linux/arch/s390/kernel/time.c
<<
>>
Prefs
   1/*
   2 *    Time of day based timer functions.
   3 *
   4 *  S390 version
   5 *    Copyright IBM Corp. 1999, 2008
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   8 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   9 *
  10 *  Derived from "arch/i386/kernel/time.c"
  11 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  12 */
  13
  14#define KMSG_COMPONENT "time"
  15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  16
  17#include <linux/kernel_stat.h>
  18#include <linux/errno.h>
  19#include <linux/module.h>
  20#include <linux/sched.h>
  21#include <linux/kernel.h>
  22#include <linux/param.h>
  23#include <linux/string.h>
  24#include <linux/mm.h>
  25#include <linux/interrupt.h>
  26#include <linux/cpu.h>
  27#include <linux/stop_machine.h>
  28#include <linux/time.h>
  29#include <linux/device.h>
  30#include <linux/delay.h>
  31#include <linux/init.h>
  32#include <linux/smp.h>
  33#include <linux/types.h>
  34#include <linux/profile.h>
  35#include <linux/timex.h>
  36#include <linux/notifier.h>
  37#include <linux/timekeeper_internal.h>
  38#include <linux/clockchips.h>
  39#include <linux/gfp.h>
  40#include <linux/kprobes.h>
  41#include <asm/uaccess.h>
  42#include <asm/delay.h>
  43#include <asm/div64.h>
  44#include <asm/vdso.h>
  45#include <asm/irq.h>
  46#include <asm/irq_regs.h>
  47#include <asm/vtimer.h>
  48#include <asm/etr.h>
  49#include <asm/cio.h>
  50#include "entry.h"
  51
  52/* change this if you have some constant time drift */
  53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
  55
  56u64 sched_clock_base_cc = -1;   /* Force to data section. */
  57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  58
  59static DEFINE_PER_CPU(struct clock_event_device, comparators);
  60
  61ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
  62EXPORT_SYMBOL(s390_epoch_delta_notifier);
  63
  64/*
  65 * Scheduler clock - returns current time in nanosec units.
  66 */
  67unsigned long long notrace sched_clock(void)
  68{
  69        return tod_to_ns(get_tod_clock_monotonic());
  70}
  71NOKPROBE_SYMBOL(sched_clock);
  72
  73/*
  74 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  75 */
  76unsigned long long monotonic_clock(void)
  77{
  78        return sched_clock();
  79}
  80EXPORT_SYMBOL(monotonic_clock);
  81
  82void tod_to_timeval(__u64 todval, struct timespec64 *xt)
  83{
  84        unsigned long long sec;
  85
  86        sec = todval >> 12;
  87        do_div(sec, 1000000);
  88        xt->tv_sec = sec;
  89        todval -= (sec * 1000000) << 12;
  90        xt->tv_nsec = ((todval * 1000) >> 12);
  91}
  92EXPORT_SYMBOL(tod_to_timeval);
  93
  94void clock_comparator_work(void)
  95{
  96        struct clock_event_device *cd;
  97
  98        S390_lowcore.clock_comparator = -1ULL;
  99        cd = this_cpu_ptr(&comparators);
 100        cd->event_handler(cd);
 101}
 102
 103/*
 104 * Fixup the clock comparator.
 105 */
 106static void fixup_clock_comparator(unsigned long long delta)
 107{
 108        /* If nobody is waiting there's nothing to fix. */
 109        if (S390_lowcore.clock_comparator == -1ULL)
 110                return;
 111        S390_lowcore.clock_comparator += delta;
 112        set_clock_comparator(S390_lowcore.clock_comparator);
 113}
 114
 115static int s390_next_event(unsigned long delta,
 116                           struct clock_event_device *evt)
 117{
 118        S390_lowcore.clock_comparator = get_tod_clock() + delta;
 119        set_clock_comparator(S390_lowcore.clock_comparator);
 120        return 0;
 121}
 122
 123/*
 124 * Set up lowcore and control register of the current cpu to
 125 * enable TOD clock and clock comparator interrupts.
 126 */
 127void init_cpu_timer(void)
 128{
 129        struct clock_event_device *cd;
 130        int cpu;
 131
 132        S390_lowcore.clock_comparator = -1ULL;
 133        set_clock_comparator(S390_lowcore.clock_comparator);
 134
 135        cpu = smp_processor_id();
 136        cd = &per_cpu(comparators, cpu);
 137        cd->name                = "comparator";
 138        cd->features            = CLOCK_EVT_FEAT_ONESHOT;
 139        cd->mult                = 16777;
 140        cd->shift               = 12;
 141        cd->min_delta_ns        = 1;
 142        cd->max_delta_ns        = LONG_MAX;
 143        cd->rating              = 400;
 144        cd->cpumask             = cpumask_of(cpu);
 145        cd->set_next_event      = s390_next_event;
 146
 147        clockevents_register_device(cd);
 148
 149        /* Enable clock comparator timer interrupt. */
 150        __ctl_set_bit(0,11);
 151
 152        /* Always allow the timing alert external interrupt. */
 153        __ctl_set_bit(0, 4);
 154}
 155
 156static void clock_comparator_interrupt(struct ext_code ext_code,
 157                                       unsigned int param32,
 158                                       unsigned long param64)
 159{
 160        inc_irq_stat(IRQEXT_CLK);
 161        if (S390_lowcore.clock_comparator == -1ULL)
 162                set_clock_comparator(S390_lowcore.clock_comparator);
 163}
 164
 165static void etr_timing_alert(struct etr_irq_parm *);
 166static void stp_timing_alert(struct stp_irq_parm *);
 167
 168static void timing_alert_interrupt(struct ext_code ext_code,
 169                                   unsigned int param32, unsigned long param64)
 170{
 171        inc_irq_stat(IRQEXT_TLA);
 172        if (param32 & 0x00c40000)
 173                etr_timing_alert((struct etr_irq_parm *) &param32);
 174        if (param32 & 0x00038000)
 175                stp_timing_alert((struct stp_irq_parm *) &param32);
 176}
 177
 178static void etr_reset(void);
 179static void stp_reset(void);
 180
 181void read_persistent_clock64(struct timespec64 *ts)
 182{
 183        tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
 184}
 185
 186void read_boot_clock64(struct timespec64 *ts)
 187{
 188        tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 189}
 190
 191static cycle_t read_tod_clock(struct clocksource *cs)
 192{
 193        return get_tod_clock();
 194}
 195
 196static struct clocksource clocksource_tod = {
 197        .name           = "tod",
 198        .rating         = 400,
 199        .read           = read_tod_clock,
 200        .mask           = -1ULL,
 201        .mult           = 1000,
 202        .shift          = 12,
 203        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 204};
 205
 206struct clocksource * __init clocksource_default_clock(void)
 207{
 208        return &clocksource_tod;
 209}
 210
 211void update_vsyscall(struct timekeeper *tk)
 212{
 213        u64 nsecps;
 214
 215        if (tk->tkr_mono.clock != &clocksource_tod)
 216                return;
 217
 218        /* Make userspace gettimeofday spin until we're done. */
 219        ++vdso_data->tb_update_count;
 220        smp_wmb();
 221        vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
 222        vdso_data->xtime_clock_sec = tk->xtime_sec;
 223        vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
 224        vdso_data->wtom_clock_sec =
 225                tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
 226        vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
 227                + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
 228        nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
 229        while (vdso_data->wtom_clock_nsec >= nsecps) {
 230                vdso_data->wtom_clock_nsec -= nsecps;
 231                vdso_data->wtom_clock_sec++;
 232        }
 233
 234        vdso_data->xtime_coarse_sec = tk->xtime_sec;
 235        vdso_data->xtime_coarse_nsec =
 236                (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 237        vdso_data->wtom_coarse_sec =
 238                vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
 239        vdso_data->wtom_coarse_nsec =
 240                vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
 241        while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
 242                vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
 243                vdso_data->wtom_coarse_sec++;
 244        }
 245
 246        vdso_data->tk_mult = tk->tkr_mono.mult;
 247        vdso_data->tk_shift = tk->tkr_mono.shift;
 248        smp_wmb();
 249        ++vdso_data->tb_update_count;
 250}
 251
 252extern struct timezone sys_tz;
 253
 254void update_vsyscall_tz(void)
 255{
 256        /* Make userspace gettimeofday spin until we're done. */
 257        ++vdso_data->tb_update_count;
 258        smp_wmb();
 259        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 260        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 261        smp_wmb();
 262        ++vdso_data->tb_update_count;
 263}
 264
 265/*
 266 * Initialize the TOD clock and the CPU timer of
 267 * the boot cpu.
 268 */
 269void __init time_init(void)
 270{
 271        /* Reset time synchronization interfaces. */
 272        etr_reset();
 273        stp_reset();
 274
 275        /* request the clock comparator external interrupt */
 276        if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
 277                panic("Couldn't request external interrupt 0x1004");
 278
 279        /* request the timing alert external interrupt */
 280        if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
 281                panic("Couldn't request external interrupt 0x1406");
 282
 283        if (__clocksource_register(&clocksource_tod) != 0)
 284                panic("Could not register TOD clock source");
 285
 286        /* Enable TOD clock interrupts on the boot cpu. */
 287        init_cpu_timer();
 288
 289        /* Enable cpu timer interrupts on the boot cpu. */
 290        vtime_init();
 291}
 292
 293/*
 294 * The time is "clock". old is what we think the time is.
 295 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 296 * "delay" is an approximation how long the synchronization took. If
 297 * the time correction is positive, then "delay" is subtracted from
 298 * the time difference and only the remaining part is passed to ntp.
 299 */
 300static unsigned long long adjust_time(unsigned long long old,
 301                                      unsigned long long clock,
 302                                      unsigned long long delay)
 303{
 304        unsigned long long delta, ticks;
 305        struct timex adjust;
 306
 307        if (clock > old) {
 308                /* It is later than we thought. */
 309                delta = ticks = clock - old;
 310                delta = ticks = (delta < delay) ? 0 : delta - delay;
 311                delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 312                adjust.offset = ticks * (1000000 / HZ);
 313        } else {
 314                /* It is earlier than we thought. */
 315                delta = ticks = old - clock;
 316                delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 317                delta = -delta;
 318                adjust.offset = -ticks * (1000000 / HZ);
 319        }
 320        sched_clock_base_cc += delta;
 321        if (adjust.offset != 0) {
 322                pr_notice("The ETR interface has adjusted the clock "
 323                          "by %li microseconds\n", adjust.offset);
 324                adjust.modes = ADJ_OFFSET_SINGLESHOT;
 325                do_adjtimex(&adjust);
 326        }
 327        return delta;
 328}
 329
 330static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 331static DEFINE_MUTEX(clock_sync_mutex);
 332static unsigned long clock_sync_flags;
 333
 334#define CLOCK_SYNC_HAS_ETR      0
 335#define CLOCK_SYNC_HAS_STP      1
 336#define CLOCK_SYNC_ETR          2
 337#define CLOCK_SYNC_STP          3
 338
 339/*
 340 * The synchronous get_clock function. It will write the current clock
 341 * value to the clock pointer and return 0 if the clock is in sync with
 342 * the external time source. If the clock mode is local it will return
 343 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
 344 * reference.
 345 */
 346int get_sync_clock(unsigned long long *clock)
 347{
 348        atomic_t *sw_ptr;
 349        unsigned int sw0, sw1;
 350
 351        sw_ptr = &get_cpu_var(clock_sync_word);
 352        sw0 = atomic_read(sw_ptr);
 353        *clock = get_tod_clock();
 354        sw1 = atomic_read(sw_ptr);
 355        put_cpu_var(clock_sync_word);
 356        if (sw0 == sw1 && (sw0 & 0x80000000U))
 357                /* Success: time is in sync. */
 358                return 0;
 359        if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 360            !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 361                return -EOPNOTSUPP;
 362        if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 363            !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 364                return -EACCES;
 365        return -EAGAIN;
 366}
 367EXPORT_SYMBOL(get_sync_clock);
 368
 369/*
 370 * Make get_sync_clock return -EAGAIN.
 371 */
 372static void disable_sync_clock(void *dummy)
 373{
 374        atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
 375        /*
 376         * Clear the in-sync bit 2^31. All get_sync_clock calls will
 377         * fail until the sync bit is turned back on. In addition
 378         * increase the "sequence" counter to avoid the race of an
 379         * etr event and the complete recovery against get_sync_clock.
 380         */
 381        atomic_andnot(0x80000000, sw_ptr);
 382        atomic_inc(sw_ptr);
 383}
 384
 385/*
 386 * Make get_sync_clock return 0 again.
 387 * Needs to be called from a context disabled for preemption.
 388 */
 389static void enable_sync_clock(void)
 390{
 391        atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
 392        atomic_or(0x80000000, sw_ptr);
 393}
 394
 395/*
 396 * Function to check if the clock is in sync.
 397 */
 398static inline int check_sync_clock(void)
 399{
 400        atomic_t *sw_ptr;
 401        int rc;
 402
 403        sw_ptr = &get_cpu_var(clock_sync_word);
 404        rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 405        put_cpu_var(clock_sync_word);
 406        return rc;
 407}
 408
 409/* Single threaded workqueue used for etr and stp sync events */
 410static struct workqueue_struct *time_sync_wq;
 411
 412static void __init time_init_wq(void)
 413{
 414        if (time_sync_wq)
 415                return;
 416        time_sync_wq = create_singlethread_workqueue("timesync");
 417}
 418
 419/*
 420 * External Time Reference (ETR) code.
 421 */
 422static int etr_port0_online;
 423static int etr_port1_online;
 424static int etr_steai_available;
 425
 426static int __init early_parse_etr(char *p)
 427{
 428        if (strncmp(p, "off", 3) == 0)
 429                etr_port0_online = etr_port1_online = 0;
 430        else if (strncmp(p, "port0", 5) == 0)
 431                etr_port0_online = 1;
 432        else if (strncmp(p, "port1", 5) == 0)
 433                etr_port1_online = 1;
 434        else if (strncmp(p, "on", 2) == 0)
 435                etr_port0_online = etr_port1_online = 1;
 436        return 0;
 437}
 438early_param("etr", early_parse_etr);
 439
 440enum etr_event {
 441        ETR_EVENT_PORT0_CHANGE,
 442        ETR_EVENT_PORT1_CHANGE,
 443        ETR_EVENT_PORT_ALERT,
 444        ETR_EVENT_SYNC_CHECK,
 445        ETR_EVENT_SWITCH_LOCAL,
 446        ETR_EVENT_UPDATE,
 447};
 448
 449/*
 450 * Valid bit combinations of the eacr register are (x = don't care):
 451 * e0 e1 dp p0 p1 ea es sl
 452 *  0  0  x  0  0  0  0  0  initial, disabled state
 453 *  0  0  x  0  1  1  0  0  port 1 online
 454 *  0  0  x  1  0  1  0  0  port 0 online
 455 *  0  0  x  1  1  1  0  0  both ports online
 456 *  0  1  x  0  1  1  0  0  port 1 online and usable, ETR or PPS mode
 457 *  0  1  x  0  1  1  0  1  port 1 online, usable and ETR mode
 458 *  0  1  x  0  1  1  1  0  port 1 online, usable, PPS mode, in-sync
 459 *  0  1  x  0  1  1  1  1  port 1 online, usable, ETR mode, in-sync
 460 *  0  1  x  1  1  1  0  0  both ports online, port 1 usable
 461 *  0  1  x  1  1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 462 *  0  1  x  1  1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 463 *  1  0  x  1  0  1  0  0  port 0 online and usable, ETR or PPS mode
 464 *  1  0  x  1  0  1  0  1  port 0 online, usable and ETR mode
 465 *  1  0  x  1  0  1  1  0  port 0 online, usable, PPS mode, in-sync
 466 *  1  0  x  1  0  1  1  1  port 0 online, usable, ETR mode, in-sync
 467 *  1  0  x  1  1  1  0  0  both ports online, port 0 usable
 468 *  1  0  x  1  1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 469 *  1  0  x  1  1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 470 *  1  1  x  1  1  1  1  0  both ports online & usable, ETR, in-sync
 471 *  1  1  x  1  1  1  1  1  both ports online & usable, ETR, in-sync
 472 */
 473static struct etr_eacr etr_eacr;
 474static u64 etr_tolec;                   /* time of last eacr update */
 475static struct etr_aib etr_port0;
 476static int etr_port0_uptodate;
 477static struct etr_aib etr_port1;
 478static int etr_port1_uptodate;
 479static unsigned long etr_events;
 480static struct timer_list etr_timer;
 481
 482static void etr_timeout(unsigned long dummy);
 483static void etr_work_fn(struct work_struct *work);
 484static DEFINE_MUTEX(etr_work_mutex);
 485static DECLARE_WORK(etr_work, etr_work_fn);
 486
 487/*
 488 * Reset ETR attachment.
 489 */
 490static void etr_reset(void)
 491{
 492        etr_eacr =  (struct etr_eacr) {
 493                .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 494                .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 495                .es = 0, .sl = 0 };
 496        if (etr_setr(&etr_eacr) == 0) {
 497                etr_tolec = get_tod_clock();
 498                set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 499                if (etr_port0_online && etr_port1_online)
 500                        set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 501        } else if (etr_port0_online || etr_port1_online) {
 502                pr_warn("The real or virtual hardware system does not provide an ETR interface\n");
 503                etr_port0_online = etr_port1_online = 0;
 504        }
 505}
 506
 507static int __init etr_init(void)
 508{
 509        struct etr_aib aib;
 510
 511        if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 512                return 0;
 513        time_init_wq();
 514        /* Check if this machine has the steai instruction. */
 515        if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 516                etr_steai_available = 1;
 517        setup_timer(&etr_timer, etr_timeout, 0UL);
 518        if (etr_port0_online) {
 519                set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 520                queue_work(time_sync_wq, &etr_work);
 521        }
 522        if (etr_port1_online) {
 523                set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 524                queue_work(time_sync_wq, &etr_work);
 525        }
 526        return 0;
 527}
 528
 529arch_initcall(etr_init);
 530
 531/*
 532 * Two sorts of ETR machine checks. The architecture reads:
 533 * "When a machine-check niterruption occurs and if a switch-to-local or
 534 *  ETR-sync-check interrupt request is pending but disabled, this pending
 535 *  disabled interruption request is indicated and is cleared".
 536 * Which means that we can get etr_switch_to_local events from the machine
 537 * check handler although the interruption condition is disabled. Lovely..
 538 */
 539
 540/*
 541 * Switch to local machine check. This is called when the last usable
 542 * ETR port goes inactive. After switch to local the clock is not in sync.
 543 */
 544int etr_switch_to_local(void)
 545{
 546        if (!etr_eacr.sl)
 547                return 0;
 548        disable_sync_clock(NULL);
 549        if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 550                etr_eacr.es = etr_eacr.sl = 0;
 551                etr_setr(&etr_eacr);
 552                return 1;
 553        }
 554        return 0;
 555}
 556
 557/*
 558 * ETR sync check machine check. This is called when the ETR OTE and the
 559 * local clock OTE are farther apart than the ETR sync check tolerance.
 560 * After a ETR sync check the clock is not in sync. The machine check
 561 * is broadcasted to all cpus at the same time.
 562 */
 563int etr_sync_check(void)
 564{
 565        if (!etr_eacr.es)
 566                return 0;
 567        disable_sync_clock(NULL);
 568        if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 569                etr_eacr.es = 0;
 570                etr_setr(&etr_eacr);
 571                return 1;
 572        }
 573        return 0;
 574}
 575
 576void etr_queue_work(void)
 577{
 578        queue_work(time_sync_wq, &etr_work);
 579}
 580
 581/*
 582 * ETR timing alert. There are two causes:
 583 * 1) port state change, check the usability of the port
 584 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 585 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 586 *    or ETR-data word 4 (edf4) has changed.
 587 */
 588static void etr_timing_alert(struct etr_irq_parm *intparm)
 589{
 590        if (intparm->pc0)
 591                /* ETR port 0 state change. */
 592                set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 593        if (intparm->pc1)
 594                /* ETR port 1 state change. */
 595                set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 596        if (intparm->eai)
 597                /*
 598                 * ETR port alert on either port 0, 1 or both.
 599                 * Both ports are not up-to-date now.
 600                 */
 601                set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 602        queue_work(time_sync_wq, &etr_work);
 603}
 604
 605static void etr_timeout(unsigned long dummy)
 606{
 607        set_bit(ETR_EVENT_UPDATE, &etr_events);
 608        queue_work(time_sync_wq, &etr_work);
 609}
 610
 611/*
 612 * Check if the etr mode is pss.
 613 */
 614static inline int etr_mode_is_pps(struct etr_eacr eacr)
 615{
 616        return eacr.es && !eacr.sl;
 617}
 618
 619/*
 620 * Check if the etr mode is etr.
 621 */
 622static inline int etr_mode_is_etr(struct etr_eacr eacr)
 623{
 624        return eacr.es && eacr.sl;
 625}
 626
 627/*
 628 * Check if the port can be used for TOD synchronization.
 629 * For PPS mode the port has to receive OTEs. For ETR mode
 630 * the port has to receive OTEs, the ETR stepping bit has to
 631 * be zero and the validity bits for data frame 1, 2, and 3
 632 * have to be 1.
 633 */
 634static int etr_port_valid(struct etr_aib *aib, int port)
 635{
 636        unsigned int psc;
 637
 638        /* Check that this port is receiving OTEs. */
 639        if (aib->tsp == 0)
 640                return 0;
 641
 642        psc = port ? aib->esw.psc1 : aib->esw.psc0;
 643        if (psc == etr_lpsc_pps_mode)
 644                return 1;
 645        if (psc == etr_lpsc_operational_step)
 646                return !aib->esw.y && aib->slsw.v1 &&
 647                        aib->slsw.v2 && aib->slsw.v3;
 648        return 0;
 649}
 650
 651/*
 652 * Check if two ports are on the same network.
 653 */
 654static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 655{
 656        // FIXME: any other fields we have to compare?
 657        return aib1->edf1.net_id == aib2->edf1.net_id;
 658}
 659
 660/*
 661 * Wrapper for etr_stei that converts physical port states
 662 * to logical port states to be consistent with the output
 663 * of stetr (see etr_psc vs. etr_lpsc).
 664 */
 665static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 666{
 667        BUG_ON(etr_steai(aib, func) != 0);
 668        /* Convert port state to logical port state. */
 669        if (aib->esw.psc0 == 1)
 670                aib->esw.psc0 = 2;
 671        else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 672                aib->esw.psc0 = 1;
 673        if (aib->esw.psc1 == 1)
 674                aib->esw.psc1 = 2;
 675        else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 676                aib->esw.psc1 = 1;
 677}
 678
 679/*
 680 * Check if the aib a2 is still connected to the same attachment as
 681 * aib a1, the etv values differ by one and a2 is valid.
 682 */
 683static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 684{
 685        int state_a1, state_a2;
 686
 687        /* Paranoia check: e0/e1 should better be the same. */
 688        if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 689            a1->esw.eacr.e1 != a2->esw.eacr.e1)
 690                return 0;
 691
 692        /* Still connected to the same etr ? */
 693        state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 694        state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 695        if (state_a1 == etr_lpsc_operational_step) {
 696                if (state_a2 != etr_lpsc_operational_step ||
 697                    a1->edf1.net_id != a2->edf1.net_id ||
 698                    a1->edf1.etr_id != a2->edf1.etr_id ||
 699                    a1->edf1.etr_pn != a2->edf1.etr_pn)
 700                        return 0;
 701        } else if (state_a2 != etr_lpsc_pps_mode)
 702                return 0;
 703
 704        /* The ETV value of a2 needs to be ETV of a1 + 1. */
 705        if (a1->edf2.etv + 1 != a2->edf2.etv)
 706                return 0;
 707
 708        if (!etr_port_valid(a2, p))
 709                return 0;
 710
 711        return 1;
 712}
 713
 714struct clock_sync_data {
 715        atomic_t cpus;
 716        int in_sync;
 717        unsigned long long fixup_cc;
 718        int etr_port;
 719        struct etr_aib *etr_aib;
 720};
 721
 722static void clock_sync_cpu(struct clock_sync_data *sync)
 723{
 724        atomic_dec(&sync->cpus);
 725        enable_sync_clock();
 726        /*
 727         * This looks like a busy wait loop but it isn't. etr_sync_cpus
 728         * is called on all other cpus while the TOD clocks is stopped.
 729         * __udelay will stop the cpu on an enabled wait psw until the
 730         * TOD is running again.
 731         */
 732        while (sync->in_sync == 0) {
 733                __udelay(1);
 734                /*
 735                 * A different cpu changes *in_sync. Therefore use
 736                 * barrier() to force memory access.
 737                 */
 738                barrier();
 739        }
 740        if (sync->in_sync != 1)
 741                /* Didn't work. Clear per-cpu in sync bit again. */
 742                disable_sync_clock(NULL);
 743        /*
 744         * This round of TOD syncing is done. Set the clock comparator
 745         * to the next tick and let the processor continue.
 746         */
 747        fixup_clock_comparator(sync->fixup_cc);
 748}
 749
 750/*
 751 * Sync the TOD clock using the port referred to by aibp. This port
 752 * has to be enabled and the other port has to be disabled. The
 753 * last eacr update has to be more than 1.6 seconds in the past.
 754 */
 755static int etr_sync_clock(void *data)
 756{
 757        static int first;
 758        unsigned long long clock, old_clock, clock_delta, delay, delta;
 759        struct clock_sync_data *etr_sync;
 760        struct etr_aib *sync_port, *aib;
 761        int port;
 762        int rc;
 763
 764        etr_sync = data;
 765
 766        if (xchg(&first, 1) == 1) {
 767                /* Slave */
 768                clock_sync_cpu(etr_sync);
 769                return 0;
 770        }
 771
 772        /* Wait until all other cpus entered the sync function. */
 773        while (atomic_read(&etr_sync->cpus) != 0)
 774                cpu_relax();
 775
 776        port = etr_sync->etr_port;
 777        aib = etr_sync->etr_aib;
 778        sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 779        enable_sync_clock();
 780
 781        /* Set clock to next OTE. */
 782        __ctl_set_bit(14, 21);
 783        __ctl_set_bit(0, 29);
 784        clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 785        old_clock = get_tod_clock();
 786        if (set_tod_clock(clock) == 0) {
 787                __udelay(1);    /* Wait for the clock to start. */
 788                __ctl_clear_bit(0, 29);
 789                __ctl_clear_bit(14, 21);
 790                etr_stetr(aib);
 791                /* Adjust Linux timing variables. */
 792                delay = (unsigned long long)
 793                        (aib->edf2.etv - sync_port->edf2.etv) << 32;
 794                delta = adjust_time(old_clock, clock, delay);
 795                clock_delta = clock - old_clock;
 796                atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
 797                                           &clock_delta);
 798                etr_sync->fixup_cc = delta;
 799                fixup_clock_comparator(delta);
 800                /* Verify that the clock is properly set. */
 801                if (!etr_aib_follows(sync_port, aib, port)) {
 802                        /* Didn't work. */
 803                        disable_sync_clock(NULL);
 804                        etr_sync->in_sync = -EAGAIN;
 805                        rc = -EAGAIN;
 806                } else {
 807                        etr_sync->in_sync = 1;
 808                        rc = 0;
 809                }
 810        } else {
 811                /* Could not set the clock ?!? */
 812                __ctl_clear_bit(0, 29);
 813                __ctl_clear_bit(14, 21);
 814                disable_sync_clock(NULL);
 815                etr_sync->in_sync = -EAGAIN;
 816                rc = -EAGAIN;
 817        }
 818        xchg(&first, 0);
 819        return rc;
 820}
 821
 822static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 823{
 824        struct clock_sync_data etr_sync;
 825        struct etr_aib *sync_port;
 826        int follows;
 827        int rc;
 828
 829        /* Check if the current aib is adjacent to the sync port aib. */
 830        sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 831        follows = etr_aib_follows(sync_port, aib, port);
 832        memcpy(sync_port, aib, sizeof(*aib));
 833        if (!follows)
 834                return -EAGAIN;
 835        memset(&etr_sync, 0, sizeof(etr_sync));
 836        etr_sync.etr_aib = aib;
 837        etr_sync.etr_port = port;
 838        get_online_cpus();
 839        atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 840        rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 841        put_online_cpus();
 842        return rc;
 843}
 844
 845/*
 846 * Handle the immediate effects of the different events.
 847 * The port change event is used for online/offline changes.
 848 */
 849static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 850{
 851        if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 852                eacr.es = 0;
 853        if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 854                eacr.es = eacr.sl = 0;
 855        if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 856                etr_port0_uptodate = etr_port1_uptodate = 0;
 857
 858        if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 859                if (eacr.e0)
 860                        /*
 861                         * Port change of an enabled port. We have to
 862                         * assume that this can have caused an stepping
 863                         * port switch.
 864                         */
 865                        etr_tolec = get_tod_clock();
 866                eacr.p0 = etr_port0_online;
 867                if (!eacr.p0)
 868                        eacr.e0 = 0;
 869                etr_port0_uptodate = 0;
 870        }
 871        if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 872                if (eacr.e1)
 873                        /*
 874                         * Port change of an enabled port. We have to
 875                         * assume that this can have caused an stepping
 876                         * port switch.
 877                         */
 878                        etr_tolec = get_tod_clock();
 879                eacr.p1 = etr_port1_online;
 880                if (!eacr.p1)
 881                        eacr.e1 = 0;
 882                etr_port1_uptodate = 0;
 883        }
 884        clear_bit(ETR_EVENT_UPDATE, &etr_events);
 885        return eacr;
 886}
 887
 888/*
 889 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 890 * one of the ports needs an update.
 891 */
 892static void etr_set_tolec_timeout(unsigned long long now)
 893{
 894        unsigned long micros;
 895
 896        if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 897            (!etr_eacr.p1 || etr_port1_uptodate))
 898                return;
 899        micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 900        micros = (micros > 1600000) ? 0 : 1600000 - micros;
 901        mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 902}
 903
 904/*
 905 * Set up a time that expires after 1/2 second.
 906 */
 907static void etr_set_sync_timeout(void)
 908{
 909        mod_timer(&etr_timer, jiffies + HZ/2);
 910}
 911
 912/*
 913 * Update the aib information for one or both ports.
 914 */
 915static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 916                                         struct etr_eacr eacr)
 917{
 918        /* With both ports disabled the aib information is useless. */
 919        if (!eacr.e0 && !eacr.e1)
 920                return eacr;
 921
 922        /* Update port0 or port1 with aib stored in etr_work_fn. */
 923        if (aib->esw.q == 0) {
 924                /* Information for port 0 stored. */
 925                if (eacr.p0 && !etr_port0_uptodate) {
 926                        etr_port0 = *aib;
 927                        if (etr_port0_online)
 928                                etr_port0_uptodate = 1;
 929                }
 930        } else {
 931                /* Information for port 1 stored. */
 932                if (eacr.p1 && !etr_port1_uptodate) {
 933                        etr_port1 = *aib;
 934                        if (etr_port0_online)
 935                                etr_port1_uptodate = 1;
 936                }
 937        }
 938
 939        /*
 940         * Do not try to get the alternate port aib if the clock
 941         * is not in sync yet.
 942         */
 943        if (!eacr.es || !check_sync_clock())
 944                return eacr;
 945
 946        /*
 947         * If steai is available we can get the information about
 948         * the other port immediately. If only stetr is available the
 949         * data-port bit toggle has to be used.
 950         */
 951        if (etr_steai_available) {
 952                if (eacr.p0 && !etr_port0_uptodate) {
 953                        etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 954                        etr_port0_uptodate = 1;
 955                }
 956                if (eacr.p1 && !etr_port1_uptodate) {
 957                        etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 958                        etr_port1_uptodate = 1;
 959                }
 960        } else {
 961                /*
 962                 * One port was updated above, if the other
 963                 * port is not uptodate toggle dp bit.
 964                 */
 965                if ((eacr.p0 && !etr_port0_uptodate) ||
 966                    (eacr.p1 && !etr_port1_uptodate))
 967                        eacr.dp ^= 1;
 968                else
 969                        eacr.dp = 0;
 970        }
 971        return eacr;
 972}
 973
 974/*
 975 * Write new etr control register if it differs from the current one.
 976 * Return 1 if etr_tolec has been updated as well.
 977 */
 978static void etr_update_eacr(struct etr_eacr eacr)
 979{
 980        int dp_changed;
 981
 982        if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 983                /* No change, return. */
 984                return;
 985        /*
 986         * The disable of an active port of the change of the data port
 987         * bit can/will cause a change in the data port.
 988         */
 989        dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 990                (etr_eacr.dp ^ eacr.dp) != 0;
 991        etr_eacr = eacr;
 992        etr_setr(&etr_eacr);
 993        if (dp_changed)
 994                etr_tolec = get_tod_clock();
 995}
 996
 997/*
 998 * ETR work. In this function you'll find the main logic. In
 999 * particular this is the only function that calls etr_update_eacr(),
1000 * it "controls" the etr control register.
1001 */
1002static void etr_work_fn(struct work_struct *work)
1003{
1004        unsigned long long now;
1005        struct etr_eacr eacr;
1006        struct etr_aib aib;
1007        int sync_port;
1008
1009        /* prevent multiple execution. */
1010        mutex_lock(&etr_work_mutex);
1011
1012        /* Create working copy of etr_eacr. */
1013        eacr = etr_eacr;
1014
1015        /* Check for the different events and their immediate effects. */
1016        eacr = etr_handle_events(eacr);
1017
1018        /* Check if ETR is supposed to be active. */
1019        eacr.ea = eacr.p0 || eacr.p1;
1020        if (!eacr.ea) {
1021                /* Both ports offline. Reset everything. */
1022                eacr.dp = eacr.es = eacr.sl = 0;
1023                on_each_cpu(disable_sync_clock, NULL, 1);
1024                del_timer_sync(&etr_timer);
1025                etr_update_eacr(eacr);
1026                goto out_unlock;
1027        }
1028
1029        /* Store aib to get the current ETR status word. */
1030        BUG_ON(etr_stetr(&aib) != 0);
1031        etr_port0.esw = etr_port1.esw = aib.esw;        /* Copy status word. */
1032        now = get_tod_clock();
1033
1034        /*
1035         * Update the port information if the last stepping port change
1036         * or data port change is older than 1.6 seconds.
1037         */
1038        if (now >= etr_tolec + (1600000 << 12))
1039                eacr = etr_handle_update(&aib, eacr);
1040
1041        /*
1042         * Select ports to enable. The preferred synchronization mode is PPS.
1043         * If a port can be enabled depends on a number of things:
1044         * 1) The port needs to be online and uptodate. A port is not
1045         *    disabled just because it is not uptodate, but it is only
1046         *    enabled if it is uptodate.
1047         * 2) The port needs to have the same mode (pps / etr).
1048         * 3) The port needs to be usable -> etr_port_valid() == 1
1049         * 4) To enable the second port the clock needs to be in sync.
1050         * 5) If both ports are useable and are ETR ports, the network id
1051         *    has to be the same.
1052         * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1053         */
1054        if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1055                eacr.sl = 0;
1056                eacr.e0 = 1;
1057                if (!etr_mode_is_pps(etr_eacr))
1058                        eacr.es = 0;
1059                if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1060                        eacr.e1 = 0;
1061                // FIXME: uptodate checks ?
1062                else if (etr_port0_uptodate && etr_port1_uptodate)
1063                        eacr.e1 = 1;
1064                sync_port = (etr_port0_uptodate &&
1065                             etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1066        } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1067                eacr.sl = 0;
1068                eacr.e0 = 0;
1069                eacr.e1 = 1;
1070                if (!etr_mode_is_pps(etr_eacr))
1071                        eacr.es = 0;
1072                sync_port = (etr_port1_uptodate &&
1073                             etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1074        } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1075                eacr.sl = 1;
1076                eacr.e0 = 1;
1077                if (!etr_mode_is_etr(etr_eacr))
1078                        eacr.es = 0;
1079                if (!eacr.es || !eacr.p1 ||
1080                    aib.esw.psc1 != etr_lpsc_operational_alt)
1081                        eacr.e1 = 0;
1082                else if (etr_port0_uptodate && etr_port1_uptodate &&
1083                         etr_compare_network(&etr_port0, &etr_port1))
1084                        eacr.e1 = 1;
1085                sync_port = (etr_port0_uptodate &&
1086                             etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1087        } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1088                eacr.sl = 1;
1089                eacr.e0 = 0;
1090                eacr.e1 = 1;
1091                if (!etr_mode_is_etr(etr_eacr))
1092                        eacr.es = 0;
1093                sync_port = (etr_port1_uptodate &&
1094                             etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1095        } else {
1096                /* Both ports not usable. */
1097                eacr.es = eacr.sl = 0;
1098                sync_port = -1;
1099        }
1100
1101        /*
1102         * If the clock is in sync just update the eacr and return.
1103         * If there is no valid sync port wait for a port update.
1104         */
1105        if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1106                etr_update_eacr(eacr);
1107                etr_set_tolec_timeout(now);
1108                goto out_unlock;
1109        }
1110
1111        /*
1112         * Prepare control register for clock syncing
1113         * (reset data port bit, set sync check control.
1114         */
1115        eacr.dp = 0;
1116        eacr.es = 1;
1117
1118        /*
1119         * Update eacr and try to synchronize the clock. If the update
1120         * of eacr caused a stepping port switch (or if we have to
1121         * assume that a stepping port switch has occurred) or the
1122         * clock syncing failed, reset the sync check control bit
1123         * and set up a timer to try again after 0.5 seconds
1124         */
1125        etr_update_eacr(eacr);
1126        if (now < etr_tolec + (1600000 << 12) ||
1127            etr_sync_clock_stop(&aib, sync_port) != 0) {
1128                /* Sync failed. Try again in 1/2 second. */
1129                eacr.es = 0;
1130                etr_update_eacr(eacr);
1131                etr_set_sync_timeout();
1132        } else
1133                etr_set_tolec_timeout(now);
1134out_unlock:
1135        mutex_unlock(&etr_work_mutex);
1136}
1137
1138/*
1139 * Sysfs interface functions
1140 */
1141static struct bus_type etr_subsys = {
1142        .name           = "etr",
1143        .dev_name       = "etr",
1144};
1145
1146static struct device etr_port0_dev = {
1147        .id     = 0,
1148        .bus    = &etr_subsys,
1149};
1150
1151static struct device etr_port1_dev = {
1152        .id     = 1,
1153        .bus    = &etr_subsys,
1154};
1155
1156/*
1157 * ETR subsys attributes
1158 */
1159static ssize_t etr_stepping_port_show(struct device *dev,
1160                                        struct device_attribute *attr,
1161                                        char *buf)
1162{
1163        return sprintf(buf, "%i\n", etr_port0.esw.p);
1164}
1165
1166static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1167
1168static ssize_t etr_stepping_mode_show(struct device *dev,
1169                                        struct device_attribute *attr,
1170                                        char *buf)
1171{
1172        char *mode_str;
1173
1174        if (etr_mode_is_pps(etr_eacr))
1175                mode_str = "pps";
1176        else if (etr_mode_is_etr(etr_eacr))
1177                mode_str = "etr";
1178        else
1179                mode_str = "local";
1180        return sprintf(buf, "%s\n", mode_str);
1181}
1182
1183static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1184
1185/*
1186 * ETR port attributes
1187 */
1188static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1189{
1190        if (dev == &etr_port0_dev)
1191                return etr_port0_online ? &etr_port0 : NULL;
1192        else
1193                return etr_port1_online ? &etr_port1 : NULL;
1194}
1195
1196static ssize_t etr_online_show(struct device *dev,
1197                                struct device_attribute *attr,
1198                                char *buf)
1199{
1200        unsigned int online;
1201
1202        online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1203        return sprintf(buf, "%i\n", online);
1204}
1205
1206static ssize_t etr_online_store(struct device *dev,
1207                                struct device_attribute *attr,
1208                                const char *buf, size_t count)
1209{
1210        unsigned int value;
1211
1212        value = simple_strtoul(buf, NULL, 0);
1213        if (value != 0 && value != 1)
1214                return -EINVAL;
1215        if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1216                return -EOPNOTSUPP;
1217        mutex_lock(&clock_sync_mutex);
1218        if (dev == &etr_port0_dev) {
1219                if (etr_port0_online == value)
1220                        goto out;       /* Nothing to do. */
1221                etr_port0_online = value;
1222                if (etr_port0_online && etr_port1_online)
1223                        set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1224                else
1225                        clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1226                set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1227                queue_work(time_sync_wq, &etr_work);
1228        } else {
1229                if (etr_port1_online == value)
1230                        goto out;       /* Nothing to do. */
1231                etr_port1_online = value;
1232                if (etr_port0_online && etr_port1_online)
1233                        set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1234                else
1235                        clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1236                set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1237                queue_work(time_sync_wq, &etr_work);
1238        }
1239out:
1240        mutex_unlock(&clock_sync_mutex);
1241        return count;
1242}
1243
1244static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1245
1246static ssize_t etr_stepping_control_show(struct device *dev,
1247                                        struct device_attribute *attr,
1248                                        char *buf)
1249{
1250        return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1251                       etr_eacr.e0 : etr_eacr.e1);
1252}
1253
1254static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1255
1256static ssize_t etr_mode_code_show(struct device *dev,
1257                                struct device_attribute *attr, char *buf)
1258{
1259        if (!etr_port0_online && !etr_port1_online)
1260                /* Status word is not uptodate if both ports are offline. */
1261                return -ENODATA;
1262        return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1263                       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1264}
1265
1266static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1267
1268static ssize_t etr_untuned_show(struct device *dev,
1269                                struct device_attribute *attr, char *buf)
1270{
1271        struct etr_aib *aib = etr_aib_from_dev(dev);
1272
1273        if (!aib || !aib->slsw.v1)
1274                return -ENODATA;
1275        return sprintf(buf, "%i\n", aib->edf1.u);
1276}
1277
1278static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1279
1280static ssize_t etr_network_id_show(struct device *dev,
1281                                struct device_attribute *attr, char *buf)
1282{
1283        struct etr_aib *aib = etr_aib_from_dev(dev);
1284
1285        if (!aib || !aib->slsw.v1)
1286                return -ENODATA;
1287        return sprintf(buf, "%i\n", aib->edf1.net_id);
1288}
1289
1290static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1291
1292static ssize_t etr_id_show(struct device *dev,
1293                        struct device_attribute *attr, char *buf)
1294{
1295        struct etr_aib *aib = etr_aib_from_dev(dev);
1296
1297        if (!aib || !aib->slsw.v1)
1298                return -ENODATA;
1299        return sprintf(buf, "%i\n", aib->edf1.etr_id);
1300}
1301
1302static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1303
1304static ssize_t etr_port_number_show(struct device *dev,
1305                        struct device_attribute *attr, char *buf)
1306{
1307        struct etr_aib *aib = etr_aib_from_dev(dev);
1308
1309        if (!aib || !aib->slsw.v1)
1310                return -ENODATA;
1311        return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1312}
1313
1314static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1315
1316static ssize_t etr_coupled_show(struct device *dev,
1317                        struct device_attribute *attr, char *buf)
1318{
1319        struct etr_aib *aib = etr_aib_from_dev(dev);
1320
1321        if (!aib || !aib->slsw.v3)
1322                return -ENODATA;
1323        return sprintf(buf, "%i\n", aib->edf3.c);
1324}
1325
1326static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1327
1328static ssize_t etr_local_time_show(struct device *dev,
1329                        struct device_attribute *attr, char *buf)
1330{
1331        struct etr_aib *aib = etr_aib_from_dev(dev);
1332
1333        if (!aib || !aib->slsw.v3)
1334                return -ENODATA;
1335        return sprintf(buf, "%i\n", aib->edf3.blto);
1336}
1337
1338static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1339
1340static ssize_t etr_utc_offset_show(struct device *dev,
1341                        struct device_attribute *attr, char *buf)
1342{
1343        struct etr_aib *aib = etr_aib_from_dev(dev);
1344
1345        if (!aib || !aib->slsw.v3)
1346                return -ENODATA;
1347        return sprintf(buf, "%i\n", aib->edf3.buo);
1348}
1349
1350static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1351
1352static struct device_attribute *etr_port_attributes[] = {
1353        &dev_attr_online,
1354        &dev_attr_stepping_control,
1355        &dev_attr_state_code,
1356        &dev_attr_untuned,
1357        &dev_attr_network,
1358        &dev_attr_id,
1359        &dev_attr_port,
1360        &dev_attr_coupled,
1361        &dev_attr_local_time,
1362        &dev_attr_utc_offset,
1363        NULL
1364};
1365
1366static int __init etr_register_port(struct device *dev)
1367{
1368        struct device_attribute **attr;
1369        int rc;
1370
1371        rc = device_register(dev);
1372        if (rc)
1373                goto out;
1374        for (attr = etr_port_attributes; *attr; attr++) {
1375                rc = device_create_file(dev, *attr);
1376                if (rc)
1377                        goto out_unreg;
1378        }
1379        return 0;
1380out_unreg:
1381        for (; attr >= etr_port_attributes; attr--)
1382                device_remove_file(dev, *attr);
1383        device_unregister(dev);
1384out:
1385        return rc;
1386}
1387
1388static void __init etr_unregister_port(struct device *dev)
1389{
1390        struct device_attribute **attr;
1391
1392        for (attr = etr_port_attributes; *attr; attr++)
1393                device_remove_file(dev, *attr);
1394        device_unregister(dev);
1395}
1396
1397static int __init etr_init_sysfs(void)
1398{
1399        int rc;
1400
1401        rc = subsys_system_register(&etr_subsys, NULL);
1402        if (rc)
1403                goto out;
1404        rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1405        if (rc)
1406                goto out_unreg_subsys;
1407        rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1408        if (rc)
1409                goto out_remove_stepping_port;
1410        rc = etr_register_port(&etr_port0_dev);
1411        if (rc)
1412                goto out_remove_stepping_mode;
1413        rc = etr_register_port(&etr_port1_dev);
1414        if (rc)
1415                goto out_remove_port0;
1416        return 0;
1417
1418out_remove_port0:
1419        etr_unregister_port(&etr_port0_dev);
1420out_remove_stepping_mode:
1421        device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1422out_remove_stepping_port:
1423        device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1424out_unreg_subsys:
1425        bus_unregister(&etr_subsys);
1426out:
1427        return rc;
1428}
1429
1430device_initcall(etr_init_sysfs);
1431
1432/*
1433 * Server Time Protocol (STP) code.
1434 */
1435static bool stp_online;
1436static struct stp_sstpi stp_info;
1437static void *stp_page;
1438
1439static void stp_work_fn(struct work_struct *work);
1440static DEFINE_MUTEX(stp_work_mutex);
1441static DECLARE_WORK(stp_work, stp_work_fn);
1442static struct timer_list stp_timer;
1443
1444static int __init early_parse_stp(char *p)
1445{
1446        return kstrtobool(p, &stp_online);
1447}
1448early_param("stp", early_parse_stp);
1449
1450/*
1451 * Reset STP attachment.
1452 */
1453static void __init stp_reset(void)
1454{
1455        int rc;
1456
1457        stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1458        rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1459        if (rc == 0)
1460                set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1461        else if (stp_online) {
1462                pr_warn("The real or virtual hardware system does not provide an STP interface\n");
1463                free_page((unsigned long) stp_page);
1464                stp_page = NULL;
1465                stp_online = 0;
1466        }
1467}
1468
1469static void stp_timeout(unsigned long dummy)
1470{
1471        queue_work(time_sync_wq, &stp_work);
1472}
1473
1474static int __init stp_init(void)
1475{
1476        if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1477                return 0;
1478        setup_timer(&stp_timer, stp_timeout, 0UL);
1479        time_init_wq();
1480        if (!stp_online)
1481                return 0;
1482        queue_work(time_sync_wq, &stp_work);
1483        return 0;
1484}
1485
1486arch_initcall(stp_init);
1487
1488/*
1489 * STP timing alert. There are three causes:
1490 * 1) timing status change
1491 * 2) link availability change
1492 * 3) time control parameter change
1493 * In all three cases we are only interested in the clock source state.
1494 * If a STP clock source is now available use it.
1495 */
1496static void stp_timing_alert(struct stp_irq_parm *intparm)
1497{
1498        if (intparm->tsc || intparm->lac || intparm->tcpc)
1499                queue_work(time_sync_wq, &stp_work);
1500}
1501
1502/*
1503 * STP sync check machine check. This is called when the timing state
1504 * changes from the synchronized state to the unsynchronized state.
1505 * After a STP sync check the clock is not in sync. The machine check
1506 * is broadcasted to all cpus at the same time.
1507 */
1508int stp_sync_check(void)
1509{
1510        disable_sync_clock(NULL);
1511        return 1;
1512}
1513
1514/*
1515 * STP island condition machine check. This is called when an attached
1516 * server  attempts to communicate over an STP link and the servers
1517 * have matching CTN ids and have a valid stratum-1 configuration
1518 * but the configurations do not match.
1519 */
1520int stp_island_check(void)
1521{
1522        disable_sync_clock(NULL);
1523        return 1;
1524}
1525
1526void stp_queue_work(void)
1527{
1528        queue_work(time_sync_wq, &stp_work);
1529}
1530
1531static int stp_sync_clock(void *data)
1532{
1533        static int first;
1534        unsigned long long old_clock, delta, new_clock, clock_delta;
1535        struct clock_sync_data *stp_sync;
1536        int rc;
1537
1538        stp_sync = data;
1539
1540        if (xchg(&first, 1) == 1) {
1541                /* Slave */
1542                clock_sync_cpu(stp_sync);
1543                return 0;
1544        }
1545
1546        /* Wait until all other cpus entered the sync function. */
1547        while (atomic_read(&stp_sync->cpus) != 0)
1548                cpu_relax();
1549
1550        enable_sync_clock();
1551
1552        rc = 0;
1553        if (stp_info.todoff[0] || stp_info.todoff[1] ||
1554            stp_info.todoff[2] || stp_info.todoff[3] ||
1555            stp_info.tmd != 2) {
1556                old_clock = get_tod_clock();
1557                rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1558                if (rc == 0) {
1559                        new_clock = get_tod_clock();
1560                        delta = adjust_time(old_clock, new_clock, 0);
1561                        clock_delta = new_clock - old_clock;
1562                        atomic_notifier_call_chain(&s390_epoch_delta_notifier,
1563                                                   0, &clock_delta);
1564                        fixup_clock_comparator(delta);
1565                        rc = chsc_sstpi(stp_page, &stp_info,
1566                                        sizeof(struct stp_sstpi));
1567                        if (rc == 0 && stp_info.tmd != 2)
1568                                rc = -EAGAIN;
1569                }
1570        }
1571        if (rc) {
1572                disable_sync_clock(NULL);
1573                stp_sync->in_sync = -EAGAIN;
1574        } else
1575                stp_sync->in_sync = 1;
1576        xchg(&first, 0);
1577        return 0;
1578}
1579
1580/*
1581 * STP work. Check for the STP state and take over the clock
1582 * synchronization if the STP clock source is usable.
1583 */
1584static void stp_work_fn(struct work_struct *work)
1585{
1586        struct clock_sync_data stp_sync;
1587        int rc;
1588
1589        /* prevent multiple execution. */
1590        mutex_lock(&stp_work_mutex);
1591
1592        if (!stp_online) {
1593                chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1594                del_timer_sync(&stp_timer);
1595                goto out_unlock;
1596        }
1597
1598        rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1599        if (rc)
1600                goto out_unlock;
1601
1602        rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1603        if (rc || stp_info.c == 0)
1604                goto out_unlock;
1605
1606        /* Skip synchronization if the clock is already in sync. */
1607        if (check_sync_clock())
1608                goto out_unlock;
1609
1610        memset(&stp_sync, 0, sizeof(stp_sync));
1611        get_online_cpus();
1612        atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1613        stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1614        put_online_cpus();
1615
1616        if (!check_sync_clock())
1617                /*
1618                 * There is a usable clock but the synchonization failed.
1619                 * Retry after a second.
1620                 */
1621                mod_timer(&stp_timer, jiffies + HZ);
1622
1623out_unlock:
1624        mutex_unlock(&stp_work_mutex);
1625}
1626
1627/*
1628 * STP subsys sysfs interface functions
1629 */
1630static struct bus_type stp_subsys = {
1631        .name           = "stp",
1632        .dev_name       = "stp",
1633};
1634
1635static ssize_t stp_ctn_id_show(struct device *dev,
1636                                struct device_attribute *attr,
1637                                char *buf)
1638{
1639        if (!stp_online)
1640                return -ENODATA;
1641        return sprintf(buf, "%016llx\n",
1642                       *(unsigned long long *) stp_info.ctnid);
1643}
1644
1645static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1646
1647static ssize_t stp_ctn_type_show(struct device *dev,
1648                                struct device_attribute *attr,
1649                                char *buf)
1650{
1651        if (!stp_online)
1652                return -ENODATA;
1653        return sprintf(buf, "%i\n", stp_info.ctn);
1654}
1655
1656static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1657
1658static ssize_t stp_dst_offset_show(struct device *dev,
1659                                   struct device_attribute *attr,
1660                                   char *buf)
1661{
1662        if (!stp_online || !(stp_info.vbits & 0x2000))
1663                return -ENODATA;
1664        return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1665}
1666
1667static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1668
1669static ssize_t stp_leap_seconds_show(struct device *dev,
1670                                        struct device_attribute *attr,
1671                                        char *buf)
1672{
1673        if (!stp_online || !(stp_info.vbits & 0x8000))
1674                return -ENODATA;
1675        return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1676}
1677
1678static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1679
1680static ssize_t stp_stratum_show(struct device *dev,
1681                                struct device_attribute *attr,
1682                                char *buf)
1683{
1684        if (!stp_online)
1685                return -ENODATA;
1686        return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1687}
1688
1689static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1690
1691static ssize_t stp_time_offset_show(struct device *dev,
1692                                struct device_attribute *attr,
1693                                char *buf)
1694{
1695        if (!stp_online || !(stp_info.vbits & 0x0800))
1696                return -ENODATA;
1697        return sprintf(buf, "%i\n", (int) stp_info.tto);
1698}
1699
1700static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1701
1702static ssize_t stp_time_zone_offset_show(struct device *dev,
1703                                struct device_attribute *attr,
1704                                char *buf)
1705{
1706        if (!stp_online || !(stp_info.vbits & 0x4000))
1707                return -ENODATA;
1708        return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1709}
1710
1711static DEVICE_ATTR(time_zone_offset, 0400,
1712                         stp_time_zone_offset_show, NULL);
1713
1714static ssize_t stp_timing_mode_show(struct device *dev,
1715                                struct device_attribute *attr,
1716                                char *buf)
1717{
1718        if (!stp_online)
1719                return -ENODATA;
1720        return sprintf(buf, "%i\n", stp_info.tmd);
1721}
1722
1723static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1724
1725static ssize_t stp_timing_state_show(struct device *dev,
1726                                struct device_attribute *attr,
1727                                char *buf)
1728{
1729        if (!stp_online)
1730                return -ENODATA;
1731        return sprintf(buf, "%i\n", stp_info.tst);
1732}
1733
1734static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1735
1736static ssize_t stp_online_show(struct device *dev,
1737                                struct device_attribute *attr,
1738                                char *buf)
1739{
1740        return sprintf(buf, "%i\n", stp_online);
1741}
1742
1743static ssize_t stp_online_store(struct device *dev,
1744                                struct device_attribute *attr,
1745                                const char *buf, size_t count)
1746{
1747        unsigned int value;
1748
1749        value = simple_strtoul(buf, NULL, 0);
1750        if (value != 0 && value != 1)
1751                return -EINVAL;
1752        if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1753                return -EOPNOTSUPP;
1754        mutex_lock(&clock_sync_mutex);
1755        stp_online = value;
1756        if (stp_online)
1757                set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1758        else
1759                clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1760        queue_work(time_sync_wq, &stp_work);
1761        mutex_unlock(&clock_sync_mutex);
1762        return count;
1763}
1764
1765/*
1766 * Can't use DEVICE_ATTR because the attribute should be named
1767 * stp/online but dev_attr_online already exists in this file ..
1768 */
1769static struct device_attribute dev_attr_stp_online = {
1770        .attr = { .name = "online", .mode = 0600 },
1771        .show   = stp_online_show,
1772        .store  = stp_online_store,
1773};
1774
1775static struct device_attribute *stp_attributes[] = {
1776        &dev_attr_ctn_id,
1777        &dev_attr_ctn_type,
1778        &dev_attr_dst_offset,
1779        &dev_attr_leap_seconds,
1780        &dev_attr_stp_online,
1781        &dev_attr_stratum,
1782        &dev_attr_time_offset,
1783        &dev_attr_time_zone_offset,
1784        &dev_attr_timing_mode,
1785        &dev_attr_timing_state,
1786        NULL
1787};
1788
1789static int __init stp_init_sysfs(void)
1790{
1791        struct device_attribute **attr;
1792        int rc;
1793
1794        rc = subsys_system_register(&stp_subsys, NULL);
1795        if (rc)
1796                goto out;
1797        for (attr = stp_attributes; *attr; attr++) {
1798                rc = device_create_file(stp_subsys.dev_root, *attr);
1799                if (rc)
1800                        goto out_unreg;
1801        }
1802        return 0;
1803out_unreg:
1804        for (; attr >= stp_attributes; attr--)
1805                device_remove_file(stp_subsys.dev_root, *attr);
1806        bus_unregister(&stp_subsys);
1807out:
1808        return rc;
1809}
1810
1811device_initcall(stp_init_sysfs);
1812