1
2
3
4
5
6
7
8
9
10
11
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
94
95
96
97
98
99
100
101
102
103
104
105
106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 size_t, enum dma_data_direction);
108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 size_t, enum dma_data_direction);
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 struct dma_attrs *attrs)
128{
129 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132}
133
134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 struct dma_attrs *attrs)
137{
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139}
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 size_t size, enum dma_data_direction dir,
157 struct dma_attrs *attrs)
158{
159 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 handle & ~PAGE_MASK, size, dir);
162}
163
164static void arm_dma_sync_single_for_cpu(struct device *dev,
165 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166{
167 unsigned int offset = handle & (PAGE_SIZE - 1);
168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 __dma_page_dev_to_cpu(page, offset, size, dir);
170}
171
172static void arm_dma_sync_single_for_device(struct device *dev,
173 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174{
175 unsigned int offset = handle & (PAGE_SIZE - 1);
176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 __dma_page_cpu_to_dev(page, offset, size, dir);
178}
179
180struct dma_map_ops arm_dma_ops = {
181 .alloc = arm_dma_alloc,
182 .free = arm_dma_free,
183 .mmap = arm_dma_mmap,
184 .get_sgtable = arm_dma_get_sgtable,
185 .map_page = arm_dma_map_page,
186 .unmap_page = arm_dma_unmap_page,
187 .map_sg = arm_dma_map_sg,
188 .unmap_sg = arm_dma_unmap_sg,
189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
190 .sync_single_for_device = arm_dma_sync_single_for_device,
191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
192 .sync_sg_for_device = arm_dma_sync_sg_for_device,
193};
194EXPORT_SYMBOL(arm_dma_ops);
195
196static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
197 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
198static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
199 dma_addr_t handle, struct dma_attrs *attrs);
200static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201 void *cpu_addr, dma_addr_t dma_addr, size_t size,
202 struct dma_attrs *attrs);
203
204struct dma_map_ops arm_coherent_dma_ops = {
205 .alloc = arm_coherent_dma_alloc,
206 .free = arm_coherent_dma_free,
207 .mmap = arm_coherent_dma_mmap,
208 .get_sgtable = arm_dma_get_sgtable,
209 .map_page = arm_coherent_dma_map_page,
210 .map_sg = arm_dma_map_sg,
211};
212EXPORT_SYMBOL(arm_coherent_dma_ops);
213
214static int __dma_supported(struct device *dev, u64 mask, bool warn)
215{
216 unsigned long max_dma_pfn;
217
218
219
220
221
222
223 if (sizeof(mask) != sizeof(dma_addr_t) &&
224 mask > (dma_addr_t)~0 &&
225 dma_to_pfn(dev, ~0) < max_pfn - 1) {
226 if (warn) {
227 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
228 mask);
229 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
230 }
231 return 0;
232 }
233
234 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
235
236
237
238
239
240 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
241 if (warn)
242 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
243 mask,
244 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
245 max_dma_pfn + 1);
246 return 0;
247 }
248
249 return 1;
250}
251
252static u64 get_coherent_dma_mask(struct device *dev)
253{
254 u64 mask = (u64)DMA_BIT_MASK(32);
255
256 if (dev) {
257 mask = dev->coherent_dma_mask;
258
259
260
261
262
263 if (mask == 0) {
264 dev_warn(dev, "coherent DMA mask is unset\n");
265 return 0;
266 }
267
268 if (!__dma_supported(dev, mask, true))
269 return 0;
270 }
271
272 return mask;
273}
274
275static void __dma_clear_buffer(struct page *page, size_t size)
276{
277
278
279
280
281 if (PageHighMem(page)) {
282 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
283 phys_addr_t end = base + size;
284 while (size > 0) {
285 void *ptr = kmap_atomic(page);
286 memset(ptr, 0, PAGE_SIZE);
287 dmac_flush_range(ptr, ptr + PAGE_SIZE);
288 kunmap_atomic(ptr);
289 page++;
290 size -= PAGE_SIZE;
291 }
292 outer_flush_range(base, end);
293 } else {
294 void *ptr = page_address(page);
295 memset(ptr, 0, size);
296 dmac_flush_range(ptr, ptr + size);
297 outer_flush_range(__pa(ptr), __pa(ptr) + size);
298 }
299}
300
301
302
303
304
305static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
306{
307 unsigned long order = get_order(size);
308 struct page *page, *p, *e;
309
310 page = alloc_pages(gfp, order);
311 if (!page)
312 return NULL;
313
314
315
316
317 split_page(page, order);
318 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
319 __free_page(p);
320
321 __dma_clear_buffer(page, size);
322
323 return page;
324}
325
326
327
328
329static void __dma_free_buffer(struct page *page, size_t size)
330{
331 struct page *e = page + (size >> PAGE_SHIFT);
332
333 while (page < e) {
334 __free_page(page);
335 page++;
336 }
337}
338
339#ifdef CONFIG_MMU
340
341static void *__alloc_from_contiguous(struct device *dev, size_t size,
342 pgprot_t prot, struct page **ret_page,
343 const void *caller, bool want_vaddr);
344
345static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
346 pgprot_t prot, struct page **ret_page,
347 const void *caller, bool want_vaddr);
348
349static void *
350__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
351 const void *caller)
352{
353
354
355
356
357 return dma_common_contiguous_remap(page, size,
358 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
359 prot, caller);
360}
361
362static void __dma_free_remap(void *cpu_addr, size_t size)
363{
364 dma_common_free_remap(cpu_addr, size,
365 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
366}
367
368#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
369static struct gen_pool *atomic_pool;
370
371static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
372
373static int __init early_coherent_pool(char *p)
374{
375 atomic_pool_size = memparse(p, &p);
376 return 0;
377}
378early_param("coherent_pool", early_coherent_pool);
379
380void __init init_dma_coherent_pool_size(unsigned long size)
381{
382
383
384
385 BUG_ON(atomic_pool);
386
387
388
389
390
391 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
392 atomic_pool_size = size;
393}
394
395
396
397
398static int __init atomic_pool_init(void)
399{
400 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
401 gfp_t gfp = GFP_KERNEL | GFP_DMA;
402 struct page *page;
403 void *ptr;
404
405 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
406 if (!atomic_pool)
407 goto out;
408
409 if (dev_get_cma_area(NULL))
410 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
411 &page, atomic_pool_init, true);
412 else
413 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
414 &page, atomic_pool_init, true);
415 if (ptr) {
416 int ret;
417
418 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
419 page_to_phys(page),
420 atomic_pool_size, -1);
421 if (ret)
422 goto destroy_genpool;
423
424 gen_pool_set_algo(atomic_pool,
425 gen_pool_first_fit_order_align,
426 (void *)PAGE_SHIFT);
427 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
428 atomic_pool_size / 1024);
429 return 0;
430 }
431
432destroy_genpool:
433 gen_pool_destroy(atomic_pool);
434 atomic_pool = NULL;
435out:
436 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
437 atomic_pool_size / 1024);
438 return -ENOMEM;
439}
440
441
442
443postcore_initcall(atomic_pool_init);
444
445struct dma_contig_early_reserve {
446 phys_addr_t base;
447 unsigned long size;
448};
449
450static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
451
452static int dma_mmu_remap_num __initdata;
453
454void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
455{
456 dma_mmu_remap[dma_mmu_remap_num].base = base;
457 dma_mmu_remap[dma_mmu_remap_num].size = size;
458 dma_mmu_remap_num++;
459}
460
461void __init dma_contiguous_remap(void)
462{
463 int i;
464 for (i = 0; i < dma_mmu_remap_num; i++) {
465 phys_addr_t start = dma_mmu_remap[i].base;
466 phys_addr_t end = start + dma_mmu_remap[i].size;
467 struct map_desc map;
468 unsigned long addr;
469
470 if (end > arm_lowmem_limit)
471 end = arm_lowmem_limit;
472 if (start >= end)
473 continue;
474
475 map.pfn = __phys_to_pfn(start);
476 map.virtual = __phys_to_virt(start);
477 map.length = end - start;
478 map.type = MT_MEMORY_DMA_READY;
479
480
481
482
483
484
485
486
487
488
489 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
490 addr += PMD_SIZE)
491 pmd_clear(pmd_off_k(addr));
492
493 flush_tlb_kernel_range(__phys_to_virt(start),
494 __phys_to_virt(end));
495
496 iotable_init(&map, 1);
497 }
498}
499
500static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
501 void *data)
502{
503 struct page *page = virt_to_page(addr);
504 pgprot_t prot = *(pgprot_t *)data;
505
506 set_pte_ext(pte, mk_pte(page, prot), 0);
507 return 0;
508}
509
510static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
511{
512 unsigned long start = (unsigned long) page_address(page);
513 unsigned end = start + size;
514
515 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
516 flush_tlb_kernel_range(start, end);
517}
518
519static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
520 pgprot_t prot, struct page **ret_page,
521 const void *caller, bool want_vaddr)
522{
523 struct page *page;
524 void *ptr = NULL;
525 page = __dma_alloc_buffer(dev, size, gfp);
526 if (!page)
527 return NULL;
528 if (!want_vaddr)
529 goto out;
530
531 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
532 if (!ptr) {
533 __dma_free_buffer(page, size);
534 return NULL;
535 }
536
537 out:
538 *ret_page = page;
539 return ptr;
540}
541
542static void *__alloc_from_pool(size_t size, struct page **ret_page)
543{
544 unsigned long val;
545 void *ptr = NULL;
546
547 if (!atomic_pool) {
548 WARN(1, "coherent pool not initialised!\n");
549 return NULL;
550 }
551
552 val = gen_pool_alloc(atomic_pool, size);
553 if (val) {
554 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
555
556 *ret_page = phys_to_page(phys);
557 ptr = (void *)val;
558 }
559
560 return ptr;
561}
562
563static bool __in_atomic_pool(void *start, size_t size)
564{
565 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
566}
567
568static int __free_from_pool(void *start, size_t size)
569{
570 if (!__in_atomic_pool(start, size))
571 return 0;
572
573 gen_pool_free(atomic_pool, (unsigned long)start, size);
574
575 return 1;
576}
577
578static void *__alloc_from_contiguous(struct device *dev, size_t size,
579 pgprot_t prot, struct page **ret_page,
580 const void *caller, bool want_vaddr)
581{
582 unsigned long order = get_order(size);
583 size_t count = size >> PAGE_SHIFT;
584 struct page *page;
585 void *ptr = NULL;
586
587 page = dma_alloc_from_contiguous(dev, count, order);
588 if (!page)
589 return NULL;
590
591 __dma_clear_buffer(page, size);
592
593 if (!want_vaddr)
594 goto out;
595
596 if (PageHighMem(page)) {
597 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
598 if (!ptr) {
599 dma_release_from_contiguous(dev, page, count);
600 return NULL;
601 }
602 } else {
603 __dma_remap(page, size, prot);
604 ptr = page_address(page);
605 }
606
607 out:
608 *ret_page = page;
609 return ptr;
610}
611
612static void __free_from_contiguous(struct device *dev, struct page *page,
613 void *cpu_addr, size_t size, bool want_vaddr)
614{
615 if (want_vaddr) {
616 if (PageHighMem(page))
617 __dma_free_remap(cpu_addr, size);
618 else
619 __dma_remap(page, size, PAGE_KERNEL);
620 }
621 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
622}
623
624static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
625{
626 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
627 pgprot_writecombine(prot) :
628 pgprot_dmacoherent(prot);
629 return prot;
630}
631
632#define nommu() 0
633
634#else
635
636#define nommu() 1
637
638#define __get_dma_pgprot(attrs, prot) __pgprot(0)
639#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
640#define __alloc_from_pool(size, ret_page) NULL
641#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
642#define __free_from_pool(cpu_addr, size) do { } while (0)
643#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
644#define __dma_free_remap(cpu_addr, size) do { } while (0)
645
646#endif
647
648static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
649 struct page **ret_page)
650{
651 struct page *page;
652 page = __dma_alloc_buffer(dev, size, gfp);
653 if (!page)
654 return NULL;
655
656 *ret_page = page;
657 return page_address(page);
658}
659
660static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
661 struct page **ret_page)
662{
663 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
664 ret_page);
665}
666
667static void simple_allocator_free(struct arm_dma_free_args *args)
668{
669 __dma_free_buffer(args->page, args->size);
670}
671
672static struct arm_dma_allocator simple_allocator = {
673 .alloc = simple_allocator_alloc,
674 .free = simple_allocator_free,
675};
676
677static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
678 struct page **ret_page)
679{
680 return __alloc_from_contiguous(args->dev, args->size, args->prot,
681 ret_page, args->caller,
682 args->want_vaddr);
683}
684
685static void cma_allocator_free(struct arm_dma_free_args *args)
686{
687 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
688 args->size, args->want_vaddr);
689}
690
691static struct arm_dma_allocator cma_allocator = {
692 .alloc = cma_allocator_alloc,
693 .free = cma_allocator_free,
694};
695
696static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
697 struct page **ret_page)
698{
699 return __alloc_from_pool(args->size, ret_page);
700}
701
702static void pool_allocator_free(struct arm_dma_free_args *args)
703{
704 __free_from_pool(args->cpu_addr, args->size);
705}
706
707static struct arm_dma_allocator pool_allocator = {
708 .alloc = pool_allocator_alloc,
709 .free = pool_allocator_free,
710};
711
712static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
713 struct page **ret_page)
714{
715 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
716 args->prot, ret_page, args->caller,
717 args->want_vaddr);
718}
719
720static void remap_allocator_free(struct arm_dma_free_args *args)
721{
722 if (args->want_vaddr)
723 __dma_free_remap(args->cpu_addr, args->size);
724
725 __dma_free_buffer(args->page, args->size);
726}
727
728static struct arm_dma_allocator remap_allocator = {
729 .alloc = remap_allocator_alloc,
730 .free = remap_allocator_free,
731};
732
733static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
734 gfp_t gfp, pgprot_t prot, bool is_coherent,
735 struct dma_attrs *attrs, const void *caller)
736{
737 u64 mask = get_coherent_dma_mask(dev);
738 struct page *page = NULL;
739 void *addr;
740 bool allowblock, cma;
741 struct arm_dma_buffer *buf;
742 struct arm_dma_alloc_args args = {
743 .dev = dev,
744 .size = PAGE_ALIGN(size),
745 .gfp = gfp,
746 .prot = prot,
747 .caller = caller,
748 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
749 };
750
751#ifdef CONFIG_DMA_API_DEBUG
752 u64 limit = (mask + 1) & ~mask;
753 if (limit && size >= limit) {
754 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
755 size, mask);
756 return NULL;
757 }
758#endif
759
760 if (!mask)
761 return NULL;
762
763 buf = kzalloc(sizeof(*buf),
764 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
765 if (!buf)
766 return NULL;
767
768 if (mask < 0xffffffffULL)
769 gfp |= GFP_DMA;
770
771
772
773
774
775
776
777
778 gfp &= ~(__GFP_COMP);
779 args.gfp = gfp;
780
781 *handle = DMA_ERROR_CODE;
782 allowblock = gfpflags_allow_blocking(gfp);
783 cma = allowblock ? dev_get_cma_area(dev) : false;
784
785 if (cma)
786 buf->allocator = &cma_allocator;
787 else if (nommu() || is_coherent)
788 buf->allocator = &simple_allocator;
789 else if (allowblock)
790 buf->allocator = &remap_allocator;
791 else
792 buf->allocator = &pool_allocator;
793
794 addr = buf->allocator->alloc(&args, &page);
795
796 if (page) {
797 unsigned long flags;
798
799 *handle = pfn_to_dma(dev, page_to_pfn(page));
800 buf->virt = args.want_vaddr ? addr : page;
801
802 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
803 list_add(&buf->list, &arm_dma_bufs);
804 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
805 } else {
806 kfree(buf);
807 }
808
809 return args.want_vaddr ? addr : page;
810}
811
812
813
814
815
816void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
817 gfp_t gfp, struct dma_attrs *attrs)
818{
819 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
820
821 return __dma_alloc(dev, size, handle, gfp, prot, false,
822 attrs, __builtin_return_address(0));
823}
824
825static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
826 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
827{
828 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
829 attrs, __builtin_return_address(0));
830}
831
832static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
833 void *cpu_addr, dma_addr_t dma_addr, size_t size,
834 struct dma_attrs *attrs)
835{
836 int ret = -ENXIO;
837#ifdef CONFIG_MMU
838 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
839 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
840 unsigned long pfn = dma_to_pfn(dev, dma_addr);
841 unsigned long off = vma->vm_pgoff;
842
843 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
844 return ret;
845
846 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
847 ret = remap_pfn_range(vma, vma->vm_start,
848 pfn + off,
849 vma->vm_end - vma->vm_start,
850 vma->vm_page_prot);
851 }
852#endif
853
854 return ret;
855}
856
857
858
859
860static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
861 void *cpu_addr, dma_addr_t dma_addr, size_t size,
862 struct dma_attrs *attrs)
863{
864 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
865}
866
867int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
868 void *cpu_addr, dma_addr_t dma_addr, size_t size,
869 struct dma_attrs *attrs)
870{
871#ifdef CONFIG_MMU
872 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
873#endif
874 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
875}
876
877
878
879
880static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
881 dma_addr_t handle, struct dma_attrs *attrs,
882 bool is_coherent)
883{
884 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
885 struct arm_dma_buffer *buf;
886 struct arm_dma_free_args args = {
887 .dev = dev,
888 .size = PAGE_ALIGN(size),
889 .cpu_addr = cpu_addr,
890 .page = page,
891 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
892 };
893
894 buf = arm_dma_buffer_find(cpu_addr);
895 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
896 return;
897
898 buf->allocator->free(&args);
899 kfree(buf);
900}
901
902void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
903 dma_addr_t handle, struct dma_attrs *attrs)
904{
905 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
906}
907
908static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
909 dma_addr_t handle, struct dma_attrs *attrs)
910{
911 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
912}
913
914int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
915 void *cpu_addr, dma_addr_t handle, size_t size,
916 struct dma_attrs *attrs)
917{
918 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
919 int ret;
920
921 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
922 if (unlikely(ret))
923 return ret;
924
925 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
926 return 0;
927}
928
929static void dma_cache_maint_page(struct page *page, unsigned long offset,
930 size_t size, enum dma_data_direction dir,
931 void (*op)(const void *, size_t, int))
932{
933 unsigned long pfn;
934 size_t left = size;
935
936 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
937 offset %= PAGE_SIZE;
938
939
940
941
942
943
944
945 do {
946 size_t len = left;
947 void *vaddr;
948
949 page = pfn_to_page(pfn);
950
951 if (PageHighMem(page)) {
952 if (len + offset > PAGE_SIZE)
953 len = PAGE_SIZE - offset;
954
955 if (cache_is_vipt_nonaliasing()) {
956 vaddr = kmap_atomic(page);
957 op(vaddr + offset, len, dir);
958 kunmap_atomic(vaddr);
959 } else {
960 vaddr = kmap_high_get(page);
961 if (vaddr) {
962 op(vaddr + offset, len, dir);
963 kunmap_high(page);
964 }
965 }
966 } else {
967 vaddr = page_address(page) + offset;
968 op(vaddr, len, dir);
969 }
970 offset = 0;
971 pfn++;
972 left -= len;
973 } while (left);
974}
975
976
977
978
979
980
981
982static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
983 size_t size, enum dma_data_direction dir)
984{
985 phys_addr_t paddr;
986
987 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
988
989 paddr = page_to_phys(page) + off;
990 if (dir == DMA_FROM_DEVICE) {
991 outer_inv_range(paddr, paddr + size);
992 } else {
993 outer_clean_range(paddr, paddr + size);
994 }
995
996}
997
998static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
999 size_t size, enum dma_data_direction dir)
1000{
1001 phys_addr_t paddr = page_to_phys(page) + off;
1002
1003
1004
1005 if (dir != DMA_TO_DEVICE) {
1006 outer_inv_range(paddr, paddr + size);
1007
1008 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1009 }
1010
1011
1012
1013
1014 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1015 unsigned long pfn;
1016 size_t left = size;
1017
1018 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1019 off %= PAGE_SIZE;
1020 if (off) {
1021 pfn++;
1022 left -= PAGE_SIZE - off;
1023 }
1024 while (left >= PAGE_SIZE) {
1025 page = pfn_to_page(pfn++);
1026 set_bit(PG_dcache_clean, &page->flags);
1027 left -= PAGE_SIZE;
1028 }
1029 }
1030}
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1049 enum dma_data_direction dir, struct dma_attrs *attrs)
1050{
1051 struct dma_map_ops *ops = get_dma_ops(dev);
1052 struct scatterlist *s;
1053 int i, j;
1054
1055 for_each_sg(sg, s, nents, i) {
1056#ifdef CONFIG_NEED_SG_DMA_LENGTH
1057 s->dma_length = s->length;
1058#endif
1059 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1060 s->length, dir, attrs);
1061 if (dma_mapping_error(dev, s->dma_address))
1062 goto bad_mapping;
1063 }
1064 return nents;
1065
1066 bad_mapping:
1067 for_each_sg(sg, s, i, j)
1068 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1069 return 0;
1070}
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1083 enum dma_data_direction dir, struct dma_attrs *attrs)
1084{
1085 struct dma_map_ops *ops = get_dma_ops(dev);
1086 struct scatterlist *s;
1087
1088 int i;
1089
1090 for_each_sg(sg, s, nents, i)
1091 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1092}
1093
1094
1095
1096
1097
1098
1099
1100
1101void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1102 int nents, enum dma_data_direction dir)
1103{
1104 struct dma_map_ops *ops = get_dma_ops(dev);
1105 struct scatterlist *s;
1106 int i;
1107
1108 for_each_sg(sg, s, nents, i)
1109 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1110 dir);
1111}
1112
1113
1114
1115
1116
1117
1118
1119
1120void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1121 int nents, enum dma_data_direction dir)
1122{
1123 struct dma_map_ops *ops = get_dma_ops(dev);
1124 struct scatterlist *s;
1125 int i;
1126
1127 for_each_sg(sg, s, nents, i)
1128 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1129 dir);
1130}
1131
1132
1133
1134
1135
1136
1137
1138int dma_supported(struct device *dev, u64 mask)
1139{
1140 return __dma_supported(dev, mask, false);
1141}
1142EXPORT_SYMBOL(dma_supported);
1143
1144#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1145
1146static int __init dma_debug_do_init(void)
1147{
1148 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1149 return 0;
1150}
1151fs_initcall(dma_debug_do_init);
1152
1153#ifdef CONFIG_ARM_DMA_USE_IOMMU
1154
1155
1156
1157static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1158
1159static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1160 size_t size)
1161{
1162 unsigned int order = get_order(size);
1163 unsigned int align = 0;
1164 unsigned int count, start;
1165 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1166 unsigned long flags;
1167 dma_addr_t iova;
1168 int i;
1169
1170 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1171 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1172
1173 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1174 align = (1 << order) - 1;
1175
1176 spin_lock_irqsave(&mapping->lock, flags);
1177 for (i = 0; i < mapping->nr_bitmaps; i++) {
1178 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1179 mapping->bits, 0, count, align);
1180
1181 if (start > mapping->bits)
1182 continue;
1183
1184 bitmap_set(mapping->bitmaps[i], start, count);
1185 break;
1186 }
1187
1188
1189
1190
1191
1192
1193 if (i == mapping->nr_bitmaps) {
1194 if (extend_iommu_mapping(mapping)) {
1195 spin_unlock_irqrestore(&mapping->lock, flags);
1196 return DMA_ERROR_CODE;
1197 }
1198
1199 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1200 mapping->bits, 0, count, align);
1201
1202 if (start > mapping->bits) {
1203 spin_unlock_irqrestore(&mapping->lock, flags);
1204 return DMA_ERROR_CODE;
1205 }
1206
1207 bitmap_set(mapping->bitmaps[i], start, count);
1208 }
1209 spin_unlock_irqrestore(&mapping->lock, flags);
1210
1211 iova = mapping->base + (mapping_size * i);
1212 iova += start << PAGE_SHIFT;
1213
1214 return iova;
1215}
1216
1217static inline void __free_iova(struct dma_iommu_mapping *mapping,
1218 dma_addr_t addr, size_t size)
1219{
1220 unsigned int start, count;
1221 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1222 unsigned long flags;
1223 dma_addr_t bitmap_base;
1224 u32 bitmap_index;
1225
1226 if (!size)
1227 return;
1228
1229 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1230 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1231
1232 bitmap_base = mapping->base + mapping_size * bitmap_index;
1233
1234 start = (addr - bitmap_base) >> PAGE_SHIFT;
1235
1236 if (addr + size > bitmap_base + mapping_size) {
1237
1238
1239
1240
1241
1242
1243 BUG();
1244 } else
1245 count = size >> PAGE_SHIFT;
1246
1247 spin_lock_irqsave(&mapping->lock, flags);
1248 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1249 spin_unlock_irqrestore(&mapping->lock, flags);
1250}
1251
1252
1253static const int iommu_order_array[] = { 9, 8, 4, 0 };
1254
1255static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1256 gfp_t gfp, struct dma_attrs *attrs)
1257{
1258 struct page **pages;
1259 int count = size >> PAGE_SHIFT;
1260 int array_size = count * sizeof(struct page *);
1261 int i = 0;
1262 int order_idx = 0;
1263
1264 if (array_size <= PAGE_SIZE)
1265 pages = kzalloc(array_size, GFP_KERNEL);
1266 else
1267 pages = vzalloc(array_size);
1268 if (!pages)
1269 return NULL;
1270
1271 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1272 {
1273 unsigned long order = get_order(size);
1274 struct page *page;
1275
1276 page = dma_alloc_from_contiguous(dev, count, order);
1277 if (!page)
1278 goto error;
1279
1280 __dma_clear_buffer(page, size);
1281
1282 for (i = 0; i < count; i++)
1283 pages[i] = page + i;
1284
1285 return pages;
1286 }
1287
1288
1289 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1290 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1291
1292
1293
1294
1295 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1296
1297 while (count) {
1298 int j, order;
1299
1300 order = iommu_order_array[order_idx];
1301
1302
1303 if (__fls(count) < order) {
1304 order_idx++;
1305 continue;
1306 }
1307
1308 if (order) {
1309
1310 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1311
1312
1313 if (!pages[i]) {
1314 order_idx++;
1315 continue;
1316 }
1317 } else {
1318 pages[i] = alloc_pages(gfp, 0);
1319 if (!pages[i])
1320 goto error;
1321 }
1322
1323 if (order) {
1324 split_page(pages[i], order);
1325 j = 1 << order;
1326 while (--j)
1327 pages[i + j] = pages[i] + j;
1328 }
1329
1330 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1331 i += 1 << order;
1332 count -= 1 << order;
1333 }
1334
1335 return pages;
1336error:
1337 while (i--)
1338 if (pages[i])
1339 __free_pages(pages[i], 0);
1340 kvfree(pages);
1341 return NULL;
1342}
1343
1344static int __iommu_free_buffer(struct device *dev, struct page **pages,
1345 size_t size, struct dma_attrs *attrs)
1346{
1347 int count = size >> PAGE_SHIFT;
1348 int i;
1349
1350 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1351 dma_release_from_contiguous(dev, pages[0], count);
1352 } else {
1353 for (i = 0; i < count; i++)
1354 if (pages[i])
1355 __free_pages(pages[i], 0);
1356 }
1357
1358 kvfree(pages);
1359 return 0;
1360}
1361
1362
1363
1364
1365static void *
1366__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1367 const void *caller)
1368{
1369 return dma_common_pages_remap(pages, size,
1370 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1371}
1372
1373
1374
1375
1376static dma_addr_t
1377__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1378{
1379 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1380 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1381 dma_addr_t dma_addr, iova;
1382 int i;
1383
1384 dma_addr = __alloc_iova(mapping, size);
1385 if (dma_addr == DMA_ERROR_CODE)
1386 return dma_addr;
1387
1388 iova = dma_addr;
1389 for (i = 0; i < count; ) {
1390 int ret;
1391
1392 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1393 phys_addr_t phys = page_to_phys(pages[i]);
1394 unsigned int len, j;
1395
1396 for (j = i + 1; j < count; j++, next_pfn++)
1397 if (page_to_pfn(pages[j]) != next_pfn)
1398 break;
1399
1400 len = (j - i) << PAGE_SHIFT;
1401 ret = iommu_map(mapping->domain, iova, phys, len,
1402 IOMMU_READ|IOMMU_WRITE);
1403 if (ret < 0)
1404 goto fail;
1405 iova += len;
1406 i = j;
1407 }
1408 return dma_addr;
1409fail:
1410 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1411 __free_iova(mapping, dma_addr, size);
1412 return DMA_ERROR_CODE;
1413}
1414
1415static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1416{
1417 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1418
1419
1420
1421
1422
1423 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1424 iova &= PAGE_MASK;
1425
1426 iommu_unmap(mapping->domain, iova, size);
1427 __free_iova(mapping, iova, size);
1428 return 0;
1429}
1430
1431static struct page **__atomic_get_pages(void *addr)
1432{
1433 struct page *page;
1434 phys_addr_t phys;
1435
1436 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1437 page = phys_to_page(phys);
1438
1439 return (struct page **)page;
1440}
1441
1442static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1443{
1444 struct vm_struct *area;
1445
1446 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1447 return __atomic_get_pages(cpu_addr);
1448
1449 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1450 return cpu_addr;
1451
1452 area = find_vm_area(cpu_addr);
1453 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1454 return area->pages;
1455 return NULL;
1456}
1457
1458static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1459 dma_addr_t *handle)
1460{
1461 struct page *page;
1462 void *addr;
1463
1464 addr = __alloc_from_pool(size, &page);
1465 if (!addr)
1466 return NULL;
1467
1468 *handle = __iommu_create_mapping(dev, &page, size);
1469 if (*handle == DMA_ERROR_CODE)
1470 goto err_mapping;
1471
1472 return addr;
1473
1474err_mapping:
1475 __free_from_pool(addr, size);
1476 return NULL;
1477}
1478
1479static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1480 dma_addr_t handle, size_t size)
1481{
1482 __iommu_remove_mapping(dev, handle, size);
1483 __free_from_pool(cpu_addr, size);
1484}
1485
1486static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1487 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1488{
1489 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1490 struct page **pages;
1491 void *addr = NULL;
1492
1493 *handle = DMA_ERROR_CODE;
1494 size = PAGE_ALIGN(size);
1495
1496 if (!gfpflags_allow_blocking(gfp))
1497 return __iommu_alloc_atomic(dev, size, handle);
1498
1499
1500
1501
1502
1503
1504
1505
1506 gfp &= ~(__GFP_COMP);
1507
1508 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1509 if (!pages)
1510 return NULL;
1511
1512 *handle = __iommu_create_mapping(dev, pages, size);
1513 if (*handle == DMA_ERROR_CODE)
1514 goto err_buffer;
1515
1516 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1517 return pages;
1518
1519 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1520 __builtin_return_address(0));
1521 if (!addr)
1522 goto err_mapping;
1523
1524 return addr;
1525
1526err_mapping:
1527 __iommu_remove_mapping(dev, *handle, size);
1528err_buffer:
1529 __iommu_free_buffer(dev, pages, size, attrs);
1530 return NULL;
1531}
1532
1533static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1534 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1535 struct dma_attrs *attrs)
1536{
1537 unsigned long uaddr = vma->vm_start;
1538 unsigned long usize = vma->vm_end - vma->vm_start;
1539 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1540 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1541 unsigned long off = vma->vm_pgoff;
1542
1543 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1544
1545 if (!pages)
1546 return -ENXIO;
1547
1548 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1549 return -ENXIO;
1550
1551 pages += off;
1552
1553 do {
1554 int ret = vm_insert_page(vma, uaddr, *pages++);
1555 if (ret) {
1556 pr_err("Remapping memory failed: %d\n", ret);
1557 return ret;
1558 }
1559 uaddr += PAGE_SIZE;
1560 usize -= PAGE_SIZE;
1561 } while (usize > 0);
1562
1563 return 0;
1564}
1565
1566
1567
1568
1569
1570void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1571 dma_addr_t handle, struct dma_attrs *attrs)
1572{
1573 struct page **pages;
1574 size = PAGE_ALIGN(size);
1575
1576 if (__in_atomic_pool(cpu_addr, size)) {
1577 __iommu_free_atomic(dev, cpu_addr, handle, size);
1578 return;
1579 }
1580
1581 pages = __iommu_get_pages(cpu_addr, attrs);
1582 if (!pages) {
1583 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1584 return;
1585 }
1586
1587 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1588 dma_common_free_remap(cpu_addr, size,
1589 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1590 }
1591
1592 __iommu_remove_mapping(dev, handle, size);
1593 __iommu_free_buffer(dev, pages, size, attrs);
1594}
1595
1596static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1597 void *cpu_addr, dma_addr_t dma_addr,
1598 size_t size, struct dma_attrs *attrs)
1599{
1600 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1601 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1602
1603 if (!pages)
1604 return -ENXIO;
1605
1606 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1607 GFP_KERNEL);
1608}
1609
1610static int __dma_direction_to_prot(enum dma_data_direction dir)
1611{
1612 int prot;
1613
1614 switch (dir) {
1615 case DMA_BIDIRECTIONAL:
1616 prot = IOMMU_READ | IOMMU_WRITE;
1617 break;
1618 case DMA_TO_DEVICE:
1619 prot = IOMMU_READ;
1620 break;
1621 case DMA_FROM_DEVICE:
1622 prot = IOMMU_WRITE;
1623 break;
1624 default:
1625 prot = 0;
1626 }
1627
1628 return prot;
1629}
1630
1631
1632
1633
1634static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1635 size_t size, dma_addr_t *handle,
1636 enum dma_data_direction dir, struct dma_attrs *attrs,
1637 bool is_coherent)
1638{
1639 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1640 dma_addr_t iova, iova_base;
1641 int ret = 0;
1642 unsigned int count;
1643 struct scatterlist *s;
1644 int prot;
1645
1646 size = PAGE_ALIGN(size);
1647 *handle = DMA_ERROR_CODE;
1648
1649 iova_base = iova = __alloc_iova(mapping, size);
1650 if (iova == DMA_ERROR_CODE)
1651 return -ENOMEM;
1652
1653 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1654 phys_addr_t phys = page_to_phys(sg_page(s));
1655 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1656
1657 if (!is_coherent &&
1658 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1659 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1660
1661 prot = __dma_direction_to_prot(dir);
1662
1663 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1664 if (ret < 0)
1665 goto fail;
1666 count += len >> PAGE_SHIFT;
1667 iova += len;
1668 }
1669 *handle = iova_base;
1670
1671 return 0;
1672fail:
1673 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1674 __free_iova(mapping, iova_base, size);
1675 return ret;
1676}
1677
1678static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1679 enum dma_data_direction dir, struct dma_attrs *attrs,
1680 bool is_coherent)
1681{
1682 struct scatterlist *s = sg, *dma = sg, *start = sg;
1683 int i, count = 0;
1684 unsigned int offset = s->offset;
1685 unsigned int size = s->offset + s->length;
1686 unsigned int max = dma_get_max_seg_size(dev);
1687
1688 for (i = 1; i < nents; i++) {
1689 s = sg_next(s);
1690
1691 s->dma_address = DMA_ERROR_CODE;
1692 s->dma_length = 0;
1693
1694 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1695 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1696 dir, attrs, is_coherent) < 0)
1697 goto bad_mapping;
1698
1699 dma->dma_address += offset;
1700 dma->dma_length = size - offset;
1701
1702 size = offset = s->offset;
1703 start = s;
1704 dma = sg_next(dma);
1705 count += 1;
1706 }
1707 size += s->length;
1708 }
1709 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1710 is_coherent) < 0)
1711 goto bad_mapping;
1712
1713 dma->dma_address += offset;
1714 dma->dma_length = size - offset;
1715
1716 return count+1;
1717
1718bad_mapping:
1719 for_each_sg(sg, s, count, i)
1720 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1721 return 0;
1722}
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1737 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1738{
1739 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1740}
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1755 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1756{
1757 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1758}
1759
1760static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1761 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1762 bool is_coherent)
1763{
1764 struct scatterlist *s;
1765 int i;
1766
1767 for_each_sg(sg, s, nents, i) {
1768 if (sg_dma_len(s))
1769 __iommu_remove_mapping(dev, sg_dma_address(s),
1770 sg_dma_len(s));
1771 if (!is_coherent &&
1772 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1773 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1774 s->length, dir);
1775 }
1776}
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1789 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1790{
1791 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1792}
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1805 enum dma_data_direction dir, struct dma_attrs *attrs)
1806{
1807 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1808}
1809
1810
1811
1812
1813
1814
1815
1816
1817void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1818 int nents, enum dma_data_direction dir)
1819{
1820 struct scatterlist *s;
1821 int i;
1822
1823 for_each_sg(sg, s, nents, i)
1824 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1825
1826}
1827
1828
1829
1830
1831
1832
1833
1834
1835void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1836 int nents, enum dma_data_direction dir)
1837{
1838 struct scatterlist *s;
1839 int i;
1840
1841 for_each_sg(sg, s, nents, i)
1842 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1843}
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1857 unsigned long offset, size_t size, enum dma_data_direction dir,
1858 struct dma_attrs *attrs)
1859{
1860 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1861 dma_addr_t dma_addr;
1862 int ret, prot, len = PAGE_ALIGN(size + offset);
1863
1864 dma_addr = __alloc_iova(mapping, len);
1865 if (dma_addr == DMA_ERROR_CODE)
1866 return dma_addr;
1867
1868 prot = __dma_direction_to_prot(dir);
1869
1870 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1871 if (ret < 0)
1872 goto fail;
1873
1874 return dma_addr + offset;
1875fail:
1876 __free_iova(mapping, dma_addr, len);
1877 return DMA_ERROR_CODE;
1878}
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1891 unsigned long offset, size_t size, enum dma_data_direction dir,
1892 struct dma_attrs *attrs)
1893{
1894 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1895 __dma_page_cpu_to_dev(page, offset, size, dir);
1896
1897 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1898}
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1910 size_t size, enum dma_data_direction dir,
1911 struct dma_attrs *attrs)
1912{
1913 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1914 dma_addr_t iova = handle & PAGE_MASK;
1915 int offset = handle & ~PAGE_MASK;
1916 int len = PAGE_ALIGN(size + offset);
1917
1918 if (!iova)
1919 return;
1920
1921 iommu_unmap(mapping->domain, iova, len);
1922 __free_iova(mapping, iova, len);
1923}
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1935 size_t size, enum dma_data_direction dir,
1936 struct dma_attrs *attrs)
1937{
1938 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1939 dma_addr_t iova = handle & PAGE_MASK;
1940 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1941 int offset = handle & ~PAGE_MASK;
1942 int len = PAGE_ALIGN(size + offset);
1943
1944 if (!iova)
1945 return;
1946
1947 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1948 __dma_page_dev_to_cpu(page, offset, size, dir);
1949
1950 iommu_unmap(mapping->domain, iova, len);
1951 __free_iova(mapping, iova, len);
1952}
1953
1954static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956{
1957 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958 dma_addr_t iova = handle & PAGE_MASK;
1959 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960 unsigned int offset = handle & ~PAGE_MASK;
1961
1962 if (!iova)
1963 return;
1964
1965 __dma_page_dev_to_cpu(page, offset, size, dir);
1966}
1967
1968static void arm_iommu_sync_single_for_device(struct device *dev,
1969 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970{
1971 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972 dma_addr_t iova = handle & PAGE_MASK;
1973 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974 unsigned int offset = handle & ~PAGE_MASK;
1975
1976 if (!iova)
1977 return;
1978
1979 __dma_page_cpu_to_dev(page, offset, size, dir);
1980}
1981
1982struct dma_map_ops iommu_ops = {
1983 .alloc = arm_iommu_alloc_attrs,
1984 .free = arm_iommu_free_attrs,
1985 .mmap = arm_iommu_mmap_attrs,
1986 .get_sgtable = arm_iommu_get_sgtable,
1987
1988 .map_page = arm_iommu_map_page,
1989 .unmap_page = arm_iommu_unmap_page,
1990 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1991 .sync_single_for_device = arm_iommu_sync_single_for_device,
1992
1993 .map_sg = arm_iommu_map_sg,
1994 .unmap_sg = arm_iommu_unmap_sg,
1995 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1996 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1997};
1998
1999struct dma_map_ops iommu_coherent_ops = {
2000 .alloc = arm_iommu_alloc_attrs,
2001 .free = arm_iommu_free_attrs,
2002 .mmap = arm_iommu_mmap_attrs,
2003 .get_sgtable = arm_iommu_get_sgtable,
2004
2005 .map_page = arm_coherent_iommu_map_page,
2006 .unmap_page = arm_coherent_iommu_unmap_page,
2007
2008 .map_sg = arm_coherent_iommu_map_sg,
2009 .unmap_sg = arm_coherent_iommu_unmap_sg,
2010};
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025struct dma_iommu_mapping *
2026arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2027{
2028 unsigned int bits = size >> PAGE_SHIFT;
2029 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2030 struct dma_iommu_mapping *mapping;
2031 int extensions = 1;
2032 int err = -ENOMEM;
2033
2034
2035 if (size > DMA_BIT_MASK(32) + 1)
2036 return ERR_PTR(-ERANGE);
2037
2038 if (!bitmap_size)
2039 return ERR_PTR(-EINVAL);
2040
2041 if (bitmap_size > PAGE_SIZE) {
2042 extensions = bitmap_size / PAGE_SIZE;
2043 bitmap_size = PAGE_SIZE;
2044 }
2045
2046 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2047 if (!mapping)
2048 goto err;
2049
2050 mapping->bitmap_size = bitmap_size;
2051 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2052 GFP_KERNEL);
2053 if (!mapping->bitmaps)
2054 goto err2;
2055
2056 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2057 if (!mapping->bitmaps[0])
2058 goto err3;
2059
2060 mapping->nr_bitmaps = 1;
2061 mapping->extensions = extensions;
2062 mapping->base = base;
2063 mapping->bits = BITS_PER_BYTE * bitmap_size;
2064
2065 spin_lock_init(&mapping->lock);
2066
2067 mapping->domain = iommu_domain_alloc(bus);
2068 if (!mapping->domain)
2069 goto err4;
2070
2071 kref_init(&mapping->kref);
2072 return mapping;
2073err4:
2074 kfree(mapping->bitmaps[0]);
2075err3:
2076 kfree(mapping->bitmaps);
2077err2:
2078 kfree(mapping);
2079err:
2080 return ERR_PTR(err);
2081}
2082EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2083
2084static void release_iommu_mapping(struct kref *kref)
2085{
2086 int i;
2087 struct dma_iommu_mapping *mapping =
2088 container_of(kref, struct dma_iommu_mapping, kref);
2089
2090 iommu_domain_free(mapping->domain);
2091 for (i = 0; i < mapping->nr_bitmaps; i++)
2092 kfree(mapping->bitmaps[i]);
2093 kfree(mapping->bitmaps);
2094 kfree(mapping);
2095}
2096
2097static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2098{
2099 int next_bitmap;
2100
2101 if (mapping->nr_bitmaps >= mapping->extensions)
2102 return -EINVAL;
2103
2104 next_bitmap = mapping->nr_bitmaps;
2105 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2106 GFP_ATOMIC);
2107 if (!mapping->bitmaps[next_bitmap])
2108 return -ENOMEM;
2109
2110 mapping->nr_bitmaps++;
2111
2112 return 0;
2113}
2114
2115void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2116{
2117 if (mapping)
2118 kref_put(&mapping->kref, release_iommu_mapping);
2119}
2120EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2121
2122static int __arm_iommu_attach_device(struct device *dev,
2123 struct dma_iommu_mapping *mapping)
2124{
2125 int err;
2126
2127 err = iommu_attach_device(mapping->domain, dev);
2128 if (err)
2129 return err;
2130
2131 kref_get(&mapping->kref);
2132 to_dma_iommu_mapping(dev) = mapping;
2133
2134 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2135 return 0;
2136}
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151int arm_iommu_attach_device(struct device *dev,
2152 struct dma_iommu_mapping *mapping)
2153{
2154 int err;
2155
2156 err = __arm_iommu_attach_device(dev, mapping);
2157 if (err)
2158 return err;
2159
2160 set_dma_ops(dev, &iommu_ops);
2161 return 0;
2162}
2163EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2164
2165static void __arm_iommu_detach_device(struct device *dev)
2166{
2167 struct dma_iommu_mapping *mapping;
2168
2169 mapping = to_dma_iommu_mapping(dev);
2170 if (!mapping) {
2171 dev_warn(dev, "Not attached\n");
2172 return;
2173 }
2174
2175 iommu_detach_device(mapping->domain, dev);
2176 kref_put(&mapping->kref, release_iommu_mapping);
2177 to_dma_iommu_mapping(dev) = NULL;
2178
2179 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2180}
2181
2182
2183
2184
2185
2186
2187
2188
2189void arm_iommu_detach_device(struct device *dev)
2190{
2191 __arm_iommu_detach_device(dev);
2192 set_dma_ops(dev, NULL);
2193}
2194EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2195
2196static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2197{
2198 return coherent ? &iommu_coherent_ops : &iommu_ops;
2199}
2200
2201static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2202 const struct iommu_ops *iommu)
2203{
2204 struct dma_iommu_mapping *mapping;
2205
2206 if (!iommu)
2207 return false;
2208
2209 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2210 if (IS_ERR(mapping)) {
2211 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2212 size, dev_name(dev));
2213 return false;
2214 }
2215
2216 if (__arm_iommu_attach_device(dev, mapping)) {
2217 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2218 dev_name(dev));
2219 arm_iommu_release_mapping(mapping);
2220 return false;
2221 }
2222
2223 return true;
2224}
2225
2226static void arm_teardown_iommu_dma_ops(struct device *dev)
2227{
2228 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2229
2230 if (!mapping)
2231 return;
2232
2233 __arm_iommu_detach_device(dev);
2234 arm_iommu_release_mapping(mapping);
2235}
2236
2237#else
2238
2239static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2240 const struct iommu_ops *iommu)
2241{
2242 return false;
2243}
2244
2245static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2246
2247#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2248
2249#endif
2250
2251static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2252{
2253 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2254}
2255
2256void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257 const struct iommu_ops *iommu, bool coherent)
2258{
2259 struct dma_map_ops *dma_ops;
2260
2261 dev->archdata.dma_coherent = coherent;
2262 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2263 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2264 else
2265 dma_ops = arm_get_dma_map_ops(coherent);
2266
2267 set_dma_ops(dev, dma_ops);
2268}
2269
2270void arch_teardown_dma_ops(struct device *dev)
2271{
2272 arm_teardown_iommu_dma_ops(dev);
2273}
2274