linux/arch/c6x/platforms/dscr.c
<<
>>
Prefs
   1/*
   2 *  Device State Control Registers driver
   3 *
   4 *  Copyright (C) 2011 Texas Instruments Incorporated
   5 *  Author: Mark Salter <msalter@redhat.com>
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 as
   9 *  published by the Free Software Foundation.
  10 */
  11
  12/*
  13 * The Device State Control Registers (DSCR) provide SoC level control over
  14 * a number of peripherals. Details vary considerably among the various SoC
  15 * parts. In general, the DSCR block will provide one or more configuration
  16 * registers often protected by a lock register. One or more key values must
  17 * be written to a lock register in order to unlock the configuration register.
  18 * The configuration register may be used to enable (and disable in some
  19 * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
  20 * In some cases, a configuration register is write once or the individual
  21 * bits are write once. That is, you may be able to enable a device, but
  22 * will not be able to disable it.
  23 *
  24 * In addition to device configuration, the DSCR block may provide registers
  25 * which are used to reset SoC peripherals, provide device ID information,
  26 * provide MAC addresses, and other miscellaneous functions.
  27 */
  28
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_platform.h>
  32#include <linux/module.h>
  33#include <linux/io.h>
  34#include <linux/delay.h>
  35#include <asm/soc.h>
  36#include <asm/dscr.h>
  37
  38#define MAX_DEVSTATE_IDS   32
  39#define MAX_DEVCTL_REGS     8
  40#define MAX_DEVSTAT_REGS    8
  41#define MAX_LOCKED_REGS     4
  42#define MAX_SOC_EMACS       2
  43
  44struct rmii_reset_reg {
  45        u32 reg;
  46        u32 mask;
  47};
  48
  49/*
  50 * Some registerd may be locked. In order to write to these
  51 * registers, the key value must first be written to the lockreg.
  52 */
  53struct locked_reg {
  54        u32 reg;        /* offset from base */
  55        u32 lockreg;    /* offset from base */
  56        u32 key;        /* unlock key */
  57};
  58
  59/*
  60 * This describes a contiguous area of like control bits used to enable/disable
  61 * SoC devices. Each controllable device is given an ID which is used by the
  62 * individual device drivers to control the device state. These IDs start at
  63 * zero and are assigned sequentially to the control bitfield ranges described
  64 * by this structure.
  65 */
  66struct devstate_ctl_reg {
  67        u32 reg;                /* register holding the control bits */
  68        u8  start_id;           /* start id of this range */
  69        u8  num_ids;            /* number of devices in this range */
  70        u8  enable_only;        /* bits are write-once to enable only */
  71        u8  enable;             /* value used to enable device */
  72        u8  disable;            /* value used to disable device */
  73        u8  shift;              /* starting (rightmost) bit in range */
  74        u8  nbits;              /* number of bits per device */
  75};
  76
  77
  78/*
  79 * This describes a region of status bits indicating the state of
  80 * various devices. This is used internally to wait for status
  81 * change completion when enabling/disabling a device. Status is
  82 * optional and not all device controls will have a corresponding
  83 * status.
  84 */
  85struct devstate_stat_reg {
  86        u32 reg;                /* register holding the status bits */
  87        u8  start_id;           /* start id of this range */
  88        u8  num_ids;            /* number of devices in this range */
  89        u8  enable;             /* value indicating enabled state */
  90        u8  disable;            /* value indicating disabled state */
  91        u8  shift;              /* starting (rightmost) bit in range */
  92        u8  nbits;              /* number of bits per device */
  93};
  94
  95struct devstate_info {
  96        struct devstate_ctl_reg *ctl;
  97        struct devstate_stat_reg *stat;
  98};
  99
 100/* These are callbacks to SOC-specific code. */
 101struct dscr_ops {
 102        void (*init)(struct device_node *node);
 103};
 104
 105struct dscr_regs {
 106        spinlock_t              lock;
 107        void __iomem            *base;
 108        u32                     kick_reg[2];
 109        u32                     kick_key[2];
 110        struct locked_reg       locked[MAX_LOCKED_REGS];
 111        struct devstate_info    devstate_info[MAX_DEVSTATE_IDS];
 112        struct rmii_reset_reg   rmii_resets[MAX_SOC_EMACS];
 113        struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS];
 114        struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS];
 115};
 116
 117static struct dscr_regs dscr;
 118
 119static struct locked_reg *find_locked_reg(u32 reg)
 120{
 121        int i;
 122
 123        for (i = 0; i < MAX_LOCKED_REGS; i++)
 124                if (dscr.locked[i].key && reg == dscr.locked[i].reg)
 125                        return &dscr.locked[i];
 126        return NULL;
 127}
 128
 129/*
 130 * Write to a register with one lock
 131 */
 132static void dscr_write_locked1(u32 reg, u32 val,
 133                               u32 lock, u32 key)
 134{
 135        void __iomem *reg_addr = dscr.base + reg;
 136        void __iomem *lock_addr = dscr.base + lock;
 137
 138        /*
 139         * For some registers, the lock is relocked after a short number
 140         * of cycles. We have to put the lock write and register write in
 141         * the same fetch packet to meet this timing. The .align ensures
 142         * the two stw instructions are in the same fetch packet.
 143         */
 144        asm volatile ("b        .s2     0f\n"
 145                      "nop      5\n"
 146                      "    .align 5\n"
 147                      "0:\n"
 148                      "stw      .D1T2   %3,*%2\n"
 149                      "stw      .D1T2   %1,*%0\n"
 150                      :
 151                      : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
 152                );
 153
 154        /* in case the hw doesn't reset the lock */
 155        soc_writel(0, lock_addr);
 156}
 157
 158/*
 159 * Write to a register protected by two lock registers
 160 */
 161static void dscr_write_locked2(u32 reg, u32 val,
 162                               u32 lock0, u32 key0,
 163                               u32 lock1, u32 key1)
 164{
 165        soc_writel(key0, dscr.base + lock0);
 166        soc_writel(key1, dscr.base + lock1);
 167        soc_writel(val, dscr.base + reg);
 168        soc_writel(0, dscr.base + lock0);
 169        soc_writel(0, dscr.base + lock1);
 170}
 171
 172static void dscr_write(u32 reg, u32 val)
 173{
 174        struct locked_reg *lock;
 175
 176        lock = find_locked_reg(reg);
 177        if (lock)
 178                dscr_write_locked1(reg, val, lock->lockreg, lock->key);
 179        else if (dscr.kick_key[0])
 180                dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
 181                                   dscr.kick_reg[1], dscr.kick_key[1]);
 182        else
 183                soc_writel(val, dscr.base + reg);
 184}
 185
 186
 187/*
 188 * Drivers can use this interface to enable/disable SoC IP blocks.
 189 */
 190void dscr_set_devstate(int id, enum dscr_devstate_t state)
 191{
 192        struct devstate_ctl_reg *ctl;
 193        struct devstate_stat_reg *stat;
 194        struct devstate_info *info;
 195        u32 ctl_val, val;
 196        int ctl_shift, ctl_mask;
 197        unsigned long flags;
 198
 199        if (!dscr.base)
 200                return;
 201
 202        if (id < 0 || id >= MAX_DEVSTATE_IDS)
 203                return;
 204
 205        info = &dscr.devstate_info[id];
 206        ctl = info->ctl;
 207        stat = info->stat;
 208
 209        if (ctl == NULL)
 210                return;
 211
 212        ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
 213        ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
 214
 215        switch (state) {
 216        case DSCR_DEVSTATE_ENABLED:
 217                ctl_val = ctl->enable << ctl_shift;
 218                break;
 219        case DSCR_DEVSTATE_DISABLED:
 220                if (ctl->enable_only)
 221                        return;
 222                ctl_val = ctl->disable << ctl_shift;
 223                break;
 224        default:
 225                return;
 226        }
 227
 228        spin_lock_irqsave(&dscr.lock, flags);
 229
 230        val = soc_readl(dscr.base + ctl->reg);
 231        val &= ~ctl_mask;
 232        val |= ctl_val;
 233
 234        dscr_write(ctl->reg, val);
 235
 236        spin_unlock_irqrestore(&dscr.lock, flags);
 237
 238        if (!stat)
 239                return;
 240
 241        ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
 242
 243        if (state == DSCR_DEVSTATE_ENABLED)
 244                ctl_val = stat->enable;
 245        else
 246                ctl_val = stat->disable;
 247
 248        do {
 249                val = soc_readl(dscr.base + stat->reg);
 250                val >>= ctl_shift;
 251                val &= ((1 << stat->nbits) - 1);
 252        } while (val != ctl_val);
 253}
 254EXPORT_SYMBOL(dscr_set_devstate);
 255
 256/*
 257 * Drivers can use this to reset RMII module.
 258 */
 259void dscr_rmii_reset(int id, int assert)
 260{
 261        struct rmii_reset_reg *r;
 262        unsigned long flags;
 263        u32 val;
 264
 265        if (id < 0 || id >= MAX_SOC_EMACS)
 266                return;
 267
 268        r = &dscr.rmii_resets[id];
 269        if (r->mask == 0)
 270                return;
 271
 272        spin_lock_irqsave(&dscr.lock, flags);
 273
 274        val = soc_readl(dscr.base + r->reg);
 275        if (assert)
 276                dscr_write(r->reg, val | r->mask);
 277        else
 278                dscr_write(r->reg, val & ~(r->mask));
 279
 280        spin_unlock_irqrestore(&dscr.lock, flags);
 281}
 282EXPORT_SYMBOL(dscr_rmii_reset);
 283
 284static void __init dscr_parse_devstat(struct device_node *node,
 285                                      void __iomem *base)
 286{
 287        u32 val;
 288        int err;
 289
 290        err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
 291        if (!err)
 292                c6x_devstat = soc_readl(base + val);
 293        printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
 294}
 295
 296static void __init dscr_parse_silicon_rev(struct device_node *node,
 297                                         void __iomem *base)
 298{
 299        u32 vals[3];
 300        int err;
 301
 302        err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
 303        if (!err) {
 304                c6x_silicon_rev = soc_readl(base + vals[0]);
 305                c6x_silicon_rev >>= vals[1];
 306                c6x_silicon_rev &= vals[2];
 307        }
 308}
 309
 310/*
 311 * Some SoCs will have a pair of fuse registers which hold
 312 * an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
 313 * property is a mapping from fuse register bytes to MAC
 314 * address bytes. The expected format is:
 315 *
 316 *      ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
 317 *                               reg1 b3 b2 b1 b0>
 318 *
 319 * reg0 and reg1 are the offsets of the two fuse registers.
 320 * b3-b0 positionally represent bytes within the fuse register.
 321 * b3 is the most significant byte and b0 is the least.
 322 * Allowable values for b3-b0 are:
 323 *
 324 *        0 = fuse register byte not used in MAC address
 325 *      1-6 = index+1 into c6x_fuse_mac[]
 326 */
 327static void __init dscr_parse_mac_fuse(struct device_node *node,
 328                                       void __iomem *base)
 329{
 330        u32 vals[10], fuse;
 331        int f, i, j, err;
 332
 333        err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
 334                                         vals, 10);
 335        if (err)
 336                return;
 337
 338        for (f = 0; f < 2; f++) {
 339                fuse = soc_readl(base + vals[f * 5]);
 340                for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
 341                        if (vals[j] && vals[j] <= 6)
 342                                c6x_fuse_mac[vals[j] - 1] = fuse >> i;
 343        }
 344}
 345
 346static void __init dscr_parse_rmii_resets(struct device_node *node,
 347                                          void __iomem *base)
 348{
 349        const __be32 *p;
 350        int i, size;
 351
 352        /* look for RMII reset registers */
 353        p = of_get_property(node, "ti,dscr-rmii-resets", &size);
 354        if (p) {
 355                /* parse all the reg/mask pairs we can handle */
 356                size /= (sizeof(*p) * 2);
 357                if (size > MAX_SOC_EMACS)
 358                        size = MAX_SOC_EMACS;
 359
 360                for (i = 0; i < size; i++) {
 361                        dscr.rmii_resets[i].reg = be32_to_cpup(p++);
 362                        dscr.rmii_resets[i].mask = be32_to_cpup(p++);
 363                }
 364        }
 365}
 366
 367
 368static void __init dscr_parse_privperm(struct device_node *node,
 369                                       void __iomem *base)
 370{
 371        u32 vals[2];
 372        int err;
 373
 374        err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
 375        if (err)
 376                return;
 377        dscr_write(vals[0], vals[1]);
 378}
 379
 380/*
 381 * SoCs may have "locked" DSCR registers which can only be written
 382 * to only after writing a key value to a lock registers. These
 383 * regisers can be described with the "ti,dscr-locked-regs" property.
 384 * This property provides a list of register descriptions with each
 385 * description consisting of three values.
 386 *
 387 *      ti,dscr-locked-regs = <reg0 lockreg0 key0
 388 *                               ...
 389 *                             regN lockregN keyN>;
 390 *
 391 * reg is the offset of the locked register
 392 * lockreg is the offset of the lock register
 393 * key is the unlock key written to lockreg
 394 *
 395 */
 396static void __init dscr_parse_locked_regs(struct device_node *node,
 397                                          void __iomem *base)
 398{
 399        struct locked_reg *r;
 400        const __be32 *p;
 401        int i, size;
 402
 403        p = of_get_property(node, "ti,dscr-locked-regs", &size);
 404        if (p) {
 405                /* parse all the register descriptions we can handle */
 406                size /= (sizeof(*p) * 3);
 407                if (size > MAX_LOCKED_REGS)
 408                        size = MAX_LOCKED_REGS;
 409
 410                for (i = 0; i < size; i++) {
 411                        r = &dscr.locked[i];
 412
 413                        r->reg = be32_to_cpup(p++);
 414                        r->lockreg = be32_to_cpup(p++);
 415                        r->key = be32_to_cpup(p++);
 416                }
 417        }
 418}
 419
 420/*
 421 * SoCs may have DSCR registers which are only write enabled after
 422 * writing specific key values to two registers. The two key registers
 423 * and the key values can be parsed from a "ti,dscr-kick-regs"
 424 * propety with the following layout:
 425 *
 426 *      ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
 427 *
 428 * kickreg is the offset of the "kick" register
 429 * key is the value which unlocks writing for protected regs
 430 */
 431static void __init dscr_parse_kick_regs(struct device_node *node,
 432                                        void __iomem *base)
 433{
 434        u32 vals[4];
 435        int err;
 436
 437        err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
 438        if (!err) {
 439                dscr.kick_reg[0] = vals[0];
 440                dscr.kick_key[0] = vals[1];
 441                dscr.kick_reg[1] = vals[2];
 442                dscr.kick_key[1] = vals[3];
 443        }
 444}
 445
 446
 447/*
 448 * SoCs may provide controls to enable/disable individual IP blocks. These
 449 * controls in the DSCR usually control pin drivers but also may control
 450 * clocking and or resets. The device tree is used to describe the bitfields
 451 * in registers used to control device state. The number of bits and their
 452 * values may vary even within the same register.
 453 *
 454 * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
 455 * property. This property is a list where each element describes a contiguous
 456 * range of control fields with like properties. Each element of the list
 457 * consists of 7 cells with the following values:
 458 *
 459 *   start_id num_ids reg enable disable start_bit nbits
 460 *
 461 * start_id is device id for the first device control in the range
 462 * num_ids is the number of device controls in the range
 463 * reg is the offset of the register holding the control bits
 464 * enable is the value to enable a device
 465 * disable is the value to disable a device (0xffffffff if cannot disable)
 466 * start_bit is the bit number of the first bit in the range
 467 * nbits is the number of bits per device control
 468 */
 469static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
 470                                                void __iomem *base)
 471{
 472        struct devstate_ctl_reg *r;
 473        const __be32 *p;
 474        int i, j, size;
 475
 476        p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
 477        if (p) {
 478                /* parse all the ranges we can handle */
 479                size /= (sizeof(*p) * 7);
 480                if (size > MAX_DEVCTL_REGS)
 481                        size = MAX_DEVCTL_REGS;
 482
 483                for (i = 0; i < size; i++) {
 484                        r = &dscr.devctl[i];
 485
 486                        r->start_id = be32_to_cpup(p++);
 487                        r->num_ids = be32_to_cpup(p++);
 488                        r->reg = be32_to_cpup(p++);
 489                        r->enable = be32_to_cpup(p++);
 490                        r->disable = be32_to_cpup(p++);
 491                        if (r->disable == 0xffffffff)
 492                                r->enable_only = 1;
 493                        r->shift = be32_to_cpup(p++);
 494                        r->nbits = be32_to_cpup(p++);
 495
 496                        for (j = r->start_id;
 497                             j < (r->start_id + r->num_ids);
 498                             j++)
 499                                dscr.devstate_info[j].ctl = r;
 500                }
 501        }
 502}
 503
 504/*
 505 * SoCs may provide status registers indicating the state (enabled/disabled) of
 506 * devices on the SoC. The device tree is used to describe the bitfields in
 507 * registers used to provide device status. The number of bits and their
 508 * values used to provide status may vary even within the same register.
 509 *
 510 * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
 511 * property. This property is a list where each element describes a contiguous
 512 * range of status fields with like properties. Each element of the list
 513 * consists of 7 cells with the following values:
 514 *
 515 *   start_id num_ids reg enable disable start_bit nbits
 516 *
 517 * start_id is device id for the first device status in the range
 518 * num_ids is the number of devices covered by the range
 519 * reg is the offset of the register holding the status bits
 520 * enable is the value indicating device is enabled
 521 * disable is the value indicating device is disabled
 522 * start_bit is the bit number of the first bit in the range
 523 * nbits is the number of bits per device status
 524 */
 525static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
 526                                                 void __iomem *base)
 527{
 528        struct devstate_stat_reg *r;
 529        const __be32 *p;
 530        int i, j, size;
 531
 532        p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
 533        if (p) {
 534                /* parse all the ranges we can handle */
 535                size /= (sizeof(*p) * 7);
 536                if (size > MAX_DEVSTAT_REGS)
 537                        size = MAX_DEVSTAT_REGS;
 538
 539                for (i = 0; i < size; i++) {
 540                        r = &dscr.devstat[i];
 541
 542                        r->start_id = be32_to_cpup(p++);
 543                        r->num_ids = be32_to_cpup(p++);
 544                        r->reg = be32_to_cpup(p++);
 545                        r->enable = be32_to_cpup(p++);
 546                        r->disable = be32_to_cpup(p++);
 547                        r->shift = be32_to_cpup(p++);
 548                        r->nbits = be32_to_cpup(p++);
 549
 550                        for (j = r->start_id;
 551                             j < (r->start_id + r->num_ids);
 552                             j++)
 553                                dscr.devstate_info[j].stat = r;
 554                }
 555        }
 556}
 557
 558static struct of_device_id dscr_ids[] __initdata = {
 559        { .compatible = "ti,c64x+dscr" },
 560        {}
 561};
 562
 563/*
 564 * Probe for DSCR area.
 565 *
 566 * This has to be done early on in case timer or interrupt controller
 567 * needs something. e.g. On C6455 SoC, timer must be enabled through
 568 * DSCR before it is functional.
 569 */
 570void __init dscr_probe(void)
 571{
 572        struct device_node *node;
 573        void __iomem *base;
 574
 575        spin_lock_init(&dscr.lock);
 576
 577        node = of_find_matching_node(NULL, dscr_ids);
 578        if (!node)
 579                return;
 580
 581        base = of_iomap(node, 0);
 582        if (!base) {
 583                of_node_put(node);
 584                return;
 585        }
 586
 587        dscr.base = base;
 588
 589        dscr_parse_devstat(node, base);
 590        dscr_parse_silicon_rev(node, base);
 591        dscr_parse_mac_fuse(node, base);
 592        dscr_parse_rmii_resets(node, base);
 593        dscr_parse_locked_regs(node, base);
 594        dscr_parse_kick_regs(node, base);
 595        dscr_parse_devstate_ctl_regs(node, base);
 596        dscr_parse_devstate_stat_regs(node, base);
 597        dscr_parse_privperm(node, base);
 598}
 599