linux/arch/powerpc/include/asm/nohash/64/pgtable.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H
   2#define _ASM_POWERPC_NOHASH_64_PGTABLE_H
   3/*
   4 * This file contains the functions and defines necessary to modify and use
   5 * the ppc64 hashed page table.
   6 */
   7
   8#ifdef CONFIG_PPC_64K_PAGES
   9#include <asm/nohash/64/pgtable-64k.h>
  10#else
  11#include <asm/nohash/64/pgtable-4k.h>
  12#endif
  13#include <asm/barrier.h>
  14
  15#define FIRST_USER_ADDRESS      0UL
  16
  17/*
  18 * Size of EA range mapped by our pagetables.
  19 */
  20#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  21                            PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  22#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
  23
  24#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  25#define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
  26#else
  27#define PMD_CACHE_INDEX PMD_INDEX_SIZE
  28#endif
  29/*
  30 * Define the address range of the kernel non-linear virtual area
  31 */
  32
  33#ifdef CONFIG_PPC_BOOK3E
  34#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
  35#else
  36#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
  37#endif
  38#define KERN_VIRT_SIZE  ASM_CONST(0x0000100000000000)
  39
  40/*
  41 * The vmalloc space starts at the beginning of that region, and
  42 * occupies half of it on hash CPUs and a quarter of it on Book3E
  43 * (we keep a quarter for the virtual memmap)
  44 */
  45#define VMALLOC_START   KERN_VIRT_START
  46#ifdef CONFIG_PPC_BOOK3E
  47#define VMALLOC_SIZE    (KERN_VIRT_SIZE >> 2)
  48#else
  49#define VMALLOC_SIZE    (KERN_VIRT_SIZE >> 1)
  50#endif
  51#define VMALLOC_END     (VMALLOC_START + VMALLOC_SIZE)
  52
  53/*
  54 * The second half of the kernel virtual space is used for IO mappings,
  55 * it's itself carved into the PIO region (ISA and PHB IO space) and
  56 * the ioremap space
  57 *
  58 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
  59 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
  60 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
  61 */
  62#define KERN_IO_START   (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
  63#define FULL_IO_SIZE    0x80000000ul
  64#define  ISA_IO_BASE    (KERN_IO_START)
  65#define  ISA_IO_END     (KERN_IO_START + 0x10000ul)
  66#define  PHB_IO_BASE    (ISA_IO_END)
  67#define  PHB_IO_END     (KERN_IO_START + FULL_IO_SIZE)
  68#define IOREMAP_BASE    (PHB_IO_END)
  69#define IOREMAP_END     (KERN_VIRT_START + KERN_VIRT_SIZE)
  70
  71
  72/*
  73 * Region IDs
  74 */
  75#define REGION_SHIFT            60UL
  76#define REGION_MASK             (0xfUL << REGION_SHIFT)
  77#define REGION_ID(ea)           (((unsigned long)(ea)) >> REGION_SHIFT)
  78
  79#define VMALLOC_REGION_ID       (REGION_ID(VMALLOC_START))
  80#define KERNEL_REGION_ID        (REGION_ID(PAGE_OFFSET))
  81#define VMEMMAP_REGION_ID       (0xfUL) /* Server only */
  82#define USER_REGION_ID          (0UL)
  83
  84/*
  85 * Defines the address of the vmemap area, in its own region on
  86 * hash table CPUs and after the vmalloc space on Book3E
  87 */
  88#ifdef CONFIG_PPC_BOOK3E
  89#define VMEMMAP_BASE            VMALLOC_END
  90#define VMEMMAP_END             KERN_IO_START
  91#else
  92#define VMEMMAP_BASE            (VMEMMAP_REGION_ID << REGION_SHIFT)
  93#endif
  94#define vmemmap                 ((struct page *)VMEMMAP_BASE)
  95
  96
  97/*
  98 * Include the PTE bits definitions
  99 */
 100#include <asm/nohash/pte-book3e.h>
 101#include <asm/pte-common.h>
 102
 103#ifdef CONFIG_PPC_MM_SLICES
 104#define HAVE_ARCH_UNMAPPED_AREA
 105#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 106#endif /* CONFIG_PPC_MM_SLICES */
 107
 108#ifndef __ASSEMBLY__
 109/* pte_clear moved to later in this file */
 110
 111#define PMD_BAD_BITS            (PTE_TABLE_SIZE-1)
 112#define PUD_BAD_BITS            (PMD_TABLE_SIZE-1)
 113
 114static inline void pmd_set(pmd_t *pmdp, unsigned long val)
 115{
 116        *pmdp = __pmd(val);
 117}
 118
 119static inline void pmd_clear(pmd_t *pmdp)
 120{
 121        *pmdp = __pmd(0);
 122}
 123
 124static inline pte_t pmd_pte(pmd_t pmd)
 125{
 126        return __pte(pmd_val(pmd));
 127}
 128
 129#define pmd_none(pmd)           (!pmd_val(pmd))
 130#define pmd_bad(pmd)            (!is_kernel_addr(pmd_val(pmd)) \
 131                                 || (pmd_val(pmd) & PMD_BAD_BITS))
 132#define pmd_present(pmd)        (!pmd_none(pmd))
 133#define pmd_page_vaddr(pmd)     (pmd_val(pmd) & ~PMD_MASKED_BITS)
 134extern struct page *pmd_page(pmd_t pmd);
 135
 136static inline void pud_set(pud_t *pudp, unsigned long val)
 137{
 138        *pudp = __pud(val);
 139}
 140
 141static inline void pud_clear(pud_t *pudp)
 142{
 143        *pudp = __pud(0);
 144}
 145
 146#define pud_none(pud)           (!pud_val(pud))
 147#define pud_bad(pud)            (!is_kernel_addr(pud_val(pud)) \
 148                                 || (pud_val(pud) & PUD_BAD_BITS))
 149#define pud_present(pud)        (pud_val(pud) != 0)
 150#define pud_page_vaddr(pud)     (pud_val(pud) & ~PUD_MASKED_BITS)
 151
 152extern struct page *pud_page(pud_t pud);
 153
 154static inline pte_t pud_pte(pud_t pud)
 155{
 156        return __pte(pud_val(pud));
 157}
 158
 159static inline pud_t pte_pud(pte_t pte)
 160{
 161        return __pud(pte_val(pte));
 162}
 163#define pud_write(pud)          pte_write(pud_pte(pud))
 164#define pgd_write(pgd)          pte_write(pgd_pte(pgd))
 165
 166static inline void pgd_set(pgd_t *pgdp, unsigned long val)
 167{
 168        *pgdp = __pgd(val);
 169}
 170
 171/*
 172 * Find an entry in a page-table-directory.  We combine the address region
 173 * (the high order N bits) and the pgd portion of the address.
 174 */
 175#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
 176
 177#define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
 178
 179#define pmd_offset(pudp,addr) \
 180  (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
 181
 182#define pte_offset_kernel(dir,addr) \
 183  (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
 184
 185#define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
 186#define pte_unmap(pte)                  do { } while(0)
 187
 188/* to find an entry in a kernel page-table-directory */
 189/* This now only contains the vmalloc pages */
 190#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 191extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
 192                            pte_t *ptep, unsigned long pte, int huge);
 193
 194/* Atomic PTE updates */
 195static inline unsigned long pte_update(struct mm_struct *mm,
 196                                       unsigned long addr,
 197                                       pte_t *ptep, unsigned long clr,
 198                                       unsigned long set,
 199                                       int huge)
 200{
 201#ifdef PTE_ATOMIC_UPDATES
 202        unsigned long old, tmp;
 203
 204        __asm__ __volatile__(
 205        "1:     ldarx   %0,0,%3         # pte_update\n\
 206        andi.   %1,%0,%6\n\
 207        bne-    1b \n\
 208        andc    %1,%0,%4 \n\
 209        or      %1,%1,%7\n\
 210        stdcx.  %1,0,%3 \n\
 211        bne-    1b"
 212        : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
 213        : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
 214        : "cc" );
 215#else
 216        unsigned long old = pte_val(*ptep);
 217        *ptep = __pte((old & ~clr) | set);
 218#endif
 219        /* huge pages use the old page table lock */
 220        if (!huge)
 221                assert_pte_locked(mm, addr);
 222
 223#ifdef CONFIG_PPC_STD_MMU_64
 224        if (old & _PAGE_HASHPTE)
 225                hpte_need_flush(mm, addr, ptep, old, huge);
 226#endif
 227
 228        return old;
 229}
 230
 231static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 232                                              unsigned long addr, pte_t *ptep)
 233{
 234        unsigned long old;
 235
 236        if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
 237                return 0;
 238        old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
 239        return (old & _PAGE_ACCESSED) != 0;
 240}
 241#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 242#define ptep_test_and_clear_young(__vma, __addr, __ptep)                   \
 243({                                                                         \
 244        int __r;                                                           \
 245        __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
 246        __r;                                                               \
 247})
 248
 249#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 250static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 251                                      pte_t *ptep)
 252{
 253
 254        if ((pte_val(*ptep) & _PAGE_RW) == 0)
 255                return;
 256
 257        pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
 258}
 259
 260static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 261                                           unsigned long addr, pte_t *ptep)
 262{
 263        if ((pte_val(*ptep) & _PAGE_RW) == 0)
 264                return;
 265
 266        pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
 267}
 268
 269/*
 270 * We currently remove entries from the hashtable regardless of whether
 271 * the entry was young or dirty. The generic routines only flush if the
 272 * entry was young or dirty which is not good enough.
 273 *
 274 * We should be more intelligent about this but for the moment we override
 275 * these functions and force a tlb flush unconditionally
 276 */
 277#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 278#define ptep_clear_flush_young(__vma, __address, __ptep)                \
 279({                                                                      \
 280        int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
 281                                                  __ptep);              \
 282        __young;                                                        \
 283})
 284
 285#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 286static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 287                                       unsigned long addr, pte_t *ptep)
 288{
 289        unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
 290        return __pte(old);
 291}
 292
 293static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 294                             pte_t * ptep)
 295{
 296        pte_update(mm, addr, ptep, ~0UL, 0, 0);
 297}
 298
 299
 300/* Set the dirty and/or accessed bits atomically in a linux PTE, this
 301 * function doesn't need to flush the hash entry
 302 */
 303static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
 304{
 305        unsigned long bits = pte_val(entry) &
 306                (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
 307
 308#ifdef PTE_ATOMIC_UPDATES
 309        unsigned long old, tmp;
 310
 311        __asm__ __volatile__(
 312        "1:     ldarx   %0,0,%4\n\
 313                andi.   %1,%0,%6\n\
 314                bne-    1b \n\
 315                or      %0,%3,%0\n\
 316                stdcx.  %0,0,%4\n\
 317                bne-    1b"
 318        :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
 319        :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
 320        :"cc");
 321#else
 322        unsigned long old = pte_val(*ptep);
 323        *ptep = __pte(old | bits);
 324#endif
 325}
 326
 327#define __HAVE_ARCH_PTE_SAME
 328#define pte_same(A,B)   (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
 329
 330#define pte_ERROR(e) \
 331        pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 332#define pmd_ERROR(e) \
 333        pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
 334#define pgd_ERROR(e) \
 335        pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 336
 337/* Encode and de-code a swap entry */
 338#define MAX_SWAPFILES_CHECK() do { \
 339        BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
 340        /*                                                      \
 341         * Don't have overlapping bits with _PAGE_HPTEFLAGS     \
 342         * We filter HPTEFLAGS on set_pte.                      \
 343         */                                                     \
 344        BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
 345        } while (0)
 346/*
 347 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
 348 */
 349#define SWP_TYPE_BITS 5
 350#define __swp_type(x)           (((x).val >> _PAGE_BIT_SWAP_TYPE) \
 351                                & ((1UL << SWP_TYPE_BITS) - 1))
 352#define __swp_offset(x)         ((x).val >> PTE_RPN_SHIFT)
 353#define __swp_entry(type, offset)       ((swp_entry_t) { \
 354                                        ((type) << _PAGE_BIT_SWAP_TYPE) \
 355                                        | ((offset) << PTE_RPN_SHIFT) })
 356
 357#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val((pte)) })
 358#define __swp_entry_to_pte(x)           __pte((x).val)
 359
 360void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
 361void pgtable_cache_init(void);
 362extern int map_kernel_page(unsigned long ea, unsigned long pa,
 363                           unsigned long flags);
 364extern int __meminit vmemmap_create_mapping(unsigned long start,
 365                                            unsigned long page_size,
 366                                            unsigned long phys);
 367extern void vmemmap_remove_mapping(unsigned long start,
 368                                   unsigned long page_size);
 369#endif /* __ASSEMBLY__ */
 370
 371#endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */
 372