;
1462        void *addr;
1463
1464        addr = __alloc_from_pool(size, &page);
1465        if (!addr)
1466                return NULL;
1467
1468        *handle = __iommu_create_mapping(dev, &page, size);
1469        if (*handle == DMA_ERROR_CODE)
1470                goto err_mapping;
1471
1472        return addr;
1473
1474err_mapping:
1475        __free_from_pool(addr, size);
1476        return NULL;
1477}
1478
1479static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1480                                dma_addr_t handle, size_t size)
1481{
1482        __iommu_remove_mapping(dev, handle, size);
1483        __free_from_pool(cpu_addr, size);
1484}
1485
1486static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1487            dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1488{
1489        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1490        struct page **pages;
1491        void *addr = NULL;
1492
1493        *handle = DMA_ERROR_CODE;
1494        size = PAGE_ALIGN(size);
1495
1496        if (!gfpflags_allow_blocking(gfp))
1497                return __iommu_alloc_atomic(dev, size, handle);
1498
1499        /*
1500         * Following is a work-around (a.k.a. hack) to prevent pages
1501         * with __GFP_COMP being passed to split_page() which cannot
1502         * handle them.  The real problem is that this flag probably
1503         * should be 0 on ARM as it is not supported on this
1504         * platform; see CONFIG_HUGETLBFS.
1505         */
1506        gfp &= ~(__GFP_COMP);
1507
1508        pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1509        if (!pages)
1510                return NULL;
1511
1512        *handle = __iommu_create_mapping(dev, pages, size);
1513        if (*handle == DMA_ERROR_CODE)
1514                goto err_buffer;
1515
1516        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1517                return pages;
1518
1519        addr = __iommu_alloc_remap(pages, size, gfp, prot,
1520                                   __builtin_return_address(0));
1521        if (!addr)
1522                goto err_mapping;
1523
1524        return addr;
1525
1526err_mapping:
1527        __iommu_remove_mapping(dev, *handle, size);
1528err_buffer:
1529        __iommu_free_buffer(dev, pages, size, attrs);
1530        return NULL;
1531}
1532
1533static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1534                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1535                    struct dma_attrs *attrs)
1536{
1537        unsigned long uaddr = vma->vm_start;
1538        unsigned long usize = vma->vm_end - vma->vm_start;
1539        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1540        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1541        unsigned long off = vma->vm_pgoff;
1542
1543        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1544
1545        if (!pages)
1546                return -ENXIO;
1547
1548        if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1549                return -ENXIO;
1550
1551        pages += off;
1552
1553        do {
1554                int ret = vm_insert_page(vma, uaddr, *pages++);
1555                if (ret) {
1556                        pr_err("Remapping memory failed: %d\n", ret);
1557                        return ret;
1558                }
1559                uaddr += PAGE_SIZE;
1560                usize -= PAGE_SIZE;
1561        } while (usize > 0);
1562
1563        return 0;
1564}
1565
1566/*
1567 * free a page as defined by the above mapping.
1568 * Must not be called with IRQs disabled.
1569 */
1570void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1571                          dma_addr_t handle, struct dma_attrs *attrs)
1572{
1573        struct page **pages;
1574        size = PAGE_ALIGN(size);
1575
1576        if (__in_atomic_pool(cpu_addr, size)) {
1577                __iommu_free_atomic(dev, cpu_addr, handle, size);
1578                return;
1579        }
1580
1581        pages = __iommu_get_pages(cpu_addr, attrs);
1582        if (!pages) {
1583                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1584                return;
1585        }
1586
1587        if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1588                dma_common_free_remap(cpu_addr, size,
1589                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1590        }
1591
1592        __iommu_remove_mapping(dev, handle, size);
1593        __iommu_free_buffer(dev, pages, size, attrs);
1594}
1595
1596static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1597                                 void *cpu_addr, dma_addr_t dma_addr,
1598                                 size_t size, struct dma_attrs *attrs)
1599{
1600        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1601        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1602
1603        if (!pages)
1604                return -ENXIO;
1605
1606        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1607                                         GFP_KERNEL);
1608}
1609
1610static int __dma_direction_to_prot(enum dma_data_direction dir)
1611{
1612        int prot;
1613
1614        switch (dir) {
1615        case DMA_BIDIRECTIONAL:
1616                prot = IOMMU_READ | IOMMU_WRITE;
1617                break;
1618        case DMA_TO_DEVICE:
1619                prot = IOMMU_READ;
1620                break;
1621        case DMA_FROM_DEVICE:
1622                prot = IOMMU_WRITE;
1623                break;
1624        default:
1625                prot = 0;
1626        }
1627
1628        return prot;
1629}
1630
1631/*
1632 * Map a part of the scatter-gather list into contiguous io address space
1633 */
1634static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1635                          size_t size, dma_addr_t *handle,
1636                          enum dma_data_direction dir, struct dma_attrs *attrs,
1637                          bool is_coherent)
1638{
1639        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1640        dma_addr_t iova, iova_base;
1641        int ret = 0;
1642        unsigned int count;
1643        struct scatterlist *s;
1644        int prot;
1645
1646        size = PAGE_ALIGN(size);
1647        *handle = DMA_ERROR_CODE;
1648
1649        iova_base = iova = __alloc_iova(mapping, size);
1650        if (iova == DMA_ERROR_CODE)
1651                return -ENOMEM;
1652
1653        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1654                phys_addr_t phys = page_to_phys(sg_page(s));
1655                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1656
1657                if (!is_coherent &&
1658                        !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1659                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1660
1661                prot = __dma_direction_to_prot(dir);
1662
1663                ret = iommu_map(mapping->domain, iova, phys, len, prot);
1664                if (ret < 0)
1665                        goto fail;
1666                count += len >> PAGE_SHIFT;
1667                iova += len;
1668        }
1669        *handle = iova_base;
1670
1671        return 0;
1672fail:
1673        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1674        __free_iova(mapping, iova_base, size);
1675        return ret;
1676}
1677
1678static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1679                     enum dma_data_direction dir, struct dma_attrs *attrs,
1680                     bool is_coherent)
1681{
1682        struct scatterlist *s = sg, *dma = sg, *start = sg;
1683        int i, count = 0;
1684        unsigned int offset = s->offset;
1685        unsigned int size = s->offset + s->length;
1686        unsigned int max = dma_get_max_seg_size(dev);
1687
1688        for (i = 1; i < nents; i++) {
1689                s = sg_next(s);
1690
1691                s->dma_address = DMA_ERROR_CODE;
1692                s->dma_length = 0;
1693
1694                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1695                        if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1696                            dir, attrs, is_coherent) < 0)
1697                                goto bad_mapping;
1698
1699                        dma->dma_address += offset;
1700                        dma->dma_length = size - offset;
1701
1702                        size = offset = s->offset;
1703                        start = s;
1704                        dma = sg_next(dma);
1705                        count += 1;
1706                }
1707                size += s->length;
1708        }
1709        if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1710                is_coherent) < 0)
1711                goto bad_mapping;
1712
1713        dma->dma_address += offset;
1714        dma->dma_length = size - offset;
1715
1716        return count+1;
1717
1718bad_mapping:
1719        for_each_sg(sg, s, count, i)
1720                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1721        return 0;
1722}
1723
1724/**
1725 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1726 * @dev: valid struct device pointer
1727 * @sg: list of buffers
1728 * @nents: number of buffers to map
1729 * @dir: DMA transfer direction
1730 *
1731 * Map a set of i/o coherent buffers described by scatterlist in streaming
1732 * mode for DMA. The scatter gather list elements are merged together (if
1733 * possible) and tagged with the appropriate dma address and length. They are
1734 * obtained via sg_dma_{address,length}.
1735 */
1736int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1737                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1738{
1739        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1740}
1741
1742/**
1743 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1744 * @dev: valid struct device pointer
1745 * @sg: list of buffers
1746 * @nents: number of buffers to map
1747 * @dir: DMA transfer direction
1748 *
1749 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1750 * The scatter gather list elements are merged together (if possible) and
1751 * tagged with the appropriate dma address and length. They are obtained via
1752 * sg_dma_{address,length}.
1753 */
1754int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1755                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1756{
1757        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1758}
1759
1760static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1761                int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1762                bool is_coherent)
1763{
1764        struct scatterlist *s;
1765        int i;
1766
1767        for_each_sg(sg, s, nents, i) {
1768                if (sg_dma_len(s))
1769                        __iommu_remove_mapping(dev, sg_dma_address(s),
1770                                               sg_dma_len(s));
1771                if (!is_coherent &&
1772                    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1773                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1774                                              s->length, dir);
1775        }
1776}
1777
1778/**
1779 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1780 * @dev: valid struct device pointer
1781 * @sg: list of buffers
1782 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1783 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1784 *
1785 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1786 * rules concerning calls here are the same as for dma_unmap_single().
1787 */
1788void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1789                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1790{
1791        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1792}
1793
1794/**
1795 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1796 * @dev: valid struct device pointer
1797 * @sg: list of buffers
1798 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1799 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1800 *
1801 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1802 * rules concerning calls here are the same as for dma_unmap_single().
1803 */
1804void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1805                        enum dma_data_direction dir, struct dma_attrs *attrs)
1806{
1807        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1808}
1809
1810/**
1811 * arm_iommu_sync_sg_for_cpu
1812 * @dev: valid struct device pointer
1813 * @sg: list of buffers
1814 * @nents: number of buffers to map (returned from dma_map_sg)
1815 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1816 */
1817void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1818                        int nents, enum dma_data_direction dir)
1819{
1820        struct scatterlist *s;
1821        int i;
1822
1823        for_each_sg(sg, s, nents, i)
1824                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1825
1826}
1827
1828/**
1829 * arm_iommu_sync_sg_for_device
1830 * @dev: valid struct device pointer
1831 * @sg: list of buffers
1832 * @nents: number of buffers to map (returned from dma_map_sg)
1833 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1834 */
1835void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1836                        int nents, enum dma_data_direction dir)
1837{
1838        struct scatterlist *s;
1839        int i;
1840
1841        for_each_sg(sg, s, nents, i)
1842                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1843}
1844
1845
1846/**
1847 * arm_coherent_iommu_map_page
1848 * @dev: valid struct device pointer
1849 * @page: page that buffer resides in
1850 * @offset: offset into page for start of buffer
1851 * @size: size of buffer to map
1852 * @dir: DMA transfer direction
1853 *
1854 * Coherent IOMMU aware version of arm_dma_map_page()
1855 */
1856static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1857             unsigned long offset, size_t size, enum dma_data_direction dir,
1858             struct dma_attrs *attrs)
1859{
1860        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1861        dma_addr_t dma_addr;
1862        int ret, prot, len = PAGE_ALIGN(size + offset);
1863
1864        dma_addr = __alloc_iova(mapping, len);
1865        if (dma_addr == DMA_ERROR_CODE)
1866                return dma_addr;
1867
1868        prot = __dma_direction_to_prot(dir);
1869
1870        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1871        if (ret < 0)
1872                goto fail;
1873
1874        return dma_addr + offset;
1875fail:
1876        __free_iova(mapping, dma_addr, len);
1877        return DMA_ERROR_CODE;
1878}
1879
1880/**
1881 * arm_iommu_map_page
1882 * @dev: valid struct device pointer
1883 * @page: page that buffer resides in
1884 * @offset: offset into page for start of buffer
1885 * @size: size of buffer to map
1886 * @dir: DMA transfer direction
1887 *
1888 * IOMMU aware version of arm_dma_map_page()
1889 */
1890static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1891             unsigned long offset, size_t size, enum dma_data_direction dir,
1892             struct dma_attrs *attrs)
1893{
1894        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1895                __dma_page_cpu_to_dev(page, offset, size, dir);
1896
1897        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1898}
1899
1900/**
1901 * arm_coherent_iommu_unmap_page
1902 * @dev: valid struct device pointer
1903 * @handle: DMA address of buffer
1904 * @size: size of buffer (same as passed to dma_map_page)
1905 * @dir: DMA transfer direction (same as passed to dma_map_page)
1906 *
1907 * Coherent IOMMU aware version of arm_dma_unmap_page()
1908 */
1909static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1910                size_t size, enum dma_data_direction dir,
1911                struct dma_attrs *attrs)
1912{
1913        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1914        dma_addr_t iova = handle & PAGE_MASK;
1915        int offset = handle & ~PAGE_MASK;
1916        int len = PAGE_ALIGN(size + offset);
1917
1918        if (!iova)
1919                return;
1920
1921        iommu_unmap(mapping->domain, iova, len);
1922        __free_iova(mapping, iova, len);
1923}
1924
1925/**
1926 * arm_iommu_unmap_page
1927 * @dev: valid struct device pointer
1928 * @handle: DMA address of buffer
1929 * @size: size of buffer (same as passed to dma_map_page)
1930 * @dir: DMA transfer direction (same as passed to dma_map_page)
1931 *
1932 * IOMMU aware version of arm_dma_unmap_page()
1933 */
1934static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1935                size_t size, enum dma_data_direction dir,
1936                struct dma_attrs *attrs)
1937{
1938        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1939        dma_addr_t iova = handle & PAGE_MASK;
1940        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1941        int offset = handle & ~PAGE_MASK;
1942        int len = PAGE_ALIGN(size + offset);
1943
1944        if (!iova)
1945                return;
1946
1947        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1948                __dma_page_dev_to_cpu(page, offset, size, dir);
1949
1950        iommu_unmap(mapping->domain, iova, len);
1951        __free_iova(mapping, iova, len);
1952}
1953
1954static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956{
1957        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958        dma_addr_t iova = handle & PAGE_MASK;
1959        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960        unsigned int offset = handle & ~PAGE_MASK;
1961
1962        if (!iova)
1963                return;
1964
1965        __dma_page_dev_to_cpu(page, offset, size, dir);
1966}
1967
1968static void arm_iommu_sync_single_for_device(struct device *dev,
1969                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970{
1971        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972        dma_addr_t iova = handle & PAGE_MASK;
1973        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974        unsigned int offset = handle & ~PAGE_MASK;
1975
1976        if (!iova)
1977                return;
1978
1979        __dma_page_cpu_to_dev(page, offset, size, dir);
1980}
1981
1982struct dma_map_ops iommu_ops = {
1983        .alloc          = arm_iommu_alloc_attrs,
1984        .free           = arm_iommu_free_attrs,
1985        .mmap           = arm_iommu_mmap_attrs,
1986        .get_sgtable    = arm_iommu_get_sgtable,
1987
1988        .map_page               = arm_iommu_map_page,
1989        .unmap_page             = arm_iommu_unmap_page,
1990        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1991        .sync_single_for_device = arm_iommu_sync_single_for_device,
1992
1993        .map_sg                 = arm_iommu_map_sg,
1994        .unmap_sg               = arm_iommu_unmap_sg,
1995        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
1996        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
1997};
1998
1999struct dma_map_ops iommu_coherent_ops = {
2000        .alloc          = arm_iommu_alloc_attrs,
2001        .free           = arm_iommu_free_attrs,
2002        .mmap           = arm_iommu_mmap_attrs,
2003        .get_sgtable    = arm_iommu_get_sgtable,
2004
2005        .map_page       = arm_coherent_iommu_map_page,
2006        .unmap_page     = arm_coherent_iommu_unmap_page,
2007
2008        .map_sg         = arm_coherent_iommu_map_sg,
2009        .unmap_sg       = arm_coherent_iommu_unmap_sg,
2010};
2011
2012/**
2013 * arm_iommu_create_mapping
2014 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2015 * @base: start address of the valid IO address space
2016 * @size: maximum size of the valid IO address space
2017 *
2018 * Creates a mapping structure which holds information about used/unused
2019 * IO address ranges, which is required to perform memory allocation and
2020 * mapping with IOMMU aware functions.
2021 *
2022 * The client device need to be attached to the mapping with
2023 * arm_iommu_attach_device function.
2024 */
2025struct dma_iommu_mapping *
2026arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2027{
2028        unsigned int bits = size >> PAGE_SHIFT;
2029        unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2030        struct dma_iommu_mapping *mapping;
2031        int extensions = 1;
2032        int err = -ENOMEM;
2033
2034        /* currently only 32-bit DMA address space is supported */
2035        if (size > DMA_BIT_MASK(32) + 1)
2036                return ERR_PTR(-ERANGE);
2037
2038        if (!bitmap_size)
2039                return ERR_PTR(-EINVAL);
2040
2041        if (bitmap_size > PAGE_SIZE) {
2042                extensions = bitmap_size / PAGE_SIZE;
2043                bitmap_size = PAGE_SIZE;
2044        }
2045
2046        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2047        if (!mapping)
2048                goto err;
2049
2050        mapping->bitmap_size = bitmap_size;
2051        mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2052                                GFP_KERNEL);
2053        if (!mapping->bitmaps)
2054                goto err2;
2055
2056        mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2057        if (!mapping->bitmaps[0])
2058                goto err3;
2059
2060        mapping->nr_bitmaps = 1;
2061        mapping->extensions = extensions;
2062        mapping->base = base;
2063        mapping->bits = BITS_PER_BYTE * bitmap_size;
2064
2065        spin_lock_init(&mapping->lock);
2066
2067        mapping->domain = iommu_domain_alloc(bus);
2068        if (!mapping->domain)
2069                goto err4;
2070
2071        kref_init(&mapping->kref);
2072        return mapping;
2073err4:
2074        kfree(mapping->bitmaps[0]);
2075err3:
2076        kfree(mapping->bitmaps);
2077err2:
2078        kfree(mapping);
2079err:
2080        return ERR_PTR(err);
2081}
2082EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2083
2084static void release_iommu_mapping(struct kref *kref)
2085{
2086        int i;
2087        struct dma_iommu_mapping *mapping =
2088                container_of(kref, struct dma_iommu_mapping, kref);
2089
2090        iommu_domain_free(mapping->domain);
2091        for (i = 0; i < mapping->nr_bitmaps; i++)
2092                kfree(mapping->bitmaps[i]);
2093        kfree(mapping->bitmaps);
2094        kfree(mapping);
2095}
2096
2097static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2098{
2099        int next_bitmap;
2100
2101        if (mapping->nr_bitmaps >= mapping->extensions)
2102                return -EINVAL;
2103
2104        next_bitmap = mapping->nr_bitmaps;
2105        mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2106                                                GFP_ATOMIC);
2107        if (!mapping->bitmaps[next_bitmap])
2108                return -ENOMEM;
2109
2110        mapping->nr_bitmaps++;
2111
2112        return 0;
2113}
2114
2115void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2116{
2117        if (mapping)
2118                kref_put(&mapping->kref, release_iommu_mapping);
2119}
2120EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2121
2122static int __arm_iommu_attach_device(struct device *dev,
2123                                     struct dma_iommu_mapping *mapping)
2124{
2125        int err;
2126
2127        err = iommu_attach_device(mapping->domain, dev);
2128        if (err)
2129                return err;
2130
2131        kref_get(&mapping->kref);
2132        to_dma_iommu_mapping(dev) = mapping;
2133
2134        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2135        return 0;
2136}
2137
2138/**
2139 * arm_iommu_attach_device
2140 * @dev: valid struct device pointer
2141 * @mapping: io address space mapping structure (returned from
2142 *      arm_iommu_create_mapping)
2143 *
2144 * Attaches specified io address space mapping to the provided device.
2145 * This replaces the dma operations (dma_map_ops pointer) with the
2146 * IOMMU aware version.
2147 *
2148 * More than one client might be attached to the same io address space
2149 * mapping.
2150 */
2151int arm_iommu_attach_device(struct device *dev,
2152                            struct dma_iommu_mapping *mapping)
2153{
2154        int err;
2155
2156        err = __arm_iommu_attach_device(dev, mapping);
2157        if (err)
2158                return err;
2159
2160        set_dma_ops(dev, &iommu_ops);
2161        return 0;
2162}
2163EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2164
2165static void __arm_iommu_detach_device(struct device *dev)
2166{
2167        struct dma_iommu_mapping *mapping;
2168
2169        mapping = to_dma_iommu_mapping(dev);
2170        if (!mapping) {
2171                dev_warn(dev, "Not attached\n");
2172                return;
2173        }
2174
2175        iommu_detach_device(mapping->domain, dev);
2176        kref_put(&mapping->kref, release_iommu_mapping);
2177        to_dma_iommu_mapping(dev) = NULL;
2178
2179        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2180}
2181
2182/**
2183 * arm_iommu_detach_device
2184 * @dev: valid struct device pointer
2185 *
2186 * Detaches the provided device from a previously attached map.
2187 * This voids the dma operations (dma_map_ops pointer)
2188 */
2189void arm_iommu_detach_device(struct device *dev)
2190{
2191        __arm_iommu_detach_device(dev);
2192        set_dma_ops(dev, NULL);
2193}
2194EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2195
2196static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2197{
2198        return coherent ? &iommu_coherent_ops : &iommu_ops;
2199}
2200
2201static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2202                                    const struct iommu_ops *iommu)
2203{
2204        struct dma_iommu_mapping *mapping;
2205
2206        if (!iommu)
2207                return false;
2208
2209        mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2210        if (IS_ERR(mapping)) {
2211                pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2212                                size, dev_name(dev));
2213                return false;
2214        }
2215
2216        if (__arm_iommu_attach_device(dev, mapping)) {
2217                pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2218                                dev_name(dev));
2219                arm_iommu_release_mapping(mapping);
2220                return false;
2221        }
2222
2223        return true;
2224}
2225
2226static void arm_teardown_iommu_dma_ops(struct device *dev)
2227{
2228        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2229
2230        if (!mapping)
2231                return;
2232
2233        __arm_iommu_detach_device(dev);
2234        arm_iommu_release_mapping(mapping);
2235}
2236
2237#else
2238
2239static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2240                                    const struct iommu_ops *iommu)
2241{
2242        return false;
2243}
2244
2245static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2246
2247#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2248
2249#endif  /* CONFIG_ARM_DMA_USE_IOMMU */
2250
2251static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2252{
2253        return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2254}
2255
2256void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257                        const struct iommu_ops *iommu, bool coherent)
2258{
2259        struct dma_map_ops *dma_ops;
2260
2261        dev->archdata.dma_coherent = coherent;
2262        if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2263                dma_ops = arm_get_iommu_dma_map_ops(coherent);
2264        else
2265                dma_ops = arm_get_dma_map_ops(coherent);
2266
2267        set_dma_ops(dev, dma_ops);
2268}
2269
2270void arch_teardown_dma_ops(struct device *dev)
2271{
2272        arm_teardown_iommu_dma_ops(dev);
2273}
2274