linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/prctl.h>
  30#include <linux/delay.h>
  31#include <linux/kprobes.h>
  32#include <linux/kexec.h>
  33#include <linux/backlight.h>
  34#include <linux/bug.h>
  35#include <linux/kdebug.h>
  36#include <linux/debugfs.h>
  37#include <linux/ratelimit.h>
  38#include <linux/context_tracking.h>
  39
  40#include <asm/emulated_ops.h>
  41#include <asm/pgtable.h>
  42#include <asm/uaccess.h>
  43#include <asm/io.h>
  44#include <asm/machdep.h>
  45#include <asm/rtas.h>
  46#include <asm/pmc.h>
  47#include <asm/reg.h>
  48#ifdef CONFIG_PMAC_BACKLIGHT
  49#include <asm/backlight.h>
  50#endif
  51#ifdef CONFIG_PPC64
  52#include <asm/firmware.h>
  53#include <asm/processor.h>
  54#include <asm/tm.h>
  55#endif
  56#include <asm/kexec.h>
  57#include <asm/ppc-opcode.h>
  58#include <asm/rio.h>
  59#include <asm/fadump.h>
  60#include <asm/switch_to.h>
  61#include <asm/tm.h>
  62#include <asm/debug.h>
  63#include <sysdev/fsl_pci.h>
  64
  65#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  66int (*__debugger)(struct pt_regs *regs) __read_mostly;
  67int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  68int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  69int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  70int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  71int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  72int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  73
  74EXPORT_SYMBOL(__debugger);
  75EXPORT_SYMBOL(__debugger_ipi);
  76EXPORT_SYMBOL(__debugger_bpt);
  77EXPORT_SYMBOL(__debugger_sstep);
  78EXPORT_SYMBOL(__debugger_iabr_match);
  79EXPORT_SYMBOL(__debugger_break_match);
  80EXPORT_SYMBOL(__debugger_fault_handler);
  81#endif
  82
  83/* Transactional Memory trap debug */
  84#ifdef TM_DEBUG_SW
  85#define TM_DEBUG(x...) printk(KERN_INFO x)
  86#else
  87#define TM_DEBUG(x...) do { } while(0)
  88#endif
  89
  90/*
  91 * Trap & Exception support
  92 */
  93
  94#ifdef CONFIG_PMAC_BACKLIGHT
  95static void pmac_backlight_unblank(void)
  96{
  97        mutex_lock(&pmac_backlight_mutex);
  98        if (pmac_backlight) {
  99                struct backlight_properties *props;
 100
 101                props = &pmac_backlight->props;
 102                props->brightness = props->max_brightness;
 103                props->power = FB_BLANK_UNBLANK;
 104                backlight_update_status(pmac_backlight);
 105        }
 106        mutex_unlock(&pmac_backlight_mutex);
 107}
 108#else
 109static inline void pmac_backlight_unblank(void) { }
 110#endif
 111
 112static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 113static int die_owner = -1;
 114static unsigned int die_nest_count;
 115static int die_counter;
 116
 117static unsigned __kprobes long oops_begin(struct pt_regs *regs)
 118{
 119        int cpu;
 120        unsigned long flags;
 121
 122        if (debugger(regs))
 123                return 1;
 124
 125        oops_enter();
 126
 127        /* racy, but better than risking deadlock. */
 128        raw_local_irq_save(flags);
 129        cpu = smp_processor_id();
 130        if (!arch_spin_trylock(&die_lock)) {
 131                if (cpu == die_owner)
 132                        /* nested oops. should stop eventually */;
 133                else
 134                        arch_spin_lock(&die_lock);
 135        }
 136        die_nest_count++;
 137        die_owner = cpu;
 138        console_verbose();
 139        bust_spinlocks(1);
 140        if (machine_is(powermac))
 141                pmac_backlight_unblank();
 142        return flags;
 143}
 144
 145static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
 146                               int signr)
 147{
 148        bust_spinlocks(0);
 149        die_owner = -1;
 150        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 151        die_nest_count--;
 152        oops_exit();
 153        printk("\n");
 154        if (!die_nest_count)
 155                /* Nest count reaches zero, release the lock. */
 156                arch_spin_unlock(&die_lock);
 157        raw_local_irq_restore(flags);
 158
 159        crash_fadump(regs, "die oops");
 160
 161        /*
 162         * A system reset (0x100) is a request to dump, so we always send
 163         * it through the crashdump code.
 164         */
 165        if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 166                crash_kexec(regs);
 167
 168                /*
 169                 * We aren't the primary crash CPU. We need to send it
 170                 * to a holding pattern to avoid it ending up in the panic
 171                 * code.
 172                 */
 173                crash_kexec_secondary(regs);
 174        }
 175
 176        if (!signr)
 177                return;
 178
 179        /*
 180         * While our oops output is serialised by a spinlock, output
 181         * from panic() called below can race and corrupt it. If we
 182         * know we are going to panic, delay for 1 second so we have a
 183         * chance to get clean backtraces from all CPUs that are oopsing.
 184         */
 185        if (in_interrupt() || panic_on_oops || !current->pid ||
 186            is_global_init(current)) {
 187                mdelay(MSEC_PER_SEC);
 188        }
 189
 190        if (in_interrupt())
 191                panic("Fatal exception in interrupt");
 192        if (panic_on_oops)
 193                panic("Fatal exception");
 194        do_exit(signr);
 195}
 196
 197static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
 198{
 199        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 200#ifdef CONFIG_PREEMPT
 201        printk("PREEMPT ");
 202#endif
 203#ifdef CONFIG_SMP
 204        printk("SMP NR_CPUS=%d ", NR_CPUS);
 205#endif
 206        if (debug_pagealloc_enabled())
 207                printk("DEBUG_PAGEALLOC ");
 208#ifdef CONFIG_NUMA
 209        printk("NUMA ");
 210#endif
 211        printk("%s\n", ppc_md.name ? ppc_md.name : "");
 212
 213        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 214                return 1;
 215
 216        print_modules();
 217        show_regs(regs);
 218
 219        return 0;
 220}
 221
 222void die(const char *str, struct pt_regs *regs, long err)
 223{
 224        unsigned long flags = oops_begin(regs);
 225
 226        if (__die(str, regs, err))
 227                err = 0;
 228        oops_end(flags, regs, err);
 229}
 230
 231void user_single_step_siginfo(struct task_struct *tsk,
 232                                struct pt_regs *regs, siginfo_t *info)
 233{
 234        memset(info, 0, sizeof(*info));
 235        info->si_signo = SIGTRAP;
 236        info->si_code = TRAP_TRACE;
 237        info->si_addr = (void __user *)regs->nip;
 238}
 239
 240void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 241{
 242        siginfo_t info;
 243        const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 244                        "at %08lx nip %08lx lr %08lx code %x\n";
 245        const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 246                        "at %016lx nip %016lx lr %016lx code %x\n";
 247
 248        if (!user_mode(regs)) {
 249                die("Exception in kernel mode", regs, signr);
 250                return;
 251        }
 252
 253        if (show_unhandled_signals && unhandled_signal(current, signr)) {
 254                printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 255                                   current->comm, current->pid, signr,
 256                                   addr, regs->nip, regs->link, code);
 257        }
 258
 259        if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 260                local_irq_enable();
 261
 262        current->thread.trap_nr = code;
 263        memset(&info, 0, sizeof(info));
 264        info.si_signo = signr;
 265        info.si_code = code;
 266        info.si_addr = (void __user *) addr;
 267        force_sig_info(signr, &info, current);
 268}
 269
 270#ifdef CONFIG_PPC64
 271void system_reset_exception(struct pt_regs *regs)
 272{
 273        /* See if any machine dependent calls */
 274        if (ppc_md.system_reset_exception) {
 275                if (ppc_md.system_reset_exception(regs))
 276                        return;
 277        }
 278
 279        die("System Reset", regs, SIGABRT);
 280
 281        /* Must die if the interrupt is not recoverable */
 282        if (!(regs->msr & MSR_RI))
 283                panic("Unrecoverable System Reset");
 284
 285        /* What should we do here? We could issue a shutdown or hard reset. */
 286}
 287
 288/*
 289 * This function is called in real mode. Strictly no printk's please.
 290 *
 291 * regs->nip and regs->msr contains srr0 and ssr1.
 292 */
 293long machine_check_early(struct pt_regs *regs)
 294{
 295        long handled = 0;
 296
 297        __this_cpu_inc(irq_stat.mce_exceptions);
 298
 299        add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 300
 301        if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
 302                handled = cur_cpu_spec->machine_check_early(regs);
 303        return handled;
 304}
 305
 306long hmi_exception_realmode(struct pt_regs *regs)
 307{
 308        __this_cpu_inc(irq_stat.hmi_exceptions);
 309
 310        if (ppc_md.hmi_exception_early)
 311                ppc_md.hmi_exception_early(regs);
 312
 313        return 0;
 314}
 315
 316#endif
 317
 318/*
 319 * I/O accesses can cause machine checks on powermacs.
 320 * Check if the NIP corresponds to the address of a sync
 321 * instruction for which there is an entry in the exception
 322 * table.
 323 * Note that the 601 only takes a machine check on TEA
 324 * (transfer error ack) signal assertion, and does not
 325 * set any of the top 16 bits of SRR1.
 326 *  -- paulus.
 327 */
 328static inline int check_io_access(struct pt_regs *regs)
 329{
 330#ifdef CONFIG_PPC32
 331        unsigned long msr = regs->msr;
 332        const struct exception_table_entry *entry;
 333        unsigned int *nip = (unsigned int *)regs->nip;
 334
 335        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 336            && (entry = search_exception_tables(regs->nip)) != NULL) {
 337                /*
 338                 * Check that it's a sync instruction, or somewhere
 339                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 340                 * As the address is in the exception table
 341                 * we should be able to read the instr there.
 342                 * For the debug message, we look at the preceding
 343                 * load or store.
 344                 */
 345                if (*nip == 0x60000000)         /* nop */
 346                        nip -= 2;
 347                else if (*nip == 0x4c00012c)    /* isync */
 348                        --nip;
 349                if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
 350                        /* sync or twi */
 351                        unsigned int rb;
 352
 353                        --nip;
 354                        rb = (*nip >> 11) & 0x1f;
 355                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 356                               (*nip & 0x100)? "OUT to": "IN from",
 357                               regs->gpr[rb] - _IO_BASE, nip);
 358                        regs->msr |= MSR_RI;
 359                        regs->nip = entry->fixup;
 360                        return 1;
 361                }
 362        }
 363#endif /* CONFIG_PPC32 */
 364        return 0;
 365}
 366
 367#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 368/* On 4xx, the reason for the machine check or program exception
 369   is in the ESR. */
 370#define get_reason(regs)        ((regs)->dsisr)
 371#ifndef CONFIG_FSL_BOOKE
 372#define get_mc_reason(regs)     ((regs)->dsisr)
 373#else
 374#define get_mc_reason(regs)     (mfspr(SPRN_MCSR))
 375#endif
 376#define REASON_FP               ESR_FP
 377#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 378#define REASON_PRIVILEGED       ESR_PPR
 379#define REASON_TRAP             ESR_PTR
 380
 381/* single-step stuff */
 382#define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
 383#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
 384
 385#else
 386/* On non-4xx, the reason for the machine check or program
 387   exception is in the MSR. */
 388#define get_reason(regs)        ((regs)->msr)
 389#define get_mc_reason(regs)     ((regs)->msr)
 390#define REASON_TM               0x200000
 391#define REASON_FP               0x100000
 392#define REASON_ILLEGAL          0x80000
 393#define REASON_PRIVILEGED       0x40000
 394#define REASON_TRAP             0x20000
 395
 396#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 397#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
 398#endif
 399
 400#if defined(CONFIG_4xx)
 401int machine_check_4xx(struct pt_regs *regs)
 402{
 403        unsigned long reason = get_mc_reason(regs);
 404
 405        if (reason & ESR_IMCP) {
 406                printk("Instruction");
 407                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 408        } else
 409                printk("Data");
 410        printk(" machine check in kernel mode.\n");
 411
 412        return 0;
 413}
 414
 415int machine_check_440A(struct pt_regs *regs)
 416{
 417        unsigned long reason = get_mc_reason(regs);
 418
 419        printk("Machine check in kernel mode.\n");
 420        if (reason & ESR_IMCP){
 421                printk("Instruction Synchronous Machine Check exception\n");
 422                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 423        }
 424        else {
 425                u32 mcsr = mfspr(SPRN_MCSR);
 426                if (mcsr & MCSR_IB)
 427                        printk("Instruction Read PLB Error\n");
 428                if (mcsr & MCSR_DRB)
 429                        printk("Data Read PLB Error\n");
 430                if (mcsr & MCSR_DWB)
 431                        printk("Data Write PLB Error\n");
 432                if (mcsr & MCSR_TLBP)
 433                        printk("TLB Parity Error\n");
 434                if (mcsr & MCSR_ICP){
 435                        flush_instruction_cache();
 436                        printk("I-Cache Parity Error\n");
 437                }
 438                if (mcsr & MCSR_DCSP)
 439                        printk("D-Cache Search Parity Error\n");
 440                if (mcsr & MCSR_DCFP)
 441                        printk("D-Cache Flush Parity Error\n");
 442                if (mcsr & MCSR_IMPE)
 443                        printk("Machine Check exception is imprecise\n");
 444
 445                /* Clear MCSR */
 446                mtspr(SPRN_MCSR, mcsr);
 447        }
 448        return 0;
 449}
 450
 451int machine_check_47x(struct pt_regs *regs)
 452{
 453        unsigned long reason = get_mc_reason(regs);
 454        u32 mcsr;
 455
 456        printk(KERN_ERR "Machine check in kernel mode.\n");
 457        if (reason & ESR_IMCP) {
 458                printk(KERN_ERR
 459                       "Instruction Synchronous Machine Check exception\n");
 460                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 461                return 0;
 462        }
 463        mcsr = mfspr(SPRN_MCSR);
 464        if (mcsr & MCSR_IB)
 465                printk(KERN_ERR "Instruction Read PLB Error\n");
 466        if (mcsr & MCSR_DRB)
 467                printk(KERN_ERR "Data Read PLB Error\n");
 468        if (mcsr & MCSR_DWB)
 469                printk(KERN_ERR "Data Write PLB Error\n");
 470        if (mcsr & MCSR_TLBP)
 471                printk(KERN_ERR "TLB Parity Error\n");
 472        if (mcsr & MCSR_ICP) {
 473                flush_instruction_cache();
 474                printk(KERN_ERR "I-Cache Parity Error\n");
 475        }
 476        if (mcsr & MCSR_DCSP)
 477                printk(KERN_ERR "D-Cache Search Parity Error\n");
 478        if (mcsr & PPC47x_MCSR_GPR)
 479                printk(KERN_ERR "GPR Parity Error\n");
 480        if (mcsr & PPC47x_MCSR_FPR)
 481                printk(KERN_ERR "FPR Parity Error\n");
 482        if (mcsr & PPC47x_MCSR_IPR)
 483                printk(KERN_ERR "Machine Check exception is imprecise\n");
 484
 485        /* Clear MCSR */
 486        mtspr(SPRN_MCSR, mcsr);
 487
 488        return 0;
 489}
 490#elif defined(CONFIG_E500)
 491int machine_check_e500mc(struct pt_regs *regs)
 492{
 493        unsigned long mcsr = mfspr(SPRN_MCSR);
 494        unsigned long reason = mcsr;
 495        int recoverable = 1;
 496
 497        if (reason & MCSR_LD) {
 498                recoverable = fsl_rio_mcheck_exception(regs);
 499                if (recoverable == 1)
 500                        goto silent_out;
 501        }
 502
 503        printk("Machine check in kernel mode.\n");
 504        printk("Caused by (from MCSR=%lx): ", reason);
 505
 506        if (reason & MCSR_MCP)
 507                printk("Machine Check Signal\n");
 508
 509        if (reason & MCSR_ICPERR) {
 510                printk("Instruction Cache Parity Error\n");
 511
 512                /*
 513                 * This is recoverable by invalidating the i-cache.
 514                 */
 515                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 516                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 517                        ;
 518
 519                /*
 520                 * This will generally be accompanied by an instruction
 521                 * fetch error report -- only treat MCSR_IF as fatal
 522                 * if it wasn't due to an L1 parity error.
 523                 */
 524                reason &= ~MCSR_IF;
 525        }
 526
 527        if (reason & MCSR_DCPERR_MC) {
 528                printk("Data Cache Parity Error\n");
 529
 530                /*
 531                 * In write shadow mode we auto-recover from the error, but it
 532                 * may still get logged and cause a machine check.  We should
 533                 * only treat the non-write shadow case as non-recoverable.
 534                 */
 535                if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 536                        recoverable = 0;
 537        }
 538
 539        if (reason & MCSR_L2MMU_MHIT) {
 540                printk("Hit on multiple TLB entries\n");
 541                recoverable = 0;
 542        }
 543
 544        if (reason & MCSR_NMI)
 545                printk("Non-maskable interrupt\n");
 546
 547        if (reason & MCSR_IF) {
 548                printk("Instruction Fetch Error Report\n");
 549                recoverable = 0;
 550        }
 551
 552        if (reason & MCSR_LD) {
 553                printk("Load Error Report\n");
 554                recoverable = 0;
 555        }
 556
 557        if (reason & MCSR_ST) {
 558                printk("Store Error Report\n");
 559                recoverable = 0;
 560        }
 561
 562        if (reason & MCSR_LDG) {
 563                printk("Guarded Load Error Report\n");
 564                recoverable = 0;
 565        }
 566
 567        if (reason & MCSR_TLBSYNC)
 568                printk("Simultaneous tlbsync operations\n");
 569
 570        if (reason & MCSR_BSL2_ERR) {
 571                printk("Level 2 Cache Error\n");
 572                recoverable = 0;
 573        }
 574
 575        if (reason & MCSR_MAV) {
 576                u64 addr;
 577
 578                addr = mfspr(SPRN_MCAR);
 579                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 580
 581                printk("Machine Check %s Address: %#llx\n",
 582                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 583        }
 584
 585silent_out:
 586        mtspr(SPRN_MCSR, mcsr);
 587        return mfspr(SPRN_MCSR) == 0 && recoverable;
 588}
 589
 590int machine_check_e500(struct pt_regs *regs)
 591{
 592        unsigned long reason = get_mc_reason(regs);
 593
 594        if (reason & MCSR_BUS_RBERR) {
 595                if (fsl_rio_mcheck_exception(regs))
 596                        return 1;
 597                if (fsl_pci_mcheck_exception(regs))
 598                        return 1;
 599        }
 600
 601        printk("Machine check in kernel mode.\n");
 602        printk("Caused by (from MCSR=%lx): ", reason);
 603
 604        if (reason & MCSR_MCP)
 605                printk("Machine Check Signal\n");
 606        if (reason & MCSR_ICPERR)
 607                printk("Instruction Cache Parity Error\n");
 608        if (reason & MCSR_DCP_PERR)
 609                printk("Data Cache Push Parity Error\n");
 610        if (reason & MCSR_DCPERR)
 611                printk("Data Cache Parity Error\n");
 612        if (reason & MCSR_BUS_IAERR)
 613                printk("Bus - Instruction Address Error\n");
 614        if (reason & MCSR_BUS_RAERR)
 615                printk("Bus - Read Address Error\n");
 616        if (reason & MCSR_BUS_WAERR)
 617                printk("Bus - Write Address Error\n");
 618        if (reason & MCSR_BUS_IBERR)
 619                printk("Bus - Instruction Data Error\n");
 620        if (reason & MCSR_BUS_RBERR)
 621                printk("Bus - Read Data Bus Error\n");
 622        if (reason & MCSR_BUS_WBERR)
 623                printk("Bus - Write Data Bus Error\n");
 624        if (reason & MCSR_BUS_IPERR)
 625                printk("Bus - Instruction Parity Error\n");
 626        if (reason & MCSR_BUS_RPERR)
 627                printk("Bus - Read Parity Error\n");
 628
 629        return 0;
 630}
 631
 632int machine_check_generic(struct pt_regs *regs)
 633{
 634        return 0;
 635}
 636#elif defined(CONFIG_E200)
 637int machine_check_e200(struct pt_regs *regs)
 638{
 639        unsigned long reason = get_mc_reason(regs);
 640
 641        printk("Machine check in kernel mode.\n");
 642        printk("Caused by (from MCSR=%lx): ", reason);
 643
 644        if (reason & MCSR_MCP)
 645                printk("Machine Check Signal\n");
 646        if (reason & MCSR_CP_PERR)
 647                printk("Cache Push Parity Error\n");
 648        if (reason & MCSR_CPERR)
 649                printk("Cache Parity Error\n");
 650        if (reason & MCSR_EXCP_ERR)
 651                printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 652        if (reason & MCSR_BUS_IRERR)
 653                printk("Bus - Read Bus Error on instruction fetch\n");
 654        if (reason & MCSR_BUS_DRERR)
 655                printk("Bus - Read Bus Error on data load\n");
 656        if (reason & MCSR_BUS_WRERR)
 657                printk("Bus - Write Bus Error on buffered store or cache line push\n");
 658
 659        return 0;
 660}
 661#else
 662int machine_check_generic(struct pt_regs *regs)
 663{
 664        unsigned long reason = get_mc_reason(regs);
 665
 666        printk("Machine check in kernel mode.\n");
 667        printk("Caused by (from SRR1=%lx): ", reason);
 668        switch (reason & 0x601F0000) {
 669        case 0x80000:
 670                printk("Machine check signal\n");
 671                break;
 672        case 0:         /* for 601 */
 673        case 0x40000:
 674        case 0x140000:  /* 7450 MSS error and TEA */
 675                printk("Transfer error ack signal\n");
 676                break;
 677        case 0x20000:
 678                printk("Data parity error signal\n");
 679                break;
 680        case 0x10000:
 681                printk("Address parity error signal\n");
 682                break;
 683        case 0x20000000:
 684                printk("L1 Data Cache error\n");
 685                break;
 686        case 0x40000000:
 687                printk("L1 Instruction Cache error\n");
 688                break;
 689        case 0x00100000:
 690                printk("L2 data cache parity error\n");
 691                break;
 692        default:
 693                printk("Unknown values in msr\n");
 694        }
 695        return 0;
 696}
 697#endif /* everything else */
 698
 699void machine_check_exception(struct pt_regs *regs)
 700{
 701        enum ctx_state prev_state = exception_enter();
 702        int recover = 0;
 703
 704        __this_cpu_inc(irq_stat.mce_exceptions);
 705
 706        /* See if any machine dependent calls. In theory, we would want
 707         * to call the CPU first, and call the ppc_md. one if the CPU
 708         * one returns a positive number. However there is existing code
 709         * that assumes the board gets a first chance, so let's keep it
 710         * that way for now and fix things later. --BenH.
 711         */
 712        if (ppc_md.machine_check_exception)
 713                recover = ppc_md.machine_check_exception(regs);
 714        else if (cur_cpu_spec->machine_check)
 715                recover = cur_cpu_spec->machine_check(regs);
 716
 717        if (recover > 0)
 718                goto bail;
 719
 720#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
 721        /* the qspan pci read routines can cause machine checks -- Cort
 722         *
 723         * yuck !!! that totally needs to go away ! There are better ways
 724         * to deal with that than having a wart in the mcheck handler.
 725         * -- BenH
 726         */
 727        bad_page_fault(regs, regs->dar, SIGBUS);
 728        goto bail;
 729#endif
 730
 731        if (debugger_fault_handler(regs))
 732                goto bail;
 733
 734        if (check_io_access(regs))
 735                goto bail;
 736
 737        die("Machine check", regs, SIGBUS);
 738
 739        /* Must die if the interrupt is not recoverable */
 740        if (!(regs->msr & MSR_RI))
 741                panic("Unrecoverable Machine check");
 742
 743bail:
 744        exception_exit(prev_state);
 745}
 746
 747void SMIException(struct pt_regs *regs)
 748{
 749        die("System Management Interrupt", regs, SIGABRT);
 750}
 751
 752void handle_hmi_exception(struct pt_regs *regs)
 753{
 754        struct pt_regs *old_regs;
 755
 756        old_regs = set_irq_regs(regs);
 757        irq_enter();
 758
 759        if (ppc_md.handle_hmi_exception)
 760                ppc_md.handle_hmi_exception(regs);
 761
 762        irq_exit();
 763        set_irq_regs(old_regs);
 764}
 765
 766void unknown_exception(struct pt_regs *regs)
 767{
 768        enum ctx_state prev_state = exception_enter();
 769
 770        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 771               regs->nip, regs->msr, regs->trap);
 772
 773        _exception(SIGTRAP, regs, 0, 0);
 774
 775        exception_exit(prev_state);
 776}
 777
 778void instruction_breakpoint_exception(struct pt_regs *regs)
 779{
 780        enum ctx_state prev_state = exception_enter();
 781
 782        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 783                                        5, SIGTRAP) == NOTIFY_STOP)
 784                goto bail;
 785        if (debugger_iabr_match(regs))
 786                goto bail;
 787        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 788
 789bail:
 790        exception_exit(prev_state);
 791}
 792
 793void RunModeException(struct pt_regs *regs)
 794{
 795        _exception(SIGTRAP, regs, 0, 0);
 796}
 797
 798void __kprobes single_step_exception(struct pt_regs *regs)
 799{
 800        enum ctx_state prev_state = exception_enter();
 801
 802        clear_single_step(regs);
 803
 804        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 805                                        5, SIGTRAP) == NOTIFY_STOP)
 806                goto bail;
 807        if (debugger_sstep(regs))
 808                goto bail;
 809
 810        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 811
 812bail:
 813        exception_exit(prev_state);
 814}
 815
 816/*
 817 * After we have successfully emulated an instruction, we have to
 818 * check if the instruction was being single-stepped, and if so,
 819 * pretend we got a single-step exception.  This was pointed out
 820 * by Kumar Gala.  -- paulus
 821 */
 822static void emulate_single_step(struct pt_regs *regs)
 823{
 824        if (single_stepping(regs))
 825                single_step_exception(regs);
 826}
 827
 828static inline int __parse_fpscr(unsigned long fpscr)
 829{
 830        int ret = 0;
 831
 832        /* Invalid operation */
 833        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 834                ret = FPE_FLTINV;
 835
 836        /* Overflow */
 837        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 838                ret = FPE_FLTOVF;
 839
 840        /* Underflow */
 841        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 842                ret = FPE_FLTUND;
 843
 844        /* Divide by zero */
 845        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 846                ret = FPE_FLTDIV;
 847
 848        /* Inexact result */
 849        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 850                ret = FPE_FLTRES;
 851
 852        return ret;
 853}
 854
 855static void parse_fpe(struct pt_regs *regs)
 856{
 857        int code = 0;
 858
 859        flush_fp_to_thread(current);
 860
 861        code = __parse_fpscr(current->thread.fp_state.fpscr);
 862
 863        _exception(SIGFPE, regs, code, regs->nip);
 864}
 865
 866/*
 867 * Illegal instruction emulation support.  Originally written to
 868 * provide the PVR to user applications using the mfspr rd, PVR.
 869 * Return non-zero if we can't emulate, or -EFAULT if the associated
 870 * memory access caused an access fault.  Return zero on success.
 871 *
 872 * There are a couple of ways to do this, either "decode" the instruction
 873 * or directly match lots of bits.  In this case, matching lots of
 874 * bits is faster and easier.
 875 *
 876 */
 877static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 878{
 879        u8 rT = (instword >> 21) & 0x1f;
 880        u8 rA = (instword >> 16) & 0x1f;
 881        u8 NB_RB = (instword >> 11) & 0x1f;
 882        u32 num_bytes;
 883        unsigned long EA;
 884        int pos = 0;
 885
 886        /* Early out if we are an invalid form of lswx */
 887        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 888                if ((rT == rA) || (rT == NB_RB))
 889                        return -EINVAL;
 890
 891        EA = (rA == 0) ? 0 : regs->gpr[rA];
 892
 893        switch (instword & PPC_INST_STRING_MASK) {
 894                case PPC_INST_LSWX:
 895                case PPC_INST_STSWX:
 896                        EA += NB_RB;
 897                        num_bytes = regs->xer & 0x7f;
 898                        break;
 899                case PPC_INST_LSWI:
 900                case PPC_INST_STSWI:
 901                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 902                        break;
 903                default:
 904                        return -EINVAL;
 905        }
 906
 907        while (num_bytes != 0)
 908        {
 909                u8 val;
 910                u32 shift = 8 * (3 - (pos & 0x3));
 911
 912                /* if process is 32-bit, clear upper 32 bits of EA */
 913                if ((regs->msr & MSR_64BIT) == 0)
 914                        EA &= 0xFFFFFFFF;
 915
 916                switch ((instword & PPC_INST_STRING_MASK)) {
 917                        case PPC_INST_LSWX:
 918                        case PPC_INST_LSWI:
 919                                if (get_user(val, (u8 __user *)EA))
 920                                        return -EFAULT;
 921                                /* first time updating this reg,
 922                                 * zero it out */
 923                                if (pos == 0)
 924                                        regs->gpr[rT] = 0;
 925                                regs->gpr[rT] |= val << shift;
 926                                break;
 927                        case PPC_INST_STSWI:
 928                        case PPC_INST_STSWX:
 929                                val = regs->gpr[rT] >> shift;
 930                                if (put_user(val, (u8 __user *)EA))
 931                                        return -EFAULT;
 932                                break;
 933                }
 934                /* move EA to next address */
 935                EA += 1;
 936                num_bytes--;
 937
 938                /* manage our position within the register */
 939                if (++pos == 4) {
 940                        pos = 0;
 941                        if (++rT == 32)
 942                                rT = 0;
 943                }
 944        }
 945
 946        return 0;
 947}
 948
 949static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 950{
 951        u32 ra,rs;
 952        unsigned long tmp;
 953
 954        ra = (instword >> 16) & 0x1f;
 955        rs = (instword >> 21) & 0x1f;
 956
 957        tmp = regs->gpr[rs];
 958        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 959        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 960        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 961        regs->gpr[ra] = tmp;
 962
 963        return 0;
 964}
 965
 966static int emulate_isel(struct pt_regs *regs, u32 instword)
 967{
 968        u8 rT = (instword >> 21) & 0x1f;
 969        u8 rA = (instword >> 16) & 0x1f;
 970        u8 rB = (instword >> 11) & 0x1f;
 971        u8 BC = (instword >> 6) & 0x1f;
 972        u8 bit;
 973        unsigned long tmp;
 974
 975        tmp = (rA == 0) ? 0 : regs->gpr[rA];
 976        bit = (regs->ccr >> (31 - BC)) & 0x1;
 977
 978        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
 979
 980        return 0;
 981}
 982
 983#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 984static inline bool tm_abort_check(struct pt_regs *regs, int cause)
 985{
 986        /* If we're emulating a load/store in an active transaction, we cannot
 987         * emulate it as the kernel operates in transaction suspended context.
 988         * We need to abort the transaction.  This creates a persistent TM
 989         * abort so tell the user what caused it with a new code.
 990         */
 991        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
 992                tm_enable();
 993                tm_abort(cause);
 994                return true;
 995        }
 996        return false;
 997}
 998#else
 999static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1000{
1001        return false;
1002}
1003#endif
1004
1005static int emulate_instruction(struct pt_regs *regs)
1006{
1007        u32 instword;
1008        u32 rd;
1009
1010        if (!user_mode(regs))
1011                return -EINVAL;
1012        CHECK_FULL_REGS(regs);
1013
1014        if (get_user(instword, (u32 __user *)(regs->nip)))
1015                return -EFAULT;
1016
1017        /* Emulate the mfspr rD, PVR. */
1018        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1019                PPC_WARN_EMULATED(mfpvr, regs);
1020                rd = (instword >> 21) & 0x1f;
1021                regs->gpr[rd] = mfspr(SPRN_PVR);
1022                return 0;
1023        }
1024
1025        /* Emulating the dcba insn is just a no-op.  */
1026        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1027                PPC_WARN_EMULATED(dcba, regs);
1028                return 0;
1029        }
1030
1031        /* Emulate the mcrxr insn.  */
1032        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1033                int shift = (instword >> 21) & 0x1c;
1034                unsigned long msk = 0xf0000000UL >> shift;
1035
1036                PPC_WARN_EMULATED(mcrxr, regs);
1037                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1038                regs->xer &= ~0xf0000000UL;
1039                return 0;
1040        }
1041
1042        /* Emulate load/store string insn. */
1043        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1044                if (tm_abort_check(regs,
1045                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1046                        return -EINVAL;
1047                PPC_WARN_EMULATED(string, regs);
1048                return emulate_string_inst(regs, instword);
1049        }
1050
1051        /* Emulate the popcntb (Population Count Bytes) instruction. */
1052        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1053                PPC_WARN_EMULATED(popcntb, regs);
1054                return emulate_popcntb_inst(regs, instword);
1055        }
1056
1057        /* Emulate isel (Integer Select) instruction */
1058        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1059                PPC_WARN_EMULATED(isel, regs);
1060                return emulate_isel(regs, instword);
1061        }
1062
1063        /* Emulate sync instruction variants */
1064        if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1065                PPC_WARN_EMULATED(sync, regs);
1066                asm volatile("sync");
1067                return 0;
1068        }
1069
1070#ifdef CONFIG_PPC64
1071        /* Emulate the mfspr rD, DSCR. */
1072        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1073                PPC_INST_MFSPR_DSCR_USER) ||
1074             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1075                PPC_INST_MFSPR_DSCR)) &&
1076                        cpu_has_feature(CPU_FTR_DSCR)) {
1077                PPC_WARN_EMULATED(mfdscr, regs);
1078                rd = (instword >> 21) & 0x1f;
1079                regs->gpr[rd] = mfspr(SPRN_DSCR);
1080                return 0;
1081        }
1082        /* Emulate the mtspr DSCR, rD. */
1083        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1084                PPC_INST_MTSPR_DSCR_USER) ||
1085             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1086                PPC_INST_MTSPR_DSCR)) &&
1087                        cpu_has_feature(CPU_FTR_DSCR)) {
1088                PPC_WARN_EMULATED(mtdscr, regs);
1089                rd = (instword >> 21) & 0x1f;
1090                current->thread.dscr = regs->gpr[rd];
1091                current->thread.dscr_inherit = 1;
1092                mtspr(SPRN_DSCR, current->thread.dscr);
1093                return 0;
1094        }
1095#endif
1096
1097        return -EINVAL;
1098}
1099
1100int is_valid_bugaddr(unsigned long addr)
1101{
1102        return is_kernel_addr(addr);
1103}
1104
1105#ifdef CONFIG_MATH_EMULATION
1106static int emulate_math(struct pt_regs *regs)
1107{
1108        int ret;
1109        extern int do_mathemu(struct pt_regs *regs);
1110
1111        ret = do_mathemu(regs);
1112        if (ret >= 0)
1113                PPC_WARN_EMULATED(math, regs);
1114
1115        switch (ret) {
1116        case 0:
1117                emulate_single_step(regs);
1118                return 0;
1119        case 1: {
1120                        int code = 0;
1121                        code = __parse_fpscr(current->thread.fp_state.fpscr);
1122                        _exception(SIGFPE, regs, code, regs->nip);
1123                        return 0;
1124                }
1125        case -EFAULT:
1126                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1127                return 0;
1128        }
1129
1130        return -1;
1131}
1132#else
1133static inline int emulate_math(struct pt_regs *regs) { return -1; }
1134#endif
1135
1136void __kprobes program_check_exception(struct pt_regs *regs)
1137{
1138        enum ctx_state prev_state = exception_enter();
1139        unsigned int reason = get_reason(regs);
1140
1141        /* We can now get here via a FP Unavailable exception if the core
1142         * has no FPU, in that case the reason flags will be 0 */
1143
1144        if (reason & REASON_FP) {
1145                /* IEEE FP exception */
1146                parse_fpe(regs);
1147                goto bail;
1148        }
1149        if (reason & REASON_TRAP) {
1150                unsigned long bugaddr;
1151                /* Debugger is first in line to stop recursive faults in
1152                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1153                if (debugger_bpt(regs))
1154                        goto bail;
1155
1156                /* trap exception */
1157                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1158                                == NOTIFY_STOP)
1159                        goto bail;
1160
1161                bugaddr = regs->nip;
1162                /*
1163                 * Fixup bugaddr for BUG_ON() in real mode
1164                 */
1165                if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1166                        bugaddr += PAGE_OFFSET;
1167
1168                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1169                    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1170                        regs->nip += 4;
1171                        goto bail;
1172                }
1173                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1174                goto bail;
1175        }
1176#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1177        if (reason & REASON_TM) {
1178                /* This is a TM "Bad Thing Exception" program check.
1179                 * This occurs when:
1180                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1181                 *    transition in TM states.
1182                 * -  A trechkpt is attempted when transactional.
1183                 * -  A treclaim is attempted when non transactional.
1184                 * -  A tend is illegally attempted.
1185                 * -  writing a TM SPR when transactional.
1186                 */
1187                if (!user_mode(regs) &&
1188                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1189                        regs->nip += 4;
1190                        goto bail;
1191                }
1192                /* If usermode caused this, it's done something illegal and
1193                 * gets a SIGILL slap on the wrist.  We call it an illegal
1194                 * operand to distinguish from the instruction just being bad
1195                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1196                 * illegal /placement/ of a valid instruction.
1197                 */
1198                if (user_mode(regs)) {
1199                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1200                        goto bail;
1201                } else {
1202                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1203                               "at %lx (msr 0x%x)\n", regs->nip, reason);
1204                        die("Unrecoverable exception", regs, SIGABRT);
1205                }
1206        }
1207#endif
1208
1209        /*
1210         * If we took the program check in the kernel skip down to sending a
1211         * SIGILL. The subsequent cases all relate to emulating instructions
1212         * which we should only do for userspace. We also do not want to enable
1213         * interrupts for kernel faults because that might lead to further
1214         * faults, and loose the context of the original exception.
1215         */
1216        if (!user_mode(regs))
1217                goto sigill;
1218
1219        /* We restore the interrupt state now */
1220        if (!arch_irq_disabled_regs(regs))
1221                local_irq_enable();
1222
1223        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1224         * but there seems to be a hardware bug on the 405GP (RevD)
1225         * that means ESR is sometimes set incorrectly - either to
1226         * ESR_DST (!?) or 0.  In the process of chasing this with the
1227         * hardware people - not sure if it can happen on any illegal
1228         * instruction or only on FP instructions, whether there is a
1229         * pattern to occurrences etc. -dgibson 31/Mar/2003
1230         */
1231        if (!emulate_math(regs))
1232                goto bail;
1233
1234        /* Try to emulate it if we should. */
1235        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1236                switch (emulate_instruction(regs)) {
1237                case 0:
1238                        regs->nip += 4;
1239                        emulate_single_step(regs);
1240                        goto bail;
1241                case -EFAULT:
1242                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1243                        goto bail;
1244                }
1245        }
1246
1247sigill:
1248        if (reason & REASON_PRIVILEGED)
1249                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1250        else
1251                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1252
1253bail:
1254        exception_exit(prev_state);
1255}
1256
1257/*
1258 * This occurs when running in hypervisor mode on POWER6 or later
1259 * and an illegal instruction is encountered.
1260 */
1261void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1262{
1263        regs->msr |= REASON_ILLEGAL;
1264        program_check_exception(regs);
1265}
1266
1267void alignment_exception(struct pt_regs *regs)
1268{
1269        enum ctx_state prev_state = exception_enter();
1270        int sig, code, fixed = 0;
1271
1272        /* We restore the interrupt state now */
1273        if (!arch_irq_disabled_regs(regs))
1274                local_irq_enable();
1275
1276        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1277                goto bail;
1278
1279        /* we don't implement logging of alignment exceptions */
1280        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1281                fixed = fix_alignment(regs);
1282
1283        if (fixed == 1) {
1284                regs->nip += 4; /* skip over emulated instruction */
1285                emulate_single_step(regs);
1286                goto bail;
1287        }
1288
1289        /* Operand address was bad */
1290        if (fixed == -EFAULT) {
1291                sig = SIGSEGV;
1292                code = SEGV_ACCERR;
1293        } else {
1294                sig = SIGBUS;
1295                code = BUS_ADRALN;
1296        }
1297        if (user_mode(regs))
1298                _exception(sig, regs, code, regs->dar);
1299        else
1300                bad_page_fault(regs, regs->dar, sig);
1301
1302bail:
1303        exception_exit(prev_state);
1304}
1305
1306void StackOverflow(struct pt_regs *regs)
1307{
1308        printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1309               current, regs->gpr[1]);
1310        debugger(regs);
1311        show_regs(regs);
1312        panic("kernel stack overflow");
1313}
1314
1315void nonrecoverable_exception(struct pt_regs *regs)
1316{
1317        printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1318               regs->nip, regs->msr);
1319        debugger(regs);
1320        die("nonrecoverable exception", regs, SIGKILL);
1321}
1322
1323void kernel_fp_unavailable_exception(struct pt_regs *regs)
1324{
1325        enum ctx_state prev_state = exception_enter();
1326
1327        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1328                          "%lx at %lx\n", regs->trap, regs->nip);
1329        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1330
1331        exception_exit(prev_state);
1332}
1333
1334void altivec_unavailable_exception(struct pt_regs *regs)
1335{
1336        enum ctx_state prev_state = exception_enter();
1337
1338        if (user_mode(regs)) {
1339                /* A user program has executed an altivec instruction,
1340                   but this kernel doesn't support altivec. */
1341                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1342                goto bail;
1343        }
1344
1345        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1346                        "%lx at %lx\n", regs->trap, regs->nip);
1347        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1348
1349bail:
1350        exception_exit(prev_state);
1351}
1352
1353void vsx_unavailable_exception(struct pt_regs *regs)
1354{
1355        if (user_mode(regs)) {
1356                /* A user program has executed an vsx instruction,
1357                   but this kernel doesn't support vsx. */
1358                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1359                return;
1360        }
1361
1362        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1363                        "%lx at %lx\n", regs->trap, regs->nip);
1364        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1365}
1366
1367#ifdef CONFIG_PPC64
1368void facility_unavailable_exception(struct pt_regs *regs)
1369{
1370        static char *facility_strings[] = {
1371                [FSCR_FP_LG] = "FPU",
1372                [FSCR_VECVSX_LG] = "VMX/VSX",
1373                [FSCR_DSCR_LG] = "DSCR",
1374                [FSCR_PM_LG] = "PMU SPRs",
1375                [FSCR_BHRB_LG] = "BHRB",
1376                [FSCR_TM_LG] = "TM",
1377                [FSCR_EBB_LG] = "EBB",
1378                [FSCR_TAR_LG] = "TAR",
1379        };
1380        char *facility = "unknown";
1381        u64 value;
1382        u32 instword, rd;
1383        u8 status;
1384        bool hv;
1385
1386        hv = (regs->trap == 0xf80);
1387        if (hv)
1388                value = mfspr(SPRN_HFSCR);
1389        else
1390                value = mfspr(SPRN_FSCR);
1391
1392        status = value >> 56;
1393        if (status == FSCR_DSCR_LG) {
1394                /*
1395                 * User is accessing the DSCR register using the problem
1396                 * state only SPR number (0x03) either through a mfspr or
1397                 * a mtspr instruction. If it is a write attempt through
1398                 * a mtspr, then we set the inherit bit. This also allows
1399                 * the user to write or read the register directly in the
1400                 * future by setting via the FSCR DSCR bit. But in case it
1401                 * is a read DSCR attempt through a mfspr instruction, we
1402                 * just emulate the instruction instead. This code path will
1403                 * always emulate all the mfspr instructions till the user
1404                 * has attempted at least one mtspr instruction. This way it
1405                 * preserves the same behaviour when the user is accessing
1406                 * the DSCR through privilege level only SPR number (0x11)
1407                 * which is emulated through illegal instruction exception.
1408                 * We always leave HFSCR DSCR set.
1409                 */
1410                if (get_user(instword, (u32 __user *)(regs->nip))) {
1411                        pr_err("Failed to fetch the user instruction\n");
1412                        return;
1413                }
1414
1415                /* Write into DSCR (mtspr 0x03, RS) */
1416                if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1417                                == PPC_INST_MTSPR_DSCR_USER) {
1418                        rd = (instword >> 21) & 0x1f;
1419                        current->thread.dscr = regs->gpr[rd];
1420                        current->thread.dscr_inherit = 1;
1421                        mtspr(SPRN_FSCR, value | FSCR_DSCR);
1422                }
1423
1424                /* Read from DSCR (mfspr RT, 0x03) */
1425                if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1426                                == PPC_INST_MFSPR_DSCR_USER) {
1427                        if (emulate_instruction(regs)) {
1428                                pr_err("DSCR based mfspr emulation failed\n");
1429                                return;
1430                        }
1431                        regs->nip += 4;
1432                        emulate_single_step(regs);
1433                }
1434                return;
1435        }
1436
1437        if ((status < ARRAY_SIZE(facility_strings)) &&
1438            facility_strings[status])
1439                facility = facility_strings[status];
1440
1441        /* We restore the interrupt state now */
1442        if (!arch_irq_disabled_regs(regs))
1443                local_irq_enable();
1444
1445        pr_err_ratelimited(
1446                "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1447                hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1448
1449        if (user_mode(regs)) {
1450                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1451                return;
1452        }
1453
1454        die("Unexpected facility unavailable exception", regs, SIGABRT);
1455}
1456#endif
1457
1458#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459
1460void fp_unavailable_tm(struct pt_regs *regs)
1461{
1462        /* Note:  This does not handle any kind of FP laziness. */
1463
1464        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1465                 regs->nip, regs->msr);
1466
1467        /* We can only have got here if the task started using FP after
1468         * beginning the transaction.  So, the transactional regs are just a
1469         * copy of the checkpointed ones.  But, we still need to recheckpoint
1470         * as we're enabling FP for the process; it will return, abort the
1471         * transaction, and probably retry but now with FP enabled.  So the
1472         * checkpointed FP registers need to be loaded.
1473         */
1474        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1475        /* Reclaim didn't save out any FPRs to transact_fprs. */
1476
1477        /* Enable FP for the task: */
1478        regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1479
1480        /* This loads and recheckpoints the FP registers from
1481         * thread.fpr[].  They will remain in registers after the
1482         * checkpoint so we don't need to reload them after.
1483         * If VMX is in use, the VRs now hold checkpointed values,
1484         * so we don't want to load the VRs from the thread_struct.
1485         */
1486        tm_recheckpoint(&current->thread, MSR_FP);
1487
1488        /* If VMX is in use, get the transactional values back */
1489        if (regs->msr & MSR_VEC) {
1490                do_load_up_transact_altivec(&current->thread);
1491                /* At this point all the VSX state is loaded, so enable it */
1492                regs->msr |= MSR_VSX;
1493        }
1494}
1495
1496void altivec_unavailable_tm(struct pt_regs *regs)
1497{
1498        /* See the comments in fp_unavailable_tm().  This function operates
1499         * the same way.
1500         */
1501
1502        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1503                 "MSR=%lx\n",
1504                 regs->nip, regs->msr);
1505        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1506        regs->msr |= MSR_VEC;
1507        tm_recheckpoint(&current->thread, MSR_VEC);
1508        current->thread.used_vr = 1;
1509
1510        if (regs->msr & MSR_FP) {
1511                do_load_up_transact_fpu(&current->thread);
1512                regs->msr |= MSR_VSX;
1513        }
1514}
1515
1516void vsx_unavailable_tm(struct pt_regs *regs)
1517{
1518        unsigned long orig_msr = regs->msr;
1519
1520        /* See the comments in fp_unavailable_tm().  This works similarly,
1521         * though we're loading both FP and VEC registers in here.
1522         *
1523         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1524         * regs.  Either way, set MSR_VSX.
1525         */
1526
1527        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1528                 "MSR=%lx\n",
1529                 regs->nip, regs->msr);
1530
1531        current->thread.used_vsr = 1;
1532
1533        /* If FP and VMX are already loaded, we have all the state we need */
1534        if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1535                regs->msr |= MSR_VSX;
1536                return;
1537        }
1538
1539        /* This reclaims FP and/or VR regs if they're already enabled */
1540        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1541
1542        regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1543                MSR_VSX;
1544
1545        /* This loads & recheckpoints FP and VRs; but we have
1546         * to be sure not to overwrite previously-valid state.
1547         */
1548        tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1549
1550        if (orig_msr & MSR_FP)
1551                do_load_up_transact_fpu(&current->thread);
1552        if (orig_msr & MSR_VEC)
1553                do_load_up_transact_altivec(&current->thread);
1554}
1555#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1556
1557void performance_monitor_exception(struct pt_regs *regs)
1558{
1559        __this_cpu_inc(irq_stat.pmu_irqs);
1560
1561        perf_irq(regs);
1562}
1563
1564#ifdef CONFIG_8xx
1565void SoftwareEmulation(struct pt_regs *regs)
1566{
1567        CHECK_FULL_REGS(regs);
1568
1569        if (!user_mode(regs)) {
1570                debugger(regs);
1571                die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1572                        regs, SIGFPE);
1573        }
1574
1575        if (!emulate_math(regs))
1576                return;
1577
1578        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1579}
1580#endif /* CONFIG_8xx */
1581
1582#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1583static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1584{
1585        int changed = 0;
1586        /*
1587         * Determine the cause of the debug event, clear the
1588         * event flags and send a trap to the handler. Torez
1589         */
1590        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1591                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1592#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1593                current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1594#endif
1595                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1596                             5);
1597                changed |= 0x01;
1598        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1599                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1600                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1601                             6);
1602                changed |= 0x01;
1603        }  else if (debug_status & DBSR_IAC1) {
1604                current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1605                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1606                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1607                             1);
1608                changed |= 0x01;
1609        }  else if (debug_status & DBSR_IAC2) {
1610                current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1611                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1612                             2);
1613                changed |= 0x01;
1614        }  else if (debug_status & DBSR_IAC3) {
1615                current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1616                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1617                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1618                             3);
1619                changed |= 0x01;
1620        }  else if (debug_status & DBSR_IAC4) {
1621                current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1622                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1623                             4);
1624                changed |= 0x01;
1625        }
1626        /*
1627         * At the point this routine was called, the MSR(DE) was turned off.
1628         * Check all other debug flags and see if that bit needs to be turned
1629         * back on or not.
1630         */
1631        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1632                               current->thread.debug.dbcr1))
1633                regs->msr |= MSR_DE;
1634        else
1635                /* Make sure the IDM flag is off */
1636                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1637
1638        if (changed & 0x01)
1639                mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1640}
1641
1642void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1643{
1644        current->thread.debug.dbsr = debug_status;
1645
1646        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1647         * on server, it stops on the target of the branch. In order to simulate
1648         * the server behaviour, we thus restart right away with a single step
1649         * instead of stopping here when hitting a BT
1650         */
1651        if (debug_status & DBSR_BT) {
1652                regs->msr &= ~MSR_DE;
1653
1654                /* Disable BT */
1655                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1656                /* Clear the BT event */
1657                mtspr(SPRN_DBSR, DBSR_BT);
1658
1659                /* Do the single step trick only when coming from userspace */
1660                if (user_mode(regs)) {
1661                        current->thread.debug.dbcr0 &= ~DBCR0_BT;
1662                        current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1663                        regs->msr |= MSR_DE;
1664                        return;
1665                }
1666
1667                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1668                               5, SIGTRAP) == NOTIFY_STOP) {
1669                        return;
1670                }
1671                if (debugger_sstep(regs))
1672                        return;
1673        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
1674                regs->msr &= ~MSR_DE;
1675
1676                /* Disable instruction completion */
1677                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1678                /* Clear the instruction completion event */
1679                mtspr(SPRN_DBSR, DBSR_IC);
1680
1681                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1682                               5, SIGTRAP) == NOTIFY_STOP) {
1683                        return;
1684                }
1685
1686                if (debugger_sstep(regs))
1687                        return;
1688
1689                if (user_mode(regs)) {
1690                        current->thread.debug.dbcr0 &= ~DBCR0_IC;
1691                        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1692                                               current->thread.debug.dbcr1))
1693                                regs->msr |= MSR_DE;
1694                        else
1695                                /* Make sure the IDM bit is off */
1696                                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1697                }
1698
1699                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1700        } else
1701                handle_debug(regs, debug_status);
1702}
1703#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1704
1705#if !defined(CONFIG_TAU_INT)
1706void TAUException(struct pt_regs *regs)
1707{
1708        printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1709               regs->nip, regs->msr, regs->trap, print_tainted());
1710}
1711#endif /* CONFIG_INT_TAU */
1712
1713#ifdef CONFIG_ALTIVEC
1714void altivec_assist_exception(struct pt_regs *regs)
1715{
1716        int err;
1717
1718        if (!user_mode(regs)) {
1719                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1720                       " at %lx\n", regs->nip);
1721                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1722        }
1723
1724        flush_altivec_to_thread(current);
1725
1726        PPC_WARN_EMULATED(altivec, regs);
1727        err = emulate_altivec(regs);
1728        if (err == 0) {
1729                regs->nip += 4;         /* skip emulated instruction */
1730                emulate_single_step(regs);
1731                return;
1732        }
1733
1734        if (err == -EFAULT) {
1735                /* got an error reading the instruction */
1736                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1737        } else {
1738                /* didn't recognize the instruction */
1739                /* XXX quick hack for now: set the non-Java bit in the VSCR */
1740                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1741                                   "in %s at %lx\n", current->comm, regs->nip);
1742                current->thread.vr_state.vscr.u[3] |= 0x10000;
1743        }
1744}
1745#endif /* CONFIG_ALTIVEC */
1746
1747#ifdef CONFIG_FSL_BOOKE
1748void CacheLockingException(struct pt_regs *regs, unsigned long address,
1749                           unsigned long error_code)
1750{
1751        /* We treat cache locking instructions from the user
1752         * as priv ops, in the future we could try to do
1753         * something smarter
1754         */
1755        if (error_code & (ESR_DLK|ESR_ILK))
1756                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1757        return;
1758}
1759#endif /* CONFIG_FSL_BOOKE */
1760
1761#ifdef CONFIG_SPE
1762void SPEFloatingPointException(struct pt_regs *regs)
1763{
1764        extern int do_spe_mathemu(struct pt_regs *regs);
1765        unsigned long spefscr;
1766        int fpexc_mode;
1767        int code = 0;
1768        int err;
1769
1770        flush_spe_to_thread(current);
1771
1772        spefscr = current->thread.spefscr;
1773        fpexc_mode = current->thread.fpexc_mode;
1774
1775        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1776                code = FPE_FLTOVF;
1777        }
1778        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1779                code = FPE_FLTUND;
1780        }
1781        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1782                code = FPE_FLTDIV;
1783        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1784                code = FPE_FLTINV;
1785        }
1786        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1787                code = FPE_FLTRES;
1788
1789        err = do_spe_mathemu(regs);
1790        if (err == 0) {
1791                regs->nip += 4;         /* skip emulated instruction */
1792                emulate_single_step(regs);
1793                return;
1794        }
1795
1796        if (err == -EFAULT) {
1797                /* got an error reading the instruction */
1798                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1799        } else if (err == -EINVAL) {
1800                /* didn't recognize the instruction */
1801                printk(KERN_ERR "unrecognized spe instruction "
1802                       "in %s at %lx\n", current->comm, regs->nip);
1803        } else {
1804                _exception(SIGFPE, regs, code, regs->nip);
1805        }
1806
1807        return;
1808}
1809
1810void SPEFloatingPointRoundException(struct pt_regs *regs)
1811{
1812        extern int speround_handler(struct pt_regs *regs);
1813        int err;
1814
1815        preempt_disable();
1816        if (regs->msr & MSR_SPE)
1817                giveup_spe(current);
1818        preempt_enable();
1819
1820        regs->nip -= 4;
1821        err = speround_handler(regs);
1822        if (err == 0) {
1823                regs->nip += 4;         /* skip emulated instruction */
1824                emulate_single_step(regs);
1825                return;
1826        }
1827
1828        if (err == -EFAULT) {
1829                /* got an error reading the instruction */
1830                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1831        } else if (err == -EINVAL) {
1832                /* didn't recognize the instruction */
1833                printk(KERN_ERR "unrecognized spe instruction "
1834                       "in %s at %lx\n", current->comm, regs->nip);
1835        } else {
1836                _exception(SIGFPE, regs, 0, regs->nip);
1837                return;
1838        }
1839}
1840#endif
1841
1842/*
1843 * We enter here if we get an unrecoverable exception, that is, one
1844 * that happened at a point where the RI (recoverable interrupt) bit
1845 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1846 * we therefore lost state by taking this exception.
1847 */
1848void unrecoverable_exception(struct pt_regs *regs)
1849{
1850        printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1851               regs->trap, regs->nip);
1852        die("Unrecoverable exception", regs, SIGABRT);
1853}
1854
1855#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1856/*
1857 * Default handler for a Watchdog exception,
1858 * spins until a reboot occurs
1859 */
1860void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1861{
1862        /* Generic WatchdogHandler, implement your own */
1863        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1864        return;
1865}
1866
1867void WatchdogException(struct pt_regs *regs)
1868{
1869        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1870        WatchdogHandler(regs);
1871}
1872#endif
1873
1874/*
1875 * We enter here if we discover during exception entry that we are
1876 * running in supervisor mode with a userspace value in the stack pointer.
1877 */
1878void kernel_bad_stack(struct pt_regs *regs)
1879{
1880        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1881               regs->gpr[1], regs->nip);
1882        die("Bad kernel stack pointer", regs, SIGABRT);
1883}
1884
1885void __init trap_init(void)
1886{
1887}
1888
1889
1890#ifdef CONFIG_PPC_EMULATED_STATS
1891
1892#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
1893
1894struct ppc_emulated ppc_emulated = {
1895#ifdef CONFIG_ALTIVEC
1896        WARN_EMULATED_SETUP(altivec),
1897#endif
1898        WARN_EMULATED_SETUP(dcba),
1899        WARN_EMULATED_SETUP(dcbz),
1900        WARN_EMULATED_SETUP(fp_pair),
1901        WARN_EMULATED_SETUP(isel),
1902        WARN_EMULATED_SETUP(mcrxr),
1903        WARN_EMULATED_SETUP(mfpvr),
1904        WARN_EMULATED_SETUP(multiple),
1905        WARN_EMULATED_SETUP(popcntb),
1906        WARN_EMULATED_SETUP(spe),
1907        WARN_EMULATED_SETUP(string),
1908        WARN_EMULATED_SETUP(sync),
1909        WARN_EMULATED_SETUP(unaligned),
1910#ifdef CONFIG_MATH_EMULATION
1911        WARN_EMULATED_SETUP(math),
1912#endif
1913#ifdef CONFIG_VSX
1914        WARN_EMULATED_SETUP(vsx),
1915#endif
1916#ifdef CONFIG_PPC64
1917        WARN_EMULATED_SETUP(mfdscr),
1918        WARN_EMULATED_SETUP(mtdscr),
1919        WARN_EMULATED_SETUP(lq_stq),
1920#endif
1921};
1922
1923u32 ppc_warn_emulated;
1924
1925void ppc_warn_emulated_print(const char *type)
1926{
1927        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1928                            type);
1929}
1930
1931static int __init ppc_warn_emulated_init(void)
1932{
1933        struct dentry *dir, *d;
1934        unsigned int i;
1935        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1936
1937        if (!powerpc_debugfs_root)
1938                return -ENODEV;
1939
1940        dir = debugfs_create_dir("emulated_instructions",
1941                                 powerpc_debugfs_root);
1942        if (!dir)
1943                return -ENOMEM;
1944
1945        d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1946                               &ppc_warn_emulated);
1947        if (!d)
1948                goto fail;
1949
1950        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1951                d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1952                                       (u32 *)&entries[i].val.counter);
1953                if (!d)
1954                        goto fail;
1955        }
1956
1957        return 0;
1958
1959fail:
1960        debugfs_remove_recursive(dir);
1961        return -ENOMEM;
1962}
1963
1964device_initcall(ppc_warn_emulated_init);
1965
1966#endif /* CONFIG_PPC_EMULATED_STATS */
1967